The Annals of Applied Statistics

2016, Vol. 10, No. 2, 596-617

DOI: 10.1214/16-A0AS912

© Institute of Mathematical Statistics, 2016

FEATURE SCREENING FOR TIME-VARYING COEFFICIENT
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Motivated by an empirical analysis of the Childhood Asthma Manage-
ment Project, CAMP, we introduce a new screening procedure for varying co-
efficient models with ultrahigh-dimensional longitudinal predictor variables.
The performance of the proposed procedure is investigated via Monte Carlo
simulation. Numerical comparisons indicate that it outperforms existing ones
substantially, resulting in significant improvements in explained variability
and prediction error. Applying these methods to CAMP, we are able to find
a number of potentially important genetic mutations related to lung function,
several of which exhibit interesting nonlinear patterns around puberty.

1. Introduction. Over the last several decades we have seen the rapid devel-
opment of high-dimensional techniques fueled by precipitous advances in tech-
nology. As our computing power has increased, so has our ability to obtain and
examine ever larger and more complicated data sets. One of the primary examples
of such data come from genetic association studies. In traditional genome-wide
association studies (GWAS) hundreds of thousands or even millions of single nu-
cleotide polymorphisms (SNPs) are explored to find associations with some phe-
notypes of interest, for example, blood pressure, height, asthma, etc. Companies
are developing cheaper and cheaper sequencing technologies while also providing
increasingly larger pictures of an individual’s genome. Indeed, the next technolog-
ical step consists of high throughput sequencing technologies which are capable of
complete genome sequencing. Such studies result in millions of genetic mutations
which include not only SNPs, but also insertions or deletions of segments of DNA.

The present work was motivated by the Childhood Asthma Management Pro-
gram (CAMP), a 4 year clinical trial which explored the impact of daily asthma
medications on lung development in growing children. We consider 540 subjects,
each of whom contributed up to 16 clinical visits. Our aim is to determine which
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genetic markers, among hundreds of thousands, affect lung development. The spe-
cific outcome we focus on here is FEV1, a common proxy for lung development,
which represents the volume of air one can expel out of their lungs in one sec-
ond. Given that the subjects may change rather rapidly over the course of the trial,
we also wish to understand how the effect of significant SNPs changes over time.
Analyzing such longitudinal genetic data poses a substantial challenge for data
scientists and necessitates the development of new data analytic tools to address
scientific questions and test important hypotheses.

The so-called “large p, small n” problems require tools that are not only pow-
erful, but also computationally efficient. While association methods such as the
LASSO [Tibshirani (1996)] and SCAD [Fan and Li (2001)] are powerful, they re-
quire significant computational resources for large-dimensional data sets. One of
the main issues stems from having to handle all of the predictors jointly, which
is an enormous computational burden when dealing with hundreds of thousands
of predictors simultaneously. An elegant and effective solution is to incorporate
screening rules. A screening rule is a method which analyzes much smaller sub-
sets of the predictors and attempts to filter out those that are clearly unimportant.
Such rules may attempt to pick the “best” subset of predictors or just a substan-
tially smaller subset which could in turn be analyzed by other methods. By using
such screening rules, it is not unusual to see full-day computation times reduced
to minutes. The primary goal of this work is to develop an effective screening
procedure for longitudinal genetic studies such as CAMP.

A number of feature screening procedures have been developed in various con-
texts. Fan and Lv (2008) developed a sure independence screening procedure (SIS)
for ultrahigh-dimensional linear models. Furthermore, they showed that SIS pos-
sesses the sure screening property, that is, with probability tending to one, it pro-
duces a subset which contains the true underlying predictors. Fan and Song (2010)
extended SIS to ultrahigh-dimensional generalized linear models by ranking the
maximum marginal likelihood estimates. Fan, Feng and Song (2011) proposed an
SIS for ultrahigh-dimensional additive models by ranking the magnitude of each
nonparametric component. In addition, model-free SIS procedures have been ad-
vocated in more recent literature. Zhu et al. (2011) proposed an SIS for the multi-
index model setting. Li, Zhong and Zhu (2012) developed a distance-correlation-
based SIS, which is directly applicable for a multivariate response and grouped
predictors. He, Wang and Hong (2013) proposed a quantile-adaptive model-free
feature screening procedure for heterogeneous data. Screening procedures have
also been developed for varying coefficient models. Liu, Li and Wu (2014) devel-
oped an SIS for varying coefficient models with ultrahigh-dimensional predictor
variables (ultrahigh-dimensional varying coefficient models for short) by using a
conditional Pearson correlation coefficient to rank the importance of predictors.
Fan, Ma and Dai (2014) proposed an SIS for ultrahigh-dimensional varying coef-
ficient models by extending the B-spline techniques in Fan, Feng and Song (2011)
for additive models. Song, Yi and Zou (2014) further extended the proposal of
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Fan, Ma and Dai (2014) for longitudinal data. Both the work of Liu, Li and Wu
(2014) and of Fan, Ma and Dai (2014) were developed based on independent and
identically observed data, while the proposal of Song, Yi and Zou (2014) did not
incorporate within-subject correlation and dynamic error variance at the screening
stage, a key ingredient of our proposed methodology.

While the vast majority of GWAS are cross-sectional, there are numerous longi-
tudinal studies which also have genetic measurements. However, high-dimensional
methods for longitudinal outcomes have only been sparsely studied. In a longi-
tudinal genetic study such as CAMP, it is typical that researchers collect many
baseline variables, a huge number of genetic markers and longitudinal predictor
variables/phenotypic traits. Some baseline variables and longitudinal predictors
should be included in the analysis based on prior knowledge. None of the afore-
mentioned works on feature screening for ultrahigh-dimensional varying coeffi-
cient models have studied this situation, and this work intends to fill this gap. This
work also makes a substantial improvement to the B-spline methods in Fan, Ma
and Dai (2014) and Song, Yi and Zou (2014) for ultrahigh-dimensional varying
coefficient models by incorporating within-subject correlation and dynamic error
structure. This is now straightforward for standard multivariate regression models
because it is reasonable to assume that the working models are true or well approx-
imate the truth. However, feature screening procedures focus on cycling through
very small submodels, which are inherently misspecified. This poses a substantial
challenge for constructing effective screening rules using longitudinal data. The
main contributions of this paper are to present an effective screening rule based
on B-spline regression and to demonstrate how within-subject variability can be
harnessed for increased screening accuracy by Monte Carlo simulation. We sup-
port the methodology with accompanying theory and illustrate it via an empirical
analysis and comparison of the CAMP data. Our empirical analysis clearly shows
that the proposed nonparametric approach is especially useful for such studies with
highly nonlinear patterns and intricate within-subject dependencies, as one might
expect for rapidly changing populations such as children or the elderly.

The rest of this paper is organized as follows. In Section 2, we propose a new
screening rule for longitudinal genetic data. We also discuss how to incorporate
within-subject variability and correlation into the screening procedure to increase
screening accuracy. A theoretical justification for our methods is provided in Sec-
tion S1 of the supplementary material [Chu, Li and Reimherr (2016)]. In Section 3,
we conduct a Monte Carlo simulation to examine the finite sample performance of
the proposed screening procedures, and to compare with existing ones. In Sec-
tion 4, we present our empirical analysis and comparison of CAMP data using the
newly proposed procedure and existing procedures. Some concluding remarks and
discussions are given in Section 5.

2. A feature screening procedure. Assume that we collect a random sample
from n subjects and, for the ith subject, we observe the response y; () along with
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its covariate vectors {z; (t), x;(¢)} at times #;;, j =1, ..., J;, where J; is the total
number of observations from the ith subject. While, for complete generality, we
always include the argument ¢, a particular covariate need not change with time,
such as gender. The covariate vector z; (¢) is a low-dimensional predictor consisting
of variables that are believed to impact the response based on empirical evidence
or relevant theories. Thus, z;(¢) should be included into the model, and is not
subject to be screened. The covariate vector x;(¢) is ultrahigh-dimensional and
contains a vast number of covariates such as hundreds of thousands of SNPs. We
assume that the dimension p of x;(¢) is allowed to grow with sample size n at an
exponential rate, that is, log p = O (n?) for some a € (0, 1/2). We will discuss this
point further in Section S1 of the supplementary material [Chu, Li and Reimherr
(2016)]. It is believed that a relatively small number of x-variables have an impact
on the response, and most of the x-variables are likely to be irrelevant. To explore
potential time-varying effects, we consider the following time-varying coefficient
model:

q P
(D Yit) = Bo(®) + > BiOzit(t) + > vi(®)xir(t) + & (1),
=1 k=1

where {8;(¢),] =0, ...,q}and {yx(¢), k=1, ..., p} are nonparametric smooth co-
efficient functions, and &; (¢) is the error term with conditional mean E{e; (¢)|x; (¢),
z;(t)} = 0. It is assumed throughout this paper that ¢; (#) have a variance that varies
across time, are independent across i (between subjects) and correlated across ¢
(within same subject). In model (1),  need not to be calendar time. For example,
we may set ¢ to be the age of a subject in order to explore potential age-dependent
genetic effects and examine whether genetic effect changes across developmen-
tal stages. In general, it is assumed that 7 € 7, where 7 is a closed and bounded
interval in R.

The goal of a screening procedure is to effectively filter out as many unimportant
x-variables as possible while retaining all of the important ones. To denote the
significant variables, we define the index set

2) Mo={1<k<p:|n@]|, >0}

where || - |2 is the (functional) L? norm. The screening procedure proposed by
Liu, Li and Wu (2014), based on conditional correlation, cannot be used for fea-
ture screening in model (1) because of the inclusion of z-variables. The screening
procedures developed in Fan, Ma and Dai (2014) and Song, Yi and Zou (2014) may
be directly applicable for model (1) by assuming that within-subject observations
are independent. However, in their original works, a sure screening property has
not been established when z-variables are included. In this section, we introduce
a more effective screening procedure, which improves the proposal of Fan, Ma
and Dai (2014) by including baseline variables, incorporating within-subject cor-
relation and taking into account the time-varying error variance. Furthermore, our
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procedure achieves the sure screening property, which is established in Section S1
and proved in Section S2 of the supplementary material [Chu, Li and Reimherr
(2016)].

We now describe our procedure. For each k, we define a marginal (a single
x-variable) nonparametric regression model with the kth x-predictor:

q
(3) yi(tij) = B (ti) + D B Wi zin () + vy (tip)xix (1) + &7 (i),
I=1
where {8/, (t),l =0,1,...,q} and yk* (t) are smooth coefficient functions. Intu-
itively, the residual sum of squares of model (3) may be used to measure the im-
portance of the kth x-variable. A smaller residual sum of squares implies that the
corresponding x-variable explains more variation of the response variable, and
therefore would be more important.
We employ a regression spline method to estimate the coefficient functions
and obtain the residuals. Using cubic B-splines, we approximate {B};(1),] =
0,1,...,q} and y(¢) as follows:

My Lin
(4) B~ Y mimBim(t) and  yE)~ Y O Bin (1),
m=1 h=1
where {Bp,, (-),m =1, ..., My,} is a set of B-splines which may differ across #,

and M;, and Ly, are the numbers of basis functions used for B/} (t) and y;’(¢) re-
spectively. Larger My, and L;, lead to more accurate approximations of the vary-
ing coefficients, but at the cost of a higher variance (i.e., the classic bias/variance
trade-off). Model (3) becomes, approximately, a linear regression model:

Mo, q M

Yiti)) = Y nomBom @) + Y D imBim (i1 (1i5)
m=1 I=1m=1
(5)

Lin

+ Y Ok Brn (Dxix (1) + €] (1))
h=1

The error term & (#;;) is assumed to be independent between subjects and cor-
related within subject. Moreover, the variance of &7 (#;;) is assumed to be time-
varying. Incorporating the error covariance structure into the model estimation is
expected to increase screening accuracy.

Intuitively, one may use weighted least squares (WLS) or generalized estimating
equations (GEE) [Liang and Zeger (1986)] to estimate the coefficients, however,
the situation here is much more challenging because (a) the working marginal
model (5) is a misspecified model, and (b) the total computational cost for esti-
mating the error variance and correlation matrix in each marginal model would be
extremely expensive in the presence of ultrahigh-dimensional x-covariates. Instead
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of estimating the covariance matrix of &} = (] (t;1), ..., &/ (1;y; N, we propose an
approach to construct the weights for WLS using the following working model:

q
(6) yiltip) =BG (i) + D B Wizt () + € (i)

=1
This model includes only the baseline covariates z; (f) without any x-covariates.
Although it is misspecified, we can still gain valuable information about the re-
sponse covariance structure that can be incorporated into the screening procedure
for better performance.

We construct V(t;;), a working variance function for &} (#;;), using the tech-
niques in Huang, Wu and Zhou (2004). We apply the ordinary least squares method
and regression spline technique to model (6), and obtain the corresponding resid-
uals {r;(#;;)}. Assuming that V () is a smooth function of 7, we can approximate

V() ~ Zfl]il ap By (1;7). Minimizing the following least squares function

nJi Hy, 2
™ 2. (riz(tij) - OlhBhn(fij)>
i=1j=1 h=1
leads to an estimate of the coefficients: {ap,h = 1,..., H,}. We then define

Vi) =" anBun (1))

We use a parametric model for the working correlation matrix. Denote by
R;(A) = (Rji) the J; x J; working correlation matrix for the ith subject, where
A is an s x 1 vector that fully characterizes the correlation structure. Commonly
used correlation structures include autoregressive (AR) correlation structure, sta-
tionary or nonstationary M-dependent correlation structures, as well as parametric
families such as the Matérn. In practice, we propose to employ moment estimators
for the parameters A in the correlation structure based on the residuals r; (#;;)s in

feature screening procedures. Denote by A the resulting moment estimate of A.
We propose the following weight matrix for the ith subject:

(8) W, =J7 VPRI GV,
where V; is the J; x J; diagonal matrix consisting of the time-varying variance
Vis) 0 ... 0
~ 0 V(l‘iz) .. 0
) V=
0 0 ... V(ti]i)

We can then obtain the WLS estimate for regression coefficients in model (5),

and calculate the fitted value j/i(k) (t;j). More specifically, let B(z) = (B;(¢), ...,
By, (1)), where we ignore the difference among using different numbers of basis
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functions M;, for [ =0,1,...,q and Ly, fork=1,..., p. Let B;(t) be an (q +
1) x L,(g + 1) matrix defined by

B# 0 0 0

0 Bx 0 0

B.n)=1] . o :
0 0 0 B(@)
UZTU = (L, z;t)"B, (1)), Uy = WUgi,..., U7, Ufk,-j = X (t;j)B(ti)),
Ui = (kail,...,kal‘Ji)T and Uy; = (U, Uyki). For the B-spline coeffi-
cients, let 9y = (M1, ..., nk,)! and n; = (nkl,...,nkq)T for z-variables,

0.r = Oxkt, - .,GXkLn)T for the kth x-variable, and 6y = (3, 0xk)T. Then the
WLS estimate for 6y, is

-1
A 1< 1
(10) 0r = (; ZUZiwl-Uki> (; ZU;Z,-Wiy,),
i=1 i=1
and y; can be estimated by &;k) = Uk,-ék. This enables us to calculate the weighted
mean squared errors denoted by it :

. 1< N3N < (k
(11) finge = — > (v ¥ Wiy - 3).
i=1
Note that the smaller value of it,,; indicates stronger marginal association between
the kth covariate and the response. Thus, we sort {it,x, Kk =1,..., p} in an in-
creasing order, and define the screened submodel as

(12) /\//\l,n = {1 <k < p: ty ranks among the first 7,},

where 7, is the submodel size chosen to be smaller than the sample size n. Follow-
ing Fan and Lv (2008), we set t, = [n/log(n)], where [a] refers to the integer part
of a. This procedure has sure screening properties, which means that, with prob-
ability tending to one, all true covariates are included in the sub-screened model
defined by M\Tﬂ provided that certain conditions are satisfied. More detailed de-
scription of the sure screening property and theoretical proof can be found in Sec-
tions S1 and S2 in the supplementary material [Chu, Li and Reimherr (2016)].

3. Simulation studies. To make our simulation results more generalizable to
real-world applications, we generate data mimicking the CAMP data, and compare
the finite sample performance of the new method with that of sure independence
screening (SIS) [Fan and Lv (2008)], nonparametric independence screening (NIS)
with varying coefficient models [Fan, Ma and Dai (2014)] and the procedure pro-
posed in Song, Yi and Zou (2014) (NIS2). In our simulation setting where the
number of observations for each subject is the same for all subjects, the last two
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procedures essentially use the same marginal models, which are time-varying coef-
ficient models assuming working independence and constant variance. Thus, they
only differ in the criteria used for ranking the importance of covariates. Song, Yi
and Zou’s (2014) marginal utility is defined by

1 Ak N2
= — 1)~ dr,
wi Tij)

and, as suggested in their paper, we take N = 10,000 equally spaced time points
11 < ty--- <ty on the time interval 7 and estimate wy by

1Y 5
wnk=— > P
NI

For Fan, Ma and Dai (2014), we use residual sums of squares of the marginal
model as ranking criteria.

We set the feature dimension, p, to 2000, 5000 and 10,000. We first randomly
choose p SNPs from CAMP as the x-variables and set gender as the only z-
variable, as only gender among the baseline variables has a significant impact on
the response based on our preliminary analysis of the CAMP data using an age-
varying coefficient model. The distribution of the age variable is approximately
normal over the range [5, 17.2]. To achieve better numerical stability, we make a
transformation on the time points {; i»J=1,...,Ji;i =1,...,n} so that they are
approximately uniformly distributed on [0, 1] by #;; = ®((#;; —1)/s;), where ®(-)
is the cumulative distribution function of N (0, 1), and 7 and s; are the sample mean
and standard deviation of all time points 7;; in the CAMP data. We generate the
simulated data from

P
(13) yi(tij) = Po(tij) + B1(tij)Gender; + Z Vi (1i;)SNP; + & (#;7).
k=1

In each replication, we randomly select n = 200 subjects with J; = 16 observations
from the CAMP data, and directly use their values on the gender variable, time #;;
and the p selected SNPs in this simulation.

The error term ¢;(#;;) is generated from a zero mean Gaussian process with
variance and correlation defined by

. Var(e; (tij)) = V(t;;) =0.5+ 3t and
cor(e; (ti), £ (tir)) = 0.5 1+ 0.505,

where we use a correlation structure as a combination of AR(1) and compound
symmetry with equal weights. We set (p1, p2) = (0.6,0.4) and (0.8, 0.6) in our
simulation. To investigate the sensitivity of using different correlation structures
in estimating the weighted matrix, we consider three options in the analysis. The
first is stationary M-dependent, where M = J; — 1 = 15 in the simulation. This
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is the true structure generated by the second equation in (14), but the parameters
are estimated using the working model specified in (6). The other two are AR(1)
and compound symmetry, which are commonly used in practice. Their results are
labeled as “stat-M,” “AR(1)” and “C.P.S.,” respectively.

We set x1, x2, X3, X4 to be significant, and all others are inactive. To ensure fair
comparisons, we consider two examples for nonzero coefficients. In the first ex-
ample, the nonzero coefficients for x-variables are time-varying, while they are
time-invariant in the second example. The specific nonzero coefficient functions
are given below.

e Example 1. The nonzero coefficient functions are defined by
y1(t) =0.5cos(mt)11<0.5), y2(t) = —0.4cos(2mt)11<0.5),
y3(t) = —0.3sin(2nt), va(t) =0.5(1.2 —1).

e Example 11. The nonzero coefficient functions are defined by

@) =04, @) =05 p»@t)=-03, () =-0.5.

We set Bo(¢) and B (2) to be the coefficient functions estimated from y; (¢;;) =
Bo(tij) + Bi1(tij)Gender; + ¢;(t;;) using the CAMP data. Their plots are shown in
Figure 1. The baseline predictor gender is also considered in the SIS and the NIS
method in our numerical comparison.

For NIS [Fan, Ma and Dai (2014)], NIS2 [Song, Yi and Zou (2014)] and our pro-
cedure, we apply B-splines approximations to the time-varying coefficients, which
involves three tuning parameters: the degree of the splines, the number of knots,
and the positions of the interior knots. In all simulation studies, we set the degrees
of spline functions to be three, that is, cubic spline, which is the most commonly
used option. Since the time points are transformed to be approximately uniform
over [0, 1], we use equally spaced knots. The number of interior knots is set to be
four, which gives eight degrees of freedom for each varying coefficient. We believe

0.75 -
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£20- S
o
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0.00 -
1 1 1 1 | 1 1 1 ] | 1 1
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FI1G. 1. Coefficient functions for intercept and gender.
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that this is good enough to capture the time-varying effects. Alternatively, cross-
validation methods can be applied to better select the number of interior knots.
However, the computational costs are substantial in the presence of ultrahigh di-
mensionality, and pilot analysis shows that results are not sensitive to different
numbers of knots.

Following Liu, Li and Wu (2014), the following four criteria are used to evaluate
the performance of different screening methods:

e Ry: The average of ranks of x; (or SNPy in our case) in terms of the screening
criterion based on 1000 replications.

e M: The minimum size of the submodel so that all true predictors can be se-
lected. The 5%, 25%, 50%, 75% and 95% quantiles of M are reported from
1000 replications.

e p,: The proportion of 1000 replications where all true predictors are being se-
lected into ./\>lfn.

e pi: The proportion of x; being selected into the submodel /\;l,n over 1000 repli-
cations.

To calculate p, and pg, we set the selected submodel size 7, = v[n/logn], v =
1,2, 3 [Fan and Lv (2008)]. All the simulation results are summarized over 1000
replications.

Results for p = 2000 are shown in Tables 1, 2 and 3 for R;’s, quantiles of
M, and p;’s and p,, respectively. Results for p = 5000 and 10,000 are shown in

TABLE 1
R of the active SNPs for p = 2000

Example 1: y (¢)’s are time-varying Example 2: y (¢)’s are time-invariant

Method Ry R, R3 Ry R, R, R3 Ry
p1=0.6,0,=04
SIS 141.531 1030.235  1021.058  1.499 4318 3598 1.132 5.572
NIS 17.835 140.741 94.589  1.387 4438 3.892 1.132 6.326
NIS2 27.101 147.466 94.407 1.409 4.59 3.663 1.139 6.381
stat-M 4.553 4.351 13.295 1.499 6.892 4492 1.047 15.004
AR(1) 3.539 19.456 30.644  1.09 4.632  3.88 1.036 6.727
C.PS. 4.877 3.58 12.391  2.065 6.389  4.35 1.049 14.312
pP1 = 0.8, P = 0.6
SIS 255.711 1025.682  1035.404  5.804 4.765  3.937 1.232 6.756
NIS 53.929 234.304 169.961  5.047 5746 4569  1.233 9.837
NIS2 73.091 239.601 164.635  4.874 6.281 4.381 1.234 10.242
stat-M 7.913 2.93 12.68 2726 12318 6976  1.093  23.308
AR(1) 5.975 14.892 35.182  1.39 5275 4.08 1.068 7.985
C.PS. 8.837 3.225 14.549 4425 14.877 8593 1.112  26.956
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TABLE 2
The quantiles of M for p =2000

Example 1: y (¢)’s are time-varying Example 2: y (¢)’s are time-invariant

Method 5% 25% 50% 75% 5% 5% 25% 5S50% 75 % 95%

p1=0.6,0, =04

SIS 5229 1059.5 14645 17445 1956.1 4 5 7.5 8 10
NIS 17 55.75 124 258 610.2 4 5 8 9 15
NIS2 17 57.75 131 276.5 612.1 4 5 8 9 15.05
stat-M 4 5 6 11 58.05 4 7 9 15 62.05
AR(1) 5 8 16 40.25 168.15 4 5 8 9 12
C.PS. 4 5 6 11 60 4 6 8 13 51.2
p1 =0.8, pp=0.6

SIS 544.85 1065 1459.5 1755 1949.1 4 5 8 9 18
NIS 46.95 128 251 436 862.05 4 5 8 11 40
NIS2 48.95 130 253 456 858.55 4 5 8 12 42
stat-M 4 5 7 13 672 4 8 13 28 118.1
AR(1) 5 8 17 41 190 4 5 8 9 19
C.PS. 4 5 8 17 882 4 8 14 35.25 151.25

Section S3 of the supplementary material [Chu, Li and Reimherr (2016)]. When
p = 2000, outputs of the first example show that SIS is able to identify SNP4,
with average ranks (R4) of 1.499 and 5.804, and selection proportions (p4) 0.997
and 0.971 under 7, = 38, for the two correlation cases respectively, but fails to
select the other three SNPs. This is likely due to y4(¢) being a strong stable signal,
with a slope (—0.5) and relatively large intercept (0.6), while the other three coef-
ficients have significant time-varying effects and cannot be detected by SIS. NIS
also identifies SNP4 very well. Furthermore, it selects SNP; into the submodel
with a relatively large probability, especially under the (0.6, 0.4) correlation sce-
nario and using the more conservative submodel size (7, = 76 or 114). However,
it tends to give low ranks to SNP; and SNP3 (R, and R3 of NIS from Table 1) and
low selection rates (p> and p3 of NIS from Table 3). This is because the signal
magnitudes of y»(¢) and y3(¢) are not large enough for NIS to detect. As expected,
results of NIS2 are very similar to NIS.

Our procedure has excellent performance for all four SNPs, generating consis-
tently high ranking and large selection rates under all scenarios. It identifies the
relatively constant signal (like SIS and NIS), SNP4, the larger time-varying signal
SNP; (like NIS, but not SIS), and, unlike the other methods, gains enough power
from exploiting the covariance structure to select SNP, and SNP3;. Among the
three working correlation structures, stationary-M dependent gives the best results
as expected (since it is the truth). The AR(1) structure performs better in capturing
signals of the first and fourth SNPs, while the compound symmetry structure gives
more accurate ranking of the second and third SNPs. This indicates that, under
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TABLE 3
Selection proportion p’s and pq for true SNPs for p = 2000

Example 1: y (¢)’s are time-varying = Example 2: y (¢)’s are time-invariant

tn  Method  pg P2 p3 P4 Da p1 P2 p3 P4 Da

p1=0.6, 00 =04
38 SIS 0.563 0.013 0.012 0997 O 1.000 1.000 1.000 0.998 0.998
NIS 0.889 0.333 0.532 1.000 0.171 0.999 1.000 1.000 0.995 0.994
NIS2  0.822 0.324 0.541 1.000 0.150 1.000 1.000 1.000 0.993 0.993
stat-M  0.995 0.994 0935 1.000 0.924 0.987 0.994 1.000 0.924 0.906
AR(1) 0996 0.907 0.819 1.000 0.741 0.999 1.000 1.000 0.994 0.993
CPS. 0994 0.995 0947 1.000 0.936 0.991 0.996 1.000 0.936 0.924

76 SIS 0.671 0.025 0.025 1.000 0.002 1.000 1.000 1.000 0.999 0.999
NIS 0.946 0.519 0.683 1.000 0.356 1.000 1.000 1.000 0.999 0.999

NIS2 091 0491 0.684 1.000 0.337 1.000 1.000 1.000 0.999 0.999
stat-M  0.997 0.996 0971 1.000 0.964 0.995 1.000 1.000 0.965 0.961
AR(1) 0999 0.951 0902 1.000 0.856 1.000 1.000 1.000 0.999 0.999
CPS. 0999 0.99 0968 1.000 0963 0.997 1.000 1.000 0.972 0.970

114 SIS 0.735 0.041 0.037 1.000 0.003 1.000 1.000 1.000 1.000 1.000
NIS 0.974 0.620 0.768 1.000 0.476 1.000 1.000 1.000 0.999 0.999

NIS2 0939 0.608 0.769 1.000 0.449 1.000 1.000 1.000 0.999 0.999

stat-M  0.997 0.996 0.982 1.000 0.975 0.996 1.000 1.000 0.981 0.977

AR(1) 1.000 0.969 0.945 1.000 0.915 1.000 1.000 1.000 1.000 1.000

CPS. 0999 0.996 00982 1.000 0977 0.997 1.000 1.000 0.984 0.981

Pl = 0.8, P2 = 0.6
38 SIS 0.381 0.019 0.013 0971 0.001 0.997 0.999 1.000 0.988 0.984
NIS 0.662 0.159 0.318 0.979 0.037 0.992 1.000 1.000 0.956 0.948
NIS2  0.575 0.164 034 0981 0.029 0986 0.999 1.000 0.955 0.941
stat-M 0974 0.994 0942 0996 0.910 0.949 0976 1.000 0.871 0.806
AR(1) 098 0.920 0.809 0.999 0.732 0.996 1.000 1.000 0.987 0.983
CPS. 0962 0.991 0928 0992 0.878 0.925 0967 1.000 0.852 0.764

76 SIS 0.5 0.037 0.028 0.981 0.001 1.000 1.000 1.000 0.998 0.998

NIS 0.806 0.298 0.491 0993 0.129 0995 1.000 1.000 0.989 0.984

NIS2  0.735 0.295 0.508 0.994 0.131 0.994 1.000 1.000 0.986 0.980
stat-M  0.986 0.999 0.970 1.000 0.957 0.975 0.990 1.000 0.932 0.901
AR(1) 0991 0.969 0.893 0.999 0.861 0.997 1.000 1.000 0.993 0.99

CPS. 0984 0.998 0958 0.996 0.938 0.959 0978 1.000 0.925 0.871

114 SIS 0.569 0.05 0.041 0.989 0.003 1.000 1.000 1.000 0.999 0.999
NIS 0.872 0.416 0.587 0.997 0.216 0.998 1.000 1.000 0.994 0.992

NIS2  0.819 0.403 0.604 0.997 0.202 0.998 1.000 1.000 0.992 0.990

stattM  0.994 0.999 0983 1.000 0.977 0.984 0.995 1.000 0.967 0.948

AR(1) 099 0.981 0.924 1.000 0.905 0.999 1.000 1.000 0.998 0.997

CPS. 0988 1.000 0975 1.000 0963 0.978 0.993 1.000 0.954 0.929
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longitudinal settings, better screening results can be gained from accounting for
varying variance and within-subject correlation, even with misspecified correla-
tion structures.

As for the second example, all methods have good performance, with SIS per-
forming the best. Thus, our screening method is also valid for linear models. How-
ever, if the underlying model is known to be linear, then SIS would be the best
option due to the smallest computational cost. By comparing the results of the
two correlation scenarios, we can observe that all methods perform slightly worse
when the error correlations get larger.

The simulation results for p = 5000 and 10,000 are shown in the supplementary
material [Chu, Li and Reimherr (2016)]. As feature dimension p increases to 5000
and 10,000, the aforementioned patterns can still be observed, although the overall
performance for all procedures deteriorate with the increase of extra noise. Given
the performance of these methods, we can definitively recommend our procedure
in practice for longitudinal data. Especially in the setting where further analyses
are to be performed, our method truly shines. While our rankings for constant
effects are slightly worse, they are still very high, and thus very likely to make it
past any reasonable screening threshold. Our performance for truly time-varying
effects and dynamic errors is substantially better, and it is clear that SIS and NIS
run the risk of missing such signals.

A reasonable concern for our procedure is its computational time. Table 4 shows
the average computing time of one replication for all cases. The standard devia-
tions calculated over 1000 replications shown in the parenthesis are quite large
because different replications are run at different cluster nodes on HPC at Penn
State University. Overall, the new procedures take 4 to 5 times longer than NIS,
which is still acceptable when considering the gain in screening accuracy.

4. Application. The Childhood Asthma Management Program (CAMP) was
a longitudinal study designed to explore the long-term impact of several daily treat-
ments for mild to moderate asthma in children [The Childhood Asthma Manage-
ment Program Research Group (1999, 2000)]. Here, we consider n = 540 Cau-
casian subjects, each of whom contributed up to 16 clinical visits over 4 years;
81% made all 16 and 92% missed at most one. The primary outcome variable ex-
amined here is lung growth, as assessed by the change in forced expiratory volume
in one second (FEV1). There is strong evidence of large within-subject correla-
tions, where the pairwise correlations among all visits range from 0.83 to 0.96. As
our procedure incorporates this information when screening, we believe that it can
outperform other methods that assume independence when analyzing such highly
correlated longitudinal data. Genome-wide SNP data and phenotypic information
were downloaded from dbGaP (http://www.ncbi.nlm.nih.gov/gap) study accession
phs000166.v2.p1. There are in total eight hundred and seventy thousand SNPs to
be screened. We set the age of the ith subject at the jth measurements to be the


http://www.ncbi.nlm.nih.gov/gap

TABLE 4

Average computing time of one replication (standard deviation)

Example 1: y(¢)’s are time-varying

Example 2: y(¢)’s are time-invariant

(o1, p2) (0.6, 0.4) (0.8, 0.6) (0.6, 0.4) (0.8, 0.6)
p = 2000
SIS 46.96 (16.19) 93.21 (38.28) 93.21 (38.28) 73.85 (34.49)
NIS 191.51 (66.77) 363.84 (146.24) 363.84 (146.24) 297.01 (141.01)
NIS2 279.77 (100.2) 523.96 (209.59) 523.96 (209.59) 431.3 (207.44)
New method (stat-M) 1000.23 (349.94) 2053.66 (860.9) 2053.66 (860.9) 1569.46 (748.27)
New method [AR(1)] 1006.03 (354.93) 2063.61 (867.21) 2063.61 (867.21) 1581.29 (758.93)
New method (ex) 1020.96 (357.55) 2092.43 (870.79) 2092.43 (870.79) 1606.75 (765.69)
p = 5000
SIS 61.04 (18.29) 56.05 (16.43) 68.76 (25.8) 61.51 (19.21)
NIS 223.99 (67.93) 200.67 (56.73) 241.61 (90.1) 214.91 (66.45)
NIS2 393.75 (128.53) 359.79 (110.3) 428.7 (167.08) 383.78 (127.43)
New method (stat-M) 1213.21 (365.09) 1097.04 (310.52) 1330.07 (496.37) 1177.26 (361.74)
New method [AR(1)] 1193.5 (360.84) 1076.76 (306.43) 1312.13 (492.97) 1159.08 (358.36)
New method (ex) 1203.5 (363.75) 1087.15 (309.87) 1327.84 (496.8) 1173.61 (362.01)
p = 10,000

SIS

NIS

NIS2

New method (stat-M)
New method [AR(1)]
New method (ex)

136.27 (52.32)

584.04 (229.47)

897.5 (350.37)
3338.73 (1319.84)
3311.22 (1306.11)
3303.42 (1301.17)

137.04 (50.51)

588.2 (221.07)

903.39 (337.47)
3325.84 (1254.73)
3298.33 (1242.96)
3291.55 (1241.23)

185.9 (111.18)

865.28 (566.91)
1360.19 (912.93)
4172.04 (2550.17)
4174.32 (2569.67)
4133.03 (2535.05)

382.63 (112.86)
1844.63 (562.13)
2951.83 (876.64)
8685.42 (2599.42)
8714.44 (2607.33)
8623.91 (2591.1)
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time variable #;;, and consider the following model:

as) FEV; (ageij) = ,Bo(ageij) + B1 (ageij)Gender,-

P
+ ) vi(age;))SNPy + & (age; ),
k=1
where gender is the baseline predictor and {SNP;;} are the SNP variables.
Throughout this empirical analysis, it is assumed that ¢; (age; ;) is a Gaussian pro-
cess with mean zero and variance Var(e; (age; j)) = V(age; j), a smoothing function
of age.

We apply the feature screening procedure introduced in Section 3 and the NIS
method to this data set. We set the tuning parameters the same as in the simulation
studies, that is, we use the cubic spline with four equally spaced interior knots. For
the error covariance structure, we use the M-dependent correlation with M = J; —
1 to incorporate more flexibility. Both methods select 7,, = [540/1og(540)] = 85
SNPs. The two submodels obtained have 15 overlapping SNPs. Since the purpose
of screening procedures is to remove as many irrelevant SNPs as possible and
to retain all important SNPs, the screening procedures are typically conservative.
Thus, we apply a stepwise regression to remove more irrelevant SNPs.

In the forward step, we choose the SNP which results in the greatest decrease in
the weighted residual sum of squares (WRSS), and then use an F-test to determine
if this SNP should be added to the model. The F statistic can be calculated by

_ (WRSS| — WRSS,)/(df, — dfy)
N WRSS, /df> ’

where WRSS; and WRSS; are the weighted residual sum of squares of the model
without and with the candidate SNP, respectively, and defined as

(16) F

n
~ -1 ~
(17) WRSS=> (yi — )" Z; (yi — ).
i=1

where fl_l is the estimated covariance matrix for subject i from its corresponding
model. In the backward step, to determine if an existing SNP should be excluded,
we check if its contribution is smaller than the newly added SNP. Specifically,
let {SNP), k =1,..., K} be the existing SNPs and SNP (k1) be the new one.
Then delete SNP(;y if WRSS of the model based on {SNP), k =1,..., K} is
greater than WRSS of the model based on {SNP ), k € {1, ..., K+1}\{j}}. This
procedure automatically stops when no SNP can make a significant contribution
to the model. By applying this procedure to the two submodels obtained from
screening, a final model with 23 SNPs is selected for the new method and a model
with 6 SNPs for NIS.

We further compare these two models by conducting leave-one-subject-out
cross-validation (LooCV) and assessing their predication performance. At each
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TABLE 5
LooCV results

Number of SNPs PRESS

New method 23 873.37
NIS 6 992.01

evaluation, we leave the data of one subject out, and predict his/her FEV. Letting
yi(tij) and )Afl-(’)(t,- i), j=1,...,J; be the observed and predicted values for sub-
ject i, then we calculate the prediction sum of squares (PRESS):

n Ji
(18) PRESS = > 5" (vi (i) — 5 (1:)))*.
i=1j=1
Table 5 shows the results of the two models selected and the new method outper-
forms NIS by more than 10%.

We show in Figure 2 the estimated coefficient functions of the best model se-
lected for the new method. The first two panels are the coefficients for the intercept
and gender (with female as the baseline); the others are for the 23 SNPs. Detailed
information about these 23 SNPs is also shown in Table 6. The shape of the in-
tercept function is as expected; as subjects age, their lungs develop and FEV1 in-
creases. We see that there is a slight tapering around 1617 years old as teenagers
get closer to their adult heights. The shape of the gender function is especially in-
teresting. We see that at younger ages boys have slightly higher (recall female is
the baseline) lung function. However, we see a dip and the two groups begin to
converge starting around age 10, which is right around the time girls begin enter-
ing puberty. Boys, on average, enter puberty about a year after girls, which we can
also see as the plot rebounds around age 12 as the boys begin growing larger than
the girls. Finally, around age 16 when both groups are closer to their adult heights,
we see the plots settle on a more pronounced difference between the genders.

The shapes we see in the SNP functions take a variety of forms. Most are primar-
ily protective (1, 6, 10, 14, 16, 17, 18, 20, 23) or deleterious (2, 3,4,5,7,9, 11, 13,
15,19, 21, 22), though SNPs 8 and 12 do not clearly fall into one category. We also
see that the impact of many of the SNPs seems to fundamentally change before
and after puberty. The plot we see for SNP14 might be what one would expect for
a protective SNP: a steady increase which accelerates during puberty and then ta-
pers off. Shapes that are more surprising are ones like SNP1. This SNP starts off as
protective, but when children hit puberty, it seems to decrease in effect. SNP3 only
seems to be active during puberty, but otherwise does not seem to have an effect.
In many of the plots we see more chaotic or rapid behavior around puberty. This
makes sense as a rapid growth in the children should rapidly change how SNPs are



612 W. CHU, R. LT AND M. REIMHERR
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FI1G. 2. Estimated coefficient functions for best model selected by our procedure.

affecting lung function. What is not so obvious is that puberty also seems to fun-
damentally change the nature of certain SNPs. Some seem to change the direction
of the effect, while some seem most active during puberty. It is these types of pat-
terns which make nonparametric longitudinal methods so powerful. By allowing
very general structures for the coefficient functions, we can better find nonlinear
patterns.

We conclude this section by examining the heritability discovered by the mod-
els, as well as the heritability explained by individual SNPs. Heritability is a con-
cept that summarizes the proportion of variation in a trait due to genetic factors.
Examining heritability is an important step in understanding the genetic architec-
ture of complex diseases, and so is commonly measured in GWAS. Statistically,
heritably is a type of regression RZ, and thus it is also important for evaluating
the fit of a model. Since we are selecting a relatively small subset of SNPs, the
heritability we examine here is not the overall heritability of the disease but only
the heritability due to our submodel. The heritability of FEV1 was explored in
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TABLE 6
Information of the 23 SNPs selected by the new method

No. Chromosome SNP name Chr. position No. Chromosome SNP name Chr. position

SNP, 22 rs5992809 16601985 SNP;3 2 1s2894456 222765340
SNP, 16 rs17766975 74968977 SNPj4 1 rs1499663 55830578
SNP; 5 rs4704894 157136938 SNP;s 1 157530486 64955414
SNP, 8 rs16924622 60197787 SNPj6 5 rs16902245 85806442
SNPs 10 15293286 52889045 SNP;7 19 rs11673302 9462362
SNP, 4 rs17444879 41429386 SNP;g 11 rs10501066 26724528
SNP; 15 rs12050625 30751109 SNPjo 13 rs12716713 67431310
SNPg 5 rs17167077 98947056  SNPy 14 rs4904757 41274666
SNP, 2 rs12469442 195233905 SNP; 4 rs10433674 71980590
SNP; 18 rs1459497 52150550 SNP,, 1 rs12734254 77180853
SNPy; 2 rs1481387 157598327 SNP,s 6 rs7751381 117037951
SNP, 5 rs1013193 169131901

Reimherr and Nicolae (2014), where they found that the heritability of FEV1 in
asthmatic children was around 46%. However, they also discovered that heritabil-
ity can vary substantially with age. In their methods, “time” was study time (i.e.,
number of weeks of the trial), where as here we let time be the age of the child.
This is especially important as we can get a more direct handle on how heritability
changes with age. For model (15), we consider the total heritability of all selected
SNPs and the heritability of a single SNP. The heritability of all SNPs is calculated

by
RSS(FEV|Gender)
RSS(FEV|Gender)
RSS(FEV|Gender, SNPy, ..., SNP,)
RSS(FEV|Gender) ’

H(FEV) =
(19)

Here, RSS is the unweighted residual sum squares defined by

n Ji
RSS =Y 3" (vi(ij) — 3 (1))’

i=1j=1

where J; (#;;) is the fitted value from the model using weighted least square estima-
tion, that is, accounting for time-varying variance and within-subject correlation.
The total heritability for our model and the best model of NIS is, respectively,
34.673% and 17.977%. We also estimate the time-varying heritability for all SNPs
using a B-splines approximation, and the results are shown in Figure 3. There we
see a similar result of Reimherr and Nicolae (2014) that the heritability seems to
change quite substantially with age. In particular, we see rapid increases in the
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FI1G. 3. Time-varying total heritability.

heritability as children enter puberty. It seems to level off at around ages 16-17.
While we know that the heritability of the NIS submodel is lower than ours, we see
another remarkable difference in their time-varying heritability patterns. The NIS
model plot looks similar to ours, except at the later ages as it decreases as puberty
ends. This suggests that the NIS model has missed SNPs which play a larger role
at the later ages.

Finally, we calculate the heritability of single SNPs. This is determined by the
order in which each SNP is selected into the model in the stepwise selection proce-
dure. Let SNP () be the kth SNP to be selected into the model, then its heritability
is calculated by

RSS(FEV|Gender, SNP(]), ey SNP(k_l))
RSS(FEV |Gender)
RSS(FEVlGender, SNP(l), ey SNP(k_l), SNP(k))
B RSS(FEV|Gender) '

H(SNP;)) =

Tables 7 and 8 show the heritability of a single SNP in the two best models. We
see that the heritability of the SNPs ranges fairly evenly between zero and four
percent. Interestingly, SNP22 or rs12734254 on gene ST6GALNACS was also
discovered in Reimherr and Nicolae (2014) using a very different and stringent
statistical approach, which reaffirms that this gene is influencing lung function.
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TABLE 7
Heritability of single SNPs by new method

Selecting order SNP name H(SNP(;))  Selecting order SNP name H(SNP ()

1 rs5992809 1.321% 13 1s2894456 3.196%
2 1517766975 3.494% 14 1s1499663 1.53%
3 rs4704894 0.68% 15 1s7530486 1.267%
4 1516924622 1.515% 16 rs16902245 0.825%
5 1s293286 2.412% 17 rs11673302 0.53%
6 1517444879 4.231% 18 rs10501066 0.198%
7 rs12050625 1.408% 19 rs12716713 1.689%
8 1s17167077 1.327% 20 rs4904757 0.204%
9 1512469442 0.286% 21 rs10433674 0.388%
10 rs1459497 1.245% 22 rs12734254* 3.454%
11 rs1481387 0.9% 23 1s7751381 2.051%
12 rs1013193 0.524%

*SNP discovered in Reimherr and Nicolae (2014).

5. Concluding remarks. We developed a screening procedure for ultrahigh-
dimensional varying coefficient models motivated by longitudinal genetic studies.
From our numerical comparison, the proposed procedure outperforms the SIS pro-
posed in Fan and Lv (2008) and the NIS proposed in Fan, Ma and Dai (2014) for
longitudinal data. This implies that incorporating within-subject variability and
within-subject correlation is important for increasing the accuracy of a screening
rule. We applied the proposed procedure in an analysis of CAMP. The newly pro-
posed screening procedure is able to select a model with much higher heritability
and lower prediction error than other methods. Our methodology allows for time-
varying SNP effects which revealed that many seem to fundamentally change as
children age and enter puberty.

There are a number of ways in which this methodology can be expanded. One
that we briefly explored is allowing the correlation structure to also take a smooth
nonparametric form. However, our initial attempts showed that the resulting es-
timates were too noisy to be of much use, and resulted in inconsistent screening
results. Thus, finding a nonparametric estimation method for the correlation struc-

TABLE 8
Heritability of single SNPs by NIS

Selecting order SNP name H(SNP ) Selecting order SNP name H(SNP )

1 1s1522621 4.201% 4 rs2894456 3.423%
rs17766975 3.137% 5 rs4323745 2.698%
3 rs17444879 4.183% 6 rs12734069 0.336%
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ture which results in efficient and stable screening would be useful. Another use-
ful generalization would be to allow for more smoothing procedures such as local
polynomial smoothing, smoothing splines, etc. Regression splines allow for nice
statistical tests, which we exploit in the Application Section. To achieve a similar
effect, other smoothing methods would need to be incorporated with care.

SUPPLEMENTARY MATERIAL

Supplement to “Feature screening for time-varying coefficient models with
ultrahigh-dimensional longitudinal data” (DOI: 10.1214/16-AOAS912SUPP;
.pdf). Theoretical property with technical proofs and additional simulation results
for p =5000 and 10,000 are given in the online supplement.
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