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When assessing the risk posed by high temperatures, it is necessary to
consider not only the temperature at separate sites but also how many sites
are expected to be hot at the same time. Hot events that cover a large area have
the potential to put a great strain on health services and cause devastation to
agriculture, leading to high death tolls and much economic damage. South-
eastern Australia experienced a severe heatwave in early 2009; 374 people
died in the state of Victoria and Melbourne recorded its highest temperature
since records began in 1859 [Nairn and Fawcett (2013)]. One area of partic-
ular interest in climate science is the effect of large-scale climatic phenom-
ena, such as the El Niño-Southern Oscillation (ENSO), on extreme temper-
atures. Here, we develop a framework based upon extreme value theory to
estimate the effect of ENSO on extreme temperatures across Australia. This
approach permits us to estimate the change in temperatures with ENSO at
important sites, such as Melbourne, and also whether we are more likely to
observe hot temperatures over a larger spatial extent during a particular phase
of ENSO. To this end, we design a set of measures that can be used to effec-
tively summarise many important spatial aspects of an extreme temperature
event. These measures are estimated using our extreme value framework and
we validate whether we can accurately replicate the 2009 Australian heat-
wave, before using the model to estimate the probability of having a more
severe event than has been observed.

1. Introduction. The early 2009 heatwave event was one of the most ex-
treme to hit southeastern Australia. Melbourne recorded its highest temperature
since records began in 1859, at 46.4◦C, and Adelaide its third highest temperature
over the same observational period at 45.7◦C. In total, there were 374 heat related
deaths in Victoria with over 2000 people treated for heat-related illness [Nairn and
Fawcett (2013)]. A particular challenge when modelling any environmental pro-
cess across Australia is the spatial distribution of the population and agricultural
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activity across the country. Four of the five largest cities are located on the coast
in the southeastern region and most agriculture occurs in the southeastern region.
A hot event occurring over this region will lead to increased mortality and eco-
nomic losses. As such, for mitigation purposes, it is necessary to be able to give
accurate estimates of the risk posed by high temperatures over specific regions
of interest. Extreme value theory provides a statistical framework for modelling
rare events. To model this problem sufficiently, using extreme value statistics, we
require not only a univariate extreme value model that focuses on very high tem-
peratures, but also a flexible model that accurately captures the spatial dependence
between high temperatures at different sites.

There is much interest in how certain large-scale climatic phenomena will af-
fect extreme events, both currently and under future climate change. One particular
phenomenon known to affect the climate of Australia is the El Niño-Southern Os-
cillation (ENSO). It is a large-scale naturally occurring fluctuation in sea surface
temperatures (SSTs) in the equatorial Pacific. Two limiting cases, corresponding to
higher and lower SSTs in the equatorial Pacific Ocean, are called El Niño and La
Niña, respectively. During El Niño conditions, weaker easterly trade winds blow-
ing across the Pacific can cause warm surface water to flow eastward. This leads to
increased convection in the central Pacific and reduces the amount of precipitation
over Australia and other countries in southern Asia. In contrast, during La Niña
conditions, stronger trade winds blow warmer surface water to the west Pacific
and cooler SSTs are observed in central and eastern Pacific regions [Wang and
Picaut (2004)]. The effect of ENSO on mean global temperatures has been well
studied, but the impact on extreme temperature is less well understood.

Looking at Australia specifically, Kenyon and Hegerl (2008) showed that El
Niño conditions lead to increased temperatures over eastern and northern regions,
whereas during La Niña conditions temperatures will be lower over eastern and
northern regions. Strong El Niño conditions do not guarantee higher temperatures
and patterns are not uniform across space. The early 2009 heatwave event over
southeastern Australia occurred during a moderate La Niña event. The event cov-
ered much of southern and southeastern Australia, and as such had a great impact
leading to record temperatures in certain places; this was not a uniform pattern
across the whole of Australia, with some regions affected by moderate heat only.

The aim of this study is to develop a better understanding of how ENSO has an
effect on extreme temperatures over Australia. Perkins and Alexander (2013), Min,
Cai and Whetton (2013) and Alexander and Arblaster (2009) have explored the ef-
fect of ENSO on the distribution of annual and seasonal maxima temperatures in
Australia. They fit the generalised extreme value distribution with covariates in the
location and scale parameters and map return level estimates over sites to produce
spatial plots. However, none of these papers explicitly model spatial dependence,
and therefore cannot be used to estimate the probability of heatwave events oc-
curring at multiple sites over space. We analyse the effect of ENSO on not only
the marginal distribution of extreme temperatures, using more efficient threshold
models [Coles (2001)], but also their spatial dependence structure.
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Two approaches that have been used for the analysis of spatial processes, when
extreme values are of interest, are geostatistics and max-stable processes. The
broad area of geostatistics provides the most widely used approaches for spatial
modelling and is based on an assumption that the process being modelled is Gaus-
sian [Cressie (1993)]. These approaches tend to focus on the main body of data,
and as such can lead to misleading results when analysing rare events such as
extreme temperatures. The most popular approach to spatial extreme value mod-
elling is to fit a max-stable process to componentwise maxima, such as the site-by-
site annual maxima. Key max-stable papers include Smith (1990), Coles (1993),
Schlather (2002), Davison, Padoan and Ribatet (2012) and Dombry, Éyi-Minko
and Ribatet (2013). A max-stable process arises as the limiting process derived by
taking an affine normalisation of pointwise maxima over a sequence of n indepen-
dent and identically distributed replicates of a random spatial process as n → ∞.
Max-stable models are often computationally intensive to fit and difficult to con-
ditionally simulate from. More critically, both Gaussian and max-stable processes
have restrictive features to their extremal dependence structure, as explained be-
low.

To help us consider what mathematical properties we require for our model for
spatial extreme events, we first introduce an important limiting pairwise measure
of extremal dependence between random variables Y1 and Y2 with continuous dis-
tribution functions F1 and F2, respectively. The tail coefficient χ is given by

χ = lim
p→1

P
(
F2(Y2) > p|F1(Y1) > p

)
.(1)

When χ > 0, Y1 and Y2 are said to be asymptotically dependent, that is, the
conditional probability of concurrent extremes in Y1 and Y2 has some nonzero
probability in the limit. The variables Y1 and Y2 are asymptotically independent
when χ = 0. All dependent max-stable processes are asymptotically dependent
for all pairs of sites. In contrast, all nonperfectly dependent Gaussian processes
are asymptotically independent for all pairs of sites [Ledford and Tawn (1996)].
If a spatial process was asymptotically dependent for nearby sites and dependent
but asymptotically independent for more separated sites, then neither a max-stable
process or a Gaussian process could model its extreme events without leading to
biased inferences.

To accurately model extremal dependence, we build a flexible multivariate
model based upon the conditional extremes approach of Heffernan and Tawn
(2004) that fully takes into account spatial dependence on a spatial lattice within
the framework of extreme value theory. The conditional extremes model leads to a
class of multivariate distributions that allow for both asymptotic dependence and
asymptotic independence between pairs of sites. As such, this model is suitable if
the process being modelled is either max-stable or Gaussian whilst also permitting
the analysis of more general processes. Thus, this approach embeds both the two
standard approaches within a general framework. A major benefit of the condi-
tional extremes approach is that inference for extreme events does not require the
choice of asymptotic dependence or asymptotic independence for each different
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pair of sites in advance. Uncertainty in estimates of extreme events derived from
this method accounts for the evidence for each type of extremal dependence. Fur-
thermore, conditional simulation of extreme events is straightforward under this
approach. The conditional extremes framework not only permits the estimation of
joint extremes at different sites, but also how ENSO affects the spatial extent of a
hot event.

To analyse the marginal effect of ENSO on extreme temperatures, we will esti-
mate the change in return levels at each site. Other existing measures of univari-
ate temperature series quantify the effect of heat on mortality and other factors;
see Alexander and Arblaster (2009) and Winter and Tawn (2016). A key contribu-
tion here is that we are the first to introduce spatial risk measures. Let the set of
all sites be denoted by S, and let the values of the daily maximum temperatures
at these sites be Y = (Y1, . . . , Yl), where |S| = l. The most widely used exist-
ing measures are based on equation (1), but they only describe the dependence
between pairs of sites, they do not measure dependence when the variables are
asymptotically independent, and they condition on a specific site being extreme.
Our measures overcome these restrictions. We find the most informative spatial
risk measure to be the severity-area-frequency (SAF) curve, which we adapt from
drought analysis [Henriques and Santos (1999)]. The SAF curve (γj , j ≥ 1) gives
the average marginal return period of an event at the j worst affected sites.

By analysing our suite of spatial risk measures, we are able to explore the spa-
tial extent of temperature extremes across Australia and see how the measures alter
with ENSO conditions. We also test the validity of our approach by comparing risk
measure values from observations from the heatwave event in early 2009 to sim-
ulations of hot days generated by our model, thus demonstrating that our model
can capture such events accurately. We then illustrate how our approach can be
used to estimate extremal features for rarer events than have been observed previ-
ously. Thus, for the first time it is possible to answer questions such as what is the
probability of observing a spatial event more extreme than the early 2009 event?

In Section 2 we introduce the gridded daily maximum temperature data along
with the ENSO covariate. Section 3 presents the models for the margins and depen-
dence structure of spatial extreme temperatures. The measures for assessing spa-
tial risk are developed in Section 4. In Section 5 an approach for simulating spatial
fields using the conditional extremes model is given. Results for the marginal and
dependence parameters are provided in Section 6 along with estimates of impor-
tant extremal measures. Finally, discussion and conclusions are given in Section 7.

2. Data and exploratory analysis. Daily maximum near-surface air temper-
atures for Australia are taken from HadGHCND, a global gridded dataset (http://
hadobs.metoffice.com/hadghcnd/) of quality-controlled station observations com-
piled by the U.S. National Climatic Data Center [Caesar, Alexander and Vose
(2006)]. An angular distance weighting technique is used to interpolate observed
anomalies onto a 2.5◦ latitude by 3.75◦ longitude grid which results in 72 boxes
covering Australia over the period 1957–2011. Whilst this is a relatively coarse
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resolution, heatwaves are large meteorological phenomena and surface air temper-
atures have long correlation length scales, for which Caesar, Alexander and Vose
(2006) found values of between 700 km and 1400 km for the 0◦S to 30◦S lati-
tude band. For Australian surface air temperatures Avila et al. (2015) found that
their extremal characteristics and correlations with ENSO were preserved across
a range of grid resolutions from 0.25◦ to 2.5◦. Hot days are most likely to occur
in summer months, here defined as the 90-day period from December to Febru-
ary (91-day period for a leap year); these three month periods are extracted from
each year. No missing data values exist within the summer months of the years for
which the data are provided.

To measure the effect of ENSO, the Niño3.4 index is used. This is a measure-
ment of the monthly SST anomaly, with respect to the average SST for 1981–2010,
in a region bounded by 5◦N to 5◦S and 170◦W to 120◦W. Other ways of measuring
ENSO variability are available, for example, the Southern Oscillation Index which
is based on atmospheric changes as opposed to changes in SSTs [Jones and Trewin
(2000)]. However, Niño3.4 is commonly used to characterise ENSO [Kenyon
and Hegerl (2008)]. Large positive values of this index indicate El Niño events,
whereas large negative values correspond to La Niña events. In this paper values
of +1◦C and −1◦C are used to define El Niño and La Niña events, respectively.
Our framework permits estimates for any value of Niño3.4.

To help determine our modelling strategy, we first explore the spatial-temporal
dependences between the daily maximum temperatures at the grid box correspond-
ing to Melbourne. We denote this temperature at time t by YsM,t , and at site s at
time t −h(s) by Ys,t−h(s) for all s ∈ S. Figure 1 shows the spatial cross-correlation
function corr(YsM,t , Ys,t−h(s)), s ∈ S and for two choices of h(s). The left plot

FIG. 1. Estimated spatial cross-correlation function for Melbourne daily maximum temperatures
and other sites: (left) the lag 0 and (right) the difference between the maximum value of the cross-cor-
relation function and value of the lag 0 cross-correlation function. Data are for the years 1957–2011.
Numbers in squares represent the lag value at which the maximum cross-correlation occurs; a blank
square represents lag 0.
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corresponds to time lag 0, that is, h(s) = 0, for all s ∈ S, and the right to

max
h(s)

corr(YsM,t , Ys,t−h(s)) − corr(YsM,t , Ys,t ),

with h(s) the value that gives this maximum. These spatial-temporal dependence
summaries show that Melbourne temperatures tend to be strongly positively cor-
related with concurrent temperatures at most other sites in Australia except for
the western and northeastern regions. For the sites with positive correlation at lag
h(s) = 0, then this is typically the temporal lag with the maximum dependence.
However, for the other sites, the dependence is maximised for h(s) = 1 to 3 for s

in the west and typically h(s) = −1 to −4 for s in the northeast. The correlations
highlight that, although spatial dependence does decay broadly with distance, it
is anisotropic and different processes appear to be active in coastal regions. Sim-
ilar plots for data in high and low ENSO phases give very similar correlations, as
ENSO effects are small relative to natural spatial variation.

We also explored the temporal behaviour at different sites, finding stationarity
to be a reasonable description within each summer, that ENSO accounts for a small
proportion of temporal variation, and that the process decorrelates over 5 days in
the south and 20 days in the north.

3. Modelling and inference for extreme values.

3.1. Strategy. We are interested in modelling the spatial extent of heatwaves
over Australia, in particular the southeast region given its population density and
economic importance. Figure 1 shows that there is little difference between the
spatial structure over southeastern Australia when considering lags other than
lag 0. Therefore, for simplicity, we will model concurrent temperatures, that is,
{Ys,t , s ∈ S}. We could have studied the field Ys,t−h(s) where h(s) are the lags
shown in Figure 1 (right). We do not feel this extra complication is justified here,
as extreme values may have different temporal lags than typical values and given
that the ENSO covariate changes monthly.

Based on the exploratory data analysis, during our modelling and inference we
will ignore the effect of temporal dependence to focus on the impact of ENSO on
spatial dependence. Thus, we follow a similar strategy to Chavez-Demoulin and
Davison (2005) and derive estimates by making a false assumption of temporal
independence. If we derived the sampling distribution under this false assumption,
then we would underestimate the variability of this distribution but our estimates
would be unbiased [Self and Liang (1987)], and so we recognise the effect of tem-
poral dependence in our inference through the use of a model-based block boot-
strap approach to derive the sampling distributions of our estimates. Specifically,
we take temporal blocks of 20 days.

In summary, we will model the daily maximum temperatures process {Ys,t , s ∈
S} as independent over time with a covariate gt which varies with time but not
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space that effects both marginal and dependence structure of {Ys,t , s ∈ S}. Our
strategy for modelling the probabilistic behaviour of extremes {Ys,t , s ∈ S} is
twofold. First, we model the marginal structure using a threshold-based approach
at each site s ∈ S separately. Once the marginal structure has been modelled, we
transform the data from each site onto common margins and model the extremal
dependence structure using the conditional extremes approach. The sampling dis-
tribution of estimates accounts for the temporal structure through the use of a block
bootstrap.

3.2. Marginal modelling. Daily maximum temperatures at a site vary with the
ENSO covariate gt . As we are interested in the behaviour of extreme tempera-
tures, we need to be able to model the effect of a covariate on tail behaviour at
a site. Davison and Smith (1990) and Northrop and Jonathan (2011) propose dif-
ferent modelling approaches to achieve this by focusing exclusively on the effect
of the covariate on the tail. Here we adopt the preprocessing approach of Eastoe
and Tawn (2009) where a preprocessing step removes covariate effects from the
body of the distribution and then residual influences of the covariates on the tails
are accounted for using the methods of Davison and Smith (1990). As noted in
Section 2, the ENSO signal has a small effect on the series relative to natural
spatio-temporal variations, and so modelling of preprocessed extreme residuals
corresponds to modelling the extremes of the original series. The preprocessing
approach has close parallels with Northrop and Jonathan (2011) since the thresh-
old for the extreme value modelling is derived to be covariate dependent. However,
the preprocessing approach has major benefits in efficiently estimating covariate
effects if the effect of covariates is somewhat similar in the body and tail of the
distribution.

For the preprocessing we fit a location-scale model in the margins, that is, for
daily maximum temperature Ys,t at location s and time t we have

Ys,t = ψs(gt ) + τs(gt )Ws,t ,(2)

for t = 1, . . . , n and s ∈ S, where (ψs(gt ), τs(gt )) are the location-scale parame-
ters, gt is a time-varying covariate and Ws,t is the zero mean residual. In this paper
all covariates are included linearly with an appropriate link function such that

ψs(gt ) = ψ(0)
s + ψ(1)

s gt , log τs(gt ) = τ (0)
s + τ (1)

s gt ,

with parameters ψ
(0)
s , ψ

(1)
s , τ

(0)
s and τ

(1)
s each in R. It is assumed that covari-

ate effects in the body of the distribution are accounted for by the location-scale
transform and, as such, the distribution of Ws,t is independent of t in its body. In
contrast, this transformation may not completely capture all of the covariate effect
in the extremes of Ws,t , defined by Ws,t > us , where us is a high threshold. The
distribution of Ws,t |Ws,t > us is therefore modelled as a generalised Pareto dis-
tribution (GPD) with scale and shape parameters that depend on the covariates s
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and gt . Exploratory data analysis revealed that the shape parameter was indepen-
dent of gt and the scale parameter was log-linear in gt . Although both parameters
were dependent on s, there was no simple relationship on latitude and longitude,
and so s is treated as categorical. Hence we denote the shape parameter by ξs and
the scale parameter by σs(gt ), with logσs(gt ) = σ

(0)
s + σ

(1)
s gt , with parameters

σ
(0)
s , σ

(1)
s and ξs each in R. As a result, our model for the distribution function of

the residual variable is Ws,t such that

FW(w; s, t)
(3)

=
{

1 − F̃W (us; s)[1 + ξs(w − us)/σs(gt )
]−1/ξs

+ , if w > us,

F̃W (w; s), if w ≤ us,

where F̃W (·; s) is the empirical cumulative distribution function of {Ws,t }nt=1 at
site s.

3.3. Dependence modelling. The conditional extremes method of Heffernan
and Tawn (2004) is used here to model extremal dependence. Using the methods
outlined in Section 3.2, data are transformed onto common margins. The transfor-
mation onto common margins simplifies the estimation of extremal dependence
quantities. This is especially important in the spatial problems encountered here
since we are interested in whether different sites have rare values simultaneously
irrespective of the value of these rare values on the original temperature scale.
Modelling using the conditional extremes approach is simplified if the choice of
common margin is assumed to be the Laplace distribution, as the margins have
exponential upper and lower tails which ensure models for positive and negative
dependence are symmetric [Keef, Papastathopoulos and Tawn (2013)]. As a con-
sequence, we make the transformation

Xs,t =
{

log
{
2FW(Ws,t ; s, t)}, if FW(Ws,t ; s, t) < 1/2,

− log
{
2
[
1 − FW(Ws,t ; s, t)]}, if FW(Ws,t ; s, t) ≥ 1/2,

where FW(·; s, t) is given by equation (3), and Xs,t is now identically distributed
over s and t .

Let Xt = (X1,t , . . . ,Xl,t ), where l is the number of sites in the region S, and
so the marginal distributions of Xt are all Laplace. Furthermore, define X−s,t as
all the components of the vector Xt without Xs,t . In what follows all vector cal-
culations are to be interpreted as componentwise. The aim is to model the dis-
tribution of X−s,t given that Xs,t exceeds some high threshold u. It is necessary
that the conditional distribution P{X−s,t ≤ x−s,t |Xs,t = xs,t } is nondegenerate as
xs,t → ∞, and hence normalising sequences are required to ensure x−s,t changes
appropriately with xs,t . Heffernan and Tawn (2004), Heffernan and Resnick (2007)
and Keef, Papastathopoulos and Tawn (2013) show that under broad conditions
there exist vectors α−s,t = (α1|s,t , . . . , αs−1|s,t , αs+1|s,t , . . . , αl|s,t ) ∈ [−1,1]l−1
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and β−s,t = (β1|s,t , . . . , βs−1|s,t , βs+1|s,t , . . . , βl|s,t ) ∈ (−∞,1)l−1 such that, for
z ∈ R

l−1 and x > 0,

(4) P
(

X−s,t − α−s,tXs,t

X
β−s,t

s,t

≤ z,Xs,t − u > x
∣∣∣Xs,t > u

)
→ G−s,t (z) exp(−x),

as u → ∞ where G−s,t is a time-varying (l−1)-dimensional distribution function,
nondegenerate in each margin, that is, for j ∈ S \ {s} the j th margin G

(j)
−s,t of

G−s,t is nondegenerate. Different values of the dependence parameters α−s,t and
β−s,t arise for different types of tail dependence. If αj |s,t = βj |s,t = 0 and G

(j)
−s,t

is the Laplace distribution function, for j ∈ S \ {s}, the variables (Xs,t , Xj,t ) are
independent. On the other hand, for (Xs,t , Xj,t ), αj |s,t = 1 and βj |s,t = 0, for
j ∈ S \{s}, corresponds to the situation of asymptotic dependence, −1 ≤ αj |s,t ≤ 0
is negative extremal dependence and 0 < αj |s,t < 1 or αj |s,t = 0 and βj |s,t > 0
corresponds to asymptotic independence with positive extremal dependence. Here,
a time-varying covariate gt is introduced into the dependence parameters such that

tanh−1[α−s,t ] = α
(0)
−s + α

(1)
−sgt , tanh−1[β−s,t ] = β

(0)
−s + β

(1)
−sgt ,(5)

with parameters α
(0)
−s , α

(1)
−s , β

(0)
−s and β

(1)
−s are each in R

l−1. The inverse tanh link
function is used to ensure the parameters α−s,t and β−s,t are restricted to the range
[−1,1]l−1. The restriction on β−s,t is satisfactory since in practice it is very un-
likely that βj |s,t < −1, for j ∈ S \ {s}, as this corresponds to X−s,t − α−s,tXs,t

rapidly tending to zero as u → ∞, that is, X−s,t is essentially deterministic given
large Xs,t .

Modelling using the conditional extremes approach requires the assumption that
the limiting form of equation (4) holds exactly for all values of Xs,t > u given that
u is a sufficiently high threshold, from now on called the modelling threshold.
From equation (4) we have our model for Xs,t > u that

X−s,t = α−s,tXs,t + X
β−s,t

s,t Z−s,t ,

where Z−s,t = (Z1|s,t , . . . ,Zs−1|s,t ,Zs+1|s,t , . . . ,Zl|s,t ) is a random variable with
distribution function G−s,t that is independent of Xs,t .

The multivariate distribution G−s,t does not take any simple parametric form,
which motivates the inclusion of a false working assumption of Gaussianity as
in Keef, Papastathopoulos and Tawn (2013) solely for the estimation of αj |s,t and
βj |s,t with j �= s; that is, Zj |s,t ∼ N(μj |s,t , θ2

j |s,t ) and, as such, for each j ∈ S \ {s},
Xj,t |{Xs,t = x} ∼ N

(
αj |s,t x + μj |s,t xβj |s,t , θ2

j |s,t x2βj |s,t ) for x > u.

The working assumption permits the estimation of the set of parameters
(αj |s,t , βj |s,t ,μj |s,t , θj |s,t ) by standard likelihood approaches. Each element of
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α−s,t and β−s,t is estimated pairwise for a particular s ∈ S. Covariates are in-
cluded in the nuisance parameters such that

μ−s,t = μ
(0)
−s + μ

(1)
−sgt , log θ−s,t = θ

(0)
−s + θ

(1)
−sgt ,(6)

where μ−s,t = (μ1|s,t , . . . ,μs−1|s,t ,μs+1|s,t , . . . ,μl|s,t ) and θ−s,t = (θ1|s,t , . . . ,
θs−1|s,t , θs+1|s,t , . . . , θl|s,t ), and the parameters μ

(0)
−s , μ

(1)
−s , θ

(0)
−s and θ

(1)
−s are each

in R
l−1.

At this stage the Gaussian assumption is discarded and a nonparametric es-
timate of the distribution for Z−s,t is formed. We assume that the effect of the
time-varying covariate on Z−s,t is through its mean and variance only, and so the
distribution of (Z−s,t − μ−s,t )/θ−s,t is independent of t . Defining a new multi-
variate distribution G−s by

G−s(z) = G−s,t

(z − μ−s,t

θ−s,t

)

gives that G−s is independent of t . We estimate the distribution G−s nonparamet-
rically using replicates of (Z−s,t − μ−s,t )/θ−s,t over t . Specifically, where nu is
the number data points exceeding the threshold u, let t1, . . . , tnu be the indices of
t = 1, . . . , n where xs,t > u, and then let

ẑ−s,i = x−s,ti − α̂−s,ti xs,ti − μ̂−s,ti
(xs,ti )

β̂−s,ti

θ̂−s,ti (xs,ti )
β̂−s,ti

(7)

for i = 1, . . . , nu. In this way the empirical distribution of sample ẑ−s,i provides
a nonparametric estimate, G̃−s , to the distribution function G−s for conditioning
site s.

4. Measures for summarising spatial dependence. To analyse the spatial
behaviour of hot events, we require measures that can adequately capture spatial
characteristics. As noted in Section 1, the limiting measure χ , defined in expres-
sion (1), has a number of limitations for spatial risk assessment. Our solution is
to propose a number of measures to address these weaknesses. By using a selec-
tion of different measures, we aim to characterise extremal dependence well and
identify any changes in spatial structure that may occur due to a change in ENSO.
These measures are valuable for model checking and enable comparisons between
empirical and modelled values. For notational simplicity we drop the time index
on the variables in this section. Here we define the marginal distribution function
of Ys , incorporating all steps of the preprocessing outlined in Section 3.2, by Fs .

First we present a pairwise sub-asymptotic extension of χ , proposed by Coles,
Heffernan and Tawn (1999), namely,

χs2|s1(p) = P
(
Fs2(Ys2) > p|Fs1(Ys1) > p

)
,(8)
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where s1, s2 ∈ S and p is some high level. Often p is taken to be the nonexceedance
probability associated with a critical return level. The benefit of this measure over
χ is that it is able to discriminate between different levels of extremal dependence
irrespective of whether the variables are asymptotically dependent or asymptoti-
cally independent, particularly when studied over a range of large p. In the spatial
context, χs2|s1(p) is most usefully applied by fixing s1 and p as the site and level of
interest, respectively, and estimating χs2|s1(p) for all other sites s2 ∈ S. If s2 = s1,
then χs2|s1(p) = 1, but for s2 �= s1 values of χs2|s1(p) typically decrease as sites are
farther apart. By assessing this measure for a range of large p, we can discriminate
between pairs of asymptotically dependent and asymptotically independent pairs
of sites, as for the former (latter) χ̂s2|s1(p) is constant (decreasing), other than for
sampling variability, as p is increased.

A restriction of χs2|s1(p) is that it provides only pairwise dependence informa-
tion, and so tells us nothing about the occurrence of concurrent extremes at more
than two sites at a time. Many extensions are possible, but we propose a useful and
practically informative measure that evaluates the expected number of sites in the
set of interest, R say with R ⊆ S, that exceeds a critical level given that Ys exceeds
the same critical level. Specifically,

φR|s(p) = E
(
NR(p)|Fs(Ys) > p

)
,(9)

where NR(p) = #{j ∈ R : Fj (Yj ) > p} gives the number of variables that concur-
rently exceed the probability level p in R. Therefore, larger values of this measure
suggest that there is a greater spatial risk from the event. Again this measure is
studied over all s ∈ S.

Measure (9) requires a particular conditioning site to be defined prior to estima-
tion. In general, assuming that a hot event must strike a particular site is restrictive.
We propose a measure corresponding to the probability of an exceedance of a crit-
ical level in a region R′ given that there is an exceedance somewhere within a
region R, that is,

ωR′|R(p) = P
(
NR′(p) ≥ 1|NR(p) ≥ 1

)
,

for some regions R,R′ ⊆ S. Mostly we are interested in sets of the form R′ ⊂
R, but other sets, such as R′ ∩ R = ∅, can be considered. A special case of this
measure occurs where R′ = {s}, which gives the probability of an exceedance at
site s given that there is an exceedance in region R.

A weakness of the χs2|s1(p), φR|s(p) and ωR′|R(p) measures of spatial risk is
the requirement to select a critical level p. Our final risk measure overcomes this
weakness as well as the limitations of the other measures. This measure is an adap-
tion of the severity-area-frequency (SAF) curves used in hydrology [Henriques and
Santos (1999)]. The SAF curve (γj , j ≥ 1) gives the average marginal return pe-
riod of an event at the j worst affected sites, where the sites affected need not be
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contiguous. Specifically,

γj = 1

j

j∑
i=1

[
1 − F(i)(Y(i))

]−1
, j = 1, . . . , l,(10)

where F(1)(Y(1)) ≥ · · · ≥ F(l)(Y(l)) are the ordered values of (F1(Y1), . . . ,Fl(Yl))

for the event.
The SAF measure permits spatial information to be compressed into a single

curve that is easily interpretable by statisticians and climate scientists. The SAF
curve is a monotone nonincreasing function; the larger the value of γj , the more
severe the event is at that scale. In cases where the SAF curve for one event exceeds
the SAF curve for another event, we can talk about an ordering between the size
of these events. Otherwise we need to reference against the spatial scale j . SAF
curves can have distinctly different behaviours for different types of spatial pro-
cess. If the process is strongly asymptotically dependent at all sites, then the SAF
curve will decrease very slowly with increasing j . If it is asymptotically depen-
dent only very locally and independent otherwise, then there will be a sudden drop
off in values for some j with j � l. For asymptotically independent processes the
SAF curve will decay more rapidly for events with larger γ1. For asymptotically
independent processes the SAF curve decays faster as the level of dependence be-
comes weaker.

We can use the SAF curve to assess the probability of an event being more
severe than a previously observed event, such as the early 2009 event. Let γ obs

j be
the SAF curve of an observed event. Here, we evaluate

ρj (R) = P
(
γj > γ obs

j

)
, j = 1, . . . , |R|,(11)

where the distribution of (γj , j ≥ 1) is derived using the methods of Section 5 for
the fitted model.

5. Simulating spatial fields. To estimate the measures of spatial dependence
introduced in Section 4, we need to be able to simulate spatial gridded fields from
the model fitted in Section 3. Heffernan and Tawn (2004) and Keef, Papastathopou-
los and Tawn (2013) give simulation schemes for the conditional extremes ap-
proach conditional upon an exceedance at a specified site. These schemes are ad-
equate to obtain estimates of χs′|s(p) and φR|s(p), and they form the basis of
the simulation schemes outlined here. Estimation of measures that condition upon
an exceedance within a region require a more involved algorithm for generating
simulated spatial gridded fields. The use of SAF curves for model validation also
requires conditions on the value taken by the maximum spatial event. To distin-
guish between observed and simulated fields, we use X∗ to denote the simulated
variable X, and X∗|s when the simulated variable is conditional on the field being
extreme at site s.
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Throughout this section we present simulations of the spatial field on the
Laplace margin scale, that is, for {X∗

s,t ; s ∈ S}. If interest is in fields on the tem-
perature scale, each simulated field can simply be transformed back to the original
temperature scale as follows. For a simulated field {X∗

s,t ; s ∈ S}, the simulated field
on the temperature scale is {Y ∗

s,t ; s ∈ S}, where

Y ∗
s,t = ψs(gt ) + τs(gt )F

−1
W

{
FX(Xs,t ); s, t)},

for all s ∈ S and any t , where (ψs(gt ), τs(gt )) and FW are given in expressions (2)
and (3), respectively, and FX is the distribution function of a Laplace random vari-
able. As we evaluate these fields only at fixed time/covariate values, we drop ref-
erence to t in our notation, but in Section 6 we will simulate fields for a range of
covariate values.

First we present the simplest algorithm for simulating spatial fields conditional
on the field being extreme at a specified site s, that is, simulating from X−s |Xs >

vp , where vp = − log{2(1−p)} is the critical level on the Laplace scale associated
to the nonexceedance probability p.

ALGORITHM 1 (Generates fields with exceedances at site s).

1. Sample z̃∗|s
−s from G̃−s , that is, the empirical distribution of the sample in equa-

tion (7).
2. Obtain z∗|s

−s = μ−s + θ−s z̃∗|s
−s , where μ−s and θ−s are defined by equation (6).

3. Simulate an exceedance X
∗|s
s > v as the sum of v and a unit exponential random

variable.
4. Spatial field X∗|s

−s = α−sX
∗|s
s + (X

∗|s
s )β−s z∗|s

−s , where α−s and β−s are from
equation (5).

The final simulated spatial field generated using Algorithm 1 is

X∗|s = (
X∗|s

s ,X∗|s
−s

) = (
X

∗|s
1 , . . . ,X

∗|s
l

)
,

where X
∗|s
s > v. To estimate extremal measures χs′|s(p) and φR|s(p) for s′ ∈ S and

R ⊆ S, Algorithm 1, with v = vp , is repeated m times to obtain X∗|s
1 , . . . ,X∗|s

m , and
then

(12) χ̂s′|s(p) = 1

m

m∑
i=1

I
(
X

∗|s
s′,i > vp

)
and φ̂R|s(p) = 1

m

m∑
i=1

∑
j∈R

I
(
X

∗|s
j,i > vp

)
,

where I(·) is the indicator function, and the second subscript denotes the ith repli-
cated field. For later use, note that the probability that site s is the maximum of the
field over R, given that Xs > vp , is denoted by

(13) q |s
s (p;R) = P

(
Xs = max

k∈R
(Xk)

∣∣Xs > vp

)
,
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and can be estimated as

q̂ |s
s (p;R) = 1

m

m∑
i=1

I

(
X

∗|s
s,i > max

k∈R\{s}
(
X

∗|s
k,i

))
.(14)

To estimate ωR′|R(p) and the SAF curve, extensions of Algorithm 1 are required,
as we are interested in events that are hot for at least one site over a region R, that is,
NR(p) ≥ 1 for R ⊆ S as opposed to an extreme temperature at site s. Our strategy
for this simulation is as follows. We select a site that exceeds vp by picking it to
be the site with the maximum value of the spatial field over R. The probability that
site j is largest over R, given that NR(p) > 1, varies with j due to the changing
dependence structure over space; we denote this probability by qj , with

qj (p;R) = P
(
Xj = max

k∈R
(Xk)

∣∣NR(p) ≥ 1
)
, j ∈ R.(15)

We then use Algorithm 1 with s set at the site selected to be the maximum over R.
As Algorithm 1 can generate fields with the maximum over R larger than at site s,
we reject these fields. This is captured by Algorithm 2.

ALGORITHM 2 (Generates fields with at least one exceedance in R).

1. Sample J with probability P(J = j) = qj (p;R) with j ∈ R.
2. Set s = J and apply Algorithm 1.
3. If maxk∈R(X

∗|s
k ) > X

∗|s
s , then reject this spatial field and repeat Algorithm 1 for

the selected s until the simulated field is not rejected. The rejection probability
is 1 − q

|s
s (p;R) given by expression (13).

Algorithm 2, with v = vp , is repeated m times, giving values j1, . . . , jm for J

and the resulting fields X∗|j1
1 , . . . ,X∗|jm

m , and then

ω̂R′|R(p) = 1

m

m∑
i=1

I

(
max
k∈R′ X

∗|ji

k,i > vp

)
.

Similarly, we can derive SAF curves using the fields generated in Algorithm 2 with
R = S, giving for large p

γ̂j = 2

m

m∑
k=1

j∑
i=1

exp
(
X

∗|jk

(i)

)
,

where X
∗|jk

(1) > · · · > X
∗|jk

(l) are the ordered values of the simulated field on Laplace
margins.

To use SAF curves for validation, we need to simulate replicate events that have
similar characteristics to a particular event, for example, the early 2009 heatwave.
This necessitates fixing the maximum at the observed peak and corresponding site
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s, (η, s) say, with η being the maximum value of the field after transformation to
the Laplace marginals. This restriction is achieved using Algorithm 2 with steps 1
and 2 removed, and Algorithm 1, step 3, changed to X

∗|s
s = η. See Winter (2016)

for details of simulating these fields under the additional constraints that the max-
imum of the field is either equal to or greater than η when the site that maximum
occurs at is not specified.

It remains to provide an estimate for qj (p;R) defined in expression (15). If vp

is small enough, then an empirical estimate of this probability may be sufficient,
but for large vp we need to use our fitted conditional model. First note that

P
(
NR(p) ≥ 1

) = ∑
k∈R

P
(
Xk = max

i∈R
(Xi),Xk > vp

)

= ∑
k∈R

pq
|k
k (p;R).

It follows that

qj (p;R) = P
(
Xj = max

i∈R
(Xi)

∣∣NR(p) ≥ 1
)

= P(Xj = maxi∈R(Xi),NR(p) ≥ 1)

P(NR(p) ≥ 1)

= P(Xj,t = maxi∈R(Xi),Xj > vp)

P(Xj > vp)

P(Xj > vp)

P(NR(p) ≥ 1)
(16)

= P
(
Xj = max

i∈R
(Xi)

∣∣Xj > vp

) p∑
k∈R pq

|k
k (p;R)

= q
|j
j (p;R)∑

k∈R q
|k
k (p;R)

.

Thus, we can estimate qj (p;R) using expression (16) and estimate (14).

6. Analysis of Australia temperature data. The extreme value framework
built in Section 3 is now combined with the summary measures defined in Sec-
tion 4 to evaluate the characteristics of hot days over Australia for the gridded
observations introduced in Section 2. First, preprocessing is applied to the original
data to model the marginal structure and transform values onto identical margins.
The choice of the conditional extremes approach is validated by comparing against
other extreme value approaches that do not account for asymptotic independence.
Finally, the variability of the spatial extent of hot events under El Niño and La Niña
conditions is estimated. This culminates in estimating whether the framework can
replicate similar events to the early 2009 heatwave event over Australia and how
this event varies with the phase of ENSO.
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6.1. Marginal structure. The preprocessing approach of Section 3.2 is now
used to estimate the effect of ENSO on marginal quantities such as return levels.
The covariate used to summarise the effect of SST on temperatures is Niño3.4 as
introduced in Section 2. Figure 2 gives plots of the preprocessing parameters, with

FIG. 2. Estimates of preprocessing location and scale parameters (ψ
(0)
s ,ψ

(1)
s ) (top) and

(τ
(0)
s , τ

(1)
s ) (middle) and GPD scale parameters (σ

(0)
s , σ

(1)
s ) (bottom). Hashed squares correspond

to boxes where the change with covariate is not significant at a 5% significance level, tested using a
likelihood ratio test.
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hashed boxes indicating sites where the parameter does not exhibit a significant
change with the ENSO covariate (at the 5% significance level) based on a likeli-
hood ratio test. In the right-hand plots of Figure 2, darker shaded boxes show an
increase in parameter values with an increase in Niño3.4 from −1◦C to +1◦C,
that is, the difference between estimates under El Niño and La Niña conditions.
The top row gives estimates of the location parameters (ψ(0)

s , ψ
(1)
s ) with the esti-

mates of ψ
(0)
s showing that warmer extreme temperatures are observed in northern

and central regions of Australia but with cooler temperatures in coastal areas. The
estimate of ψ

(1)
s shows that an increase in Niño3.4 causes an increase in the loca-

tion parameter over most of Australia, with the largest increases being in eastern
and western regions. For the scale parameter τs(gt ), the largest changes seem to
be over western regions where El Niño conditions reduce temperature variability.

For each parameter we investigate for how many grid boxes the covariate is
significant using likelihood ratio tests for each site at the 5% significance level.
A decision is then made as to whether the covariate effect is included in the final
model. The right-hand plot of Figure 2 shows that out of a total of 72 grid boxes,
64 show a significant change in the location parameter with the ENSO covariate.
This clear signal is not fully repeated by the scale parameter τs(gt ) which shows
a significant change in 29 grid boxes out of 72. Although the result for the scale
parameter is less significant, we keep both covariate effects for all grid squares, as
we desire to have the same covariate structure incorporated in each parameter for
all grid boxes. As such, we use the most general form of preprocessing outlined in
Section 3.2.

Estimates of the GPD scale and shape parameters are given in Figure 2 (bottom
row) and in Figure 3, respectively. Standard diagnostics [Coles (2001)] suggest
the 90% quantile at each site is an appropriate threshold choice. As outlined in
Section 3.2, the aim of this step is to take the approximately stationary time series
and ensure that the extremes are identically distributed over time. The estimates for

FIG. 3. Estimates of the GPD shape parameter ξs .
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FIG. 4. 1-year (left) and 50-year (right) return levels plotted on original margins during El Niño
conditions with SST temperature anomaly of +1◦C (top) and change between return levels for El
Niño and La Niña conditions under temperature anomaly of +1◦C and −1◦C , respectively (bottom).

τ
(1)
s and σ

(1)
s possibly offset one another in the southeast corner of Australia. To

check this, we fixed the value of τs(gt ) = τ
(0)
s at all sites and re-estimated σ

(1)
s and

found that the significant changes in the southeast are still present, and therefore
the changes are real. The shape parameter of the GPD is found to be negative at all
sites over Australia, indicating a finite upper bound to the distribution at each site.

The clearest picture of the effect of the covariate can be seen when examining
return levels after transforming onto the original scale. Figure 4 gives the 1- and
50-year return levels on the original margins during an El Niño event (i.e., the
value of Niño3.4 is +1◦C) along with the change relative to a La Niña event (i.e.,
the value of Niño3.4 is −1◦C). It is observed that the central regions of Australia
are hotter than coastal regions as expected. There is an increase of up to 1◦C in
the 1-year return level between an El Niño event and a La Niña event. From a
spatial perspective, the largest increases in the temperature occur in western and
mid-eastern regions. The change in the 50-year return level is broadly similar;
however, southern and some northern areas show a larger decrease in temperatures
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with an increase in Niño3.4 due to the covariate effect on the GPD-scale parameter
shown in Figure 2.

6.2. Pairwise spatial dependence. We now model the spatial pairwise depen-
dence of the transformed data. Here we focus our presentation on pairs with Mel-
bourne, sM , being one of the sites. First we show that our conditional approach,
that covers both asymptotic independence and asymptotic dependence, fits the data
substantially better than the methods that can account for asymptotic dependence
only. This initial analysis is with ENSO ignored, and we then examine the effect
of ENSO on our conditional model fit. This is appropriate as our exploratory anal-
ysis reveals that the covariate effects are small relative to spatial variation more
generally.

Figure 5 shows estimates of the extremal dependence measure χs|sM (v) with
v = v0.9 and the one-year return level v = vRL

1 . There are three estimates: em-
pirical using the observed data and model-based using the stationary conditional
extremes approach with both αs|sM and βs|sM unconstrained and with αs|sM = 1
and βs|sM = 0 for all s ∈ S (i.e., asymptotic dependence). The empirical estimates
of χs|sM (v) show that for fixed v the decay of extremal dependence is not directly
proportional to distance or invariant to direction, and that as v increases extremal
dependence weakens. Critically, this means that when an extreme event at a site
is defined as the temperature exceeding the marginal T -year return level, then the
most extreme events at Melbourne become more localised as T increases. Both
model-based estimates appear to be capturing the spatial dependence well for level
v0.9; however, at higher levels the asymptotically dependent approach is substan-
tially overestimating the amount of dependence across the field, especially at sites
further from Melbourne. This is because the modelled dependence is independent
of level once the levels are sufficiently extreme. In contrast, the general condi-
tional extremes approach captures the observed weakening of dependence, with
increasing levels, very well at all spatial separations.

Now we include the ENSO covariate in the analysis. Figure 6 gives estimates of
the extremal dependence parameters α−sM,t and β−sM,t . We observe that the value

of α̂
(0)
s|sM is broadly higher for sites s that are located closer to site sM . The change

in α−sM,t with the covariate is shown by the estimate α̂
(1)
s|sM , which demonstrates

an increase in extremal dependence, as gt increases, over northern regions with a
slight decrease in the east. The estimates of β̂

(1)
s|sM seem to be consistently negative

across the northern region. These parameter estimates suggest that extreme tem-
perature events that are occurring over Melbourne are more likely to extend over
northern regions of Australia during El Niño conditions.

It is easier to understand how the covariates effect the extremal dependence
measures, as the dependence parameters are not orthogonal. In Figure 7 a map of
χ̂s|sM (vRL

1 ) is given for an El Niño event along with a map of the difference in
χ̂s|sM (vRL

1 ) between El Niño and La Niña conditions. This inference suggests that
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FIG. 5. Values of χs|sM (v) with v = v0.9 (left) and one v = vRL
1 the one-year return level (right)

for empirical (top), conditional extremes (centre) and asymptotic dependence (bottom) approaches.
Here, the conditioning site sM is the Melbourne grid box. No ENSO covariate effects are included.

if a hot day occurs at Melbourne, then if it was an El Niño year, the spatial extent
of the event is likely to increase over southern coastal regions, including Adelaide,
but it will not cover as much of the southeastern region.
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FIG. 6. Conditional extremes dependence parameters α̂
(0)
s|sM (top left), α̂

(1)
s|sM (top right), β̂

(0)
s|sM

(bottom left) and β̂
(1)
s|sM (bottom right), conditioning on site sM (black hashed).

6.3. Spatial dependence measures. We now look at the characteristics of ex-
treme spatial events by estimating the new quantities defined in Section 4. First,
we estimate the expected number of sites across Australia affected by extreme hot
temperatures, given site s is extreme, that is, φR|s(p) for s ∈ R = S and p cor-
responding to the 1-year level, defined in equation (9). Estimates of φR|s(p) are
given in Figure 8 under El Niño conditions and showing the change in estimates
between El Niño and La Niña. It is observed that events occurring in the middle
and east of Australia seem to have a greater spatial extent than for the west side
during an El Niño event. The change in φR|s(p) between an El Niño event and a
La Niña event suggests that El Niño conditions lead to a reduction in the spatial
extent of hot days across most of Australia. Figure 8 suggests that during La Niña
conditions the difference in the spatial extent of hot days between the east and west
will become more pronounced. We also observe that results obtained conditioning
upon Melbourne are typical of coastal grid boxes in the southeastern region.

We are also interested in the probability of a hot event occurring over Melbourne
given that an extreme temperature is observed somewhere in southeast Australia,
that is, ω{sM }|R(p) defined in Section 4 with R the set of 14 sites in southeast
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FIG. 7. Extremal dependence measure χs|sM (v) for control site over Melbourne under El Niño
conditions gt = +1 (left) and difference between extremal dependence measures during El Niño and
La Niña (gt = −1) years (right).

Australia and p corresponding to the 1-year level. We have that ω̂sM |R(p) = 0.20
(0.19) under El Niño (La Niña) conditions respectively. This feature of the extreme
events appears insensitive to the ENSO signal.

6.4. SAF results. Figure 9 shows estimated SAF curves for the early 2009
heatwave in the form of an estimate and 95% confidence intervals for γj . We fix
the maximum value of our simulated fields to agree with the observed maximum
value. We compare the observed SAF curve with estimates obtained under both the
conditional extremes model and its restriction to asymptotic dependence, with and
without accounting for ENSO. Although we had earlier identified asymptotic de-
pendence as a poor model formulation, we retain that model here to show how we
could make incorrect inferences for SAF curves under the assumption of asymp-
totic dependence.

FIG. 8. Estimates of φR|s (p) across Australia under El Niño conditions (left) and the change in
estimates of φR|s (p) between an El Niño and La Niña year.
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FIG. 9. Severity-area-frequency (SAF) curves, on a log scale, for the early 2009 heatwave: ob-
served curve (black), γ̂j under conditional extremes model (blue solid) and under asymptotically
dependence (red solid). Left: no ENSO effect. Right: ENSO fixed at level observed on the day. Dotted
lines are 95% confidence intervals obtained from 10,000 replicates.

As expected, the model that allows asymptotic independence provides a better
fit to the observed SAF curve than the asymptotically dependent estimate. Asymp-
totic dependence leads to a grouping of large return periods that is too strong, with
estimates that decay too slowly, irrespective of whether knowledge of ENSO is in-
corporated. Notice that the observed SAF curve corresponds to the lower endpoint
of the 95% confidence interval of the SAF curve under asymptotic dependence, as
under this modelling assumption extrapolated spatial events simply scale observed
events in terms of size but keep relative values identical to each other, and so when
the maximum of the event is the observed maximum, then one realisation of the
sampling distribution will be our observed event. The asymptotically dependent
model produces much wider confidence intervals for SAF curves as it is a poor
model fit, and so the confidence intervals try to match both the false model and the
structure of observed heatwaves.

For the conditional extremes approach, ignoring ENSO leads to an overesti-
mation for SAF at scales of up to 30 grid squares. However, the observed SAF
fits well inside 95% confidence intervals when the phase of the observed ENSO
is accounted for. These results highlight the need to account for both asymptotic
independence and ENSO in the spatial dependence structure.

We estimate ρj (R) from equation (11) with R a region of 14 sites in southeast-
ern Australia including Melbourne, where the field maximum can occur at any site
in R. Figure 10 shows estimates of ρj (R) under the observed La Niña (gt = −0.7)
and typical El Niño (gt = 1) conditions. In the left plot, the maximum value is
taken to be greater than vRL

1 . The left plot shows for low j (1 ≤ j ≤ 5), that is,
events considered locally, the observed event is rarer under El Niño than La Niña
conditions. As j is increased, there seems to be little difference between the ENSO
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FIG. 10. Estimates of ρj (R) conditional upon the maximum field value in R being: (left) greater

than vRL
1 and (right) equal to the observe value in the early 2009 heatwave. Estimates are given for

observed La Niña conditions (black) and typical El Niño conditions (grey). Here R is a set of 14 sites
in southeast Australia.

conditions. It is noted that irrespective of the ENSO conditions, the observed event
was very rare. The right plot shows the rarity of the observed event given that the
maximum is fixed at the peak of the observed event. In this situation, at all values
of j there is a difference between ENSO phases, with the observed event much
less rare if it was to occur under El Niño conditions than for La Niña conditions.

7. Discussion and conclusion. In this paper we have modelled the spatial ex-
tent of extreme temperature events over Australia and motivated an approach for
modelling gridded spatial data using the conditional extremes approach. Within
this framework we have included the ability to account for covariates within the
margins and the dependence structure which has allowed us to understand the ef-
fect of ENSO on extreme temperatures. Our approach has confirmed that El Niño
conditions lead to higher temperatures across most of Australia and that the in-
crease in temperature might not be uniform at all return levels, that is, the effect of
ENSO does not just cause a shift in the distribution of temperatures.

Results regarding the change in the spatial extent of heatwaves with ENSO value
are more subtle than the changes in marginal structure and vary for different sites.
We have shown that a hot event over Melbourne is likely to cover more of the
southeastern region during La Niña conditions. We have also estimated quantities
that are not dependent on the process being extreme at a particular site, which have
greater practical importance. These measures have highlighted drawbacks in cur-
rent pairwise measures and, as such, need to be considered in future spatial analy-
ses. In particular, our proposed SAF curves succinctly present complex space–time
information in a highly informative and interpretable way. We have also used the
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observations from the early 2009 heatwave event to estimate whether the event
would have been more likely under El Niño or La Niña conditions. The quantities
presented here are just a subset of potential measures that could be estimated. We
have outlined a general approach for simulating spatial extreme temperature events
that could be used to generate any quantity of interest for decision makers.

The impact of climate change on the spatial distribution of extreme temperature
events has not been dealt with in this paper. This is clearly an important issue that
could be included into our framework as another covariate; see Winter, Tawn and
Brown (2016) for an illustration of such an approach for a single site. One problem
concerns the uncertainty regarding the effect of climate change on ENSO which is
currently not well known and would preclude a comprehensive study of the joint
effects of ENSO and climate change on extreme temperatures.

Finally, it is also noted that from a mortality perspective we may be interested
in different measures. For example, fires can be caused from the combination of
hot temperatures, low rainfall, high winds and low humidity. In many situations,
runs of hot temperatures are more important than particular hot days. Winter and
Tawn (2016) showed how temporal heatwave events can be simulated using the
conditional extremes framework for a single site. The next step will be to com-
bine these temporal approaches with the spatial approaches outlined in this paper
to generate a full space–time model on a lattice which incorporates asymptotic
independence as well as asymptotic dependence, hence expanding on max-stable
spatio-temporal models of Davis, Klüppelberg and Steinkohl (2013) and Huser
and Davison (2014).
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