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One of the important questions in the practice of educational testing is
how a particular test should be scored. In this paper we consider what an
appropriate simple scoring rule should be for the Dutch as a second language
test consisting of listening and reading items. As in many other applications,
here the Rasch model which allows to score the test with a simple sumscore
is too restrictive to adequately represent the data. In this study we propose
an exploratory algorithm which clusters the items into subscales each fitting
a Rasch model and thus provides a scoring rule based on observed data. The
scoring rule produces either a weighted sumscore based on equal weights
within each subscale or a set of sumscores (one for each of the subscales). An
MCMC algorithm which enables to determine the number of Rasch scales
constituting the test and to unmix these scales is introduced and evaluated
in simulations. Using the results of unmixing, we conclude that the Dutch
language test can be scored with a weighted sumscore with three different
weights.

1. Introduction. Consider a test measuring language ability. One of the im-
portant practical questions when using this test is how it should be scored. This
includes the following subquestions: Should the results be summarized in a single
score or in multiple scores? Should all items have the same weight or different
weights when computing the score or the subscores? If subscores are used, how
do we determine which items belong to which subscale? If different weights are
used, how do we restrict the number of possible weights such that not every re-
sponse pattern results in a unique weighted score? And how dow we determine
which items should have the same weight? In this paper, we argue for an empirical
approach for choosing a scoring rule. We want the data to tell us what is an ap-
propriate score to use for grading this language test: the sumscore (the number of
correct responses to all the items), two sumscores (the number of correct responses
to the listening items and the number of correct responses to the reading items), a
set of multiple sumscores with an alternative division of the items into subscales, a
weighted sumscore, or a set of weighted sumscores. The most appropriate choice
will often require a thorough investigation of the structure of the test data.
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The aim of this article is to choose a simple scoring rule for the state exam
of Dutch as a foreign language [College voor Toetsen en Examens: Staatsexamen
NT2, (n.d)]. By passing this test non-native speakers show sufficient mastery of the
Dutch language to work and study in the Netherlands. We consider the multiple-
choice part of the test consisting of reading and listening items. The reading and the
listening subtests consist of multiple texts or audio fragments followed by multiple
choice questions.

Having a measurement model providing an explicit scoring rule is very impor-
tant and convenient in the context of educational measurement. A scoring rule
based on a sufficient statistic is favorable because no information about the ability
is lost by summarizing a vector of responses in one or more scores. One of the
simplest IRT models—the Rasch model (RM) [Rasch (1980)]—has the number
of correct responses as a sufficient statistic for ability [Andersen (1977), Fischer
(1995)]. However, the RM very often does not fit the empirical data due to the
strict assumptions of unidimensionality and equal discrimination of the items. It is
not uncommon that an educational test measures more than one ability. Moreover,
some of the test items are more closely related to the latent trait than others (i.e.,
have a steeper item characteristic curve) and should have a bigger weight in the
estimation of a person’s ability. In our case of the Dutch as a foreign language test,
it is unlikely that a diverse pool of items (with both reading and listening items)
would constitute a single Rasch scale. In this study we propose a new model which
relaxes the assumptions of the Rasch model, but still gives an explicit scoring rule
for the test summarizing all the information about the student’s ability (or abili-
ties). This scoring rule can be more complicated than simply summing the number
of correct responses, but should still result in one or more scores that are easy to
use and interpret, for example, a set of sumscores or a weighted sumscore with a
limited number of different weights.

The paper is organized as follows. First, in Section 2 the state examination of
Dutch as a second language is introduced in more detail and the problem of choos-
ing a scoring rule for it is discussed. In the following four sections we introduce
our solution to the problem. In Section 3, we discuss how the assumptions of the
RM can be relaxed without losing the important property of sufficiency of the
sumscores. This results in the multi-scale RM which is a mixture of Rasch scales.
Note that throughout the paper when we use the term “mixture of scales,” we are
referring to a mixture of item clusters, each with different properties, and not to
the more common type of mixture models with different groups of persons, such
as present in the mixture Rasch model [Rost (1990)]. In Section 4, the presented
model is discussed in more detail in relation to the problem of choosing the scor-
ing rule for the Dutch language test. In Section 5, the estimation of the model
is discussed. In Section 6, we evaluate the estimation procedure in a simulation
study. After introducing the methodology and showing its usability in simulations,
in Section 7 we return to the application and address the practical questions raised
in the beginning of this section concerning the NT2 exam. The paper is concluded
with a discussion.
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2. State examination of Dutch as a second language. We consider the ver-
sion of the NT2 exam called Program II which is meant for those who have gained
higher education in their home country and wish to continue their education in
Dutch or work at the level of university education in the Netherlands. This version
of the NT2 exam corresponds to the B2 language level within the Common Eu-
ropean Framework of Reference for languages [Council of Europe (2011)]. The
exam is taken in a computerized form. Test-takers are given 100 minutes to com-
plete the reading part of the exam and the listening part takes about two hours.
A short article from a newspaper or scientific journal or an information brochure
can be examples of reading texts. In some reading items participants are asked
about some particular detail from a certain part of the text, while other items re-
quire understanding the text as a whole. A common example of an audio fragment
in the listening part is a radio interview.

Test scores which are easy to understand and interpret need to be communicated
to test-takers and policy makers. The easiest way to score the test would be with the
number of correct responses, such that all persons with the same number of correct
responses receives the same score and it does not matter which items are answered
correctly. This scoring rule implies the Rasch model for the data. The RM models
the probability of answering an item correctly using only two parameters (one for
the item and one for the person):

Pr(Xpi = 1|δi, θp) = exp (θp − δi)

1 + exp (θp − δi)
,(1)

where Xpi is the item response which can be scored 1 if it is correct or 0 if it
is incorrect, δi is the difficulty parameter of item i ∈ [1 : n] and θp is the ability
parameter of person p ∈ [1 : N ]. However, the RM, being rather restrictive, rarely
fits the data. To evaluate whether a simple sumscore is appropriate as the score for
the NT2 exam, we tested the fit of the RM to the data set from this examination—
responses of 2398 persons to 74 items (40 reading and 34 listening).

The fit of the RM to the data was tested using Anderson’s Likelihood-ratio (LR)
test [Andersen (1973)]. The idea of the test is the following: The sample is split
into H groups based on the number of correct responses. If the RM holds, then
there are no differences between the estimates of the item parameters obtained in
separate groups. The likelihood ratio is computed using the likelihood based on
the estimates of the item parameters in each group and the likelihood based on the
overall estimates of the item parameters. The logarithm of this ratio follows the
χ2-distribution with (n− 1)(H − 1) degrees of freedom under the RM, where n is
the number of items.

For the data set from the NT2 exam the LR-statistic for a median split (H = 2)
was equal to 1165.54 (df = 73), p < 0.0005. Hence, the RM does not fit the
data of the NT2 exam. An alternative to using one sumscore could be using two
scores: the number of correct responses to the reading items and the number of
correct responses to the listening items. To evaluate whether this scoring rule is
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appropriate for the NT2 exam, we tested the fit of the RM separately to the reading
items and to the listening items. The LR-statistics for the reading and the listening
subscales were equal to 551.93 (df = 39,p < 0.0005) and 473.54 (df = 33,p <

0.0005), respectively. Hence, the RM does not hold in the two parts of the test
taken separately. Therefore, a different scoring rule has to be chosen. We argue for
a data-driven exploratory approach which identifies scales fitting the RM within
the full set of items, such that the test can be scored with a set of sumscores in
this subscales or with a weighted sumscore with equal weights within each scale,
which is easy to interpret and to communicate to the test-takers.

In this study we do not consider the two-parameter logistic model [2PL; Lord
and Novick (1968)], which includes for each item not only a difficulty parameter,
but also a discrimination parameter, usually denoted by αi , such that the proba-
bility of a correct response depends on αi(θp − δi) instead of the simple differ-
ence between ability and difficulty. The reason for not fitting this model to the
data is that in the 2PL each item has a unique weight and each response pattern
corresponds to a unique score which makes interpretation and communication of
the results more difficult and less transparent. Another reason for not considering
models like the 2PL or the three-parameter logistic model [Birnbaum (1968)] is
that these models do not allow for multidimensionality in the data, while we are
aiming at relaxing not only the assumption of the equal discriminations but also
the unidimensionality assumption of the RM.

3. Relaxing the assumptions of the RM.

Simple rasch model. As we mentioned in the previous section, the main ad-
vantage of the RM is that it has a sufficient statistic for person parameters (the
number of items correct) and a sufficient statistic for item parameters (the number
of correct responses to the item). This is important both for the estimation of the
parameters, because it makes the RM an exponential family model, and for the
interpretation of test results, because all persons answering the same number of
items correctly have the same estimate of the ability parameter. From a student’s
perspective, it is desirable that students who answer the same number of items
correctly get the same grade. Although the RM has these important advantages, a
disadvantage is that it makes restrictive assumptions, often resulting in a misfit to
empirical data.

General multidimensional IRT model. Let us consider how some of the as-
sumptions of the RM can be relaxed. If we relax the assumptions of unidimension-
ality and equal discriminations, then a general model allowing for multidimension-
ality and different discriminations of items can be obtained [Reckase (2008)]:

Pr(Xpi = 1|δi,αi , θp·) = exp(
∑M

k=1 αikθpk − δi)

1 + exp(
∑M

k=1 αikθpk − δi)
,(2)
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where M is the number of scales, δi is the difficulty parameter of item i and
αi = {αi1, αi2, . . . , αiM} are the discrimination parameters of item i correspond-
ing to the dimensions {1,2, . . . ,M}, and θp· = {θp1, θp2, . . . , θpM} is the vector
of abilities of person p. This is a very flexible model, but its flexibility comes
with some statistical and interpretational problems. For example, with respect to
the model in (2), only

∑
k αikθpk is identifiable, but not the individual parameters.

Like in factor analysis, the problem of rotation has to be addressed to obtain esti-
mates of α and θ . Moreover, the model does not have sufficient statistics. We will
restrict the model in such a way that it retains some of its flexibility while also
regaining some of the important properties of the RM.

Simple structure multidimensional model. If α is restricted to have a sim-
ple structure, that is, each vector αi [see equation (2)] has only one nonzero
element, then the model becomes a mixture of unidimensional scales, each fit-
ting the 2PL. The simple structure of α clarifies the interpretation of the abilities
θ ·k = {θ1k, θ2k, . . . , θNk} since each item measures only one ability. However, since
the 2PL is not an exponential family model, persons having the same number of
correct responses to the items measuring ability θ ·k but different response patterns
do not have the same estimates of the ability, and hence the sumscore on that scale
is not a sufficient statistic.

Multi-scale rasch model. If we further restrict the nonzero element of αi to be
equal to one, then the model is a mixture of Rasch scales and

∑
i αikXpi contains

all information about ability θpk . This gives a rather convenient scoring rule where
all information about student’s abilities is summarized in a vector of subscores
{∑i αi1Xpi,

∑
i αi2Xpi, . . . ,

∑
i αiMXpi}. We call the mixture of Rasch scales a

multi-scale Rasch model. It assumes that a test consists of a number of Rasch
homogeneous subscales which have to be unmixed. The model has the same form
as in equation (2), but with the constraints αik ∈ {0,1} and

∑
k αik = 1. Thus,

αi = {αi1, . . . , αiM} is a vector of item scale memberships specifying to which
scale item i belongs: αik = 1 if item i belongs to dimension k and 0 otherwise.

One-parameter logistic model as a multi-scale RM. It might seem that with
a multi-scale RM we are still restricted to items with the same discrimination.
However, we will now show that in such a model we can allow items referring to
the same ability to have different discriminations. To do that, we present the one-
parameter logistic model [OPLM; Verhelst and Glas (1995)] as a special case of a
mixture of Rasch scales. The usual way of considering the OPLM is as a special
case of the 2PL in which items have known integer-valued discrimination indices
ai instead of the discrimination parameters that are estimated freely. We propose
an alternative perspective. We consider it as a special case of the multi-scale RM
in which the scales differ only in the item discriminations.
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Since in the OPLM the discrimination indices are constrained to be integer-
valued, there will be a limited number of possible values for the discrimination
indices in a test, denoted by σ1, σ2, . . . , σM . Instead of having one person param-
eter θp per person, we introduce several person parameters θpk = σkθp , one for
each group of items with a common discrimination index equal to σk—referred to
as item set discrimination by Humphry (2012). Furthermore, let us denote by α a
simple structure matrix where αik = 1 if ai = σk and αik = 0 otherwise. Finally,
we reparameterize the difficulty parameter as δ∗

i = aiδi . Then, within each set of
items {i|ai = σk}, a RM with person parameter θ ·k holds [Humphry (2011)], and
the whole test is modeled as a mixture of Rasch scales with a fixed matrix α and
person parameters in different scales k and l being proportional to each other:

θpk = σk

σl

θpl.(3)

These scales measure the same latent variable but represent different frames of ref-
erence and have different units of measurement [Humphry and Andrich (2008)].
Thus, we have shown that a multi-scale RM can allow items measuring the same
ability to have different discriminative power, if they belong to different scales
with perfectly correlated person parameters. In this case, not only a vector of sum-
scores, but also a weighted score

∑
i

∑
k αikσkXpi contains all information about

the original person parameter θp .

The problem of unmixing rasch scales. The purpose of the present study is
to develop a Bayesian algorithm for selecting the best partitioning of items into
scales each fitting a RM, that is, to estimate the item scale membership matrix α.
This is done by sampling from the posterior distribution of item scale member-
ships (parameters of interest) given the data: p(α|X). All other parameters of the
multi-scale RM are nuisance parameters which are also sampled to simplify the
computations. The item scale memberships are identified because for each pair of
items it can be determined from the data whether they belong to the same Rasch
scale or to different scales. For the proof see Section 1 of the supplementary article
[Bolsinova, Maris and Hoijtink (2016)]. Since the parameters are identified, they
can also be consistently estimated.

The multi-scale RM is related to the between-item multidimensional Rasch
model [Adams, Wilson and Wang (1997)], which also assumes a RM for subsets of
items in the test. However, while in the between-item multidimensional RM and
in the OPLM the subscales or the groups of items with the same discrimination
indices, respectively, have to be prespecified, in the new model the item member-
ships are parameters which can be estimated. Therefore, our method provides an
objective statistical tool that researchers can use to select an optimal partitioning
of items into Rasch scales instead of having to specify the scales or the item dis-
crimination indices in advance using only background information.
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There have been other attempts to solve the problem of selecting groups of items
fitting the RM. Hardouin and Mesbah (2004) proposed a method that is based on
the AIC. Debelak and Arendasy (2012) identified item clusters fitting the RM using
hierarchical clustering. Both approaches are not model-based and instead provide
heuristics for building scales bottom-up. Simulation results from both studies show
that the procedures do not work very well when the person parameters are highly
correlated, when the sample sizes are small and when the item pools are large.
Moreover, the procedures are not at all suited for determining scales differing only
in the discriminative power of the items, due to the perfect correlation of the person
parameters. A simulation study comparing the performance of our model-based
approach algorithm with that of the hierarchical clustering algorithm can be found
in Section 3 of the supplementary article [Bolsinova, Maris and Hoijtink (2016)].

4. Model specification.

4.1. Mixture of rasch scales. As we stated in the Introduction, the purpose of
the algorithm which we developed is to obtain estimates of the item memberships
in the multi-scale RM by sampling from their posterior distribution.

We consider a marginal model, in which individual person parameters are
treated as random effects with a multivariate normal distribution with a zero mean
vector and covariance matrix �. Constraining the mean vector of ability to zero
ensures the identification of the model.

Let us by Xp· denote a random vector of responses to n items from person p

randomly sampled from the population, and its realization by x with xi = 1 if a
response to item i is correct and xi = 0 otherwise. The probability of Xp· being
equal to x is the following:

Pr(Xp· = x|δ,α,�) =
∫
R

n∏
i=1

(exp(
∑M

k=1 αikθk − δi))
xi

1 + exp(
∑M

k=1 αikθk − δi)
p(θ |�) dθ,(4)

where δ = {δ1, δ2, . . . , δn} is a vector of item difficulties, α is an n × M matrix of
item membership parameters, and p(θ |�) denotes the population distribution. In
the multi-scale RM the probability of observing a correct response to item i given
the vector of ability parameters is the same as in the general multidimensional IRT
model in equation (2), but the vector αi is constrained to have one element equal
to one and all other elements equal to zero. As can be seen from equation (4), the
multi-scale RM assumes local independence, meaning that the item responses are
independent given the vector of ability parameters.

In Section 3, using the OPLM as an example, we have shown that multiple
Rasch scales might not only represent different abilities as in the most general
multidimensional model in (2), but may also differ in the discriminative power of
the items. We will now elaborate more on the different types of scenarios in which
the Rasch scales could be unmixed:
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Type 1. The test measures several substantively different abilities, and each of
the Rasch scales refers to a separate ability. For example, in an arithmetic test the
items can group into substantively different scales: addition, subtraction, division
and multiplication. Within each of the subscales the discriminations of the items
are equal and each of the abilities can be summarized in a subscore. For a model
with four item clusters the covariance matrix has the form

� =

⎡
⎢⎢⎣

σ 2
1 σ1,2 σ1,3 σ1,4

σ1,2 σ 2
2 σ2,3 σ2,4

σ1,3 σ2,3 σ 2
3 σ3,4

σ1,4 σ2,4 σ3,4 σ 2
4

⎤
⎥⎥⎦(5)

with all covariances σk,l being free parameters. In the NT2 exam, the items might
cluster in subsets measuring reading ability and listening ability with items within
a dimension having equal discriminations. In that case the appropriate scoring rule
would be to use a set of two subscores:{∑

i

αi1Xpi,
∑
i

αi2Xpi

}
.(6)

Type 2. The test measures several abilities, but not each scale represents a sepa-
rate ability. Some of the abilities are represented by one or more scales with differ-
ent discriminations. Such scales can occur, for example, due to different response
formats of the items or because some of the items are more relevant for the mea-
sured ability and, therefore, should have a bigger weight. For a model with four
item clusters the covariance matrix can have the form

� =

⎡
⎢⎢⎣

σ 2
1 σ1σ2 ρσ1σ3 ρσ1σ4

σ1σ2 σ 2
2 ρσ2σ3 ρσ2σ4

ρσ1σ3 ρσ2σ3 σ 2
3 σ3σ4

ρσ1σ4 ρσ2σ4 σ3σ4 σ 2
4

⎤
⎥⎥⎦ ,(7)

that is, the correlations between θ1 and θ2, and between θ3 and θ4 are constrained
to one, and there is only one correlation parameter to be freely estimated. This
model is equivalent to a two-dimensional IRT model with a bivariate normal dis-
tribution for the person parameters with a zero mean vector, unit variances and
correlation ρ between the dimensions, and four item clusters with discrimination
parameters equal to σ1 and σ2 in the first dimension and equal to σ3 and σ4 in
the second dimension. In the case of the NT2 exam, it might be the two distinct
abilities (reading and listening) each measured by several scales with different dis-
crimination parameters. Then the appropriate scoring rule would be to use a set of
two weighted scores, one for the reading ability and one for the listening ability:
{∑i (αi1σ1 + αi2σ2)Xpi,

∑
i (αi3σ3 + αi4σ4)Xpi}.

Type 3. The test measures a single ability, but the different Rasch scales rep-
resent groups of items with different discriminations between the groups. For ex-
ample, a model with four item clusters in the covariance matrix could have the
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form

� =

⎡
⎢⎢⎣

σ 2
1 σ1σ2 σ1σ3 σ1σ4

σ1σ2 σ 2
2 σ2σ3 σ2σ4

σ1σ3 σ2σ3 σ 2
3 σ3σ4

σ1σ4 σ2σ4 σ3σ4 σ 2
4

⎤
⎥⎥⎦ ,(8)

that is, all correlation parameters are constrained to one. This variant of the model
would be equivalent to a unidimensional IRT model with θ ∼ N (0,1) and four
item clusters with discrimination parameters equal to σ1, σ2, σ3 and σ4, respec-
tively. In our case of the NT2 exam, it might turn out that the reading and listen-
ing items together measure the same passive language ability, but some of them
turn out to have higher discriminations than others, for example, depending on
the length of the reading passage or the audio fragment to which it refers. Then
the appropriate scoring rule for the test would be to use a weighted sumscore:∑

i

∑
k αikσkXpi . Our algorithm makes it possible to identify the scales within

which the items would have the same weight and to estimate these weights.
The algorithm presented in this paper is exploratory, therefore, it need not be

prespecified which of the scenarios we expect, and the covariance matrix is freely
estimated. Once the unmixing results for the Dutch language test are obtained, we
can formulate hypotheses about the nature and the interrelations of the scales. If
the estimate of the correlation between the scales is close to one, then through
cross-validation we would test a hypothesis that these scales measure, in fact, the
same ability, which would lead to the conclusion that for the scoring rule we could
not only use a set of subscores, but also a weighted sumscore. Hypotheses like this
can be evaluated by comparing the fit of models of Type 1, Type 2 (if only some
of the scales are perfectly correlated) and Type 3 (if all the scales are perfectly
correlated) in cross-validation.

The number of scales also does not need to be prespecified beforehand, but
can be decided upon based on the estimation results (see Section 5.2). This is an
important feature of our procedure because while the researcher can have some
idea about how many substantively different abilities are measured, it can hardly
be known based only on the theoretical insight how many different weights are
needed for the items measuring each of these abilities. Moreover, the expectation
about the number of substantively different abilities could be wrong.

4.2. Density of the data, prior and posterior distributions. The density of the
data is

f (X|δ,α,�) =
N∏

p=1

Pr(Xp· = x|δ,α,�),(9)

where X is an N × n matrix of persons with each row Xp· representing responses
of person p ∈ [1 : N ].



934 M. BOLSINOVA, G. MARIS AND H. HOIJTINK

A priori the parameters of the model are assumed to be independent:

p(δ,α,�) =
n∏

i=1

p(δi)

n∏
i=1

p(αi )p(�).(10)

We use noninformative priors here because prior knowledge is not needed to
make the model estimable. For the item difficulties a uniform prior distribution
U(−∞,+∞) is used. This is an improper prior, but the resulting posterior is
proper if for every item there is at least one person giving a correct response and
at least one person giving an incorrect response [Ghosh et al. (2000)]. For the item
memberships a multinomial prior is used:

Pr(αik = 1, αil = 0,∀l �= k) = 1

M
, ∀k ∈ [1 : M],∀i ∈ [1 : n],(11)

where the choice of 1
M

implies that a priori all item scale memberships are con-
sidered equally likely. We choose a semi-conjugate prior for the covariance matrix
which is an inverse-Wishart distribution with degrees of freedom ν0 = M + 2 and
a scale parameter �0 = IM (i.e., an M-dimensional identity matrix). With this
choice of ν0 the results are not sensitive to the choice of �0 because in the pos-
terior distribution the data dominates the prior when N � (M + 2) [Hoff (2009),
page 110].

In order to unmix Rasch scales, we need to obtain samples from the joint pos-
terior distribution:

p(δ,α,�|X) ∝ f (X|δ,α,�)p(δ)p(α)p(�).(12)

In the next section we discuss how these samples can be obtained using a data
augmented MCMC algorithm.

5. Estimation.

5.1. Algorithm for unmixing rasch scales. In this subsection we discuss how
Rasch scales can be unmixed using a Markov chain Monte Carlo algorithm
[Gamerman and Lopes (2006)] when the number of scales is prespecified. This
algorithm makes it possible to obtain samples from the posterior distribution in
equation (12). In the next section a procedure to determine the number of scales is
described.

To start the MCMC algorithm, initial values for the model parameters are spec-
ified: samples from U(−2,2) for the item difficulties, samples from a multinomial
distribution with a probability 1

M
for every scale for the item memberships, and

IM for �. After initialization, in every iteration of the MCMC algorithm the pa-
rameters are subsequently sampled from their full conditional posterior distribu-
tions given the current values of all other parameters [Casella and George (1992),
Geman and Geman (1984)]. Data augmentation is implemented [Tanner and Wong
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(1987), Zeger and Karim (1991)], that is, every iteration starts with sampling from
the posterior distribution of individual person parameters, which results in a set
of conditional posterior distributions that are relatively easy to sample from. Each
iteration of the algorithm consists of four steps. In the first three steps individ-
ual person parameters, the covariance matrix and the item difficulties are sampled
from their full conditional posteriors. Since during these steps the item member-
ships are fixed, sampling from these conditional posteriors does not differ from
sampling from the posterior of a standard between-item multidimensional RM.
The details about Steps 1–3 are presented in Section 2 of the supplementary arti-
cle [Bolsinova, Maris and Hoijtink (2016)]. Step 4 is specific for the multi-scale
RM: For every item i ∈ [1 : n], sample item scale membership αi from the full
conditional posterior distribution:

p(αi |X, δ,α(i), θ,�) = p(αi |X·i , δi, θ)
(13)

∝ ∏
p

exp(Xpi(
∑M

k=1 αikθpk − δi))

1 + exp(
∑M

k=1 αikθpk − δi)
,

where α(i) are item scale memberships of all items except i and X·i is a vec-
tor of responses of all persons to item i. This amounts to sampling from a
Multinomial(1, {pi1, . . . , piM}), with parameters

pik = Pr(αik = 1, αil = 0,∀l �= k) =
∏

p
exp(Xpi(θpk−δi ))

1+exp(θpk−δi )∑M
j=1

∏
p

exp(Xpi(θpj−δi ))

1+exp(θpj−δi )

.(14)

As is the case with most finite mixture models, the posterior distribution of the
parameters of the multi-scale RM has a complex structure [Diebolt and Robert
(1994), Frühwirth-Schnatter (2006)]. It has multiple modes corresponding to ev-
ery partition of items into scales. Among the modes there are M! modes of equal
height representing the same partition of items into scales due to the possible per-
mutations of the scale labels. However, the problem of label switching usually does
not occur within one chain because it is not likely for the chain to leave the mode
corresponding to a particular set of labels once it has been reached.

In practice, it is impossible for the Markov chain to visit all the modes in a rea-
sonable number of iterations [Celeux, Hurn and Robert (2000)]. It is more likely
that the chain will stay in the neighborhood of one of the strongest modes. Conse-
quently, the initial values influence to which mode the sampler is directed. Multiple
chains from random initial values are, therefore, used to explore whether there are
many strong modes representing different partitions of items into scales and what
the relative likelihood of these modes is. The procedure goes as follows:

(a) Run ten independent chains from random starting values for a chosen num-
ber of iterations and discard the first half of the iterations in each chain (burn-in) to
remove the influence of the initial values. The number of iterations depends on the
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following: (a) the number of items, (b) the number of scales, (c) the correlation be-
tween the scales, (d) the ratio of the variances of the person parameters in different
scales. Simulations have shown that, for 20 items in two scales with a moderate
correlation between them, 2000 iterations per chain are usually enough.

(b) Order the chains based on

L̄c = 1

G

G∑
g=1

n∑
i=1

N∑
p=1

ln
((exp(

∑M
k=1 α

gc
ik θ

gc
pk − δ

gc
i ))Xpi

1 + exp(
∑M

k=1 α
gc
ik θ

gc
pk − δ

gc
i )

)
,(15)

where G denotes the number of iterations after the burn-in and superscripts g and
c denote the value of a parameter at the gth iteration in the cth chain.

(c) Select the best chain with the highest value of L̄c. This quantity is used to
select the best chain because it allows one to choose the chain corresponding to
the strongest mode among the chains.

(d) Try to relabel the scales in the second best chain in such a way that the
scales become almost the same as in the best chain. By “almost the same” we
mean the following: in each scale the number of mismatching items (i.e., items
which are assigned to this scale in the best chain, but to a different chain in the
scale under consideration) cannot exceed 20% of the number of items in this scale.
Continue with all other chains until you arrive at a chain in which the scales cannot
be relabeled in such a way that the item partition into scales is almost the same as in
the best chain. The results from the selected and relabeled chains can be combined.
For each item i and each scale k compute the posterior probability of this item to
belong to this scale:

π̂ik =
∑

c∈C
∑

g α
g,c
ik

|C|G ,(16)

where {C} denotes a set of selected chains. If for item i for neither of the scales
π̂ik is larger than 0.65, one can conclude that this item does not fit well in any of
the Rasch scales.

(e) If there are no chains with the same partition of items into scales as in the
best chain, then more chains with more iterations should be used. If consistent
results are not obtained after running more chains, then either the algorithm can
not handle this combination of parameters (N , n, M , �) or it is a sign of model
misfit: the test cannot be well modeled as a mixture of M Rasch scales. Note that
if an (M − 1)-scale RM is a true model, then if M scales are used, it will be hardly
possible to have a consistent partition of items into M scales.

5.2. Determining the number of scales. The MCMC algorithm described in
the previous section requires the number of scales in the item set to be known.
However, the value of M is generally not known and has to be chosen. Choosing
the appropriate number of mixture components or the number of clusters (scales)
is a complicated problem that is not yet fully solved [Frühwirth-Schnatter (2006),



UNMIXING RASCH SCALES 937

McLachlan and Peel (2000)]. In this article we use two information criteria for
choosing the model with an appropriate number of dimensions.

Once unmixing with M scales is finished, the item scale memberships are fixed
to be equal to their posterior mode, denoted by α̂. Given α̂, the item difficulties
and the covariance matrix are re-estimated using a data augmented Gibbs Sam-
pler: First, initial values for the item difficulties [samples from U(−2,2)] and the
covariance matrix (identity matrix) are specified. Second, for G iterations the indi-
vidual person parameters, the covariance matrix and the item difficulties are subse-
quently sampled from their full conditional posterior distributions (see Steps 1–3
in Section 2 of the supplementary article [Bolsinova, Maris and Hoijtink (2016)]
with α = α̂). Since the item memberships are fixed, the posterior distribution is
not multimodal and using one chain with a large number of dimensions is suffi-
cient. Third, after discarding the first half of the iterations (burn-in), compute the
expected a posteriori (EAP) estimates of the item difficulties and the covariance
matrix (i.e., the average values of the parameters across the iterations of the Gibbs
Sampler after the burn-in), denoted by δ̂ and �̂.

The modified AIC [Akaike (1974)] and the BIC [Schwarz (1978)] are computed
as follows:1

AIC = −2 lnf (X|δ̂, α̂, �̂) + 2
(

M(M + 1)

2
+ n + (M − 1)n

)
(17)

and

BIC = −2 lnf (X|δ̂, α̂, �̂) + lnN

(
M(M + 1)

2
+ n + (M − 1)n

)
.(18)

The estimates �̂ and δ̂ are used instead of the estimates based on the posterior in
equation (12), since if throughout the iterations the items move frequently across
the scales, the EAP estimates based on the draws from equation (12) would be
less optimal and give a lower likelihood than δ̂ and �̂. In the expression for the
number of parameters, the first element is the number of freely estimated elements
of �, the second is the number of difficulty parameters and the third one is the
number of freely estimated elements of α. With each extra scale there are an extra n

elements to estimate for the items, since for each item it has to be decided whether
it should be reassigned to a new scale or not. The evaluation of the log-likelihood in
equations (17) and (18) involves integration over a multidimensional space, which
is done here through numerical integration with a Gauss–Hermite quadrature. For
details see Section 3 of the supplementary article [Bolsinova, Maris and Hoijtink
(2016)].

1These are modifications because the original AIC and BIC are based on the maximum likeli-
hood estimates. However, in our case the EAP estimates are very close to the maximum likelihood
estimates since vague priors are used.
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When choosing the number of scales, one should not only follow the above
described procedure, but also consider the possible interpretations of the scales.
Once a number of scales M̂ is chosen using the information criteria, one should
evaluate the solutions with M̂ − 1, M̂ and M̂ + 1 scales from the substantive point
of view. For example, given the context of the test, it might be reasonable to choose
a smaller number of scales if it improves the interpretability of the scales or choose
a larger number of scales if they contain substantially different items.

6. Evaluation of the MCMC algorithm. In this section by means of a simu-
lation study we show how well Rasch homogeneous subscales can be reconstructed
using the MCMC algorithm and evaluate the performance of the modified AIC and
BIC for selecting the appropriate number of scales.2 The scales are correctly re-
constructed if for every item the posterior mode of its item membership is equal to
the true item membership.

Data were simulated under a 1-, 2-, 3-, 4- and 5-scale RM. For the 2-scale RM,
we considered two cases: one with different abilities measured (multi-scale RM
of Type 1) and another with the two scales only differing in the discrimination
parameter (multi-scale RM of Type 3). When M > 2, the simulated tests consisted
both of scales differing only in the discriminative power and of scales representing
different abilities with a moderate correlation between them (multi-scale RM of
Type 2). For every M , responses of 1000 persons to 10 × M items (10 per scale)
were simulated. Item difficulties were sampled from U(−2

∑
k αikσk,2

∑
k αikσk).

The specification of each condition was the following:

(1) M = 1 : σ1 = 1;
(2a) M = 2 : σ1 = σ2 = 1, ρ1,2 = 0.5;
(2b) M = 2 : σ1 = 1, θ ·2 = 2θ ·1 (implying that σ2 = 2 and ρ1,2 = 1);
(3) M = 3 : σ1 = σ2 = 1, ρ1,2 = 0.5, θ ·3 = 2θ ·1;
(4) M = 4 : σ1 = σ2 = 1, ρ1,2 = 0.5, θ ·3 = 2θ ·1, θ ·4 = 2θ ·2;
(5) M = 5 : σ1 = σ2 = σ3 = 1, ρ1,2 = ρ1,3 = ρ2,3 = 0.5, θ ·4 = 2θ ·1, θ ·5 =

2θ ·2.

In each condition, the MCMC algorithm was applied to 100 simulated data
sets. The number of iterations per chain depended on the number of scales that

2In Section 4 of the supplementary article [Bolsinova, Maris and Hoijtink (2016)] three more
simulation studies are presented in which the performance of the MCMC algorithm is evaluated in
more detail. The first simulation study deals with unmixing the scales representing substantively
different abilities (multi-scale RM of Type 1). We also compare the performance of the MCMC
algorithm with the method of hierarchical cluster analysis [Debelak and Arendasy (2012)], which
also aims at constructing a set of scales that each fit a RM. The second study illustrates how the
algorithm performs when the scales measure the same ability and differ only in the discrimination of
the items (multi-scale RM of Type 3). The third study evaluates the autocorrelations in the Markov
chain.
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TABLE 1
Results of choosing the number of scales: % of data sets in which the number of scales was chosen
correctly (M̂ = M), was overestimated (M̂ = M + 1), and underestimated (M̂ = M − 1); % of data

sets in which all items were classified correctly (α̂ = α) given that M̂ = M

Condition

Method 1 2a 2b 3 4 5

AIC M̂ = M 98 100 100 100 100 100
M̂ = M + 1 2 0 0 0 0 0
M̂ = M − 1 – 0 0 0 0 0

BIC M̂ = M 100 100 100 100 52 0
M̂ = M + 1 0 0 0 0 0 0
M̂ = M − 1 – 0 0 0 48 100

α̂ = α – 99 100 99 100 100

were fitted and was equal to M × 500,∀M ∈ [2 : 6]. The modified AIC and the
modified BIC [see equations (17) and (18)] were used for choosing the model with
an appropriate number of scales out of the (M − 1)-, M- and (M + 1)-scale RM.

The results are presented in Table 1. The AIC showed very good performance,
choosing the true number of scales in almost all data sets. The BIC underestimated
the number of scales when the tests were long (40 and 50 items) and the true
number of scales was large (4 and 5). Therefore, we use the AIC in determining
the number of scales in the NT2 exam. When the procedure selected the correct
number of scales, then those scales were correctly reconstructed in more than 95%
of the cases, as can be seen from the last line of Table 1.

7. Choosing a scoring rule for the NT2 exam.

7.1. Data. Data from the state exam of Dutch as a second language collected
in July 2006 was used. The reading and listening parts of the NT2 exam consisted
of 40 items each. However, six of the items were not taken for analysis because
they were too easy (with proportions of correct responses larger than 0.85). The test
was taken by 2425 persons. Responses of persons having more than 20% missing
responses in one of the subtests were discarded (27 persons in total). The remaining
missing values were considered as incorrect responses. The resulting sample size
was N = 2398 and the test length was n = 74 (40 reading items and 34 listening
items). The average proportion of correct responses to the items was equal to 0.67.
The distribution of the number of correct responses had a mean of 49.74, a standard
deviation of 12.24, a maximum of 74 and a minimum of 17.

The data set was randomly divided into two parts: a training set (N = 1500) on
which the exploratory unmixing using the MCMC algorithm was carried out as
was discussed in Section 5, and a testing set (N = 898) which was used for testing
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TABLE 2
Results of unmixing Rasch scales in the Dutch as a foreign language test: the scales are ordered

based on the value of σ̂ 2
k from the largest to the smallest, the last number shows the number of items

which did not belong to any of the scales (π̂ik < 0.65,∀k)

Model # items per scale AIC �AIC from the best model

2-scale RM 39/33/2 12,2494.2 41.5
3-scale RM 24/34/13/3 12,2452.7 0
4-scale RM 22/9/34/7/2 12,2608.7 156.0

whether the scales identified in the exploratory part are indeed Rasch scales, and
testing hypotheses about the relations between the unmixed scales.

7.2. Unmixing rasch scales. Three multi-scale RMs were fitted to the data
with two, three and four scales, respectively. In each case, ten chains with
M × 2000 iterations each were used. The results of the unmixing are summa-
rized in Table 2. While for the 2-scale and the 3-scale RMs all chains converged
to the same partition of items into scales, in the case of the 4-scale RM only four
chains converged to the same solution. The 3-scale RM had the lowest AIC value,
therefore, it was chosen as the best model.

In the three-scale RM 24 items were assigned to scale 1, 34 items were assigned
to Scale 2, 13 items were assigned to Scale 3, and three items were not assigned to
any scale because for none of the scales the posterior probability of belonging to
this scale (π̂ik) was above 0.65. All three scales included both reading and listening
items: in Scale 1 there were 10 reading and 14 listening items, in Scale 2 there were
22 reading items and 12 listening items, and in Scale 3 there were 6 reading and 7
listening items.

The estimated covariance matrix was

�̂ =
⎡
⎣ 1.67 [1.48,1.88] 1.13 [1.01,1.25] 0.71 [0.63,0.80]

0.96 [0.95,0.97] 0.83 [0.74,0.93] 0.49 [0.44,0.55]
0.92 [0.88,0.95] 0.90 [0.86,0.94] 0.36 [0.31,0.42]

⎤
⎦ ,(19)

where the elements below the diagonal (italicized) are the correlation coefficients
and the elements above the diagonal are the covariances, and the 95% credible in-
tervals for the estimates are given between brackets. The estimates of the correla-
tions between the person parameters in the three scales were very high, therefore, a
hypothesis about the relationship between the scales was formulated, namely, that
the three scales, in fact, measure the same ability, and the test can be scored with
a weighted sumscore instead of a set of subscores. This hypothesis was tested on
the second part of the data by selecting the best model out of the Type 1 model and
the Type 3 model. Since three items did not belong to any of the three scales, in
the following analysis only 71 items were used.
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TABLE 3
Fit of the RM in the three unmixed scales (before and after removing misfitting items), and in the
reading and listening scales (in these two scales removing less than 10 items did not result in a

reasonable fit) in the testing data set: LR-statistic

Scale LR df p-value

Scale 1 (full scale: 24 items) 57.43 23 < 0.005
Scale 1 (misfitting items removed: 21 items) 32.29 20 0.04
Scale 2 (full scale: 34 items) 49.59 33 0.03
Scale 2 (misfitting items removed: 32 items) 44.77 31 0.05
Scale 3 (full scale: 13 items) 39.91 12 < 0.005
Scale 3 (misfitting item removed: 11 items) 14.54 10 0.15
Reading scale (38 items) 200.42 37 < 0.005
Listening scale (33 items) 181.67 32 < 0.005

7.3. Cross-validation of the unmixed scales.

7.3.1. Does the RM fit in the unmixed scales? Identification of the three scales
provided a hypothesis that we tested on the remaining part of the data, namely, that
the three scales are Rasch scales (without yet specifying whether these scales mea-
sure a single ability). We also tested a different hypothesis which was formulated
based on the background information: “the reading and the listening parts of the
test form Rasch scales.” Both hypotheses were tested by testing the fit of the RM in
the subscales: (1) in the three subscales which resulted from the unmixing; (2) in
the reading and the listening subscales. The fit of the RM model was tested using
the LR-statistic. The RM was fitted to the three identified scales and to the listening
and the reading scales using the R package eRm [Mair and Hatzinger (2007)].

We did not expect a perfect fit of the RM to the complete scales (see lines 1,
3 and 5 of Table 3) because if there were some misfitting items among the 74
items used in the exploratory unmixing, they would have been assigned to one of
the scales where they fit relatively better, but still badly in absolute terms. That is
why, for example, we go from 24 to 21 items in scale 1. The analysis presented
in Table 3 helped to identify these misfitting items. If one would discard three
misfitting items in the first scale, two in the second and two in the third, the RM
would have a reasonable fit in all three scales. However, when the reading and the
listening scales were considered, discarding of a small number (less than ten) of
misfitting items would not result in a reasonable fit of the RM.

7.3.2. Three different abilities or one? In cross-validation, we tested whether
a multi-scale RM of Type 1 or of Type 3 fitted the test consisting of 71 items best.
First, the two models with fixed scales were fitted to the training data with 71 items.
For the model of Type 1, the estimates of the item difficulties and the covariance
matrix were obtained (denoted by δ̂type1 and �̂type1). As has been mentioned in
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Section 4.1, the model of Type 3 is equivalent to a unidimensional model with a
standard normal distribution of ability and three item clusters with discriminations
equal to σ1, σ2 and σ3. Therefore, this unidimensional model with fixed scales
has been fitted to the data (see Section 5 of the supplementary article [Bolsinova,
Maris and Hoijtink (2016)]) and estimates of the item difficulties and the three
discrimination parameters were obtained (denoted by δ̂type3 and σ̂ type3).

Second, the fit of the models of Type 1 and Type 3 to the testing data set (denoted
by Xtest) with the parameters fixed at the estimates obtained in the training data was
evaluated. The log-likelihood of both models was computed:

ln
(
f (Xtest|δ̂type1, α̂, �̂type1)

) = −34,776.93,(20)

ln
(
f (Xtest|δ̂type3, α̂, σ̂ type3)

) = −34,767.83.(21)

The Type 3 model had better fit, which suggested that all three scales measure
the same dimension and that a weighted sumscore is the best scoring rule for this
particular Dutch language ability test. The estimated weights were equal to 1.30,
0.89 and 0.56 in the three scales, respectively.

7.3.3. Does it make a difference? Finally, we investigated whether using the
chosen scoring rule

∑
i (1.30αi1 + 0.89αi2 + 0.56αi3)Xpi leads to different deci-

sions about the persons passing or failing the test compared to the decision based
on unweighted sumscores on the set of reading items, denoted by {R}, and on the
set of listening items, denoted by {L}.

Suppose the original pass-fail criterion is that a person passes the test if he/she
has at least 25 correct responses on the reading test and at least 20 correct responses
on the listening test. This decision criterion results in 412 persons from the testing
set passing the test. A cutoff value for the weighted sumscore leading to the same
number of students passing the test is 48.21. Table 4 shows the application of
the two scoring rules to six persons from the testing set. It can be seen that for
some persons the decisions based on two scoring rules match each other, while for

TABLE 4
Two scoring rules (based on two unweighted subscores and based on one weighted sumscore) for

six persons

p
∑

i∈{R} Xpi
∑

i∈{L} Xpi Decision
∑

i
∑

k αikσkXpi Decision

1 27 27 pass 53.42 pass
2 31 29 pass 59.40 pass
3 16 24 fail 38.66 fail
4 20 9 fail 27.95 fail
5 23 27 fail 50.04 pass
6 25 20 pass 42.85 fail
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others they do not. In we consider a two-by-two classification table for the pass/fail
decision according to the original rule and the pass/fail decision according to the
new scoring rule, then we discover that 31 persons who fail the test according to
the original rule would pass it according to the new rule and vice versa. Hence, we
have shown that a scoring rule chosen based on the empirical data and therefore
representing the data structure better leads to a different pass/fail decision for 62
persons (7% of the testing data set) compared to the noncompensatory scoring rule
based on the two unweighted subscores.

8. Discussion. In this article we presented a novel solution to the problem of
choosing a scoring rule for the test. Using the exploratory unmixing algorithm in
the state examination of Dutch as a foreign language three Rasch scales were iden-
tified. Each of these scales consisted both of reading and listening items. Further
analysis showed that the scales represent the same substantive dimension and the
scales differ only in the discriminative power of the items, that is, the test can be
scored with a weighted score with three different weights. The fact that the reading
and the listening items were not classified in separate scales is not surprising if the
kind of tasks that these items represent are considered: Both the reading and the
listening items require understanding of information that is communicated through
language (i.e., passive language skills).

The scoring rule that has been chosen for the NT2 exam is not a conjunction
of reading and listening but a compensatory rule based on a longer test which
makes the score more reliable. Hence, the confirmatory part of our method can be
used to evaluate whether using the weighted sumscore instead of the set of scores
does not threaten the validity of the measurement while improving the reliability
of the scores. In the NT2 exam application it turned out that using the weighted
sumscore as the scoring rule better represents the structure in the data than the set
of unweighted sumscores for the reading and the listening parts, and it makes a
difference for 7% of the sample.

Identification of scales with different levels of discrimination can give a start
to further studying of the item characteristics that make them discriminate worse,
and might lead to item revisions. In this way, out method may serve as a diagnostic
instrument for detecting poorly performing items and improving them.

As has been observed in our example of the NT2 exam, in practice, some of
the items might not be assigned to any of the scales because they are assigned to
different scales in different chains, as we have seen in the example. This means that
for these items the model does not fit very well. This can be caused by within-item
multidimensionality of these items, that is, when αi of the item does not have a
simple structure. It is possible to test this hypothesis by comparing the constrained
multi-scale RM with the multidimensional model [see equation (2)] in which some
of the αi are freely estimated. Thus, considering the model as a constrained version
of a general multidimensional model makes it possible to further investigate in
which ways the model can be improved by allowing some items to load on more
than one dimension.
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Theoretically, OPLM is an elegant and attractive model. From a practical point
of view, however, the assumption that researchers can cluster items together on the
basis of their discriminatory power is quite often unrealistic, as is the assumption
that clusters of items only differ with respect to discriminatory power. The new
model retains the theoretical elegance of the OPLM model, but provides substan-
tive researchers with a tool for the automatic clustering of items. At the same time,
with the new model we can relax the stringent assumption in the OPLM model that
item clusters only differ with respect to their discriminatory power. The new model
provides the researcher with important information that can be used to uncover in
what respect Rasch homogeneous scales differ from one another.

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Unmixing Rasch scales: How to score an
educational test.” (DOI: 10.1214/16-AOAS919SUPP; .pdf). We provide the proof
of identification of the multi-scale Rasch model in Section 1, details of the Gibbs
Sampler for estimating the model in Section 2, details on approximating the like-
lihood of the model in Section 3, results of additional simulation studies in Sec-
tion 4, and details on estimation of the model with fixed correlation parameters in
Section 5.
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