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We consider the problem of emulating (approximating) computer models
(simulators) that produce massive output. The specific simulator we study is a
computer model of volcanic pyroclastic flow, a single run of which produces
up to 109 outputs over a space–time grid of coordinates. An emulator (essen-
tially a statistical model of the simulator—we use a Gaussian Process) that
is computationally suitable for such massive output is developed and studied
from practical and theoretical perspectives. On the practical side, the emula-
tor does unexpectedly well in predicting what the simulator would produce,
even better than much more flexible and computationally intensive alterna-
tives. This allows the attainment of the scientific goal of this work, accurate
assessment of the hazards from pyroclastic flows over wide spatial domains.
Theoretical results are also developed that provide insight into the unexpected
success of the massive emulator. Generalizations of the emulator are intro-
duced that allow for a nugget, which is useful for the application to hazard
assessment.

1. Introduction. Computer models—henceforth simulators—are used to
generate data to reproduce the behavior of physical, engineering or human pro-
cesses. We will be working with the testbed simulator TITAN2D [Patra et al.
(2005), Pitman et al. (2003)], which simulates the volcanic pyroclastic flow that
surges down a volcano after an eruption, based on inputs such as the initiating
volume of flow. A key issue with such simulators is that they are typically very
computationally expensive to run; TITAN2D requires up to 2 hours for a single
run.

To be useful, simulators typically need a host of interactions with data and statis-
tics, a process which has come to be called uncertainty quantification. We use this
term herein without precisely defining its meaning. The point, however, is that
these interactions often require a very large number of evaluations of the simulator
at settings of the inputs which have not been run and the expense of running the
simulator becomes a prohibitive barrier.

The key to progress is the development of an emulator (approximation) of the
simulator that is accurate and which can be run very quickly; the uncertainty quan-
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tification tasks are then carried out with the emulator. The task here is the predic-
tion of the simulator output at a new input (e.g., a pyroclastic flow at volume 107.32

cubic meters, which has never been run in TITAN2D). A key feature of statistical
emulators is that they have an internal assessment of their approximation accuracy,
which makes possible a realistic assessment of uncertainty in predictions.

This is a very well-studied paradigm [Bayarri et al. (2007a, 2009), Sacks et al.
(1989)]. This paper focuses on a challenging aspect of the problem, namely, em-
ulating a simulator that produces massive output over a coordinate space. For in-
stance, TITAN2D produces flow information at approximately 109 space–time co-
ordinates. While there is a vast body of research concerning emulating the simula-
tor at one of a small number of simulator outputs, simultaneous emulation of the
output over many coordinates is less studied. Some papers that do so are Higdon
et al. (2008), Marrel et al. (2011), Rougier (2008), Rougier et al. (2009), Xiao
et al. (2010); these are further discussed in Section 5.2.1, and representative meth-
ods will subsequently be compared with the methodology introduced here.

The scientific motivation for this work is to determine hazard probabilities for
future volcanic eruptions. In previous studies of volcanic hazard [Lopes (2011),
Spiller et al. (2014)], the hazard probability at a specific location is the probability
of a catastrophic event happening at least once during next T years; a catastrophic
event is typically characterized by a maximum flow height larger than 1 meter dur-
ing the flow event. In Bayarri et al. (2009), the estimation of the hazard probability
at two locations (Plymouth and Bramble Airport) on Montserrat Island were given.
In Lopes (2011) and Spiller et al. (2014), this was extended to a number of loca-
tions in Belham Valley, an at-risk area on Montserrat. One of the main scientific
goals of this work is to enable computation of these hazard probabilities, not at
individual locations, but simultaneously over a large spatial region. Furthermore,
policymakers might be interested in events other than just maximum flow height
exceeding a meter; they could want to use a lower threshold or some other measure
entirely, such as damage to structures by the force of the flow. To achieve the flex-
ibility to answer any such posed question, an emulator is needed that can quickly
predict the entirety of the output of TITAN2D.

The inputs to the simulator will be denoted (x, s), where x describes the driving
inputs for the simulator (e.g., the volume of the pyroclastic flow) and s denotes
a coordinate (e.g., the space–time coordinate) at which the simulator evaluates
pyroclastic flow; this notation is not convenient for the later technical development,
but is useful in this introduction.

The main idea of this development is that x must be accurately involved in the
emulation (there is no chance in predicting a pyroclastic flow without adjusting
for the volume of the flow, and we must consider volumes that have not yet been
observed), but it is often just fine to perform the predictions of flow on just the
space of s, which will typically be a fixed grid of space–time coordinates; it is not
typically necessary to interpolate into new space–time locations if the original grid
is detailed enough.
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The straightforward approach to emulating the simulator simultaneously at
many locations is discussed in Conti and O’Hagan (2010), Lee et al. (2011, 2012)
and utilized for TITAN2D in Spiller et al. (2014). This approach, which is called
the Many Single (MS) emulator approach, is simply to fit separate emulators at
each coordinate. We will be using Gaussian process (GaSP) emulators, which are
characterized by an unknown mean function, an unknown variance and unknown
correlation parameters. In the MS emulator approach, these are all determined sep-
arately at each location, resulting in a highly computationally intensive process.

This paper provides a computationally feasible alternative to the MS approach,
which we call the parallel partial (PP) emulator approach. This approach has the
following features:

• There are independent emulators at each of k coordinates s1, . . . , sk (with k

being up to 109 for TITAN2D).
• Each coordinate emulator is allowed a different mean function and variance

because pyroclastic flows behave very differently at different locations on the
mountain (e.g., the height of the flow at locations near the initiation of the flow
event will be much larger than at locations far from this point).

• All coordinates share common Gaussian process correlation parameters, and
these are estimated from the joint likelihood of all emulators.

The name “parallel partial” is used to reflect the fact that the locations have proba-
bilistically independent parallel emulators, but they are only partially independent
in the sense that they share common correlation parameters, estimated from the
overall likelihood (as will be discussed in Sections 3 and 7). The PP emulator is
computationally feasible because it is linear in k; more precisely, after some pre-
computation steps, computation of the emulator predictions for a new input x∗ at
all k locations requires O(n2 + nk) numerical operations, where n is the number
of simulator runs upon which the emulator is based. Such computational details
are discussed in Section 5.1.

One natural concern with this approach is that the simulator is (usually) very
tightly constrained at nearby locations, while the PP emulator provides indepen-
dent predictions at each location. A related concern is the use of common Gaussian
process correlation parameters at all locations, as opposed to the more flexible
modeling of the MS emulator. The surprising reality is that the PP emulator not
only is accurate in emulation over the k coordinate points, but also usually seems
to be substantially better than alternatives such as the MS emulator, which do al-
low for differing correlation parameters. Both theoretical reasons and numerical
evidence for this will be presented.

The paper is organized as followed. In Section 2, we review the GaSP emu-
lator for simulators with real-valued output, and introduce the TITAN2D testbed
simulator. In Section 3, we define and motivate the PP GaSP emulator and a gen-
eralization involving a nugget. Section 4 addresses the major scientific question
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of prediction of hazard probabilities over a wide region. Section 5 studies the per-
formance of the PP emulator and competitors. Section 6 presents theoretical jus-
tification for the PP emulator. Section 7 discusses the problem of estimation of
the PP-emulator correlation parameters; reference priors and composite likelihood
methods are utilized.

2. Background.

2.1. GaSP emulator at a given space–time location. The GaSP emulator is a
frequently used surrogate for expensive simulators [see, e.g., Bayarri et al. (2007b),
Kennedy and O’Hagan (2001), Kennedy et al. (2008), Li and Sudjianto (2005)]. To
set notation, let x ∈ X denote the p-dimensional vector of inputs to the simulator,
and let y(x) denote the resulting simulator output, assumed in this section to be
real-valued. The simulator y(x) is viewed as an unknown function [because the
simulator is expensive to run, we will at most be able to evaluate y(x) at a few
points] modeled via a Gaussian Process,

(2.1) y(·) ∼ GaSP
(
μ(·),C(·, ·)),

having mean function μ(·) and covariance C(·, ·) = σ 2c(·, ·) with variance σ 2, and
correlation function c(·, ·). For any inputs {x1, . . . ,xm} from X , the likelihood is
a multivariate normal,(

y(x1), . . . , y(xm)
)T |μ, σ 2,R ∼ MVN

((
μ(x1), . . . ,μ(xm)

)T
, σ 2R

)
,

where σ 2 is the unknown variance and R is the correlation matrix (or Gram matrix
[Rasmussen and Williams (2006)]) with (i, j) element c(xi ,xj ). It is common to
model the mean function via regression,

μ(x) = h(x)θ =
q∑

t=1

ht (x)θt ,

where h(x) = (h1(x), h2(x), . . . , hq(x)) is a vector of specified basis functions and
θt is the unknown regression parameter for basis function ht . A commonly used
correlation function for inputs xi = (xi1, . . . , xip) and xj = (xj1, . . . , xjp) is the
exponential family correlation of the form [Rasmussen and Williams (2006)]

(2.2) c(xi ,xj ) = exp

{
−

p∑
t=1

( |xit − xjt |
γt

)αt
}
,

with γt ∈ (0,∞) and αt ∈ [1,2]; the resulting Gaussian process is thus station-
ary. The emulator is developed from runs of the simulator at a set of n cho-
sen inputs xD = {xD

1 , . . . ,xD
n }, often selected using a Latin Hypercube Design

(LHD) over the input space X [Forrester, Sobester and Keane (2008), Sacks et al.
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(1989)]; let yD = (y(xD
1 ), . . . , y(xD

n ))T denote the corresponding simulator out-
puts. The unknown parameters of the emulator will be handled via a mixed objec-
tive Bayesian/likelihood approach.

To deal with the unknown mean and variance, we simply utilize the standard
reference prior for a location-scale parameter, namely,

πR(
θ , σ 2) ∝ 1

σ 2 .

The points in xD are typically chosen as far apart as possible in order to sample the
simulator at as many diverse points as possible. This means that the parameters αt

are not highly influential and typically have quite flat likelihood surfaces. They also
are typically highly confounded with the γt and σ 2, causing computational and
inferential difficulties if left in the model [Gelfand et al. (2010), Zhang (2004)]. It
is thus common to fix them to a constant value—often 1.9 (which we adopt herein),
to reflect a typical desire for smoothness of the emulator, yet avoiding numerical
problems that can arise with the choice αt = 2.

The γt will be estimated as the modes of their marginal posterior densities aris-
ing from first integrating out θ and σ 2, with respect to πR(·), and then multiplying
this marginal likelihood by the reference prior for the γt . There are several tech-
nical issues involved in the implementation, the details of which we delay until
Section 7; for now we just assume the availability of estimates γ̂t .

With the above setup, the emulator can be defined. It is a prediction, at a new
input value x∗, of the corresponding simulator output y(x∗). Indeed, the predictive
distribution of y(x∗), given yD and γ̂ = (γ̂1, . . . , γ̂p), is a t-distribution

(2.3) y
(
x∗)|yD , γ̂ ∼ t

(
ŷ
(
x∗)

, σ̂ 2c∗∗, n − q
)
,

with n − q degrees of freedom, where

ŷ
(
x∗) = h

(
x∗)

θ̂ + rT (
x∗)

R−1(
yD − h

(
xD )

θ̂
)
,

σ̂ 2 = (n − q)−1(
yD − h

(
xD )

θ̂
)T

R−1(
yD − h

(
xD )

θ̂
)
,

(2.4)
c∗∗ = c

(
x∗,x∗) − rT (

x∗)
R−1r

(
x∗) + (

h
(
x∗) − hT (

xD )
R−1r

(
x∗))T

× (
hT (

xD )
R−1h

(
xD ))−1(

h
(
x∗) − hT (

xD )
R−1r

(
x∗))

,

with θ̂ = (hT (xD )R−1h(xD ))−1hT (xD )R−1yD being the generalized least squares
estimator for θ , h(xD ) being the n × q basis design matrix with (i, j) element
hj (xD

i ), and r(x∗) = (c(x∗,xD
1 ), . . . , c(x∗,xD

n ))T .
Note that, at the design points xD

i , 1 ≤ i ≤ n, the emulator is an interpola-
tor of the simulator because when x∗ = xD

i , rT (x∗)R−1 = eT
i , where ei is an n-

dimensional vector with the ith row as 1 and the others as 0. At other inputs, it
provides not only a prediction of the simulator [i.e., ŷ(x∗)], but also an assessment
of the accuracy of the prediction; since this was developed from a partial Bayesian
perspective, it also incorporates the uncertainty arising from estimating θ and σ 2.
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2.2. The TITAN2D testbed. The four inputs to the TITAN2D simulator are the
initial flow volume V , initial angle of the flow φ, basal friction angle δbed and
internal friction angle δint. TITAN2D produces numerous outputs, one of them
being the pyroclastic flow height at every space–time grid point. The PP emulator
developed herein is perfectly capable of handling the entire space–time grid, but
the time component is not of particular practical interest, for the simple fact that
damage from pyroclastic flow is primarily due to the largest flow that hits a given
spatial location. Therefore, the simulator output of particular interest, at a given
location on the island, is

y(V,φ, δbed, δint) = maximum flow height over time,

this being a good surrogate for the damage inflicted at the location. We will thus
work with this simulator output in our illustrations and evaluations, including the
ultimate goal of producing probabilistic hazard maps for the region. Actually, for
reasons discussed in Bayarri et al. (2009), we fit the emulator to log(y + 1) and
then transform the predictions back. Means and variances do not transform directly
through this transformation, but posterior medians and quantiles do, and are what
we use in actual computations; we will suppress this detail in our notation.

For the reasons discussed in Bayarri et al. (2009), the basis functions h(·) =
(1,V ) will be utilized so that the mean function will simply be the regression
θ1 + θ2V . The design input space D consisted of 2048 points chosen according to
a maximin Latin hypercube design over the relevant region [105,109.5]×[0,2π)×
[5.45,18.45] × [15,35] for the four inputs.

TITAN2D was run at these 2048 inputs, and the resulting vectors of maximum
flow heights over the spatial grid of the island were recorded. A complication that
arises in TITAN2D is that the second input, φ, is periodic, ranging from 0 to 2π ,
so that a correlation function that respects periodicity is needed. To overcome this
difficulty, we follow Spiller et al. (2014) and utilize a correlation function based on
“periodic folding.” Details are described in the supplementary materials [Gu and
Berger (2016)]. Note that, while we focus here on prediction of hazard probabili-
ties for the Soufrière Hill Volcano (SHV) on Montserrat Island, the methodology
can be used for hazard prediction for any volcanic pyroclastic flows.

3. Parallel partial emulation.

3.1. The PP GaSP emulator. As discussed before, TITAN2D will generate
massive data over many coordinates during each simulator run. Let k denote the
total number of space–time grid points that are considered for each simulator run;
with TITAN2D, k can be as big as 109, but, for the reasons discussed in Section 2.2,
we will herein restrict consideration to only the spatial grid. Let yj (x) denote the
simulator output at the j th coordinate so that y(x) = (y1(x), . . . , yk(x)) is the entire
simulator output arising from input x. In this section we develop a computationally
efficient and accurate emulator of that entire output.
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As discussed in the introduction, we assume that an independent GaSP of the
form (2.1) is assigned to each coordinate, with prior mean functions of the regres-
sion form h(x)θ j , where h(x) is a common q-vector of given basis functions and
the θ j are differing unknown regression coefficients, differing unknown prior vari-
ances σ 2

j , and common estimated correlation parameters γ̂ . Assuming common
basis functions and estimated correlation parameters is the key to the computa-
tional simplification.

Let yD
j denote the column vector of simulator output values at the j th coordinate

when run over the design input values, as discussed in Section 2.1. We also utilize
the same standard objective prior for the mean and variance parameters

(3.1) πR(
θ1, . . . , θk, σ

2
1 , . . . , σ 2

k

) ∝ 1∏k
j=1 σ 2

j

.

Since the GaSPs at each coordinate are independent given the range parameters γ ,
the prior is of a product form in the parameters of the different coordinate GaSPs
and γ̂ is common across coordinates; it is immediate that the overall GaSP, at a
new input x∗, is the product of k independent t-distributions, with that for the j th
coordinate being

(3.2) yj

(
x∗)|yD

j , γ̂ ∼ t
(
ŷj

(
x∗)

, σ̂ 2
j c∗∗, n − q

)
,

with n − q degrees of freedom, where

ŷj

(
x∗) = h

(
x∗)

θ̂ j + rT (
x∗)

R−1(
yD
j − h

(
xD )

θ̂ j

)
,(3.3)

σ̂ 2
j = (n − q)−1(

yD
j − h

(
xD )

θ̂ j

)T
R−1(

yD
j − h

(
xD )

θ̂ j

)
,(3.4)

with θ̂ j = (hT (xD )R−1h(xD ))−1hT (xD )R−1yD
j being the generalized least

squares estimator for θ j , and R, h(xD ), r(x∗) and c∗∗ being defined in Section 2.1.
From algebraic rearrangement of (3.3), the following lemma is immediate.

LEMMA 3.1. Letting yD = (yD
1 ,yD

2 , . . . ,yD
k ) denote the n × k matrix of all

the simulator output at the design points, the predictive mean of the PP GaSP at
the new input x∗, namely, ŷ(x∗) = (ŷ1(x∗), ŷ2(x∗), . . . , ŷk(x∗)), can be expressed
as

(3.5) ŷ
(
x∗) = ω

(
x∗)

yD ,

where

ω
(
x∗) = (

h
(
x∗) − rT (

x∗)
R−1h

(
xD ))(

hT (
xD )

R−1h
(
xD ))−1

× hT (
xD )

R−1 + rT (
x∗)

R−1.
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The weights ω(x∗) are usually called Kriging weights [Cressie (1993)]. There
are two immediate important consequences of (3.5). First, the PP GaSP emula-
tor is not only an interpolator of the simulator at the design inputs, but it is also
a weighted sum of the simulator runs [each row of yD being the simulator output—
at one of the n input values—over all k coordinates, and ω(x∗) being an n-vector].
This ensures that the emulator inherits the smoothness of the simulator and proba-
bly some of the dynamics. Note, in contrast, that developing a separate emulator at
each coordinate would not have this property, in that this would result in different
weights for the simulator output at each coordinate.

Second, the weights, ω(x∗), depend only on computation of the q-vector h(x∗)
and the n-vector r(x∗) together with precomputable matrices and vectors. The en-
tire computation of the emulator is thus linear in k, the key to the computational
simplification. (More details of the computation are given in Section 5.1.)

Note that it is crucial that the outputs over all coordinates share the same cor-
relation parameters γ̂ . If not, then each coordinate would have a different design
correlation matrix R, requiring the inversion of an n×n matrix at each coordinate;
the computational situation is actually then even worse, as shown in Section 5.1,
because of the need to separately estimate the γ̂ j . As shown in Section 5.1, there
is also a considerable penalty for not having the same basis elements at each co-
ordinate, although the penalty is not nearly as severe as that for allowing differing
correlation parameters.

Figure 1 shows the median (truncated at 20 meters at the volcanic center region)
and interquartile range of the PP GaSP emulator of TITAN2D for a new input
based on n = 50 simulator design runs; only 50 runs are used in this illustration
because even this small number of runs seems to capture the main features of the
model output. Note that the GaSP assessment of accuracy suggests small uncer-
tainty at most of the locations. We will see in Section 5 that these internal emulator
uncertainties do accurately reflect the real accuracy in emulation of TITAN2D.

FIG. 1. Median (truncated at 20 meters at the volcanic center region) and interquartile range of
the GaSP emulator of “maximum flow height over time” for TITAN2D, at 23,040 spatial locations
over Montserrat Island and for new input values V ∗ = 106.9984, ϕ∗ = 3.3487, δ∗

bed = 10.8790 and
δ∗

int = 31.0300.
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3.2. Adding a nugget to the PP GaSP emulator. In TITAN2D, the output flow
height is almost constant (for fixed values of the other inputs), as the internal
friction angle δint varies over its range [15◦,30◦]. This was initially indicated
by Bayesian model selection methodology for GaSPs [Linkletter et al. (2006),
Savitsky, Vannucci and Sha (2011)] and sensitivity analysis [Iooss and Lemaître
(2014)], and confirmed by the simulation study in Section 5.2.4. Using a weak in-
put in emulation has the same drawbacks as using a weak covariate in regression—
the inaccuracies introduced by incorporating the weak input or covariate into the
model can lead to worse predictions than omitting them. However, if a simulator
input is omitted in the emulator [Andrianakis and Challenor (2012)], the emulator
can no longer be an interpolator so that the GaSP model is then inappropriate. The
standard solution is to add a nugget (a noise term) to the GaSP model, such as
ỹ(·) = y(·) + ε, where y(·) is the earlier noise-free GaSP and ε is i.i.d. mean-zero
Gaussian white noise. In particular, we assume that the covariance function for the
new process ỹj (·) at coordinate j is

(3.6) σ 2
j c̃(xl ,xm) = σ 2

j

{
c(xl ,xm) + ν1l=m

};
note that we assume the nugget parameter ν is common across all coordinates
(needed for the same reasons we required common correlation parameters γ ).
We parameterize the nugget in this way to allow for marginalizing out over σ 2

j

[Kazianka and Pilz (2012), Ren, Sun and He (2012)]. After adding the nugget, the
covariance matrix for the design input space D at coordinate j is

(3.7) σ 2
j R̃ = σ 2

j (R + νI).

For a new input, x∗, the joint distribution of the new and design outputs at
coordinate j is

(3.8)

(
yj

(
x∗)

yD
j

) ∣∣∣θ j , σ
2
j ,γ , ν ∼ N

((
h
(
x∗)

θ j

h
(
xD )

θ j

)
, σ 2

j

(
c̃
(
x∗,x∗)

rT (
x∗)

r
(
x∗)

R̃

))

for 1 ≤ j ≤ k. The nugget parameter ν will be estimated along with the input
correlation parameters, as discussed in Section 7.2, leading to γ̂ and ν̂ that will be
used to develop the emulator. Indeed, the resulting PP GaSP with nugget is defined
exactly as in (3.2), with the simple change of replacing R by R̃ (computed using
γ̂ and ν̂). After adding a nugget, the PP GaSP is not an interpolator of the design
points, but, in the Supplementary Materials [Gu and Berger (2016)], we show that
it is close to being an interpolator.

The improvement, for TITAN2D, in going from a four-input emulator to a three-
input emulator with nugget, is indicated in Table 1 and Table 2 in Section 5.2. For
an indication as to the overall accuracy of the PP emulator with nugget, we con-
sider a crucial feature of the TITAN2D output, namely, the contour on the island at
which the maximum flow height is 1 m; as discussed in Bayarri et al. (2009), the
interior of this contour defines the region in which the pyroclastic flow is viewed
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FIG. 2. 1 m spatial contours of maximum pyroclastic flow height on Montserrat Island for two
held-out values of the inputs. The red dashed contour is from the actual simulator run, while the
blue solid contour is the prediction from the PP GaSP emulator with 3 inputs (V, δbed, φ) and an
estimated nugget. The held-out testing inputs for the left figure are V ∗ = 107.1368, ϕ∗ = 1.8484,
δ∗

bed = 12.2940 and δ∗
int = 24.2140. Those for the right figure are V ∗ = 106.8292, ϕ∗ = 4.5360,

δ∗
bed = 12.7880 and δ∗

int = 27.3000.

as being catastrophic. The PP emulator with nugget of TITAN2D was developed
using only n = 50 runs of the simulator, selected to be approximately space-filling
(the small number in order to hopefully see some differences between the emulator
and the simulator). The 1 m contours on the island were then computed for a large
number of held-out design inputs using the emulator and then the simulator runs.

Two typical results are presented in Figure 2; the red curves are actual contours
from the TITAN2D simulator, while the blue curves are the contours from the em-
ulator. The contours match surprisingly well, especially considering the challeng-
ing topography (the “holes” in the contours reflect topographical features, such as
hills, known to the simulator but not directly known to the emulator) and the use
of only 50 training runs.

4. Flexible hazard quantification. As discussed in Section 1, the scientific
goal for this work was to enable flexible assessments of hazard from pyroclastic
flow over a wide region. In particular, we focus here on developing contour plots
of probabilities that maximum flow heights from SHV will exceed any threshold
H of interest, over a time period T and over the entire at-risk part of Montserrat
Island. Using the PP GaSP emulator, the entire distribution of flow heights over the
island (as inputs vary) can be estimated, and this, in turn, can be used to answer
a very wide range of hazard questions. We specifically develop the whole island
hazard maps for T = 2.5 years and H equal 0.5, 1.0 or 2.0.

4.1. Uncertainty in the inputs and the occurrence of pyroclastic flows. We first
need to account for the uncertainty in the inputs x∗ = (V ,φ, δbed). The distribution
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of these inputs is studied in Bayarri et al. (2009), Spiller et al. (2014), and we
follow their analysis. The distribution of (V ,φ) is assumed to be of the form

p(V,φ|Vm) ∝ αV α
mV −α−11V >Vm10≤φ<2π ,

that is, a uniform distribution on [0,2π) for φ and (independently) a Pareto distri-
bution for the initial volume V . Vm was chosen to be 5 × 104, since flows smaller
than this value have no impact on hazard assessments of interest. Based on data
giving the volumes of observed pyroclastic flows from SHV, a full Bayesian anal-
ysis was conducted in Bayarri et al. (2009) and Spiller et al. (2014) for the Pareto
shape parameter α, but the variance of the posterior was so small that we simply
utilize α = 0.64 (the posterior mean and MLE) in the ensuing analysis. The basal
friction angle, δbed, is assumed to be independent of V and φ, and is known to be
decreasing in V . Based on available data relating V to δbed, we follow Bayarri et al.
(2015), Spiller et al. (2014) and fit a linear model to the following transformed V

and δbed:

(4.1) log10
(
tan−1(δbed)

) = a + b log10 V + ε,

where ε ∼ N(0, σ 2
bed). Eleven observations of (V , δbed) at Montserrat Island

[Bayarri et al. (2015)] are available to fit the model and, utilizing the objective prior
π(a, b, σ 2

bed) = 1/σ 2
bed, the posterior predictive distribution π(δbed|V ) is found and

utilized in the ensuing analysis. [We will call the above the posterior distribution
of (V ,φ, δbed), although it is only an approximate posterior in terms of V .]

Conditional on the occurrence of a pyroclastic flow (PF), denote the density of
flow height at location j by fj (·) and denote the cumulative distribution function
as Fj (·). This will be estimated by the distribution of flow heights arising from
the PP GaSP emulator, as the inputs x∗ = (V ,φ, δbed) are drawn from their poste-
rior distribution described above. Actually, we need a sample from fj (·) for each
coordinate j in the following, which we will (approximately) obtain by drawing
a sample of inputs (x∗

1, . . . ,x∗
N∗) from the input posterior distribution, and then

computing the PP GaSP with nugget emulator mean (3.5) at each input, simulta-
neously obtaining a sample at all locations. Strictly speaking, we should sample
from the PP GaSP posterior t-distributions, but, in our application, these distri-
butions are extremely concentrated around their modes since we will be using all
2048 simulator runs to build the emulator; the variation caused by the uncertainty
in x∗ = (V ,φ, δbed) is several orders of magnitude larger than the uncertainty in
the PP Gasp.

Hazard prediction, for a period of time T at location j , is based on the distribu-
tion of the maximum pyroclastic flow height, Y

{T }
j , that occurs over that period at

the location; the following lemma gives the density and α-quantile of this distri-
bution, under the assumption that pyroclastic flows arise from a stationary Poisson
process with yearly intensity λ. [At SHV, λ ≈ 22/year, as found in Bayarri et al.
(2009)]. We acknowledge that stationarity can be a critical assumption, but it is the
most frequently used assumption to provide tractable results [Bayarri et al. (2015),
Spiller et al. (2014)].
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LEMMA 4.1. Under the assumption that pyroclastic flows arise from a sta-
tionary Poisson process with yearly intensity λ, the density of Y

{T }
j , the maximum

flow height over that period at the location j , is

p
{T }
j (y) = 1{y=0} exp(−λT ) + fj (y)λT exp

{
λT

(
Fj (y) − 1

)}
.

The α-quantile of this distribution is

(4.2) yα
j =

⎧⎪⎨
⎪⎩

0, α ≤ exp(−λT ),

F−1
j

(
log(α)

λT
+ 1

)
, α > exp(−λT ).

PROOF. The random number of occurrences, M , of PF’s over time period T

follows a Poisson distribution with mean λ̃ = λT . If M = m were to happen over
the next T years, then the maximum flow height at coordinate j is then the largest
order statistic, having density mFj(y)m−1fj (y). If M = 0, which happens with
probability exp(−λ̃), the maximum flow height is obviously 0. Marginalizing out
over M gives

p
{T }
j (y) = 1{y=0} exp(−λ̃) +

∞∑
m=1

mfj(y)Fj (y)m−1 λ̃m

m! exp(−λ̃)

= 1{y=0} exp(−λ̃) + fj (y)λ̃ exp
{
λ̃
(
Fj (y) − 1

)}
×

∞∑
m=1

λ̃m−1

(m − 1)! exp
(−λ̃Fj (y)

)

= 1{y=0} exp(−λ̃) + fj (y)λ̃ exp
{
λ̃
(
Fj (y) − 1

)}
.

Expression (4.2) is an immediate consequence. �

That we have a closed-form expression for the quantiles of p
{T }
j is key to being

able to efficiently employ the PP GaSP emulator to simultaneously compute hazard
probabilities over all relevant locations at SHV. Simulation of M would not allow
for such efficient use of the emulator.

Quantiles of p
{T }
j typically transform into quantiles of Fj in the far right

tails. For instance, suppose we are interested in quantiles of p
{T }
j at levels α =

(0.01,0.1,0.6,0.95) when T = 2.5 years and λ ≈ 22 times/year. Then (4.2) im-
plies that we need the corresponding (0.9163,0.9581,0.9907,0.9990) quantiles
of Fj . These latter quantiles will be found at each location j , as the correspond-
ing empirical quantiles from the sample of N∗ draws from Fj that were discussed
above. The point here is that typically it will suffice to only retain the largest 10%
of these draws in order to find the desired quantiles of p

{T }
j ; this is a significant

saving, since one must store these draws over all locations j .
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Algorithm 1 Flexible full hazard map

(1) Run TITAN2D N times for each design xD
i , i = 1, . . . ,N , and record the

output pyroclastic flow yD .
(2) Build the PP GaSP emulator discussed in Section 3, based on all N runs on
the design points.
(3) Sample x∗

i , for i = 1, . . . ,N∗, from the posterior distribution of inputs
discussed in Section 4.1.
(4) Compute the PP GaSP posterior predictive mean (3.5) for each sample x∗

i , and
collect the samples at each coordinate j to provide the sample from the flow
height distribution at location j .
(5) For any threshold H that is of interest, use the proportion of the predictions
from the samples x∗

i in step (4) that are smaller than H as the estimate of Fj (H).
(6) Use the estimate of Fj (H) to obtain the probability of maximum flow heights
over the next T years larger than H at location j , by use of (4.2).

4.2. Quantification of the hazard at SHV. We first fit the PP GaSP emulator
[i.e., obtain estimates of (γ̂ , ν̂)], using all simulator runs yD , utilizing the compos-
ite likelihood method discussed in Section 7.3. Then we sample N∗ = 105 inputs
(x∗

1, . . . ,x∗
N∗) from their posterior distribution discussed in Section 4.1. At each

input we compute the PP GaSP posterior predictive mean and collect the samples
at each location j (i.e., the j th coordinates of the predictive means) to provide
an (approximate) sample from Fj (·) at each location j (possibly saving only the
largest 10% of samples at each location). For any threshold H , we compute the
estimate of Fj (H) as the proportion of samples from this distribution smaller than
H , and we marginalize out the occurrence of PF to get the estimated probability
that the maximum flow heights exceed H at each location using Lemma 4.1. This
is summarized in Algorithm 1.

Figure 3 gives contours of the probabilities that the maximum flow heights ex-
ceed 0.5, 1 and 2 meters over the next T = 2.5 years over Montserrat Island. The
upper row in Figure 3 shows the hazard probabilities produced by the PP GaSP
with only N = 50 runs from TITAN2D, uniformly sampled from the available
2048 runs; and the lower rows show the results using all 2048 runs. While the re-
sults are similar, there are clear differences, especially in the areas of small hazard
probability. This is because TITAN2D outputs have many zeros at these locations
so that it can easily happen that all N = 50 runs simply report zero at a location
where there is hazard. An interesting problem (outside the scope of this paper)
is that of determining the minimum number of runs of TITAN2D for an accurate
hazard assessment.

Belham Valley is a small region in the northwest part of Montserrat, plotted as
the shaded area in Figure 3. The coastal area to the north of Belham Valley is still
inhabited and so is of primary interest for risk assessment. The upper (uninhab-
ited) parts of the valley have a large probability (≈ 0.9) to have more than 1 meter
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FIG. 3. For SHV, contours of the probabilities that the maximum flow heights exceed 0.5 (left),
1 (center) and 2 (right) meters over the next T = 2.5 years at each location on SHV. The shaded
area is Belham Valley, which is still inhabited. The results in the upper row utilized only N = 50
runs of TITAN2D to construct the PP GaSP, while the lower row results were based on utilizing all
N = 2048 runs.

flows within the next T = 2.5 years, while the lower parts of the valley have com-
paratively small hazard probability. The borders of some inhabited regions have
probability larger than 0.1 of being hit by pyroclastic flows higher than 0.5 meter,
which is a significant concern.

5. Validation and numerical comparisons. In this section, we study the per-
formance of the PP emulator in the context of TITAN2D output, and compare it
with the MS GaSP emulator [Conti and O’Hagan (2010)] and other emulators de-
fined in Section 5.2.1. Initially, we thought that the MS GaSP emulator would be
the gold standard since it allows for adaptation of the correlation parameters to the
particular coordinate; in contrast, the PP emulator insists on the same correlation
parameters across all coordinates. Quite surprisingly, we did not find this to be so.
The comparisons between emulators will be in terms of computational cost and
out-of-sample prediction.

5.1. Computational cost. It is useful to divide the computational cost of the
PP emulator into three phases:

• The first [see (3.5)] is the one-time costs of computing R̃−1, hT (xD )R̃−1 and
(hT (xD )R̃−1h(xD ))−1 and, estimating (γ̂ , ν̂). The first three have maximum
cost O(n3); we consider the cost of estimating (γ̂ , ν̂) later.



PARALLEL PARTIAL GAUSSIAN PROCESS EMULATION 1331

• The second phase is computation of ω(x∗) in (3.5) at a new input x∗, a compu-
tation of order O(n2) utilizing the phase one precomputations. This cost may
seem minor compared to the phase one cost of O(n3), but, for many uses of the
emulator, such as performing an MCMC analysis, this may have to be repeated
many thousands of times, whereas the phase one computation is not repeated.

• Finally, the computation of the emulator mean in (3.5) is then O(nk), which can
be much larger than the phase one and two costs in our situation, since k can be
much larger than n. (In the TITAN2D testbed, n is a maximum of 2048, while
k can be as large as 109.) Similarly, it can be shown that the computational cost
for computing all the variances of the PP GaSP is O(n2k); this is substantially
more expensive than computing the PP emulator mean, but often it will only be
necessary to compute the variances at some of the coordinates to obtain a feel
for the accuracy of the emulator.

The MS emulator has different (γ̂ , ν̂) and, hence, different R̃ at each coordinate.
The inversions of R̃ thus have to be done k times in the precomputation stage,
leading to a precomputational cost of order O(n3k). Even the MS emulator mean,
after this precomputation, is an expensive O(n2k), essentially because a new ω(x∗)
must be computed at each coordinate. Basically, when k is huge and n is large, use
of the MS emulator is not computationally feasible.

Actually, the precomputation of (γ̂ , ν̂) in the PP GaSP is the severest computa-
tional challenge if one attempts to use the full likelihood to estimate (γ̂ , ν̂). The
reason is that, for each candidate (γ̂ , ν̂) used in trying to fit the full likelihood,
a new inversion of R̃−1 is needed, and the subsequent computation of the likeli-
hood (see Section 7.2) is of order O(n2k) for the PP GaSP emulator. Hence, the
full cost of estimating γ̂ is O(tn2k) + O(tn3), where t is the number of iterations
needed in the estimation process. (In the testbed examples considered here, t is
roughly 200.) For the MS emulator, the total computational cost involved in esti-
mating the differing γ̂ at the coordinates is of order O(tn3k), which is prohibitive
in settings such as here. The computational time in seconds for the PP GaSP and
MS GaSP emulators are given in Table 1 and Table 2 for two computational sce-
narios; these actual times reflect the extreme theoretical disparity discussed above.

The expense of estimating (γ , ν) suggests that various approximation strategies
be utilized. In Section 7.3, we will consider two such strategies, basing the estima-
tion on only subsets of the designed inputs xD and use of composite likelihoods.

5.2. Out-of-sample prediction. Here we compare the performance of the PP
GaSP and MS GaSP emulators in out-of-sample prediction. We also include em-
ulators from the next section in the comparison; these have been considered for
situations similar to ours in the recent literature.

5.2.1. Coregionalization emulators. Another approach to emulation of mul-
tiple outputs is the Linear Model of Coregionalization (LMC) emulator [Fricker,
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Oakley and Urban (2013)]. In this approach, the output Y(x)[k×1] is modeled as

(5.1) Y(x) = μ(x) + Av(x) + ε,

where A is a k × k0 matrix, k0 < k, and v(x) = (v1(x), . . . ,vk0(x))T , with the
vi (x) being zero mean independent GaSP emulators and ε is independent noise.
Denote the observed output matrix as Y[k×n] = (Y(x1), . . . ,Y(xn)). In Higdon
et al. (2008), the output is normalized and then represented by a singular value
decomposition (SVD), Y − Ȳrow = UDVT , where Ȳrow is the row mean of Y.
A is then estimated as the first k0 columns of UD/

√
n. In Paulo, García-Donato

and Palomo (2012), A is estimated as the column in the eigen-decomposition of the
observed variance matrix of Y, and ε is omitted because no dimension reduction is
used. In Rougier (2008), dimension reduction with varying h(x) in each coordinate
is also discussed.

Note that, when k > n, nonzero singular values of Y by SVD and eigenvalues by
eigen-decomposition are equal to or smaller than n. In our situation, k � n, while
the rank of the estimated Â is at most n, using either of these two approaches. In the
numerical comparisons we will include the LMC emulator, with A being estimated
by the eigenvectors of the observed covariance matrix of the output [Paulo, García-
Donato and Palomo (2012)]. We will also compare the method of estimating the
correlation parameters and nugget that is developed in Section 7, which we call
robust estimation, with the standard method in the DiceKriging package [Roustant,
Ginsbourger and Deville (2012)].

5.2.2. Design of the numerical study. To evaluate the accuracy of various vari-
ants of the PP emulator and alternative emulators, we divide the simulator runs
into two parts, those used for development of the emulator and those used for
out-of-sample assessment of accuracy. We utilized only n = 50 runs to design the
emulator because of the extreme computational difficulty of working with the MS
emulator (the primary emulator for comparison) for larger n, as discussed in Sec-
tion 5.1. Also, we surprisingly found that the PP-emulator based on only 50 runs
is quite accurate, and using a large number of runs to build the emulators would
likely have made it more difficult to see differences or problems.

We consider two evaluation scenarios. The first encompasses the entire island
except the crater, but is limited to flow volumes 6 < log10 V < 7.5; 683 runs are
available in this region. The second scenario focuses on regions of the island with
moderate to small expected flows, since these regions are the subject of current ma-
jor risk assessment. We omit the crater region from the analysis because there is
no interest in hazard prediction there, and the flows are so large that they could ad-
versely affect the estimation of the GaSP correlation parameters. Locations where
all 50 simulator runs had maximum flow heights of zero were also eliminated
from the analysis. The total number of remaining spatial coordinates was 23,040;
k = 17,311 coordinates for the first case and k = 14,911 for the second. Of course,
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FIG. 4. The left figure is the least squares fit of simulator output to volume for 50 simulator runs
at a specific location. The right figure compares use of this least squares fit to estimate the outputs
of 633 other simulator runs (the red dots), corresponding to other input values at the same location,
with use of the PP GaSP (developed from the same 50 simulator runs) to estimate the 633 outputs
(the blue triangles). Accuracy is measured by the absolute error of the prediction |y(x∗

i ) − ŷ(x∗
i )|.

utilizing a single emulator over such a large domain might well not work, and a
natural strategy to consider is to divide the domain into more homogeneous re-
gions and develop separate emulators over each region; luckily, this did not seem
to be necessary for our scientific application.

Before proceeding with the complex emulators, it is useful to check that sim-
ple methods, such as linear regression, are not adequate for the problem. Thus,
Figure 4 compares the use of simple linear regression of the output versus V at a
specific location, based on the 50 training runs of the simulator, with the PP GaSP
built on the same 50 runs, for predicting the 633 other simulator runs. Clearly, the
linear regression estimates are far less accurate.

5.2.3. Prediction criteria. Diagnostics for GaSP emulation have been dis-
cussed in Bastos and O’Hagan (2009). The criteria that we focus on are out-of-
sample prediction and accuracy in uncertainty quantification. In the following, we
denote x∗

i , 1 ≤ i ≤ n∗, as the held-out runs to verify the performance of the emu-
lators; we have n∗ = 633. The specific criteria employed are the following:

MSE =
∑k

j=1
∑n∗

i=1 (yj (x∗
i ) − ŷj (x∗

i ))
2

kn∗ ,

PCI(95%) = 1

kn∗
k∑

j=1

n∗∑
i=1

1
{
yj

(
x∗
i

) ∈ CIij (95%)
}
,

LCI(95%) = 1

kn∗
k∑

j=1

n∗∑
i=1

length
{
CIij (95%)

}
,

where ŷj (x∗
i ) is the prediction of the output of the ith held-out run, x∗

i , at the j th
spatial coordinate; CIij (95%) is the 95% posterior credible interval based on (3.2);
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TABLE 1
Performance of various emulators of max flow height over spatial grids in all locations except the

crater area and nonflow areas. The first emulator uses all 4 inputs, while the remaining four
emulators use 3 inputs (V, δbed, φ) and nugget(s), all with the same regressor h(x) = (1,V ). The

emulators are evaluated based on n∗ = 633 held-out inputs over k = 17,311 locations. The last row
shows the computational time needed to estimate the correlation parameters and nuggets in the

emulators (the dominant part of the computational cost) using R and [C++]

4 inputs 3 inputs and estimated nugget(s)

PP GaSP PP GaSP MS GaSP MS GaSP LMC GaSP
robust est. robust est. robust est. DiceKriging robust est.

MSE 0.109 0.097 0.103 0.114 0.123
PCI(95%) 0.926 0.950 0.924 0.900 0.903
LCI(95%) 0.521 0.536 0.491 0.462 0.449
Time for γ and ν (s) 50.0 28.1 [2.0] 31,337.7 4493.2 83.6

and length{CIij (95%)} is the length of the 95% posterior credible interval. An
ideal emulator would have relatively low Mean Square Error (MSE), PCI(95%)

close to the 95% nominal level and short average credible interval lengths.

5.2.4. Emulation over the noncrater region with constrained flow volumes.
Table 1 presents the results for the k = 17,311 noncrater locations with constrained
flow volumes.

First, note that the computation times for the emulators reflect what was dis-
cussed in Section 5.1; the PP GaSP emulator is roughly three orders of magni-
tude faster than the MS emulator. The MS emulator with parameters estimated
by DiceKriging was faster because it incorporated certain optimization techniques
and the underlying codes were written in C, but it was still two orders of magnitude
slower than PP GaSP using R codes. The speed of the LMC emulator was simi-
lar to PP GaSP because it projects the k-dimensional space onto a n-dimensional
subspace (as discussed in Section 5.2.1).

The PP GaSP emulator based on three inputs and the nugget outperformed the
PP GaSP emulator based on four inputs. It had better MSE and more accurate
coverage, with only slightly longer credible intervals. This was also true for the
second test situation, as evidenced in Table 2.

The PP GaSP emulator had the lowest out-of-sample MSE result among the
four emulators based on three inputs and a nugget and, as importantly, produced
95% credible intervals that actually covered approximately 95% of the held-out
outputs. In contrast, the other emulators were overconfident in their accuracy as-
sessments. This is not surprising for the LMC GaSP emulator, since its projection
onto an n-dimensional subspace is too restrictive, but it is surprising for the MS
emulator, which we had entertained as being the gold standard because of its in-
creased flexibility. The average length of the credible intervals for the PP emulator
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TABLE 2
Performance of various emulators of max flow height over the k = 14,911 locations in the moderate
to small flow area. The first emulator uses 4 inputs, while the remaining four emulators use 3 inputs
(V, δbed, φ) and nugget(s), all with the same regressor h(x) = (1,V ). The emulators are evaluated
based on n∗ = 633 held-out inputs. The last row shows the computational time needed to estimate
the correlation parameters and nuggets in the emulators (the dominant part of the computational

cost) using R and [C++]

4 inputs 3 inputs and estimated nugget(s)

PP GaSP PP GaSP MS GaSP MS GaSP LMC GaSP
robust est. robust est. robust est. DiceKriging robust est.

MSE 0.057 0.050 0.055 0.061 0.062
PCI(95%) 0.930 0.950 0.924 0.900 0.900
LCI(95%) 0.350 0.358 0.319 0.299 0.298
Time for γ and ν (s) 42.0 38.8 [2.1] 27,150.9 3835.4 81.2

with 3 inputs and a nugget was slightly longer than for the other emulators, but,
again, that is very likely due to the other emulators being overconfident.

The MSE’s of all of the emulators are rather impressive, especially when realiz-
ing that the output values they are predicting ranged from 0 to 40 in the noncrater
area. Likewise, the small average size of the credible intervals is impressive for
predicting outputs over that range.

The reason for the comparatively poor performance of the MS emulator is that
fairly often (i.e., at some significant fraction of the coordinates) the estimates of
the correlation parameters are bad because (i) only a limited number of computer
runs are used (n = 50); (ii) each location will have many simulator runs with zero
flow heights, which can cause problems for Gaussian processes. The first issue
could be dealt with by using more simulator runs to develop the emulators, but
this drastically increases the computational cost. The second issue, however, is
generic in emulating the TITAN2D computer model; each pyroclastic flow will
only hit some of the locations on the island, with the others receiving zero flow. In
contrast, while the PP emulator may not have the optimal correlation parameters
at any coordinate, the stability of their estimation ensures good average prediction.

The MS emulator implemented via the DiceKriging package estimates both the
range parameters γ and smoothness parameters α of the power exponential corre-
lation function, and typically results in smaller out-of-sample MSE when a large
or moderate number of runs are used. However, it is not performing as well as the
MS emulators with robust estimation of the range and nugget parameters, possibly
because of the periodic folding adjustment [Spiller et al. (2014)] for the initial flow
angle φ but probably because of the likely superiority of the robust estimation of
the range and nugget parameters that is given in Section 7. For further discussion
of this, see Gu (2016).
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The LMC GaSP emulator using eigen-decomposition to estimate the orthogonal
basis matrix A performs the worst among 5 emulators. Using an orthogonal basis
with 50 dimensions does not seem to be flexible enough to capture the variations
among the k = 17,911 locations.

5.2.5. Emulation over the region having only moderate to small flows. Ta-
ble 2 presents the MSE results for the 14,911 locations in the small to moderate
flow region. The PP GaSP outperforms the MS GaSP by more than 10% in terms
of MSE and again has considerably better confidence properties. The degraded
performance of the MS GaSP here is probably due to the fact that the small flow
regions have numerous 0 max flow heights, which can cause problems in the es-
timation of the range and nugget parameters. And, of course, the computational
advantage of the PP emulator was enormous.

6. The near irrelevance of spatial correlation in emulator construction.
A seemingly natural extension of the PP emulator is to introduce spatial correla-
tion into the model, as in Conti and O’Hagan (2010), in recognition of the fact that
there is typically strong spatial dependence between simulator outputs at nearby
inputs. (Recall that the PP emulator assumes each output is independent.) To keep
the computation manageable, the spatial correlations and model input correlations
are typically presumed to be separable, that is, the covariance function for yD ,
conditional on �, is assumed to be a Kronecker product of a k × k spatial corre-
lation matrix � and the n × n input correlation matrix R, leading to the following
matrix-normal density for the Gaussian process:

p
(
yD |�,�,γ

)
(6.1)

= exp(−1
2 tr[�−1(yD − h(xD )�)T R−1(yD − h(xD )�)])

(2π)nk/2|�|n/2|R|k/2 ,

where � = (θ1, θ2, . . . , θk) is the q × k matrix of parameters of the mean function
for the k spatial coordinates.

In Conti and O’Hagan (2010), a Jeffreys-type noninformative prior,

(6.2) π(�,�) ∝ |�|−(k+1)/2,

was considered, since one can then exactly marginalize out � and � when k is
small. This does not work, however, if k > n− q , the situation we are considering,
since there is then a nonintegrable singularity in the posterior at � = 0.

A wide variety of other prior distributions on � can be considered, including
priors that effectively give � a lower dimensional structure. Indeed, we propose
one such prior in the Supplementary Materials [Gu and Berger (2016)] which is
effective in smoothing random draws from the PP emulator; recall that, because of
the independence assumption at each coordinate, draws directly from the PP GaSP
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emulator will be quite rough, although the median, mean and quantiles of the PP
GaSP are smooth.

Surprisingly, however, for any prior on �, the resulting emulator mean will
simply be the PP emulator mean (assuming the usual constant prior is used for the
parameters of the mean function), and the resulting emulator variance function will
almost equal the PP emulator variance function. Thus, there is no need to introduce
spatial correlation structure into the emulator with regard to the response space if
only the mean and pointwise variance functions are concerned. This delightful
simplification is established in the next theorem.

THEOREM 6.1. For the GaSP with separable covariance structure in (6.1),
given correlation parameters γ and the objective prior

(6.3) π(θ1, . . . , θk|�,γ ) ∝ 1

for the parameters of the mean function, the following hold:

1. The posterior mean of the GaSP, for an unobserved x∗ and at coordinate j ,
is identical to the PP emulator posterior mean in (3.3).

2. The posterior variance of the GaSP, for an unobserved x∗ and at coor-
dinate j , depends on � only through the posterior mean of the j th diago-
nal term, E[�jj |yD ,γ ]; it is identical to the PP emulator posterior variance if

E[�jj |yD ,γ ] = (n−q)σ̂ 2
j

n−q−2 , with σ̂ 2
j defined in (3.4), under the new prior for �.

PROOF. See Appendix A. �

Note that, when n − q is moderately large, as is usually the case, (3.4) will
approximately equal the new posterior expectation of σ 2

j , since almost all the in-

formation about σ 2
j is contained in the likelihood, not the prior. Thus, in practice,

one can just use the PP emulator mean and variance, and ignore the spatial struc-
ture, unless draws from the emulator are required.

7. Estimating the correlation parameters. In this section, we discuss esti-
mation of the correlation parameter γ . First, the reference prior for γ in the sit-
uation of vector-valued outputs (as considered in this paper) is derived. Next, an
estimation strategy is proposed, utilizing the posterior mode. Finally, to overcome
the computational challenge, a composite likelihood approach is considered.

7.1. The reference priors for vector output. When dealing with a Gaussian
process with a single real output, the reference prior under an isotropic kernel was
derived in Berger, De Oliveira and Sansó (2001) and under a product correlation
matrix in Bayarri et al. (2009). As recommended in Berger, De Oliveira and Sansó
(2001) and Paulo (2005), we follow the strategy of first marginalizing out the pa-
rameters of the mean function (with respect to a constant prior) and then deriving
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the reference prior for γ from the marginal likelihood; the result is given in the
following theorem.

THEOREM 7.1 (Reference prior for PP GaSP without a nugget). The reference
prior of the PP GaSP for vector output has the form

πR(
θ1, . . . , θk, σ

2
1 , . . . , σ 2

k ,γ
) ∝ πR(γ )∏k

i=1 σ 2
i

,

with πR(γ ) ∝ |I∗(γ )|1/2, where I∗(γ ) is the expected Fisher information matrix

(7.1) I∗(γ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

n − q tr(W1) tr(W2) · · · tr(Wp)

tr
(
W2

1
)

tr(W1W2) · · · tr(W1Wp)

tr
(
W2

2
) · · · tr(W2Wp)

. . .
...

tr
(
W2

p

)

⎞
⎟⎟⎟⎟⎟⎟⎠

(p+1)×(p+1)

,

with Wt = ṘtQ, for 1 ≤ t ≤ p, where p is the number of range parameters in
the correlation matrix R, Ṙt is the derivative of R with respect to the t th range
parameter, and Q = R−1P with P = I − h(xD ){hT (xD )R−1h(xD )}−1hT (xD )R−1.

PROOF. See Appendix B. �

THEOREM 7.2 (Reference prior for PP GaSP with a nugget). The reference
prior of the PP GaSP with a nugget, for vector output, has the form

πR̃(
θ1, . . . , θk, σ

2
1 , . . . , σ 2

k ,γ , ν
) ∝ πR̃(γ , ν)∏k

i=1 σ 2
i

,

with πR̃(γ , ν) ∝ |Ĩ∗(γ , ν)|1/2, where Ĩ∗(γ , ν) is the expected Fisher information
matrix

Ĩ∗(γ , ν)
(7.2)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n − q tr(W̃1) tr(W̃2) · · · tr(W̃p+1)

tr
(
W̃2

1
)

tr(W̃1W̃2) · · · tr(W̃1W̃p+1)

tr
(
W̃2

2
) · · · tr(W̃2W̃p+1)

. . .
...

tr
(
W̃2

p+1
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(p+2)×(p+2)

,

with W̃t = ˙̃RtQ̃, for 1 ≤ t ≤ p, where p is the number of range parameters in R̃,
˙̃Rt is the derivative of R̃ with respect to the t th range parameter, and Q̃ = R̃−1P̃
with P̃ = I − h(xD ){hT (xD )R̃−1h(xD )}−1hT (xD )R̃−1.
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PROOF. The proof is a direct generalization of Ren, Sun and He (2012), es-
sentially following the same steps as the proof of Theorem 7.1. �

7.2. Marginal posterior. We will utilize the marginal posterior density of γ

and ν to perform the estimation for these parameters. Starting with the full likeli-
hood, multiplying by the reference prior and integrating out the parameters of the
mean function, (θ1, . . . , θk), and variance parameters, (σ 2

1 , . . . , σ 2
k ), results in

(7.3) p
(
γ , ν|yD ) ∝ L

(
yD |γ , ν

)∣∣Ĩ∗(γ , ν)
∣∣1/2

,

with

(7.4) L
(
yD |γ , ν

) ∝ |R̃|−k/2∣∣hT (
xD )

R̃−1h
(
xD )∣∣−k/2

k∏
i=1

[(
yD
i

)T Q̃yD
i

]−(n−q)/2
.

We reparameterize the range parameters and the nugget by (ξ1, . . . , ξp, τ ) =
(log(1/γ

α1
1 ), . . . , log(1/γ

αp
p ), log(ν)). We then estimate the parameters (ξ , τ ) as

the mode of this marginal posterior, namely,

(7.5) (ξ̂1, . . . , ξ̂p, τ̂ ) = argmax
ξ1,...,ξp,τ

L
(
yD |ξ1, . . . , ξp, τ

)
πR̃(ξ1, . . . , ξp, τ ).

The difference between the posterior mode of (γ , ν) and (ξ , τ ) arises because of
the Jacobian of the transformation. As discussed in Spiller et al. (2014) and Gu
(2016), the marginal likelihood alone can have bad behavior, such as being max-
imized as parameters go to infinity. Using the marginal posterior, with respect to
the reference prior, seems to substantially eliminate such bad behavior and achieve
comparatively better results.

Note that there have been a variety of parameterizations for GaSP’s that have
been used in the past literature other than the γ parameterization in (2.2). The
parameterization βj = 1/γ

αj

j was discussed in Paulo (2005) and the parameteri-

zation ξj = log(1/γ
αj

j ) was introduced in Spiller et al. (2014). The effectiveness
of the different parameterizations, when combined with use of the posterior mode,
is extensively discussed in Gu (2016), where a robustness argument in favor of
the above parameterization is given. For the MS GaSP with a nugget, the same
strategy is used: form the marginal posterior distribution of (ξ , τ ) and utilize the
posterior mode of these parameters in the MS GaSP.

One concern with using (7.4) is that the assumption of independence of coor-
dinates is clearly wrong, so that this likelihood is almost certainly much too con-
centrated. This, by itself, would not be a problem, since we are simply using it to
obtain estimates of the correlation parameters, but it is possible that the likelihood
would also be biased in some way. To investigate this, we define the following
“oracle estimator,” which views the posterior predictive mean in Lemma 3.1 as a
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TABLE 3
MSE comparison between PP GaSP and Oracle PP GaSP with

n = 50 and n∗ = 633

PP GaSP Oracle PP GaSP

MSE at noncrater area 0.09726675 0.09464283
MSE at small flow area 0.04964399 0.04837848

function of the range parameters and nugget (ξ , τ ) and optimizes over the choice
of these parameters:(

ξoracle
1 , . . . , ξoracle

p , τ oracle)
(7.6)

= argmin
ξ1,...,ξp,τ

∑k
j=1

∑n∗
i=1 (yj (x∗

i ) − ŷoracle
j (x∗

i ))
2

kn∗ ,

where

ŷoracle
j

(
x∗
i

) = ω(ξ1, . . . , ξp, τ )yD
j ,

ω(ξ1, . . . , ξp, τ ) = (
h
(
x∗) − rT (

x∗)
R̃−1h

(
xD ))(

hT (
xD )

R̃−1h
(
xD ))−1

× hT (
xD )

R̃−1 + rT (
x∗)

R̃−1.

Table 3 compares the MSE of the oracle PP GaSP and the PP GaSP. For both of the
regions under consideration, the PP GaSP has almost the same MSE as the oracle
so that the use of (7.4) in estimating the correlation parameters and nugget seems
justified.

7.3. Using composite likelihood. As discussed in Section 5.1, the major com-
putational challenge in developing the PP emulator is estimating the parameters
(γ , ν), the computation being of order O(tn2k) + O(tn3), with t being the num-
ber of iterations (typically about 200) needed to find a good approximation to the
marginal posterior mode discussed in the previous section. A variety of strategies
have been proposed to reduce this computational burden. Use of covariance taper-
ing and compactly supported correlation functions were studied and successfully
applied to large spatial datasets in Kaufman, Schervish and Nychka (2008) and
Kaufman et al. (2011). Other possibilities include estimating the parameters using
only some subsets of the input design points (i.e., significantly reduce n) or using
only some coordinates of the simulator output (i.e, significantly reduce k).

Another approach, and that which we will adopt here, is to use the marginal
composite likelihood for the input parameter estimation, in that this can be done in
a way that guarantees accurate parameter estimation (at least asymptotically). The
idea of composite likelihood can be traced back to the pseudo-likelihood [Besag
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(1974)] and partial likelihood [Cox (1975)]. It has been studied intensively in re-
cent years; see, for example, Lindsay, Yi and Sun (2011) and Varin, Reid and Firth
(2011) for recent developments.

We will utilize the Independent Marginal Composite Likelihood (ICML) ap-
proach, replacing L(yD |γ , ν) in (7.3) by the following product of sublikelihoods:

(7.7) LC

(
yD |γ , ν

) =
T∏

t=1

{
Lt

(
yD
t |γ , ν

)}
,

where the Lt(yD
t |γ , ν) are “parts” of the full likelihood, formed from batches of

subrows of the n × k matrix yD , and it is assumed that there is no correlation be-
tween the different batches. Specifically, we form T = n/n0 batches of the design
inputs, each batch being of size n0, by simple random sampling of the inputs. Im-
posing independence of the batches results in the correlation matrix over the input
space

R̃C =

⎛
⎜⎜⎜⎜⎝

R̃1

R̃2
. . .

R̃T

⎞
⎟⎟⎟⎟⎠ ,

where each R̃t , 1 ≤ t ≤ T is a batch with m inputs and the other elements of
the correlation matrix are 0. The composite marginal posterior for the parameters
(γ , ν) is then

pC

(
γ , ν|yD ) ∝ LC

(
yD |γ , ν

)
πR̃(γ , ν).

Defining (γ̂ C, ν̂C) as the composite maximum likelihood estimator, under the
regular conditions [Lindsay (1988), Severini (2000)], we have that, as n → ∞,

√
n
[
(γ̂ C, ν̂C) − (γ , ν)

] d→N
(
0,G−1)

,

where

G = G(γ , ν) = H(γ , ν)J−1(γ , ν)H(γ , ν),

H(γ , ν) = −E
(

∂2LC(yD |γ , ν)

∂(γ , ν)2

)
, J(γ , ν) = Var

(
∂LC(yD |γ , ν)

∂(γ , ν)

)
.

Because of these asymptotic results, the use of the composite likelihood to estimate
(γ , ν) is reasonable when n is large.

In choosing n0, we make use of the “folklore” notion that the number of design
points necessary to effectively estimate p correlation parameters is 10p. For TI-
TAN2D, there are either 4 correlation parameters or 3 with a nugget, so n0 should
be at least 40. We then utilize n0 = 50 to form each batch to see the performance.
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TABLE 4
The MSE and computational time in seconds using R at the noncrater area and the small flow area
based on n = 200 inputs. The first column uses ICML with block size n0 = 50 to do estimation of
the range and nugget parameters, and also uses the composite likelihood to do prediction. The
second column uses the composite likelihood to do the parameter estimation, but uses the full

likelihood for prediction. The third column shows the results for the full PP GaSP. The number of
held-out runs for the evaluation is n∗ = 483

MSE (and time in seconds) PP GaSP ICML PP GaSP ICML PP GaSP full lik
block est, block pred block est, full pred full pred

Noncrater area 0.088 (103.6 s) 0.063 (111.9 s) 0.062 (534.4 s)
Small flow area 0.050 (113.4 s) 0.034 (133.7 s) 0.033 (573.5 s)

Table 4 presents the MSE in prediction for three different ways of estimating the
range and nugget parameters. The first two use the ICML approach with 4 blocks
each and with n = 50; the first one utilizes averages of 4 blocks for prediction,
while the second utilizes the full n × n matrix R̃ for prediction, as it only requires
one inversion. The third method is the full PP GaSP, using the full correlation ma-
trix to do both estimation and prediction. Clearly, using the full correlation matrix
for prediction is much better than merely using blocks for the prediction. Using
the full likelihood for estimation of the range and nugget parameters is slightly
better than using the ICML approach, but the difference is modest. And the second
method needs only O(tmnk + tm2n) flops, as compared to O(tn2k + tn3) flops
for the full PP GaSP method, so the ICML approach can be very attractive.

APPENDIX A: PROOF OF THEOREM 6.1

The joint distribution of y(x∗) = (y1(x∗), y2(x∗), . . . , yk(x∗)) and yD is a matrix
normal distribution,(

y
(
x∗)

yD

) ∣∣∣�,γ ,� ∼ N(n+1),k

((
h
(
x∗)

�
h(x)�

)
,

(
c
(
x∗,x∗)

rT (
x∗)

r
(
x∗)

R

)
,�

)
,

where N(n+1),k(·, ·, ·) is a (n + 1) × k matrix normal distribution. From Gupta and
Nagar (1999), it follows that

E
[
y
(
x∗)|yD ,�,γ ,�

] = h
(
x∗)

� + rT (
x∗)

R−1(
yD − h

(
xD )

�
)
,

and, for the j th coordinate,

(A.1) E
[
yj

(
x∗)|yD , θ j ,γ ,�

] = h
(
x∗)

θ j + rT (
x∗)

R−1(
yD
j − h

(
xD )

θ j

)
.

Using the objective prior in equation (6.3) results in

θ j |yD ,γ ,� ∼ N
(
θ̂ j ,�jj

[(
hT (

xD )
R−1h

(
xD ))]−1)

,
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where θ̂ j = {hT (xD )R−1h(xD )}−1hT (xD )R−1yD
j . Taking the expectation over θ j

in (A.1) results in the expression for the posterior mean in (3.3), as was to be
established.

For the posterior variance, after marginalizing out the parameters of the mean
function with the objective prior in equation (6.3), it is shown in Conti and
O’Hagan (2010) that

Var
[
yj

(
x∗)|yD ,γ ,�

] = σ 2
j

{(
c
(
x∗,x∗) − rT (

x∗)
R−1r

(
x∗))

+ [
h
(
x∗) − hT (

xD )
R−1r

(
x∗)]T [

hT (
xD )

R−1h
(
xD )]−1

× [
h
(
x∗) − hT (

xD )
R−1r

(
x∗)]}

,

where σ 2
j = �jj . Now

Var
[
yj

(
x∗)|yD ,γ

] = Var�|yD ,γ

[
E

[
yj

(
x∗)|yD ,γ ,�

]]
+ E�|yD ,γ

[
Var

[
yj

(
x∗)|yD ,γ ,�

]]
,

but the first term is zero, since the posterior mean does not depend on �. Noting
that Var[yj (x∗)|yD ,γ ,�] = σ 2

j × c∗∗, where c∗∗ is as in (2.4), it is immediate that

Var
[
yj

(
x∗)|yD ,γ

] = E
[
σ 2

j |yD ,γ
]
c∗∗,

as was to be established.

APPENDIX B: PROOF OF THEOREM 7.1

As in Berger, De Oliveira and Sansó (2001), we derive the reference prior based
on the marginal likelihood after integrating out the parameters of the mean function
θ with a constant prior. The log marginal likelihood, conditional on (γ ,σ 2), is

log
(
L

(
y|γ ,σ 2)) ∝ −n − q

2

k∑
i=1

log
(
σ 2

i

) − k

2
log

(|R|)
(B.1)

− k

2
log

(∣∣hT (
xD )

R−1h
(
xD )∣∣)−(n − q)

2

k∑
i=1

log
(
S2

i

)
,

with

(B.2) S2
i = (

yD
i

)T QyD
i .

As in the proof of Theorem 2 in Berger, De Oliveira and Sansó (2001), direct
computation yields

E
(

∂ log(L(y|γ ,σ 2))

∂σ 2
i

)2
= n − q

2σ 4
i

,
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E
(

∂ log(L(y|γ ,σ 2))

∂σ 2
i

∂ log(L(y|γ ,σ 2))

∂σ 2
j

)
= 0,

E
(

∂ log(L(y|γ ,σ 2))

∂γl

)2
= k

2
tr

(
W2

l

)
,

E
(

∂ log(L(y|γ ,σ 2))

∂γl

∂ log(L(y|γ ,σ 2))

∂γm

)
= k

2
tr(WlWm),

E
(

∂ log(L(y|γ ,σ 2))

∂σ 2
i

∂ log(L(y|γ ,σ 2))

∂γl

)
= 1

2σ 2
i

tr(Wl),

where 1 ≤ i = j ≤ k and 1 ≤ l = m ≤ p. The Fisher information matrix is

∣∣I∗(
γ ,σ 2)∣∣ ∝

∣∣∣∣ A B
BT C

∣∣∣∣
(k+p)×(k+p)

with

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − q

2σ 4
1

0 0 0

0
n − q

2σ 4
2

0 0

...
...

. . .
...

0 0 0
n − q

2σ 4
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k×k

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tr(W1)

2σ 2
1

tr(W2)

2σ 2
1

· · · tr(Wp)

2σ 2
1

tr(W1)

2σ 2
2

tr(W2)

2σ 2
2

· · · tr(Wp)

2σ 2
2

...
...

. . .
...

tr(W1)

2σ 2
k

tr(W2)

2σ 2
k

tr(Wp)

2σ 2
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k×p

,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k tr(W2
1)

2

k tr(W1W2)

2
· · · k tr(W1Wp)

2
k tr(W1W2)

2

k tr(W2
2)

2
· · · k tr(W2Wp)

2
...

...
. . .

...

k tr(W1Wp)

2

k tr(W2Wp)

2
· · · k tr(W2

p)

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p×p

.

The result soon follows from πR(γ ,σ 2) ∝ |I∗(γ ,σ 2)|1/2.
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SUPPLEMENTARY MATERIAL

Supplement to “Parallel partial Gaussian process emulation for computer
models with massive output” (DOI: 10.1214/16-AOAS934SUPP; .pdf). This
supplement consists of three parts. The first part describes the “periodic folding”
method for modeling the correlation between periodic inputs. The second part pro-
vides some numerical results that the PP GaSP emulator with a nugget is close to
being an interpolator for the TITAN2D computer model. Part 3 discusses a prior
for smoothing the draws of the PP GaSP emulator through block sampling.
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