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LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA

BY MICHAEL SALTER-TOWNSHEND1 AND TYLER H. MCCORMICK2

University of Oxford and University of Washington

Social relationships consist of interactions along multiple dimensions. In
social networks, this means that individuals form multiple types of relation-
ships with the same person (e.g., an individual will not trust all of his/her
acquaintances). Statistical models for these data require understanding two
related types of dependence structure: (i) structure within each relationship
type, or network view, and (ii) the association between views. In this paper,
we propose a statistical framework that parsimoniously represents depen-
dence between relationship types while also maintaining enough flexibility
to allow individuals to serve different roles in different relationship types.
Our approach builds on work on latent space models for networks [see, e.g.,
J. Amer. Statist. Assoc. 97 (2002) 1090–1098]. These models represent the
propensity for two individuals to form edges as conditionally independent
given the distance between the individuals in an unobserved social space.
Our work departs from previous work in this area by representing dependence
structure between network views through a multivariate Bernoulli likelihood,
providing a representation of between-view association. This approach infers
correlations between views not explained by the latent space model. Using
our method, we explore 6 multiview network structures across 75 villages in
rural southern Karnataka, India [Banerjee et al. (2013)].

1. Introduction. Understanding structure in social networks is essential to
appreciating the nuances of human behavior and is an active area of research in
the social sciences. Typically, human interactions occur on multiple dimensions.
Individuals may be friends and co-workers, for example. The same individuals
may also share membership in the same religious or professional organization. In
this paper, we present a statistical model designed to glean structure from social
network data collected about multiple relationships or views. Our model builds on
an active line of literature [see Hoff, Raftery and Handcock (2002)] which uses
low-dimensional geometric projections to represent the (likely high-dimensional)
dependence structure in network data. We draw on recent and classic work on
models for multivariate binary data to encode dependence between network views
in the likelihood. This approach models dependence within a network view using
the latent space model, while also expressing association between network views.
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In particular, we address two primary statistical challenges:

1. First, our model must represent dependence structure within each view.
A fundamental challenge in analyzing social network data arises because depen-
dence between individuals’ responses violates independence assumptions under-
lying traditional models. We wish to model the dependence that is unique to each
relation.

2. Second, we wish to model associations between views. Conditional on the
structure within a particular view, our model should also represent dependence
between tie probabilities across views. We require this summary to be parsimo-
nious so that we can easily compare structure across multiple similar multiview
networks.

Our approach to addressing these challenges is motivated by data, presented in
Section 1.1, consisting of social and financial relationships between households in
75 villages in India. Village composition differs on several key observed covari-
ates, including religion, language and ethnicity. For a given village, we would like
to understand how these covariates relate to different types of relationships. Recent
work in the United States [e.g., DiPrete et al. (2011)], compares polarization in two
network views: core association networks and broader acquaintanceship networks.
DiPrete et al. (2011) write, for example, that “acquaintanceship networks are at
least as segregated as are core networks.” The Karnataka data contains a much
more diverse set of views that were available to DiPrete et al. (2011). It is possible
to explore, for example, how homophily based on religion in social relationships
compares to the level of polarization in practical relationships such as lending
goods.

The Karnataka data also present a unique opportunity to explore structure be-
tween villages. Since communication between villages is negligible, these data can
be conceptualized as multiple “realizations” of a population-level model of social
network formation. Using this “n = 75 sample” of networks, then we would like to
compare structure across villages, particularly as this structure relates to observ-
able covariates and the relationship between views. Though it is rare to observe
multiple nearly independent networks, we contend that this perspective applies
more broadly to large graphs comprised of multiple, weakly connected communi-
ties.

Given the richness of these data, we propose a model that represents structure on
multiple scales. The substantive questions of interest differ depending on the scale
of analysis. At the finest level, within a single view in a given village, our goal is
to understand the dynamics of social structure as a function of observed household
demographic differences. At the next level, we wish to understand associations
across views for a given village. To truly leverage the richness of this data, we also
require a measure that compares relations between views across villages. At this
highest level, we would also like to understand how associations between views
differ based on observable village characteristics.
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With these data in mind, we now return to the challenges that arise when mod-
eling both within and between view structure. We also present relevant related
work. First, a key statistical challenge for modeling social network data (either
with multiple views or a single view) is representing the likely high-dimensional
dependence structure in the data in a parsimonious and interpretable way. This de-
pendence occurs because the propensity for any two individuals to form a network
relation, or edge, depends on the other edges in the network. A common network
property known as transitivity, for example, implies that “a friend of a friend is
likely a friend.” This feature of network data means that statistical models devel-
oped for independent observations are not appropriate. One modeling approach,
the latent space model [Hoff, Raftery and Handcock (2002)], represents this high-
dimensional structure through a projection onto a lower dimensional latent social
space. The latent social space, according to Hoff, Raftery and Handcock (2002),
represents “the space of unobserved latent characteristics that represent potential
transitive tendencies in network relations.” The geometry of the social space be-
comes a modeling decision with substantive consequences. A latent space defined
with a geometry and distance measure that satisfy the triangle inequality, for exam-
ple, encodes transitivity. Since Hoff, Raftery and Handcock (2002) proposed the
latent space model for network data, the framework has been adapted to include
model-based clustering [Handcock, Raftery and Tantrum (2007), Krivitsky et al.
(2009)] and indirectly observed network data [McCormick and Zheng (2012)].
Variational approximations also facilitate using the latent space approach on larger
networks [Salter-Townshend and Murphy (2013)].

Perhaps the closest alternative to the latent space approach are the various
stochastic block model methods. In the simplest stochastic block model, each node
belongs to a block or group; there are a low number of blocks and the probability
of an edge between two nodes depends on the block memberships of the nodes.
Each pair of blocks has a fixed rate of edge formation between them and each block
also has an internal edge formation rate. Inference then concentrates on learning
the block membership vectors of each node rather than the latent positions that
is our focus. The mixed-membership stochastic block model (MMSB) introduced
by Airoldi et al. (2008) extends this model so that the nodes select from a prob-
ability of the block membership vector for each potential node formation; thus,
they exhibit membership of different blocks when interacting with different other
nodes. Airoldi et al. (2008) demonstrate fast approximate variational Bayesian in-
ference for the model. This model has been shown to fit well to a wide variety of
real world network dataset, including document networks [Chang and Blei (2010)]
and protein-protein interactions [Airoldi et al. (2006)]. The latent position clus-
ter model [Handcock, Raftery and Tantrum (2007)] extension to the latent space
model is perhaps closest of all to the stochastic block model as the cluster mem-
berships, cluster-specific spreads and inter-cluster distances correspond closely to
the block memberships, internal rate of edge formation and inter-block edge for-
mation rates, respectively. Latent space models necessarily cluster together actors
with connections to each other (affiliation) but the stochastic block model is more
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flexible in that low internal edge formation rates can be chosen so that there are
fewer intra-block than inter-block edges. We choose to pursue the latent space
model here as we wish to enforce affiliation and because of the high transitivity
exhibited by the networks in our motivating dataset; however, we believe that ex-
tension of the MMSB to the multiview setting in a similar way to this paper would
be both straightforward and interesting.

The second main statistical challenge in modeling multiview network data arises
when considering the relationship between different types of network connections.
We focus again on latent space models and review recent statistical work for mul-
tiview data in detail in Section 2. We can summarize this rapidly growing literature
as two general approaches. The first set of methods accounts for multiple relations
through additional structure in the latent space. This approach amounts to adding
additional structure to the residual term. A second approach focuses on the data,
using low-dimensional representations of similarity to construct “aggregate” net-
works.

We present an alternative, fundamentally different, approach to modeling the
relationship between network views. More formally, we model the vector of re-
sponses for each pair of individuals as arising from a distribution, which we refer
to as the Multivariate Bernoulli Distribution (MVB), for multivariate binary data.
We note that this model differs from a multinomial representation because individ-
uals are allowed (and in some cases expected) to have ties across multiple views,
meaning the marginal tie probabilities across all views are not restricted to sum
to one (or any other total). To account for dependence between dyads, we use a
conditional latent space model for each network view. This combination provides
a parsimonious representation of the association between views while also encod-
ing network structure within each view. A simple representation of association
between views is essential in our case to represent patterns of associations across
the 75 villages.

There is an extensive literature on statistical models for multivariate binary data.
The model we present is most related to work arising from classical literature in
loglinear models [see, e.g., Cox (1972)]. The likelihood framework we present
was first described in this literature, then presented again recently in Dai, Ding
and Wahba (2013) where the authors prove statistical properties of the MVB dis-
tribution. These models are described, among other places, in the seminal text of
Bishop, Fienberg and Holland (1975) and more recently in Wakefield (2013).

Previous work has also explored multivariate likelihoods for network data.
Fienberg, Meyer and Wasserman (1985), for example, model multiview network
data using a generalization of the p1 models presented in Holland and Leinhardt
(1981). Our approach differs from this earlier work in the way that we represent
structure in the network, opting for the more flexible latent space representation
rather than parameterizing in terms of network attributes. The p1 model also ex-
plicitly includes both sender and receiver effects, and thus, is designed for directed
networks. Our main motivating example for this work, presented in the next sec-
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tion, is undirected. Fienberg, Meyer and Wasserman (1985) also focus on data
which fall in to natural, labelled subgroups, which we do not expect a priori in
our case. Additionally, our main focus in this work is on the relationship between
network views. Despite modeling multiview structure, the Fienberg, Meyer and
Wasserman (1985) model does not provide a simple representation for between-
view dependence. To further explore the relationship between our work and the
Fienberg, Meyer and Wasserman (1985) model, we would like to fit both models
to the same data. As mentioned, this is not possible using the data which moti-
vate our work. We instead provide a comparison using an alternate data source, the
Sampson (1969) data used in the Fienberg, Meyer and Wasserman (1985) paper,
in the online supplement [Salter-Townshend and McCormick (2017)].

More recent work [Pattison and Wasserman (1999)] includes additional network
features, but compares similarly. They note that “there is a likely dependence be-
tween different ties linking any given pair of individuals. The essence of the claim
is that the presence of one type of tie between individuals is likely to affect the
presence of other types of tie.” They discuss various options for modeling such de-
pendence, and like us, they employ conditional log-odds models albeit in the con-
text of p∗ or Exponential Random Graph Models (ERMGs). The key element in
modeling nonindependent multiview networks in Pattison and Wasserman (1999)
is to model a p∗ for each pair of intersecting views as well as each individual view.
They condition on the complement adjacency matrix for each view at each dyad
ij (i.e., the sociomatrix with entry ij set to undefined) and proceed using max-
imum pseudo-likelihood estimation [MPLE; see Robins et al. (2007) or Strauss
and Ikeda (1990) for the original work]. This inference is performed jointly for
all views with the change in network summary statistics calculated simultaneously
for both individual views and the intersecting pairs that include that view. This
approach produces a “multiplexity” coefficient that is similar to our between-view
association parameter. They note that “the small frequency of B ∩ N ties implies
that the MPLE of its corresponding parameter is likely to have a large standard
error.” Further, their framework estimates the overall level of “multiplexity” in the
array. In our example, we wish to disentangle the relationships between specific
view, which we could not accomplish with a single overall measure of association.

Another possible approach for modeling these data arises through factorization.
Using recent work such as Hoff (2011a) or Hoff (2011b), we could view these data
as multiway arrays. A low rank approximation to the array then would provide in-
sights about social structure. This approach is again fundamentally different from
our work in that we model between view dependencies as part of the likelihood,
rather than as part of the latent structure. In their example with longitudinal rela-
tional data, for example, Hoff (2011a) model the relations between actors at a given
time using a conditionally independent ordered probit likelihood. Instead, we opt
to view relations within a view as conditionally independent, but explicitly model
association structure between views in the likelihood. This distinction provides
guidelines for the use of both models. Hoff (2011a) states the model components
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associated with multiview structure are designed to capture “heterogeneity” across
views. The goal of our approach, in contrast, is modeling “association” between
views. Hoff (2011a) has a rich set of covariates about nodes (nations in that case)
and multiview structure that arises from networks observed at multiple time points,
a situation where ascertaining variation could be the main goal. In our case, how-
ever, we have a rich set of village-level covariates and wish to understand how
those characteristics relate to associations between views.

In the remainder of this section, we present details of data collected as part of
a microfinance experiment in Karnataka, a state in southern India. We are inter-
ested in a joint characterization of between network view dependencies and within
network view structure. Section 2 presents recent work on latent space models for
networks, providing further context for our proposed novel model, which is de-
scribed in Section 3. We implement our model on the Karnataka data in Section 4.
Section 5 provides a discussion and addresses future challenges.

1.1. Multiview network data from Karnataka, India. We examine data con-
sisting of multiple network views collected from 75 villages in rural southern Kar-
nataka, India. The data were collected as part of a microfinance experiment, and
thus, contain both views related to social and familial interactions (e.g., being in the
same family or attending temple together) and views related to economic activity
(e.g., lending money or borrowing rice/kerosine). All data in this example are undi-
rected (i.e., the adjacency matrices are symmetric). Work in the economics litera-
ture has addressed the importance of the relationship between these views in out-
comes such as sharing risks or exchanging favors. Jackson, Rodriguez-Barraquer
and Tan (2012), for example, construct a measure of social support in each view
and compare the relative level of support provided by each view within the same
village. Jackson, Rodriguez-Barraquer and Tan (2012) find that their measure of
support is consistently (72 out of 75 villages studied) higher for closer social re-
lationships (such as visiting) than for “intangible” relationships (such as attending
the same temple).

For each village, data consist of a census of all households in the village and
detailed network information from a subset of village members. Villages range
in size from about 350 members to about 1800, corresponding to approximately
75 to 350 households. Villages vary substantially in terms of wealth, religion and
language. Bharatha Swamukti Samsthe (a microfinance institution) identified these
villages as places it planned to begin operations, with rollout happening during the
data collection period. Data about participation in the microfinance program can
be linked to the household census.

One of our goals is to describe the dependence structure between these various
types of relationships between individuals. To illustrate the complexity of this task,
Figure 1 shows the six network views we will model for one village. These views
arise by collapsing the twelve views in the data into six major categories (see
Section 4). Actors are arranged in the same order around all panels. The views
differ in terms of both volume and structure. The graph representing family, for
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FIG. 1. Social networks within a village. Actors are arranged in identical order around the outside
of the graphs with lines representing edges on a given relationship.

example, is as expected relatively sparse in this village. The panel representing
social interactions, however, is quite dense. Describing structure across the views
is also challenging. There are some persistent interactions, indicated most clearly
in Figure 1 by the persistent horizontal lines about one-third of the way down the
circles. A large portion of individuals, however, interact with one another on only
some subset of these relations. Furthermore, each view has its own dependence
structure with broad network properties, such as transitivity, playing different roles
in each view. There is also considerable variability across villages.

2. Latent space models for network data. In this section, we review sub-
stantial literature in latent space models for networks. We begin by presenting the
latent space model for a single network view. We then pay particular attention to
latent space approaches to multiview network data.

2.1. Models for a single relation. Although our model for multiple network
views can be used to extend any statistical model for single view networks, we
will introduce it with the latent space suite of models. We therefore frame our dis-
cussion entirely in this setting. The latent space model for networks [Hoff, Raftery
and Handcock (2002)] assumes that the propensity for pairs of actors to form edges
is conditionally independent given the positions of the actors in an unobserved low
dimensional social space. That is for actors i and j with latent position vectors zi
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and zj and with a network density α,

P(i → j |α, zi, zj ) ∝ f (zi, zj , α).

If yij = 1 in the presence of an edge from i to j and yij = 0 in the absence of an
edge from i to j , then we model the data using a logistic regression model with
the latent space having a Euclidean distance measure:

P
(
Y (1), . . . , Y (R)|α,Z

) = ∏
i,j

(
logit−1(

α − |zi − zj |))yij

× (
1 − logit−1(

α − |zi − zj |))1−yij .

Note that the likelihood is effectively a Bernoulli likelihood for each link and that
these are conditionally independent given the latent space positions and density
parameter.

2.2. Models for multiple relations. Consider now the case where y
(r)
ij = 1 if

there is a edge from i to j on relation r , with data on r = 1, . . . ,R and R > 1. We
assume that the relations are distinct, though in practice dependent since they are
all realizations given one particular set of actors.

We might choose to model all views separately and sequentially (independence
model), collapse all views into an single aggregate network or model all views as
depending on the same underlying latent space variables. The aggregation model
and the dependence model are closely related; in the aggregation model if any
yr
ij = 1, then the aggregated yij = 1 whereas in the dependence model all y

(r)
ij are

included in the likelihood. Our proposed method is one of several emerging ap-
proaches to handle multiple view networks that look to compromise between the
two extremes of fully dependent and fully independent network views. We also
briefly discuss two other emerging methods for modeling multiple view networks
in this section, one of which also uses the latent space approach and one that does
not. We argue that our approach provides the clearest and most interpretable esti-
mate of the inter-view dependence.

Independence model. Each relationship has its own, independent, latent space:

P
(
Y (1), . . . , Y (R)|α(R),Z(R)) = ∏

r

∏
i,j

(
logit−1(

α(r) − ∣∣z(r)
i − z

(r)
j

∣∣))y(r)
ij

× (
1 − logit−1(

α(r) − ∣∣z(r)
i − z

(r)
j

∣∣))1−y
(r)
ij .

Note that inference on each view r may be performed independently.



LATENT SPACE MODELS FOR MULTIVIEW NETWORK DATA 1225

Dependence model. Under this model the unobserved social structure is the
same for all relations. That is,

P
(
Y (1), . . . , Y (R)|α,Z

) = ∏
r

∏
i,j

(
logit−1(

α − |zi − zj |))y(r)
ij

× (
1 − logit−1(

α − |zi − zj |))1−y
(r)
ij .

Aggregation model. Under this model, the various network views are collapsed
to a single view such that if any y

(r)
ij = 1, then the aggregated ỹij = 1, otherwise

ỹij = 0. Again, a single latent space is used to model the probability of a link.

P
(
Y (1), . . . , Y (R)|α,Z

) = ∏
i,j

(
logit−1(

α − |zi − zj |))ỹij

× (
1 − logit−1(

α − |zi − zj |))1−ỹij ,

with

ỹij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 ⇔
R∑

r=1

y
(r)
ij = 0,

1 ⇔
R∑

r=1

y
(r)
ij ≥ 1.

Unified graph representation. Greene and Cunningham (2013) propose the
creation of an aggregated single relation network based on the combination of the
k-nearest neighbour sets for users derived from each network view. This is more
sophisticated than the simple aggregation. In Greene and Cunningham (2013), the
algorithm to create the aggregated network is given as:

1. For each view j = 1 to R, compute a similarity vector �vij between ui and
all other users present in that view, using the similarity measure provided for the
view.

2. From the values in �vij , produce a rank vector of all other (n−1) users relative
to ui , denoted �sij . In cases where not all users are present in view j , missing users
are assigned a rank of (n′

j + 1), where n′
j is the number of users present in the

view.
3. Stack all R rank vectors as columns to form the (n − 1) × R rank matrix Si

and normalise the columns of this matrix to unit length.
4. Compute the SVD of ST

i , and extract the first left singular vector. Arrange
the entries in this vector in descending order, to produce a ranking of all other
(n − 1) users. Select the k highest ranked users as the neighbor set of ui .

Unlike our proposed method, the approach does not yield a clearly interpretable
estimate of associations between the network views. This is of primary interest in
our motivating problem of the Karnataka dataset.
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Latent space joint model. Gollini and Murphy (2016) jointly models multiple
network views by assuming that the probability of a node being connected with
other nodes in each view is explained by a unique latent variable. This is the closest
in spirit to the model we propose here insofar as it extends the latent space model to
the multiple view setting. Unlike our proposed method, the approach does not yield
a clearly interpretable estimate of associations between the network views. There
are per-view network density scalar parameters α and a single latent space to model
the underlying network structure. They employ a variational Bayesian algorithm
to perform approximate Bayesian inference in the spirit of Salter-Townshend and
Murphy (2013). The algorithm first finds estimates obtained from fitting a latent
space to each network view independently. These are then used to find the joint
posterior distribution of the “Latent Space Joint Model.” These results are then
used to update the parameter estimates of each view of the Latent Space Model and
this process is iterated until convergence. Note that Gollini and Murphy (2016) use
the square of the Euclidean distance as it gives proportionally higher probability of
a link between two nodes that are close than the usual Euclidean distance. It also
requires one less approximation to be made to the log-likelihood in their variational
Bayes algorithm. We repeat the choice here for similar reasons.

Graph correlation. Butts and Carley (2005) describe a method for measuring
the correlation between multiple networks defined on the same nodes. As our inter-
est lies in estimating the relationships between the multiple views in the Karnataka
dataset, this simple calculation is close to what we want. However, as Appendix A
shows, this is not the same as the correlations we model in the next section.

The difference is that the raw graph correlations of Butts and Carley (2005)
are marginal whereas the correlations we ultimately report are from a joint model
including a latent space model for each network view and are thus conditional
upon the latent transitive structure inherent in each view. The graph correlations
are averaged across these latent network topologies and are heavily influenced by
them. Appendix A discusses the differences in more detail but the basic intuition
is that our method and the graph correlations will be closely similar for networks
with no underlying structure (i.e., Erdős–Rényi) but different when the views are
transitive, etc.

3. Multivariate Bernoulli latent space model. We now describe the multi-
variate Bernoulli latent space model in detail. The key feature of our model is a
multivariate likelihood that represents dependence structure between views. We
couple this likelihood with latent representations of social structure within each
view via a latent space model. We should note that our approach is generalizable
to almost any choice of probabilistic network model for the individual network
views. The only constraint is that the probability of a link a view is a link-function
of a linear sum. See Salter-Townshend et al. (2012) for a review.
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We refer to the likelihood used for our model as the multivariate Bernoulli dis-
tribution (MVB). As noted in Section 1, a representation of the MVB distribution
is well known in the loglinear models literature, though (to the authors’ knowl-
edge) not referred to by a specific name, and arises again in recent work by Dai,
Ding and Wahba (2013). The MVB extends the Bernoulli to multiple trials whose
successes may be correlated. Note that unlike the multinomial logit (and related
models including correlation) for compositions, the total number of successes is
not fixed. A multinomial logit model where the number of trials is equal to the
total number of links across the views for each dyad could also be performed.
The total number of links follow a Binomial distribution on R trials and one could
model the probability of a success in each trial as a function of a single latent space
distance but we do not make use of that approach here.

Note that the likelihoods for the network models in Section 2 were all of the
univariate Bernoulli form. The probability of an edge between i and j is given by

P(yij ) = pyij (1 − p)1−yij .

The Bernoulli distribution is the most common model for binary variables, includ-
ing binary network data. Various models for p are what distinguish the common
approaches to probabilistic social network analysis. Our approach brings together
these models for p with a rich literature on loglinear models for multivariate bi-
nary outcomes. Although we have chosen to focus on latent space models wherein
p is modeled as the inverse logit of the Euclidean distances between points in a
low-dimensional latent space, the MVB extension we propose works just as well
with any other latent variable model for p. See Salter-Townshend et al. (2012) for
a review of such models, including worked out examples.

We adapt the MVB theory of Dai, Ding and Wahba (2013) to the network set-
ting, replacing the Bernoulli likelihood with the MVB. Thus, association between
views enters the model through the likelihood and we will perform Bayesian infer-
ence on the association terms as well as the latent space variables. For each vector
y

(1)
ij , . . . , y

(R)
ij , the MVB distribution explicitly allows correlation across relation-

ships. The MVB distribution is an exponential family distribution, and thus, much
of the model development remains conceptually unchanged. The model could also
be generalized to continuous or valued associations using a multivariate Gaussian
distribution.

We now define an MVB distribution for a single pair i, j .
Let yij = (y

(1)
ij , y

(2)
ij , . . . , y

(R)
ij ), then

p(yij ) = p0···00
(
∏R

r=1(1−y
(r)
ij ))

× p10···0(y
(1)
ij

∏R
r=2(1−y

(r)
ij ))

× p01···0(y
(2)
ij (1−y

(1)
ij )

∏
r 
=2(1−y

(r)
ij ))(1)
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× · · ·
× p11···1(

∏R
r=1 y

(r)
ij )

.

Note that for two relations, the probabilities p10,p00,p01,p11 define the proba-
bility that (y(1) = 1, y(2) = 0) and so forth. The ps are constrained to sum to unity
and so we perform inference on unconstrained transformations of these variables.
Following Dai, Ding and Wahba (2013), we refer to these as the natural parameters.
For now, we will concentrate on two latent spaces and two relations. Extension to
more is straightforward. We will also assume that each latent space is responsible
for each relation in turn.

The natural parameters are given by

f1 = log
(

p10

p00

)
,

f2 = log
(

p01

p00

)
,

φ12 = log
(

p00p11

p10p01

)
.

Examination of the terms shows that f1 is the log odds of getting a 1 in the first
relation only over getting two zeros, f2 is the log odds of getting a 1 in the second
relation only over getting two zeros and φ12 is related to the log of the covariance
(see Section C). We will refer to such doubly subscripted natural parameters φ as
association parameters. Given R views of a network, we have

(R
2

)
such association

parameters.
Due to the constraint that p00 + p10 + p01 + p11 = 1, we can also calculate all

ps from these f s:

p00 = 1

1 + exp(f1) + exp(f2) + exp(f1 + f2 + φ12)
,

p10 = exp(f1)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + φ12)
,

p01 = exp(f2)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + φ12)
,

p11 = exp(f1 + f2 + φ12)

1 + exp(f1) + exp(f2) + exp(f1 + f2 + φ12)
.

In the general case of R views, the probability for all possible vectors of edges
for a dyad is given by equation (1) with each component given by

(2) pe1···eR
= exp(

∑R
r=1(erfr) + ∑

1≤s<t≤R(esetφst ))

1 + ∑R
r exp(fr) + exp(

∑R
r=1 fr + ∑

1≤s<t≤R φst )
,
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where er are indicator variables where a zero denotes no edge observed in view r

and a 1 implies there is an edge. fr is the log odds of a 1 in the r th relation over
all relations being zeros and φst is the association between views s and t . This
equation allows us to calculate the probability of an observed edge from the set of
natural parameters. We can also calculate the natural parameters uniquely from the
probability vectors although that calculation is not required for our inference.

The correlation between two views is given by

(3) ρ = p00p11 − p10p01√
(p00 + p10)(p00 + p01)(p11 + p10)(p11 + p01)

.

The exponent of φ12 will be 1 for uncorrelated networks, less than 1 for negatively
correlated networks and greater than 1 for positively correlated networks. Thus,
φ12 will be 0 for uncorrelated networks, negative for negatively correlated net-
works and positive for positively correlated networks. Appendix C demonstrates
the relationship between φ, the network density and ρ graphically and shows why
ρ will most often take small values even when there is a strong inter-network rela-
tionship.

Our approach will be to fit a latent space model for each of the f· natural pa-
rameters. The interpretation of these latent spaces is conditional on the absence
of ties in all other views. In sparse graphs, these can be viewed as approximating
the latent spaces for marginal tie probabilities. We discuss the importance of this
nuanced interpretation further in our conclusion. We then estimate a single φ pa-
rameter for each pair of relations in a given network. This amounts to estimating
a completely unrestricted covariance matrix between the relations. For very large
numbers of relations, we may wish to consider limiting consideration to specific
types of covariance matrices. We also model between view associations hierarchi-
cally as a function of observed village-level covariates.

Data generation mechanism. We now describe the data generating mechanism
for the latent space component of the model. We can sample the adjacency matrices
for the views given in our model as follows:

1. For r = {1, . . . ,R}:
(a) Draw intercepts α(r).
(b) For all i nodes:

i. Draw latent positions z
(r)
i .

2. For 1 ≤ s < t ≤ R:

(a) Draw association parameter φst .

3. For all i, j 
= i dyads:

(a) For r = {1, . . . ,R}:
i. fr = α(r) − |z(r)

i − z
(r)
j |2.
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(b) Calculate all p values using equation (2).

(c) Simulate {y(1)
ij , . . . , y

(R)
ij } via a multivariate Bernoulli distribution with

parameter vector p.

Note that as per Section 2.2, we have chosen to model the log-odds of a link as
linearly dependent on the squared Euclidean distances. Another approach would
be to fit the latent space model to each view independently and to look at the
difference between the correlations in latent distances and graph correlations. This
is of course more ad hoc than our joint modeling of the latent positions and graph
associations. Further, we show empirical evidence of the superiority of our method
through a cross-validation simulation study provided in the online supplement.

Regression model. A main goal of our analysis is understanding how the as-
sociation between views differs based on observable village-level covariates. We
accomplish this using a hierarchical regression model where the outcome is the
village-level association parameter and covariates are village level observable
characteristics. We expect that there will be variability in the village level asso-
ciation parameters. To incorporate this uncertainty into our regression estimates,
we fit the regression as part of a unified hierarchical model. Conditional on the
village level parameters, we fit a Bayesian regression model with diffuse Gaussian
priors on each coefficient. Our sampler then marginalizes over the variation in the
association parameters, incorporating this variation into our resulting regression
interval estimates.

Full posterior. Bringing together the previous two components of the model,
the full posterior for our model given the data is

π(α,Z,φ|Y) ∝ π(Y |p)π(α)π(Z)π(φ).

Each y
(r)
ij is Bernoulli given the r th entry of the probability vector p. For each ij

dyad, p is calculated from the intercepts (α), the latent positions of nodes i and
j in each of the rth latent space dimensions (Z(r)

i and Z
(r)
j ) and the association

parameters (φ) using equation (2). The values of f are calculated as in the Data
Generation Mechanism above. We place uninformative Gaussian priors for the
unconstrained α,Z and φ.

4. Results using Karnataka data. In this section, we provide results us-
ing the Karnataka India Data. These data are publicly available online at http:
//economics.mit.edu/faculty/eduflo/social. As mentioned previously, a main chal-
lenge with these data is differentiating structure at multiple levels of analysis. In
the results that follow, we contend that the substantive questions of interest also
change depending on the analysis scale. In Section 4.1, we present visualizations
of the latent space within a particular village broken down by household charac-
teristics. For these finer scale analyses, we are interested in understanding how

http://economics.mit.edu/faculty/eduflo/social
http://economics.mit.edu/faculty/eduflo/social
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structure within a village relates to these observable characteristics; also of inter-
est is the variability between views. Moving to Section 4.2, we examine how our
village-level between the view association parameter is related to village-level co-
variates. At this higher level of analysis, the goal is to understand relationships
across villages, controlling for aspects of social structure unique to each village
and view.

We implement our model using the emerging No-U-Turn sampler [Hoffman
and Gelman (2014)], a variant of Hamiltonian Monte Carlo. The reasons for this
choice are that it gives us good mixing due to the Hamiltonian calculations used to
optimize the multidimensional proposals in the MCMC chain and there is already
software available to run it [Stan Development Team (2013)]. For each village, we
ran four chains initialized using distinct, randomly selected starting values. Com-
putation time for a particular village ranged from under an hour for the smallest
village to several days for the largest village. Additional computational details and
convergence diagnostics are presented in the online supplement. We could also
have used a variational Bayes approach such as that used in Salter-Townshend and
Murphy (2013) but we wish to retain as much of the posterior dependency structure
as possible.

4.1. Village level results. In this section, we present a small subset of the la-
tent space results within each village. We provide results for all villages in the
online supplement. We fit our model to multiview data describing 6 social rela-
tions between households in Karnataka, India. As discussed previously, these data
arise from 75 villages with little interaction between villages, and thus provide a
unique opportunity to explore how diversity in network structure across villages is
related to association across views. In addition to information on network structure
for multiple views, we also have household and individual level covariates that we
aggregate to construct village-level characteristics. Within each village, our goal
is to relate social structure for a particular view to a set of household-level covari-
ates. Our proposed model accomplishes this through the latent space model within
each village and each view. Next, we also wish to compare the association between
views across villages. The scale of this question requires a more parsimonious rep-
resentation of the relationship between views.

We find that each network view in the Karnataka dataset is strongly transitive.
We used cug.test in the R package sna [Butts (2010)] to determine the probability
that a random graph with the same number of edges exhibits as high or higher a
transitivity measure as each of the Karnataka network views. In all cases, the em-
pirical p-value returned was within machine precision of zero, showing that the
transitivity of the graphs of each network view were not from a random graph with
no structure. As per Butts (2008), the random graphs were conditioned on having
the same number of edges. This result motivates our choice of a Euclidean latent
space. Figures 2 and 3 show the maximum a-posteriori latent position for respon-
dents in two villages. Figure 2 is colored by religion, whereas Figure 3 is colored
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FIG. 2. Latent space for Village 71 by religion. Maximum a-posteriori latent position for each
relation, adjusted to a common orientation based on “Interact socially.”

by caste. In both figures, we used a Procrustes transformation [see Hoff, Raftery
and Handcock (2002)] to rotate the points to an orientation that most matches the
“interact socially” view. As noted in the model description, these latent spaces
are on the natural parameters of the MVB distribution. As with other latent space
approaches, we must choose the dimension of the latent space beforehand. We
used BIC (see the supplement to this paper) to evaluate the goodness-of-fit of the
model using latent spaces ranging from one to five dimensions. Latent spaces of
two and three dimensions yielded the best performance, with performance in the
three-dimensional case being slightly superior; we opted to present results with
two dimensions for ease of visualization. We present these results in full detail in
the online supplement, where we also present regression results in three dimen-
sions to demonstrate that our substantive conclusions are qualitatively similar. If
the primary goal were, for example, link prediction, we could select a latent di-
mension based on hold-out data experiments.

Several striking patterns emerge in the figures. First, the figures demonstrate
that there is substantial variability in the latent structure across views. For these
villages, the views representing social interactions and money exchange are most
concentrated around the origin, giving the smallest latent distances between in-
dividuals. These smaller latent distances imply that the model is less reliant on
higher order terms in estimating interaction frequency. The view encoding being
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FIG. 3. Latent space for Village 29 by caste. Maximum a-posteriori latent position for each relation,
adjusted to a common orientation based on “Interact socially.”

related has the most diffuse latent structure. Such structure occurs because individ-
uals linked by familiar ties form relatively small, dense clusters and there is a high
propensity for ties within a cluster but few opportunities for ties between. Sec-
ond, we see substantial homophily based on religion across all views in Figure 2.
There is also evidence of homophily based on caste though it is more concentrated
in some views than others. They interact socially and exchange money views, for
example, demonstrate the most homophily based on caste in Figure 3. The view
encoding familial ties displays pronounced homophily, but again remains the most
diffuse of the views as there are comparatively few connections across family units
even within the same caste. Third, despite applying a Procrustes transformation,
the orientation of the latent spaces still varies across views. In Figure 2, for exam-
ple, we see that the latent positions of individuals practicing Islam are generally to
the upper right of individuals practicing Hinduism on the view related to financial
advice, whereas they are to the upper left for the view measuring medical advice.
With heterogeneous network structure, the Procrustes transformation is unable to
match these orientations. Isolates also play a substantial role; making this obser-
vation a byproduct of sparsity in the underlying graphs.

Moving to the next level of analysis, we can also explore the association be-
tween views within a given village. For interpretability, we express these results in
terms of the correlation parameter from the MVB. To get this parameter, we first
convert the association parameter, φ in our model to correlation. We calculate the
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FIG. 4. Plot of correlation (ρ) matrices for village 72 using gcor [Butts (2010)] (left), the poste-
rior mean (middle) and posterior standard deviation (right) from our model. Red implies a stronger
correlation but note the difference in scale. The difference under the two approaches is due to the
incorporation of the latent space component in the second approach and is discussed in Appendix A.
Figure 7 shows that large negative correlation is only possible in very dense networks and large
positive correlation only in very sparse networks.

pairwise probability of each possible combination of links for two network views
using equation (2). The correlation between the two network views is then calcula-
ble using equation (3). Figure 4 shows results for the raw graph correlation [Butts
and Carley (2005)] and the correlation posterior means and standard deviations
from our model for the 6 network views. This figure uses the same village as in
Figure 2.

The proposed measure represents the excess correlation after “factoring out”
social structure encoded within each network view. We contrast this conditional
correlation measure with the marginal measure obtained using graph correlation.
In Figure 4, we see that controlling for structure within each view can substan-
tially change our interpretation of the association between views. The exchange
goods/interact socially pair, for example, is one of the least correlated when consid-
ering the marginal measure of graph correlation, but has the strongest association
when using the proposed conditional measure. When interpreting the results, the
conditional approach provides a measure that accounts for both changes in density
between views and differences in higher order interaction terms. The graph correla-
tion measure adjusts for density, but the relation between views is still confounded
with network structure beyond that present in an Erdős–Rényi graph. Overall, the
conditional correlation approach also produces a more pronounced distribution of
associations, with few associations standing out as clearly the largest. We investi-
gate these differences further with a simulation study in Appendix A.

The proposed metric produces correlations that are very small for the village
presented in Figure 4. The absolute value of the coefficients is misleading, how-
ever, as the range of possible values depends on the structure of the graph. For
both the graph correlation and our conditional approach, the overall density of the
network is influential. Large negative correlation is only possible in very dense
networks and large positive correlation only in very sparse networks. The pres-
ence of latent structure shifts the distribution of possible correlation values for our
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method to the left. Graph correlation, in contrast, does not account for higher order
network structure, and thus is unaffected. We explore this dependence further in
Appendix C.

4.2. Cross-village results. We now move to our results across villages. In con-
trast to the previous results where our substantive questions were focused mostly
on understanding properties of local graph structure, we are now interested in
broad trends in association between views based on observable village level char-
acteristics. For each village, we now have an estimated association based on the
MVB latent model and a series of village-level covariates. Our hierarchical model
facilitates including a regression component on the between-view associations,
that is, we construct regression models where the response variable is the MVB
latent model association parameter and the predictor variables are our observed
covariates. We used covariates related to the socioeconomic status (e.g., propor-
tion of households with a latrine, proportion with a number of different types of
roof, or average number of rooms per home), household characteristics (proportion
of households that report having a leader), and demographics (average time in the
village). We also experimented with models including other village-level covari-
ates (including average age, language and religion) though these models did not
perform as well using the measure of model fit such as AIC. For comparison, we
performed the regressions using graph correlation as a response variable.

Figure 5 presents the results from our regression models for four view pairs.
Since we used six network views, there are a total of fifteen view pairs. The remain-
ing views are presented in Appendix B. For each regression coefficient, we can in-
terpret the result using graph correlation as an increased (or decreased) propensity
for people in villages with high levels of the covariate with an interaction on one
view to also have an interaction on the second view. For example, the coefficients
for proportion with a tile and stone roof in the pair medical advice/family indi-
cate that in villages where more individuals have tile roofs there is an increased
propensity for those who are related also share medical advice. The roof- type
variables can be interpreted as a crude measure of socioeconomic status with the
thatched roof indicating the most impoverished individuals and RCC (concrete)
among the most affluent. The thatched roof category does not follow the general
trend between roof type and model coefficients. The number of households in the
thatched roof category is very small (less than 2% of the data), however, so there
is very little data to estimate these coefficients. On both the family/medical advice
and family/exchange money associations, there is a consistent trend based on roof
type. Looking first at the family/money association, households in villages with
(roughly speaking) lower socioeconomic status were less likely to exchange money
with individuals they are related to. This trend is reversed for medical advice, how-
ever. Individuals in villages with lower status, as measured by the fraction of lower
quality roofs, were more likely to share medical advice with family members. In
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FIG. 5. Association results using Karnataka data. Each plot represents a regression model for a
particular view pair. Solid dots represent coefficient estimates in a model where covariates are vil-
lage-level measures of socioeconomic and demographic characteristics for villages. The outcome is
either the graph correlation (lower) or the association parameter from the MVB latent model (up-
per). The results indicate that accounting for network structure through the MVB cluster model can
have a substantial impact. All variables are standardized for comparison across models. Additional
results are presented in Appendix B.
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both cases, these effects are after accounting for the nuances of within-network
structure in each network.

The results using graph correlation do not control for network structure within
each view, meaning that the effect of association between views is potentially con-
founded with local graph structure. Using the MVB latent space model, in contrast,
we can explore association between views while controlling for network struc-
ture within each view. In terms of interpretation, the coefficients for the MVB
latent space model now reflect the increased (or decreased) propensity for indi-
viduals in villages with a high value of a given covariate to interact on a second
view once they already interact on one view in the pair, while controlling for the
role individuals play within a given network. Turning back to Figure 5, we see
that this distinction has significant implications in some circumstances. In the ex-
change money/family pair, for example, we see that the sign of the coefficients
changes from positive using graph correlation to negative with the MVB latent
space model. This implies that the positive association between these views for
villages with large proportions of tile or stone roofs (individual with relatively low
socioeconomic status) seen by graph correlation is confounded with network struc-
ture within each view. In other words, the MVB latent space results indicate that,
controlling for whether individuals are related, individuals within villages with
relatively low SES were less likely to also exchange money. This result is not, in
contrast, due to confounding with network structure when looking at the medical
advice/family pair. As expected, we also see that controlling for structure through
the MVB latent space model also serves to decrease the size of coefficients in sev-
eral other cases as can be seen with coefficients in the medical advice/social pair
or the financial advice/social pair.

5. Discussion and conclusion. We present a statistical model for multiview
network data. Our model builds on previous work on latent space models for net-
works as well as a deep literature in modeling discrete multivariate data. The pro-
posed method uses a multivariate likelihood to model associations between views,
which provides a parsimonious representation of between-view structure. Condi-
tional latent space models account for dependence arising from a social network
structure. Importantly, ours is the only model we know of that cannot only capture
but also estimate negative correlation between multiple network views jointly with
complex network topography. In our results, we present a comprehensive compar-
ison across all fifteen possible combinations of six views. This approach leads to
testing a very large number of hypotheses, which should be considered when using
this method.

The importance of multiview network models also rises with increasing ability
to measure various types of networks using technology. Social media data such
as Twitter or Facebook, for example, provide access to a wealth of data consist-
ing of multiple types of communications. In Twitter, for example, users can also
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communicate in either passive or active relationships. “Following” in Twitter ter-
minology allows a user to see updates from another user but typically does not
require approval or interaction with the user being followed. Interactions can also
be more active and conversational, however, with the individuals using the @re-
ply command or contributing to broader conversations by including a #hashtag
identifier in their tweet. Twitter users project their thoughts toward an imagined
audience of networked individuals, some of whom bear reciprocal edges to the
users themselves and some of whom do not. This interesting mix of public and
private attention requires users to maintain a balance between transparency and
authenticity in the material they choose to tweet.

The conditional latent space approach provides flexibility in modeling social
network structure within each view. Our method does, however, share difficulties
related to model selection that are common in latent space models. Selecting the
dimensionality of the latent space remains a topic of research with these models.
In our case, we use the latent space to account for within-view structure but do
not emphasize interpretation of the latent representation. We fixed the dimension-
ality of the latent space to be the same across all views to encourage comparable
interpretation across views. We experimented with multiple latent dimensions and
found that the association measures were relatively insensitive, though more ex-
ploration of this area could be done for different modeling objectives. In our case,
we value the interpretation of the latent space approach, though we could also ap-
proach the within-view modeling using other social network models. The behavior
of the MVB framework under other models and model misspecification is an open
area for future work.

The conditional representation also makes interpretation of the latent distances
a challenge. This issue is well known in the loglinear models literature. Alternative
models for multivariate binary data have been proposed, but these models also have
substantial issues with interpretation, often in ways that are less straightforward to
interpret than the likelihood used here [see Wakefield (2013) for a review]. In our
application, the main focus is on understanding the association between village-
level covariates and views. In other applications, however, interpreting marginal
tie probabilities within a view may be a priority. In such instances, we can obtain
posterior distributions over these probabilities during sampling, or decomposition
methods could be considered [e.g., Hoff (2011a)].

APPENDIX A: DIFFERENCE BETWEEN MARGINAL AND
CONDITIONAL GRAPH CORRELATIONS

In order to demonstrate the difference between the conditional correlations in-
ferred by our model and raw (marginal) graph correlations, we present results on
some simulated datasets. We will show that in the absence of any underlying la-
tent structure to each network view (effectively Erdős–Rényi graphs), our method
returns values close to the graph correlations. However, when there is a nonflat
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network topography our method is preferable to such marginal correlations. We
simulated 3 networks with a ground truth association matrix given by

φst =
⎡
⎣NA 4.42 3.49

4.42 NA −1.50
3.49 −1.50 NA

⎤
⎦ .

As this is a symmetric matrix with just 3 unique terms, we will report it and related
matrices as vectors of length 3 with terms corresponding to view pairs (1,2), (1,3)

and (2,3), respectively. Thus, the association values used to generate the data are

(φ12, φ13, φ23) = (4.42,3.49,−1.5).

We explore two versions of the simulated data here. The first version has all
latent positions in each network view set to zero (i.e., no latent space structure) and
the second version has randomly generated latent positions. We report results for
multiple (20) runs of both versions, each involving the generation of random data
and subsequent application of gcor [Butts (2010)] and our method to infer inter-
network-view correlations. In both versions, we simulated the joint 3-network-
view links as per our multivariate Bernoulli distribution.

A.1. With no latent structure. For the version with no latent structure, the
ground truth correlations ρ between each pair of views is constant across simula-
tion runs and is calculated using equation (3) to be

ground truth: ρ = (ρ12, ρ13, ρ23) = (0.383,0.349,−0.067).

The raw graph correlations mean and standard deviations across the 20 simula-
tions were found to be

gcor: ρ̂ = (0.515,0.307,−0.001), sρ = (0.027,0.020,0.018).

We then fit our model using our MCMC algorithm and obtain draws from the
posterior for the latent positions Z, intercepts α and associations φ. We find that
the mean across 20 simulations of the posterior means and standard deviations for
the posterior means for the associations are

MLSM: φ̂ = (4.661,3.635,−1.589), sφ = (0.224,0.187,0.160).

We then calculate the pairwise correlations for given values of the intercepts α and
distances between latent positions Z. We average these values across the MCMC
iterations equation (3) to get

MLSM: ρ̂ = (0.367,0.333,−0.067), sρ = (0.012,0.013,0.008).

Thus, the algorithm was able to capture the correct associations and correlations
across simulations.

Although the results from gcor are comparable to the results using our method
for this simulated data without latent structure in the networks, we note that gcor
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failed to capture the correct ρ values within the range of values across the 20
simulation runs, whereas our results for posterior means span the true values for
both φ and ρ and are centered on them. This is hardly surprising of course as we
are fitting the same model used to generate the data (apart from the inclusion in
the inference of latent positions which were set to zero to generate the data).

We can also examine 95% credible intervals based on the MCMC output for
each of the 20 simulations. We found that these intervals included the correct val-
ues of φ, averaged across the 3 view pairings, 90% of the time. For ρ, it was 85%.
Thus, even within a simulation, our posterior does a good job of inferring the cor-
rect association values.

A.2. With latent structure. We now report results for a simulation study in-
cluding randomly generated latent positions associated with each network view.
We observe that the ρ values found by our method now differ more substantially
from the graph correlations. Note that due to the simulation of random latent space
positions, the true ρ values now vary across simulation runs. The φ values are the
same as per the simulations with no latent structure. The true (i.e., values used
to generate the simulated datasets) mean and standard deviations of ρ were the
following:

ground truth: ρ̂ = (0.052,0.037,−0.003), sρ = (0.006,0.005,0.000).

Note that the standard deviation of these values across simulations is low.
The raw graph correlations mean and standard deviations were calculated to be

gcor: ρ̂ = (0.634,0.439,0.145), sρ = (0.057,0.065,0.068).

These values are far removed from the ground truth, with all 3 far too strongly
positive. This is because correlation due to the latent structure is dominating the
correlations.

Conversely, our method found values of

MLSM: ρ̂ = (0.029,0.018,−0.002), sρ = (0.006,0.004,0.000),

which are more in line with the ground truth. Across the 20 simulation runs, we
captured the ground truth value of ρ in the 95% credible interval 60% of the time.
Thus, in the presence of latent structure underlying the multiple networks, the
graph correlation does a far poorer job of capturing the true correlation between
the views. For real datasets, such as our motivating example, we therefore advo-
cate using a model that jointly estimates the correlations and the latent structures
of the multiple views.

APPENDIX B: ADDITIONAL RESULTS FOR KARNATAKA

In this section, we present results for the remaining views not presented in Fig-
ure 5. Figure 6 presents plots giving point estimates and error bars for regression
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FIG. 6. Results for additional view pairs. These plots present coefficients and error bars for the
remaining relations not presented in Figure 5. Each plot represents a single view pair. Dots represent
point estimates in a regression model where the outcome is either graph correlation or the associa-
tion parameter in our MVB latent model for a particular village and village level covariates. Bars
represent 80% uncertainty intervals. We standardized all variables for comparison across outcomes.
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models where the outcome is either the graph correlation or the association pa-
rameter of the MVB latent model. Covariates are village level measures of de-
mographic and socioeconomic composition. The results support the discussion in
Section 4.

APPENDIX C: RELATIONSHIP OF CORRELATION ρ TO DENSITY α AND
ASSOCIATION φ

It is interesting to observe how ρ varies with network density α and associa-
tion φ. Figure 7 presents a contour plot of the correlation ρ12 against α and φ12.
Note that the distances in the latent spaces are set to zero before using equations (2)
and (3). The effect of having equal but nonzero distances is to shift the plot to the
right of zero on the x-axis. If the distances are unequal in the two views, the con-
tours also move away from zero in the y direction.

It can be seen from Figure 7 that the absolute correlation is largest for either
high density networks with large negative association parameter or low density
networks with large positive association parameter. The sign of the correlation is
the same as the sign for the free association parameter but the actual correlation
values will be small in magnitude even if the free parameter is large for many
networks.

FIG. 7. Contour plot of how the correlation ρ between two views varies as a function of the density
of the networks α and the association term φ12. Note that for sparse networks (towards the left),
positive associations can lead to large positive multiview correlations; however negative correlations
are limited to be small in magnitude.
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