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Abstract. Suppose that d ≥ 1 and 0 < β < α < 2. We establish the existence and uniqueness of the fundamental solution
qb(t, x, y) to a class of (typically non-symmetric) non-local operators Lb = �α/2 + Sb, where

Sbf (x) :=A(d,−β)

∫
Rd

(
f (x + z) − f (x) − ∇f (x) · z1{|z|≤1}

)b(x, z)

|z|d+β
dz

and b(x, z) is a bounded measurable function on Rd ×Rd with b(x, z) = b(x,−z) for x, z ∈ Rd . Here A(d,−β) is a normalizing

constant so that Sb = �β/2 when b(x, z) ≡ 1. We show that if b(x, z) ≥ −A(d,−α)
A(d,−β)

|z|β−α , then qb(t, x, y) is a strictly positive

continuous function and it uniquely determines a conservative Feller process Xb, which has strong Feller property. The Feller
process Xb is the unique solution to the martingale problem of (Lb,S(Rd)), where S(Rd) denotes the space of tempered functions
on Rd . Furthermore, sharp two-sided estimates on qb(t, x, y) are derived. In stark contrast with the gradient perturbations, these
estimates exhibit different behaviors for different types of b(x, z). The model considered in this paper contains the following as a
special case. Let Y and Z be (rotationally) symmetric α-stable process and symmetric β-stable processes on Rd , respectively, that
are independent to each other. Solution to stochastic differential equations dXt = dYt + c(Xt−) dZt has infinitesimal generator
Lb with b(x, z) = |c(x)|β .

Résumé. Supposons que d ≥ 1 et 0 < β < α < 2. Nous établissons l’existence et l’unicité de la solution fondamentale qb(t, x, y)

pour une classe d’opérateurs non locaux (typiquement non symétriques) Lb = �α/2 + Sb, où

Sbf (x) :=A(d,−β)

∫
Rd

(
f (x + z) − f (x) − ∇f (x) · z1{|z|≤1}

)b(x, z)

|z|d+β
dz

et b(x, z) est une fonction mesurable bornée sur Rd ×Rd telle que b(x, z) = b(x,−z) pour x, z ∈Rd . Ici A(d,−β) est la constante

de normalisation telle que Sb = �β/2 quand b(x, z) ≡ 1. Nous montrons que si b(x, z) ≥ −A(d,−α)
A(d,−β)

|z|β−α , alors qb(t, x, y)

est une fonction continue strictement positive qui détermine uniquement un processus de Feller conservatif Xb, satisfaisant la
propriété forte de Feller. Le processus de Feller Xb est l’unique solution du problème martingale (Lb,S(Rd)), où S(Rd) est
l’espace des fonctions tempérées sur Rd . De plus, des estimées précises supérieures et inférieures sur qb(t, x, y) sont obtenues.
En opposition radicale avec le cas des perturbations gradients, ces estimées montrent des comportements différents pour différents
types de b(x, z). Le modèle considéré dans l’article contient le modèle suivant comme cas particulier. Soient Y et Z des processus
indépendants α-stable, resp. β-stable, sur Rd , symétriques par rotation. La solution de l’équation différentielle stochastique dXt =
dYt + c(Xt−) dZt a Lb pour générateur infinitésimal avec b(x, z) = |c(x)|β .
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1. Introduction

Let d ≥ 1 be an integer and 0 < β < α < 2. For integer k ≥ 1, denote by Ck
b(Rd) (resp. Ck

c (Rd)) the space of con-
tinuous functions on Rd that have bounded continuous partial derivatives up to order k (resp. the space of continuous
functions on Rd with compact support that have continuous partial derivatives up to order k). Recall that a stochastic
process Y = (Yt ,Px, x ∈Rd) on Rd is called a (rotationally) symmetric α-stable process on Rd if it is a Lévy process
having

Ex

[
eiξ ·(Yt−Y0)

] = e−t |ξ |α for every x, ξ ∈Rd .

Let f̂ (ξ) := ∫
Rd eiξ ·xf (x) dx denote the Fourier transform of a function f on Rd . The fractional Laplacian �α/2 on

Rd is defined as

�α/2f (x) =
∫
Rd

(
f (x + z) − f (x) − ∇f (x) · z1{|z|≤1}

)A(d,−α)

|z|d+α
dz (1.1)

for f ∈ C2
b(Rd). Here A(d,−α) = �((d + α)/2)/(2−απd/2|�(−α/2)|), which is the normalizing constant so that

�̂α/2f (ξ) = −|ξ |αf̂ (ξ). Hence �α/2 is the infinitesimal generator for the symmetric α-stable process on Rd .
Throughout this paper, b(x, z) is a real-valued bounded function on Rd ×Rd satisfying

b(x, z) = b(x,−z) for every x, z ∈Rd . (1.2)

This paper is concerned with the existence, uniqueness and sharp two-sided estimates on the “fundamental solution”
of the following non-local operator on Rd ,

Lbf (x) = �α/2f (x) + Sbf (x), f ∈ C2
b

(
Rd

)
,

where

Sbf (x) := A(d,−β)

∫
Rd

(
f (x + z) − f (x) − ∇f (x) · z1{|z|≤1}

)b(x, z)

|z|d+β
dz. (1.3)

We point out that since b(x, z) satisfies condition (1.2), the truncation |z| ≤ 1 in (1.3) can be replaced by |z| ≤ λ for
any λ > 0; that is, for every λ > 0,

Sbf (x) =A(d,−β)

∫
Rd

(
f (x + z) − f (x) − 〈∇f (x), z

〉
1{|z|≤λ}

)b(x, z)

|z|d+β
dz. (1.4)

In fact, under condition (1.2),

Sbf (x) = A(d,−β)p.v.

∫
Rd

(
f (x + z) − f (x)

)b(x, z)

|z|d+β
dz

:= A(d,−β) lim
ε→0

∫
{z∈Rd :|z|>ε}

(
f (x + z) − f (x)

)b(x, z)

|z|d+β
dz. (1.5)

Condition (1.2) allows us to reduce general bounded measurable function b on Rd × Rd to the situation where
‖b‖∞ is sufficiently small through a scaling argument (see (3.15) and Lemma 3.5). The operator Lb is in general
non-symmetric. Clearly, Lb = �α/2 when b ≡ 0 and Lb = �α/2 + �β/2 when b ≡ 1.



608 Z.-Q. Chen and J.-M. Wang

We are led to the study of this non-local operator Lb by the consideration of the following stochastic differential
equation (SDE) on Rd :

dXt = dYt + c(Xt−) dZt , (1.6)

where Y is a symmetric α-stable process on Rd and Z is an independent symmetric β-stable process with 0 < β < α.
Such SDE arises naturally in applications when there are more than one sources of random noises. When c is a
bounded Lipschitz function on Rd , it is easy to show using Picard’s iteration method that for every x ∈ Rd , SDE (1.6)
has a unique strong solution with X0 = x. We denote the law of such a solution by Px . The collection of the solutions
(Xt ,Px, x ∈ Rd) forms a strong Markov process X on Rd . Using Ito’s formula, one concludes that the infinitesimal
generator of X is Lb with b(x, z) = |c(x)|β and so in this case X solves the martingale problem for (Lb,C2

b(Rd)).
The following questions arise naturally: does the Markov process X have a transition density function? If so, what
is its sharp two-sided estimates? Is there a solution to the martingale problem for �α/2 + |c(x)|β�β/2 when c is not
Lipschitz continuous? We will address these questions for the more general operator Lb in this paper.

Heat kernel analysis is an important subject in analysis and in probability theory, as heat kernel encodes all the
information about the corresponding infinitesimal generator and the corresponding Markov processes. Since explicit
formula can only be derived in some very special and limited cases, the main focus of the heat kernel analysis is on
its sharp estimates. While it is relatively easy to get some crude bounds, obtaining sharp two-sided bounds on the
heat kernel is typically quite challenging. It requires deep understanding of the corresponding generator. Heat kernel
estimates for discontinuous Markov processes have been under intense study recently. Most results obtained so far are
mainly for symmetric Markov processes. See [7] for a recent survey. It is well known that the study of non-symmetric
operators requires different approaches and techniques than that for symmetric operators. Results of this paper can also
be viewed as an attempt in establishing heat kernel estimates for non-symmetric discontinuous Markov processes. For
example, Corollary 1.4 and Theorem 1.5 can be viewed as the non-symmetric analogy, though in a restricted setting,
of the two-sided heat kernel estimates for symmetric stable-like processes and mixed stable-like processes established
in [11] and [12], respectively. See Remark 1.7 below for more information on heat kernel analysis.

For a ≥ 0, denote by pa(t, x, y) the fundamental function of �α/2 + a�β/2 (or equivalently, the transition density
function of the Lévy process Ya

t := Yt + a1/βZt ). Clearly, pa(t, x, y) is a function of t and x − y, so sometimes we

also write it as pa(t, x − y). Note that for every λ > 0, {λ−1Ya
λαt , t ≥ 0} has the same distribution as {Yaλ(α−β)

t , t ≥ 0}.
Consequently, for any λ > 0, we have

paλ(α−β) (t, x, y) = λdpa

(
λαt, λx,λy

)
for t > 0 and x, y ∈ Rd . (1.7)

It is recently proven in [12] that on (0,∞) ×Rd ×Rd ,

p0(t, x, y) 
 t−d/α ∧ t

|x − y|d+α
, (1.8)

pa(t, x, y) 
 (
t−d/α ∧ (at)−d/β

) ∧
(

t

|x − y|d+α
+ at

|x − y|d+β

)
. (1.9)

Here for two non-negative functions f and g, the notation f 
 g means that there is a constant c ≥ 1 so that c−1f ≤
g ≤ cf on their common domain of definitions. For real numbers a, c ∈ R, we use a ∨ c and a ∧ c to denote max{a, c}
and min{a, c}, respectively. We point out that the comparison constants in (1.9) is independent of a > 0 by the scaling
property (1.7). Note that (at)−d/β ≥ t−d/α whenever 0 < t ≤ a−α/(α−β). Thus for every k > 0,

pa(t, x, y) 
 t−d/α ∧
(

t

|x − y|d+α
+ at

|x − y|d+β

)
on

(
0, ka−α/(α−β)

] ×Rd ×Rd , (1.10)

with the comparison constants depending only on d , α, β and k.
Since Lb = �α/2 + Sb is a lower order perturbation of �α/2 by Sb , heuristically the fundamental solution (or

kernel) qb(t, x, y) of Lb should satisfy the following Duhamel’s formula:

qb(t, x, y) = p0(t, x, y) +
∫ t

0

∫
Rd

qb(t − s, x, z)Sb
z p0(s, z, y) dz ds (1.11)
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for t > 0 and x, y ∈ Rd . Here the notation Sb
z p0(s, z, y) means the non-local operator Sb is applied to the function z 
→

p0(s, z, y). Similar notation will also be used for other operators, for example, �
α/2
z . Applying (1.11) recursively, it is

reasonable to conjecture that
∑∞

n=0 qb
n(t, x, y), if convergent, is a solution to (1.11), where qb

0 (t, x, y) := p0(t, x, y)

and

qb
n(t, x, y) :=

∫ t

0

∫
Rd

qb
n−1(t − s, x, z)Sb

z p0(s, z, y) dz ds for n ≥ 1. (1.12)

For each bounded function b(x, z) on Rd ×Rd and λ > 0, define

mb,λ = essinf
x,z∈Rd ,|z|>λ

b(x, z) and Mb,λ = esssup
x,z∈Rd ,|z|>λ

∣∣b(x, z)
∣∣. (1.13)

The followings are the main results of this paper.

Theorem 1.1. For every bounded function b on Rd × Rd satisfying condition (1.2), there is a unique continuous
function qb(t, x, y) on (0,∞) ×Rd ×Rd that satisfies (1.11) on (0, ε] ×Rd ×Rd with |qb(t, x, y)| ≤ cp1(t, x, y) on
(0, ε] ×Rd ×Rd for some ε, c > 0, and that∫

Rd

qb(t, x, y)qb(s, y, z) dy = qb(t + s, x, z) for every t, s > 0 and x, z ∈Rd . (1.14)

Moreover, the following holds.

(i) There is a constant A0 = A0(d,α,β) > 0 so that qb(t, x, y) = ∑∞
n=0 qb

n(t, x, y) on (0, (A0/‖b‖∞)α/(α−β)] ×
Rd ×Rd , where qb

n(t, x, y) is defined by (1.12).
(ii) qb(t, x, y) satisfies the Duhamel’s formula (1.11) for all t > 0 and x, y ∈ Rd . Moreover, Sb

x qb(t, x, y) exists
pointwise in the sense of (1.5) and

qb(t, x, y) = p0(t, x, y) +
∫ t

0

∫
Rd

p0(t − s, x, z)Sb
z qb(s, z, y) dz ds (1.15)

for t > 0 and x, y ∈ Rd .
(iii) For each t > 0 and x ∈ Rd ,

∫
Rd qb(t, x, y) dy = 1.

(iv) For every f ∈ C2
b(Rd),

T b
t f (x) − f (x) =

∫ t

0
T b

s Lbf (x) ds,

where T b
t f (x) = ∫

Rd qb(t, x, y)f (y) dy.
(v) Let A > 0 and λ > 0. There is a positive constant C = C(d,α,β,A,λ) ≥ 1 so that for any b satisfying (1.2) with

‖b‖∞ ≤ A,∣∣qb(t, x, y)
∣∣ ≤ CeCtpMb,λ

(t, x, y) on (0,∞) ×Rd ×Rd . (1.16)

We remark that estimate (1.16) allows one to get sharper bound on |qb(t, x, y)| by selecting optimal λ > 0. When
Zt is the deterministic process t and c is an Rd -valued bounded Lipschitz function on Rd , the solution of (1.6) is
a symmetric α-stable process with drift. Its infinitesimal generator is �α/2 + c(x)∇ . Existence of integral kernel to
�α/2 + c(x)∇ and its estimates have been studied recently in [6] (in fact, c there can be an Rd -valued function in
certain Kato class).

Unlike the gradient perturbation for �α/2, in general the kernel qb(t, x, y) in Theorem 1.1 can take negative values.
For example, this is the case when b ≡ −1, that is, when Lb = �α/2 − �β/2, according to the next theorem. Observe
that

Lbf (x) =
∫
Rd

(
f (x + z) − f (x) − 〈∇f (x), z

〉
1{|z|≤1}

)
jb(x, z) dz,
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where

jb(x, z) = A(d,−α)

|z|d+α

(
1 + A(d,−β)

A(d,−α)
b(x, z)|z|α−β

)
. (1.17)

The next result gives a necessary and sufficient condition for the kernel qb(t, x, y) in Theorem 1.1 to be non-negative
when b(x, z) is continuous in x for a.e. z.

Theorem 1.2. Let b be a bounded function on Rd ×Rd that satisfies (1.2) and that

x 
→ b(x, z) is continuous for a.e. z ∈ Rd . (1.18)

Then qb(t, x, y) ≥ 0 on (0,∞) ×Rd ×Rd if and only if for each x ∈ Rd , jb(x, z) ≥ 0 for a.e. z ∈ Rd ; that is, if and
only if

b(x, z) ≥ −A(d,−α)

A(d,−β)
|z|β−α for a.e. z ∈ Rd . (1.19)

In particular, if b(x, z) = b(x) is a function of x only, then qb(t, x, y) ≥ 0 on (0,∞)×Rd ×Rd if and only if b(x) ≥ 0
on Rd .

Next theorem drops the assumption (1.18), gives lower bound estimates and refines upper bound estimates on
qb(t, x, y) for b(x, z) satisfying condition (1.19) and makes connections to the martingale problem for Lb . To state it,
we need first to recall some definitions.

Let D([0,∞),Rd) be the space of right continuous Rd -valued functions having left limits on [0,∞), equipped
with Skorokhod topology. Denote by Xt the projection coordinate map on D([0,∞),Rd). Let C be a subspace of
C2

b(Rd). A probability measure Q on the Skorokhod space D([0,∞),Rd) is said to to be a solution to the martingale
problem for (Lb,C) with initial value x ∈Rd if Q(X0 = x) = 1 and for every f ∈ C,

M
f
t := f (Xt ) − f (X0) −

∫ t

0
Lbf (Xs) ds

is a Q-martingale. The martingale problem (Lb,C) with initial value x ∈ Rd is said to be well-posed if it has a unique
solution.

Let C∞(Rd) be the space of continuous functions on Rd that vanish at infinity, equipped with supremum norm. Set

C2∞
(
Rd

) = {
f ∈ C∞

(
Rd

) : the first and second derivatives of f are all in C∞
(
Rd

)}
.

A Markov process on Rd is called a Feller process if its transition semigroup is a strongly continuous semigroup in
C∞(Rd). Feller processes is a class of nice strong Markov processes, called Hunt processes (see [16]). Let p0(t, x, y)

be the fundamental solution of the truncated operator

�
α/2

f (x) =
∫

|z|≤1

(
f (x + z) − f (x) − ∇f (x) · z1{|z|≤1}

)A(d,−α)

|z|d+α
dz;

or, equivalently, p0(t, x, y) is the transition density function for the finite range α-stable (Lévy) process with Lévy
measure A(d,−α)|z|−(d+α)1{|z|≤1}. It is established in [8] that p0(t, x, y) is jointly continuous and enjoys the fol-
lowing two sided estimates:

p0(t, x, y) 
 t−d/α ∧ t

|x − y|d+α
(1.20)

for t ∈ (0,1] and |x − y| ≤ 1, and there are constants ck = ck(d,α) > 0, k = 1,2,3,4 so that

c1

(
t

|x − y|
)c2|x−y|

≤ p0(t, x, y) ≤ c3

(
t

|x − y|
)c4|x−y|

(1.21)

for t ∈ (0,1] and |x − y| > 1.
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Define b+(x, z) = max{b(x, z),0}.
Theorem 1.3. For every A > 0 and λ > 0, there are positive constants Ck = Ck(d,α,β,A), k = 1,2, and C3 =
C3(d,α,β,A,λ) such that for any bounded b satisfying (1.2) and (1.19) with ‖b‖∞ ≤ A,

C1p0(t,C2x,C2y) ≤ qb(t, x, y) ≤ C3pMb+,λ
(t, x, y) for t ∈ (0,1] and x, y ∈ Rd . (1.22)

Moreover, for every ε > 0, there is a positive constant C4 = C4(d,α,β,A,λ, ε) such that for any b on Rd × Rd

satisfying (1.2) with ‖b‖∞ ≤ A so that

jb(x, z) ≥ ε|z|−(d+α) for a.e. x, z ∈Rd (1.23)

we have

C4pmb+,λ
(t, x, y) ≤ qb(t, x, y) ≤ C3pMb+,λ

(t, x, y) for t ∈ (0,1] and x, y ∈Rd . (1.24)

The kernel qb(t, x, y) uniquely determines a Feller process Xb = (Xb
t , t ≥ 0,Px, x ∈ Rd) on the canonical Skorokhod

space D([0,∞),Rd) such that

Ex

[
f

(
Xb

t

)] =
∫
Rd

qb(t, x, y)f (y) dy

for every bounded continuous function f on Rd . The Feller process Xb is conservative and has a Lévy system
(J b(x, y) dy, t), where J b(x, y) = jb(x, y − x),

J b(x, y) = jb(x, y − x) = A(d,−α)

|x − y|d+α
+ A(d,−β)b(x, y − x)

|x − y|d+β
. (1.25)

Moreover, for each x ∈Rd , (Xb,Px) is the unique solution to the martingale problem (Lb,S(Rd)) with initial value x.
Here S(Rd) denotes the space of tempered functions on Rd .

Here we say (J b(x, y) dy, t) is a Lévy system for Xb if for any non-negative measurable function f on R+ ×Rd ×
Rd with f (s, y, y) = 0 for all y ∈Rd , any stopping time T (with respect to the filtration of Xb) and any x ∈Rd ,

Ex

[∑
s≤T

f
(
s,Xb

s−,Xb
s

)] = Ex

[∫ T

0

(∫
Rd

f
(
s,Xb

s , y
)
J b

(
Xb

s , y
)
dy

)
ds

]
. (1.26)

A Lévy system for Xb describes the jumps of the process Xb. A Markov process on Rd is said to have strong Feller
property if its transition semigroup maps bounded measurable functions on Rd into bounded continuous functions
on Rd . Since qb(t, x, y) is a continuous function, one has by Theorem 1.1 and the dominated convergence theorem
that the Feller process Xb of Theorem 1.3 has strong Feller property.

Condition (1.23) is always satisfied if b(x, z) is non-negative. We emphasize the mb+,λ and Mb+,λ terms appeared
in the estimates in Theorem 1.3. Under condition (1.23) and the assumption that ‖b‖∞ ≤ A, the value of b(x, z) on
Rd × {z ∈ Rd : |z| ≤ λ} is irrelevant in the estimates of qb(t, x, y) in (1.24). By selecting suitable λ > 0 in (1.24), one
can get optimal two-sided estimates on qb(t, x, y). The following follows immediately from Theorem 1.3 by taking a
suitable λ > 0.

Corollary 1.4. Let A ≥ 0 and ε > 0. There is a positive constant C = C(d,α,β,A, ε) ≥ 1 so that for any bounded b

satisfying (1.2) with ‖b‖∞ ≤ A and

jb(x, z) ≥ ε

(
1

|z|d+α
+ 1

|z|d+β

)
for a.e. x, z ∈ Rd,

we have

C−1p1(t, x, y) ≤ qb(t, x, y) ≤ Cp1(t, x, y) for t ∈ (0,1] and x, y ∈Rd .



612 Z.-Q. Chen and J.-M. Wang

Theorem 1.3 in particular implies that if b(x, ·) is a bounded function satisfying (1.2) and (1.19) so that b(x, z) = 0
for every x ∈ Rd and |z| ≥ R for some R > 0; or, equivalently if Lb = �α/2 + Sb is a lower order perturbation of
�α/2 by finite range non-local operator Sb, then the upper bound of the kernel qb(t, x, y) is dominated by p0(t, x, y)

for each (t, x, y) ∈ (0,1] ×Rd ×Rd . In fact, we have the following more general result.

Theorem 1.5. For every A > 0 and M ≥ 1, there is a constant C5 = C5(d,α,β,A,M) ≥ 1 such that for any bounded
b satisfying (1.2) with ‖b‖∞ ≤ A and

M−1|z|−(d+α) ≤ jb(x, z) ≤ M|z|−(d+α) for a.e. x, z ∈Rd , (1.27)

or equivalently,

−(
1 − M−1)A(d,−α)

A(d,−β)
|z|β−α ≤ b(x, z) ≤ (M − 1)

A(d,−α)

A(d,−β)
|z|β−α for a.e. x, z ∈Rd, (1.28)

we have

C−1
5 p0(t, x, y) ≤ qb(t, x, y) ≤ C5p0(t, x, y) for t ∈ (0,1] and x, y ∈ Rd . (1.29)

We can restate some of results from Theorems 1.1, 1.2, 1.3 and 1.5 as follows.

Theorem 1.6. Let b(x, z) be a bounded function on Rd × Rd satisfying (1.2) and (1.19). For each x ∈ Rd , the
martingale problem for (Lb,S(Rd)) with initial value x is well-posed. These martingale problem solutions {Px, x ∈
Rd} form a strong Markov process Xb, which has infinite lifetime and possesses a jointly continuous transition density
function qb(t, x, y) with respect to the Lebesgue measure on Rd . Moreover, the transition density function qb(t, x, y)

is the same as the fundamental solution given in Theorem 1.1 and so all the conclusions there as well as that of
Theorems 1.3 and 1.5 hold for qb(t, x, y).

Remark 1.7.

(i) In general, we can not expect qb to have comparable lower and upper bound estimates. The estimates in (1.22)
and (1.24) are sharp in the sense that qb(t, x, y) = p0(t, x, y) when b ≡ 0, qb(t, x, y) = p1(t, x, y) when b ≡ 1,
and qb(t, x, y) = p0(t, x, y) when b(x, z) = 0 for |z| ≤ 1 and b(x, z) = −A(d,−α)

A(d,−β)
|z|β−α for |z| ≥ 1. Clearly, by

(1.8)–(1.9), p0(t, x, y) and p1(t, x, y) are not comparable on (0,1]×Rd ×Rd . We point out that it follows from
(1.9) and (1.24) that every A ≥ 1, there is a constant C̃ = C̃(d,α,β,A) ≥ 1 so that for any non-negative b on
Rd ×Rd satisfying (1.2) with 1/A ≤ b(x, z) ≤ A a.e.

(1/C̃)p1(t, x, y) ≤ qb(t, x, y) ≤ C̃p1(t, x, y) for t ∈ (0,1] and x, y ∈Rd . (1.30)

(ii) Heat kernel estimates for fractional Laplacian �α/2 under gradient perturbation and (possibly non-local)
Feynman–Kac perturbation have recently been studied in [6,9,10,32]. In both of these cases, under a Kato class
condition on the coefficients, the fundamental solution of the perturbed operator is always strictly positive and is
comparable to the fundamental solution p0(t, x, y) of the fractional Laplacian �α/2 on (0,1] ×Rd ×Rd .

The novelty of this paper is on non-local perturbations. The analysis of non-local perturbations with infinite
jumping intensity measure is much harder and is in fact very challenging. While the idea of using Duhamel’s
method (1.11) in the study of operator perturbation is not new, the key is how to rigorously establish it and im-
plement it to obtain two-sided sharp heat kernel estimates where the lower bound is comparable to the upper
bound, and to establish the uniqueness of the fundamental solution. It requires precise estimates on the non-local
derivatives of the heat kernel for fractional Laplacian, which turns out to be quite delicate and challenging. To
the best of authors’ knowledge, this is the first paper on the study of heat kernels under non-local perturbation
with infinite jump intensity measure in a systematic way. We emphasize that the function b(x, z) in 1.3 is only
measurable. Our Theorems 1.2 and 1.3 reveal some new phenomenon that heat kernels under non-local pertur-
bation Sb are typically unstable. This is is in stark contrast with �α/2 under either gradient (local) perturbations
or (possibly non-local) Feynman–Kac perturbations. However, Theorem 1.5 of this paper in particular indicates
that the heat kernel estimate for �α/2 is stable under finite range lower order perturbation.
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(iii) Kolokoltsov [21] studied heat kernel estimates for symmetric pseudo-differential operators (or stable-like jump
diffusions) with smooth symbols. However neither the results nor the approach in [21] applies to our case even
when b(x, z) is assumed to be smooth. In addition to the smooth symbol requirement, the operators (1.8)–(1.9)
considered in [21] would require α = β , excluding the case where there are two different stable scales as are
considered in this paper. In particular, it does not apply to SDE (1.6). For information on the connection between
pseudo-differential operators and discontinuous Markov processes, we refer the reader to [18–20,27] and the
references therein.

(iv) Martingale problem for non-local operators (with or without elliptic differential operator component) has been
studied by many authors. See, e.g., [3–5,22,23,25,26,29–31] and the references therein. In particular, Komatsu
[23] and Mikulevicius–Pragarauskas [25] considered martingale problem for a class of non-local operators that
is directly related to Lb. In fact, the uniqueness of the martingale problem for (Lb,S(Rd)) stated in Theorem 1.3
above is a direct consequence of [23, Theorem 3], while it follows from [25, Theorem 5] that for any bounded
b satisfying (1.2) and (1.19), there is a unique solution to the martingale problem (Lb,C∞

c (Rd)). The main
contribution of Theorem 1.3 is on the two-sided transition density function estimates for the martingale problem
solution Xb

t . We also mention that the well-posedness of martingale problem for (�α/2 + b(x) · ∇,C∞
c (Rd))

with b(x) an Rd -valued Kato class function has recently been established in [14].
(v) There are several directions to extend our results. For example, one can replace A(d,−α)

|z|d+α in (1.1) and 1/|z|d+β in
(1.3) by the Lévy kernels of pure jump subordinate Brownian motions. This should be doable by following the
ideas and approach of this paper. Another direction is to consider Laplacian under non-local perturbation; that is,
to replace �α/2 in Lb by Laplacian operator �. This has recently been carried out in Wang [33].

The rest of the paper is organized as follows. In Section 2, we derive some estimates on �
β/2
x p0(t, x, y) and

�
β/2
x p0(t, x, y) that will be used in later. The existence and uniqueness of the fundamental solution qb(t, x, y) of

Lb are given in Section 3. This is done through a series of lemmas and theorems, which provide more detailed
information on qb(t, x, y) and qb

n(t, x, y). Theorem 1.1 then follows from these results. We show in Section 4 that
the semigroup {T b

t ; t > 0} associated with qb(t, x, y) is a strongly continuous semigroup in C∞(Rd). We then apply
Hille–Yosida–Ray theorem and Courrége’s first theorem to establish Theorem 1.2. When b satisfies (1.2), (1.18)
and (1.19), qb(t, x, y) determines a conservative Feller process Xb . We first derive a Lévy system of Xb and also
prove (Xb,Px) is the unique solution to the martingale problem for (Lb,S(Rd)) in Section 5. We next establish, for
any given A > 0, the equi-continuity of qb(t, x, y) on each [1/M,M] × Rd × Rd for any b that satisfies (1.2) with
‖b‖∞ ≤ A. Using this, we can drop the condition (1.18) and establish the Feller process Xb with transition density
qb(t, x, y) for general bounded b that satisfies (1.2) and (1.19) by approximating it with a sequence of {kn(x, z), n ≥ 1}
that satisfy (1.2), (1.18) and (1.19). The upper bound estimate for qb(t, x, y) in (1.22) and (1.24) can be obtained
from that of qb̂λ(t, x, y) due to the Meyer’s construction of Xb̂λ from Xb, where b̂λ(x, z) = b(x, z)1{|z|≤λ}(z) +
b+(x, z)1{|z|>λ}(z). The lower bound estimates in (1.22) and (1.24) are established by the Lévy system of Xb and
some probability estimates. Finally, we use the estimates in (1.24) for b with support in {(x, z) ∈ Rd × Rd : |z| ≤ 1}
and the non-local Feynman–Kac perturbation results from [10] to obtain Theorem 1.5.

Throughout this paper, we use the capital letters C1,C2, . . . to denote constants in the statement of the results,
and their labeling will be fixed. The lowercase constants c1, c2, . . . will denote generic constants used in the proofs,
whose exact values are not important and can change from one appearance to another. We will use “:=” to denote a
definition. For a differentiable function f on Rd , we use ∂if and ∂2

ij f to denote ∂f
∂xi

and ∂2f
∂xi ∂xj

.
In this paper, details of some proofs are omitted after giving sufficient information on how to carry them out. We

believe the reader should have no problem in filling in these details. Nevertheless, a longer version [13] of this paper
is available on arXiv where the reader can find these details.

2. Preliminaries

Recall that p0(t, x, y) = p0(t, x − y) is the transition density function of the symmetric α-stable process Y 0.
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Lemma 2.1. There exists a constant C6 = C6(d,α) > 0 such that for every t > 0, x ∈Rd and i, j = 1, . . . , d ,∣∣∣∣ ∂

∂xi

p0(t, x)

∣∣∣∣ ≤ C6t
−(d+1)/α

(
1 ∧ t1/α

|x|
)d+1+α

,

∣∣∣∣ ∂2

∂xi ∂xj

p0(t, x)

∣∣∣∣ ≤ C6t
−(d+2)/α

(
1 ∧ t1/α

|x|
)d+2+α

.

Proof. By [6, Lemma 5], there is a positive constant c1 so that for all t > 0 and x, y ∈Rd

∣∣∇xp0(t, x)
∣∣ ≤ c1|x|

(
t−(d+2)/α ∧ t

|x|d+2+α

)
≤ c1

(
t−(d+1)/α ∧ t

|x|d+1+α

)
.

That is, the first inequality holds. Let ηt (r) be the density function of the α/2-stable subordinator at time t and
g(t, x) = (4πt)−d/2e−|x|2/4t be the Gaussian kernel on Rd . There is a constant c so that ηt (r) ≤ ctr−1−α/2 for all
r, t > 0, see [6, Lemma 5]. Note that∣∣∣∣ ∂2

∂xi ∂xj

g(s, x)

∣∣∣∣ ≤
( |x|2

s2
+ 2

s

)
g(s, x) = (4π)2|x|2g(d+4)(s, x1) + 8πg(d+2)(s, x2),

where x1 ∈ Rd+4 and x2 ∈ Rd+2 with |x1| = |x2| = |x|, g(d+2)(s, x2) and g(d+4)(s, x1) are the Gaussian kernels on
Rd+2 and Rd+4, respectively. Since p0(t, x) = ∫ ∞

0 g(s, x)ηt (s) ds, we have by the dominated convergence theorem
that there is a positive constant c2 so that for all t > 0 and x ∈Rd∣∣∣∣ ∂2

∂xi ∂xj

p0(t, x)

∣∣∣∣ ≤
∫ ∞

0

∣∣∣∣ ∂2

∂xi ∂xj

g(s, x)

∣∣∣∣ηt (s) ds

≤ (4π)2|x|2p(d+4)
0 (t, x1) + 8πp

(d+2)
0 (t, x2)

≤ c2

(
t−(d+2)/α ∧ t

|x|d+2+α

)
,

where p
(d+2)
0 (t, x2) and p

(d+4)
0 (t, x1) are the transition density functions of the symmetric α-stable processes in Rd+2

and Rd+4, respectively. This establishes the second inequality in Lemma 2.1. �

Define for t > 0 and x, y ∈Rd , the function

∣∣�β/2
x

∣∣p0(t, x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A(d,−β)(

∫
|z|≤t1/α |p0(t, x + z, y) − p0(t, x, y) − ∂

∂x
p0(t, x, y) · z| 1

|z|d+β dz

+ ∫
|z|>t1/α |p0(t, x + z, y) − p0(t, x, y)| dz

|z|d+β ) for |x − y|α ≤ t,

A(d,−β)(
∫
|z|≤|x−y|/2 |p0(t, x + z, y) − p0(t, x, y) − ∂

∂x
p0(t, x, y) · z| 1

|z|d+β dz

+ ∫
|z|>|x−y|/2 |p0(t, x + z, y) − p0(t, x, y)| dz

|z|d+β ) for |x − y|α > t.

Let

f0(t, x, y) := (
t1/α ∨ |x − y|)−(d+β) = t−(d+β)/α

(
1 ∧ t1/α

|x − y|
)d+β

. (2.1)

Lemma 2.2. There exists a constant C7 = C7(d,α,β) > 0 such that∣∣�β/2
x

∣∣p0(t, x, y) ≤ C7f0(t, x, y) on (0,∞) ×Rd ×Rd . (2.2)

Proof. We only need to prove |�β/2
x |p0(t, x) ≤ C7f0(t, x,0) for all t > 0 and x ∈ Rd .
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(i) We first consider the case |x|α ≤ t . In this case,

∣∣�β/2
x

∣∣p0(t, x) = A(d,−β)

∫
|z|≤t1/α

∣∣∣∣p0(t, x + z) − p0(t, x) − ∂

∂x
p0(t, x) · z

∣∣∣∣ dz

|z|d+β

+A(d,−β)

∫
|z|≥t1/α

∣∣p0(t, x + z) − p0(t, x)
∣∣ dz

|z|d+β

= I + II.

Note that by Lemma 2.1, supu∈Rd | ∂2

∂ui ∂uj
p0(t, u)| ≤ C6t

−(d+2)/α , and so by Taylor’s formula,

I ≤ A(d,−β) sup
u∈Rd

∣∣∣∣ ∂2

∂ui ∂uj

p0(t, u)

∣∣∣∣ ∫|z|≤t1/α

|z|2
|z|d+β

dz ≤ c1t
−(d+2)/αt(2−β)/α ≤ c1t

−(d+β)/α.

On the other hand, by (1.8)

II ≤A(d,−β)

∫
|z|≥t1/α

(
p0(t, x + z) + p0(t, x)

) dz

|z|d+β
≤ c2t

−d/α

∫
|z|≥t1/α

1

|z|d+β
dz ≤ c3t

−(d+β)/α.

(ii) Next, we consider the case |x|α ≥ t . In this case,

∣∣�β/2
x

∣∣p0(t, x) = A(d,−β)

∫
|z|≤|x|/2

∣∣∣∣p0(t, x + z) − p0(t, x) − ∂

∂x
p0(t, x) · z

∣∣∣∣ dz

|z|d+β

+A(d,−β)

∫
|z|≥|x|/2

∣∣p0(t, x + z) − p0(t, x)
∣∣ dz

|z|d+β

=: I + II.

Note that |x + z| ≥ |x|/2 for |z| ≤ |x|/2. So by Lemma 2.1,

sup
|z|≤|x|/2

∣∣∣∣ ∂2

∂xi ∂xj

p0(t, x + z)

∣∣∣∣ ≤ C6 sup
|z|≤|x|/2

t |x + z|−(d+2+α) ≤ 2(d+2+α)C6t |x|−(d+2+α).

Hence, by Taylor’s formula

I ≤ A(d,−β) sup
|z|≤|x|/2

∣∣∣∣ ∂2

∂xi ∂xj

p0(t, x + z)

∣∣∣∣ ∫|z|≤|x|/2

|z|2
|z|d+β

dz

≤ c4t |x|−(d+2+α)|x|2−β = c4t |x|−(d+α+β). (2.3)

Noting that |x|α ≥ t , thus I ≤ c4|x|−(d+β). On the other hand, note that symmetric α-stable process is a subordinate
Brownian motion, so p0(t, x + z) ≤ p0(t, x) if |x + z| ≥ |x| and p0(t, x) ≤ p0(t, x + z) if |x + z| ≤ |x|. Hence, by
(1.8) and the condition that |x|α ≥ t , we obtain

II ≤ A(d,−β)

∫
|z|≥|x|/2,|x+z|≥|x|

2p0(t, x)
dz

|z|d+β
+A(d,−β)

∫
|z|≥|x|/2,|x+z|≤|x|

2p0(t, x + z)
dz

|z|d+β

≤ 2A(d,−β)p0(t, x)

∫
|z|≥|x|/2

dz

|z|d+β
+ 2d+1+βA(d,−β)|x|−(d+β)

∫
z∈Rd

p0(t, x + z) dz

≤ c5t |x|−(d+α)|x|−β + 2d+1+βA(d,−β)|x|−(d+β) ≤ c6|x|−(d+β). (2.4)

This establishes the lemma. �
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In order to get the upper bound estimates in (1.16) in terms of weight Mb,λ rather than ‖b‖∞, we define, for t > 0,
λ > 0 and x, y ∈ Rd , the function

∣∣�β/2
λ,x

∣∣p0(t, x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
A(d,−β)(

∫
|z|≤λ∧t1/α |p0(t, x + z, y) − p0(t, x, y) − ∂

∂x
p0(t, x, y) · z| 1

|z|d+β dz

+ ∫
λ>|z|>(λ∧t1/α)

|p0(t, x + z, y) − p0(t, x, y)| dz
|z|d+β ) for |x − y|α ≤ t,

A(d,−β)(
∫
|z|≤λ∧|x−y|/2 |p0(t, x + z, y) − p0(t, x, y) − ∂

∂x
p0(t, x, y) · z| 1

|z|d+β dz

+ ∫
λ>|z|>(λ∧|x−y|/2)

|p0(t, x + z, y) − p0(t, x, y)| dz
|z|d+β ) for |x − y|α > t.

Observe that∣∣�β/2
λ,x

∣∣p0(t, x, y) ≤ ∣∣�β/2
x

∣∣p0(t, x, y).

Set

f0,λ(t, x, y) =
{

t−(d+β)/α when |x − y| ≤ t1/α,

|x − y|−(d+β)1{|x−y|≤λ} + |x − y|−(d+α)1{|x−y|>λ} when |x − y| > t1/α.

Observe that when λ = ∞, f0,∞ is just the function f0 defined in (2.1).

Lemma 2.3. For each λ > 0 and T > 0, there exists a constant C8 = C8(d,α,β,λ,T ) > 0 such that∣∣�β/2
λ,x

∣∣p0(t, x, y) ≤ C8f0,λ(t, x, y) on (0, T ] ×Rd ×Rd . (2.5)

Proof. (i) We first consider the case |x − y|α ≤ t . Note that |�β/2
λ,x |p0(t, x, y) ≤ |�β/2

x |p0(t, x, y). Hence, by the first
part (i) in the proof of Lemma 2.2, there exists a positive constant c1 so that∣∣�β/2

λ,x

∣∣p0(t, x, y) ≤ c1t
−(d+β)/α.

(ii) Next, we consider the case |x − y|α > t . In this case∣∣�β/2
λ,x

∣∣p0(t, x, y) ≤ A(d,−β)

∫
|z|≤|x−y|/2

∣∣∣∣p0(t, x + z, y) − p0(t, x, y) − ∂

∂x
p0(t, x, y) · z

∣∣∣∣ dz

|z|d+β

+A(d,−β)

∫
λ≥|z|≥(λ∧|x−y|/2)

∣∣p0(t, x + z, y) − p0(t, x, y)
∣∣ dz

|z|d+β

=: I + II.

By (2.3), there is a positive constant c2 so that

I ≤ c2t |x − y|−(d+α+β) ≤ c3
(|x − y|−(d+β)1{|x−y|≤2λ} + |x − y|−(d+α)1{|x−y|>2λ}

)
.

Here the last inequality holds since t |x − y|−(d+α+β) ≤ T (2λ)−β |x − y|−(d+α) when |x − y| > 2λ and t |x −
y|−(d+α+β) ≤ |x − y|−(d+β) due to |x − y|α ≥ t .

It is clear that II = 0 if |x − y| > 2λ. On the other hand, if |x − y| ≤ 2λ, then there exists a positive constant c4
so that II ≤ c4|x − y|−(d+β) by (2.4). Finally, we note that |x − y|−(d+β) 
 |x − y|−(d+α) for λ < |x − y| ≤ 2λ. This
establishes the lemma. �

For each λ > 0 and a ≥ 0, we extend the definition of f0,λ(t, x, y) to define

fa,λ(t, x, y)

:=
{

t−(d+β)/α when |x − y| ≤ t1/α,

|x − y|−(d+β)1{|x−y|≤λ} + (|x − y|−(d+α) + a|x − y|−(d+β))1{|x−y|>λ} when |x − y| > t1/α.
(2.6)

Note that fa,∞(t, x, y) = f0(t, x, y).
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Lemma 2.4. For each λ > 0, there is a constant C9 = C9(d,α,β,λ) > 0 such that for every a ∈ [0,1],∫ t

0

∫
Rd

fa,λ(s, z, y) dz ds ≤ C9
(
t1−β/α + t

)
, t ∈ (0,∞), y ∈ Rd . (2.7)

Proof. By the definition of fa,λ,∫ t

0

∫
Rd

fa,λ(s, z, y) dz ds

≤
∫ t

0

∫
|y−z|≤s1/α

s−(d+β)/α dz ds +
∫ t

0

∫
λ≥|y−z|>s1/α

1

|y − z|d+β
dz ds

+
∫ t

0

∫
|y−z|≥λ

(|y − z|−(d+α) + |y − z|−(d+β)
)
dzds

≤ c1

∫ t

0

(
s−β/α + 1

)
ds ≤ c2

(
t1−β/α + t

)
. �

For every a ≥ 0, define

ga(t, x, y) =
{

t−d/α when |x − y| ≤ t1/α,
t

|x−y|d+α + at
|x−y|d+β when |x − y| > t1/α.

(2.8)

Observe that∫
Rd

ga(t, x, y) dy 
 1 + at1−β/α on (0,∞) ×Rd . (2.9)

Recall that pa(t, x, y) is the heat kernel of the operator �α/2 + a�β/2. Moreover, in view of (1.10),

ga(t, x, y) 
 pa(t, x, y) on (0,1] ×Rd ×Rd . (2.10)

Lemma 2.5. For each λ > 0 and T > 0, there exists C10 = C10(d,α,β,λ,T ) > 0 such that for every a ∈ [0,1] and
all t ∈ (0, T ], x, y ∈Rd ,∫ t

0

∫
Rd

ga(t − s, x, z)fa,λ(s, z, y) dz ds ≤ C10ga(t, x, y).

Proof. Denote by I = ∫ t

0

∫
Rd ga(t − s, x, z)fa,λ(s, z, y) dz ds.

(i) Suppose that |x − y| ≤ t1/α . Then

I =
∫ t

0

∫
|x−z|≤2t1/α

ga(t − s, x, z)fa,λ(s, z, y) dz ds

+
∫ t

0

∫
|x−z|>2t1/α

ga(t − s, x, z)fa,λ(s, z, y) dz ds

=: I1 + I2.

We write I1 as

I1 =
∫ t/2

0

∫
|x−z|≤2t1/α

ga(t − s, x, z)fa,λ(s, z, y) dz ds

+
∫ t

t/2

∫
|x−z|≤2t1/α

ga(t − s, x, z)fa,λ(s, z, y) dz ds

= I11 + I12.
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If s ∈ (0, t/2), then t − s ∈ (t/2, t). In this case, ga(t − s, x, z) ≤ c1t
−d/α when |x − z| ≤ 2t1/α by (2.8). Hence,

by Lemma 2.4,

I11 ≤ c1t
−d/α

∫ t

0

∫
Rd

fa,λ(s, z, y) dz ds ≤ c2
(
T 1−β/α + T

)
t−d/α.

When s ∈ [t/2, t], since |x − y| ≤ t1/α and |x − z| ≤ 2t1/α , |y − z| ≤ 3t1/α ≤ 3(2s)1/α . Thus fa,λ(s, z, y) ≤
c3s

−(d+β)/α ≤ 2(d+β)/αc3t
−(d+β)/α . Hence,

I12 ≤ 2(d+β)/αc3t
−(d+β)/α

∫ t

0

∫
Rd

ga(t − s, x, z) dz ds ≤ c4T
1−β/α

(
1 + T 1−β/α

)
t−d/α.

Next we consider I2. Noting that |x − z| > 2t1/α , so we have by (2.8) and Lemma 2.4,

I2 ≤ c5

∫ t

0

∫
|x−z|>2t1/α

(
t − s

|x − z|d+α
+ t − s

|x − z|d+β

)
fa,λ(s, z, y) dz ds

≤ c6t
−d/α

(
1 + t1−β/α

)∫ t

0

∫
Rd

fa,λ(s, z, y) dz ds

≤ c7
(
1 + T 1−β/α

)(
T 1−β/α + T

)
t−d/α.

We thus conclude from the above that there is a c8 = c8(d,α,β,λ,T ) > 0 such that I ≤ c8t
−d/α for every t ∈ (0, T ]

whenever |x − y| ≤ t1/α .
(ii) Next assume that |x − y| > t1/α . Then

I =
∫ t

0

∫
|x−z|≤|x−y|/2

ga(t − s, x, z)fa,λ(s, z, y) dz ds

+
∫ t

0

∫
|x−z|>|x−y|/2

ga(t − s, x, z)fa,λ(s, z, y) dz ds

=: I1 + I2.

If |x − z| ≤ |x − y|/2, then |y − z| ≥ |x − y|/2 > t1/α/2. Hence, there is a constant c9 so that

fa,λ(s, z, y) ≤ c9
(|x − y|−(d+α) + a|x − y|−(d+β)

)
for s ∈ (0, t). Therefore,

I1 ≤ c9
(|x − y|−(d+α) + a|x − y|−(d+β)

) ·
∫ t

0

∫
Rd

ga(t − s, x, z) dz ds

≤ c10
(
1 + T 1−β/α

)( t

|x − y|d+α
+ at

|x − y|d+β

)
.

If |x − z| > |x − y|/2, then |x − z| > t1/α/2. Hence ga(t − s, x, z) ≤ c11(
t

|x−y|d+α + at
|x−y|d+β ) by (2.8). Thus by

Lemma 2.4, we obtain

I2 ≤ c11

(
t

|x − y|d+α
+ at

|x − y|d+β

)∫ t

0

∫
Rd

fa,λ(s, z, y) dz ds

≤ c12
(
T 1−β/α + T

)( t

|x − y|d+α
+ at

|x − y|d+β

)
.

This completes the proof of the lemma. �
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3. Fundamental solution

Throughout the rest of this paper, b(x, z) is a bounded function on Rd × Rd satisfying condition (1.2). Recall the
definition of the non-local operator Sb from (1.3). Let |qb|0(t, x, y) = p0(t, x, y), and define for each n ≥ 1,

∣∣qb
∣∣
n
(t, x, y) =

∫ t

0

∫
Rd

∣∣qb
∣∣
n−1(t − s, x, z)

∣∣Sb
z p0(s, z, y)

∣∣dzds.

For each λ > 0, define bλ(x, z) = b(x, z)1{|z|>λ}(z).
In view of (1.8), there exists a constant C11 = C11(d,α,β) > 0 such that p0(t, x, y) ≤ C11ga(t, x, y) for all t > 0,

a ∈ [0,1] and x, y ∈ Rd , where ga is the function defined by (2.8). On the other hand, note that

∣∣Sbf (x)
∣∣ =

∣∣∣∣A(d,−β)

∫
Rd

(
f (x + z) − f (x) − 〈∇f (x), z

〉
1{|z|≤λ}

)b(x, z)

|z|d+β
dz

∣∣∣∣
≤

∣∣∣∣A(d,−β)

∫
|z|≤λ

(
f (x + z) − f (x) − 〈∇f (x), z

〉)b(x, z)

|z|d+β
dz

∣∣∣∣
+

∣∣∣∣A(d,−β)

∫
Rd

(
f (x + z) − f (x)

)bλ(x, z)

|z|d+β
dz

∣∣∣∣
≤ ‖b‖∞ · ∣∣�β/2

λ,x

∣∣f (x) + ‖bλ‖∞ · ∣∣�β/2
x

∣∣f (x),

where |�β/2
λ,x |f (x) is defined in the similar way as |�β/2

λ,x |p0(t, x, y). Then by Lemma 2.2 and Lemma 2.3, for every
A > 0, λ > 0 and T > 0 and every bounded function b with ‖b‖∞ ≤ A,∣∣Sb

z p0(t, z, y)
∣∣ ≤ ‖b‖∞ · ∣∣�β/2

λ,z

∣∣p0(t, z, y) + ‖bλ‖∞ · ∣∣�β/2
z

∣∣p0(t, z, y)

≤ C8Af0,λ(t, z, y) + C7Mb,λf0(t, z, y)

≤ (C7 + C8)AfMb,λ/A,λ(t, z, y), t ∈ (0, T ]. (3.1)

Here recall that Mb,λ = esssupx,z∈Rd ,|z|>λ |b(x, z)|, fa,λ is the function defined in (2.6). The above estimate is a
refinement of Lemma 2.2. The latter corresponds to the case where λ = ∞.

Lemma 3.1. For each λ > 0, A > 0 and T > 0 and every bounded function b on Rd ×Rd satisfying condition (1.2)
with ‖b‖∞ ≤ A,∣∣qb

∣∣
n
(t, x, y) ≤ C11

(
A(C7 + C8)C10

)n
gMb,λ/A(t, x, y) < ∞, t ∈ (0, T ], x, y ∈Rd . (3.2)

Proof. We prove this lemma by induction. Since p0(t, x, y) ≤ C11gMb,λ/A(t, x, y) and Mb,λ/A ≤ 1, in view of
Lemma 2.5 and (3.1), (3.2) clearly holds for n = 1. Suppose that (3.2) holds for n = j ≥ 1. Then by Lemma 2.5
and (3.1),∣∣qb

∣∣
j+1(t, x, y)

≤ C11
(
A(C7 + C8)C10

)j
∫ t

0

∫
Rd

gMb,λ/A(t − s, x, z)
∣∣Sb

z p0(s, z, y)
∣∣dzds

≤ C11
(
A(C7 + C8)C10

)j
(C7 + C8)A

∫ t

0

∫
Rd

gMb,λ/A(t − s, x, z)fMb,λ/A,λ(s, z, y) dz ds

≤ C11
(
A(C7 + C8)C10

)j+1
gMb,λ/A(t, x, y)

for t ∈ (0, T ] and x, y ∈Rd . This proves that (3.2) holds for n = j + 1 and thus for every n ≥ 1. �
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Now we define qb
n : (0,∞) ×Rd ×Rd → R as follows. For t > 0 and x, y ∈ Rd , let qb

0 (t, x, y) = p0(t, x, y), and
for each n ≥ 1, define

qb
n(t, x, y) =

∫ t

0

∫
Rd

qb
n−1(t − s, x, z)Sb

z p0(s, z, y) dz ds. (3.3)

Clearly by Lemma 3.1, each qb
n(t, x, y) is well defined.

Lemma 3.2. For every n ≥ 0, qb
n(t, x, y) is jointly continuous on (0,∞) ×Rd ×Rd .

Proof. We prove it by induction. Clearly qb
0 (t, x, y) is continuous on (0,∞) × Rd × Rd . Suppose that qb

n(t, x, y)

is continuous on (0,∞) × Rd × Rd . For every M ≥ 2, it follows from (3.1), Lemma 3.1 and the dominated conver-
gence theorem that for ε < 1/(2M), (t, x, y) 
→ ∫ t−ε

ε

∫
Rd qb

n(t − s, x, z)Sb
z p0(s, z, y) dz ds is jointly continuous on

[1/M,M] ×Rd ×Rd .
On the other hand, it follows from (3.1) and (2.9) that

sup
t∈[1/M,M]

sup
x,y

∫ t

t−ε

∫
Rd

gMb,λ
(t − s, x, z)

∣∣Sb
z p0(s, z, y)

∣∣dzds

≤ c1A
(

sup
t∈[1/M,M]

[
(t − ε)−(d+β)/α + (t − ε)−(d+α)/α

])
sup
x∈Rd

sup
t∈[1/M,M]

∫ t

t−ε

∫
Rd

gMb,λ
(t − s, x, z) dz ds

≤ c2A(2M)(d+α)/α

∫ ε

0

(
1 + r1−β/α

)
dr ≤ c3A(2M)(d+α)/αε,

which goes to zero as ε → 0; while by (3.1) and (2.7), there exist c4 and c5 such that

sup
t∈[1/M,M]

sup
x,y

∫ ε

0

∫
Rd

gMb,λ
(t − s, x, z)

∣∣Sb
z p0(s, z, y)

∣∣dzds

≤ c4

(
sup

t∈[1/M,M]
(t − ε)−d/α

)
sup
y∈Rd

∫ ε

0

∫
Rd

∣∣Sb
z p0(s, z, y)

∣∣dzds

≤ c5(2M)d/α‖b‖∞ε1−β/α → 0 (3.4)

as ε → 0. We conclude from Lemma 3.1, (3.3) and the above argument that qb
n+1(t, x, y) is jointly continuous in

(t, x, y) ∈ [1/M,M] ×Rd ×Rd and so in (t, x, y) ∈ (0,∞) ×Rd ×Rd . This completes the proof of the lemma. �

Recall f0(t, x, y) is the function defined in (2.1) and |�β/2
x |p0(t, x, y) ≤ C7f0(t, x, y) on (0,∞) ×Rd ×Rd .

Lemma 3.3. There is a constant C12 = C12(d,α,β) > 0 so that for every A > 0 and every bounded function b on
Rd ×Rd with ‖b‖∞ ≤ A and for every integer n ≥ 0 and ε > 0,∣∣∣∣∫{z∈Rd :|z|>ε}

(
qb
n(t, x + z, y) − qb

n(t, x, y)
)A(d,−β)b(x, z)

|z|d+β
dz

∣∣∣∣ ≤ (C12A)n+1f0(t, x, y) (3.5)

for (t, x, z) ∈ (0,1]×Rd ×Rd , and Sb
x qb

n(t, x, y) exists pointwise for (t, x, z) ∈ (0,1]×Rd ×Rd in the sense of (1.5)
with

Sb
x qb

n+1(t, x, y) =
∫ t

0

∫
Rd

Sb
x qb

n(t − s, x, z)Sb
z p0(s, z, y) dz ds (3.6)

and ∣∣Sb
x qb

n(t, x, y)
∣∣ ≤ (C12A)n+1f0(t, x, y) on (0,1] ×Rd ×Rd . (3.7)
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Moreover,

qb
n+1(t, x, y) =

∫ t

0

∫
Rd

p0(t − s, x, z)Sb
z qb

n(s, z, y) dz ds for (t, x, y) ∈ (0,1] ×Rd ×Rd . (3.8)

Proof. Let q(t, x, y) denote the transition density function of the symmetric β-stable process on Rd . Then by (1.8)

but with β in place of α, we have q(t, x, y) 
 t−d/β(1 ∧ t1/β

|x−y| )
d+β for (t, x, y) ∈ (0,∞) × Rd × Rd . Observe that

(2.1) yields f0(t, x, y) 
 t−β/αq(tβ/α, x, y) for (t, x, y) ∈ (0,∞) ×Rd ×Rd . Hence on (0,∞) ×Rd ×Rd ,∫ t

0

∫
Rd

f0(t − s, x, z)f0(s, z, y) ds dz



∫ t

0
(t − s)−β/αs−β/α

(∫
Rd

q
(
(t − s)β/α, x, z

)
q
(
sβ/α, z, y

)
dz

)
ds


 q
(
tβ/α, x, y

)∫ t

0
(t − s)−β/αs−β/α ds

= q
(
tβ/α, x, y

)
t1−(2β/α)

∫ 1

0
(1 − u)−β/αu−β/α du


 t1−β/αf0(t, x, y).

In the second 
 above, we used the fact that (t/2)β/α ≤ (t − s)β/α + sβ/α ≤ 2tβ/α for every s ∈ (0, t), while in the
last equality, we used a change of variable s = tu. So there is a constant c1 = c1(d,α,β) > 0 so that∫ t

0

∫
Rd

f0(t − s, x, z)f0(s, z, y) ds dz ≤ c1f0(t, x, y) for every t ∈ (0,1] and x, y ∈Rd . (3.9)

By increasing the value of c1 if necessary, we may and do assume that c1 is larger than 1.
We now proceed by induction. Let C12 := c1C7. Note that∣∣Sb

xp0(t, x, y)
∣∣ ≤ A

∣∣�β/2
x

∣∣p0(t, x, y) ≤ C7Af0(t, x, y). (3.10)

When n = 0, (3.8) holds by definition. By Lemma 2.2, (3.5) and (3.7) hold for n = 0. Suppose that (3.5) and (3.7)
hold for n = j . Then for every ε > 0, by the definition of qb

j+1, Lemma 3.1, (3.9) and Fubini’s theorem,∫
{w∈Rd :|ω|>ε}

(
qb
j+1(t, x + w,y) − qb

j+1(t, x, y)
)A(d,−β)b(x,w)

|w|d+β
dw

=
∫ t

0

∫
Rd

(∫
{w∈Rd :|w|>ε}

(
qb
j (t − s, x + w,z) − qb

j (t − s, x, z)
)A(d,−β)b(x,w)

|w|d+β
dw

)
× Sb

z p0(s, z, y) dz ds

≤
∫ t

0

∫
Rd

(C12A)j+1f0(t − s, x, z)
∣∣Sb

z p0(s, z, y)
∣∣dzds

≤
∫ t

0

∫
Rd

(C12A)j+1f0(t − s, x, z)C7Af0(s, z, y) dz ds ≤ (C12A)j+2f0(t, x, y).

We conclude that

Sb
xqb

j+1(t, x, y)

:= lim
ε→0

∫
{w∈Rd :|w|>ε}

(
qb
j+1(t, x + w,y) − qb

j+1(t, x, y)
)A(d,−β)b(x,w)

|w|d+β
dw
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=
∫ t

0

∫
Rd

(
lim
ε→0

∫
{w∈Rd :|w|>ε}

(
qb
j (t − s, x + w,z) − qb

j (t − s, x, z)
)A(d,−β)b(x,w)

|w|d+β
dw

)
× Sb

z p0(s, z, y) dz ds

=
∫ t

0

∫
Rd

Sb
x qb

j (t − s, x, z)Sb
z p0(s, z, y) dz ds

exists and (3.6) as well as (3.7) holds for n = j + 1. (The same proof verifies (3.6) when n = 0.) On the other hand,
using (3.3) for n = j + 1 and (3.6)–(3.8) for n = j , we have by Fubini’s theorem that (3.8) also holds for n = j + 1.
(See arXiv version [13] of this paper for details.) The lemma is now established by induction. �

Recall that Mb,λ = esssupx,z∈Rd ,|z|>λ |b(x, z)| = ‖bλ(x, z)‖∞.

Lemma 3.4. For each λ > 0, there are positive constants A0 = A0(d,α,β,λ) and C13 = C13(d,α,β,λ) so that if
‖b‖∞ ≤ A0, then for every integer n ≥ 0,∣∣qb

n+1(t, x, y)
∣∣ ≤ C132−npMb,λ

(t, x, y) for t ∈ (0,1] and x, y ∈ Rd, (3.11)

(3.5) holds and so Sb
x qb

n(t, x, y) exists pointwise in the sense of (1.5) with∣∣Sb
x qb

n(t, x, y)
∣∣ ≤ 2−nf0(t, x, y) for t ∈ (0,1] and x, y ∈ Rd, (3.12)

and

∞∑
n=0

qb
n(t, x, y) ≥ 1

2
p0(t, x, y) for t ∈ (0,1] and |x − y| ≤ 3t1/α. (3.13)

Proof. We take a positive constant A0 so that A0 ≤ 1 ∧ [2(C7 + C8)C10 + 2C12]−1. We have by Lemma 3.1 and
Lemma 3.3 that for every b with ‖b‖∞ ≤ A0,∣∣qb

n+1(t, x, y)
∣∣ ≤ C112−ngMb,λ/A0(t, x, y) ≤ C11A

−1
0 2−ngMb,λ

(t, x, y) and
∣∣Sb

x qb
n(t, x, y)

∣∣ ≤ 2−nf0(t, x, y)

for every t ∈ (0,1] and x, y ∈Rd . This together with (2.10) establishes (3.11) and (3.12).
On the other hand, by (2.8), there exists c = c(d,α,β) ≥ 1 so that ga(t, x, y) ≤ cp0(t, x, y) for a ∈ [0,1] and

|x −y| ≤ 3t1/α and t ∈ (0,1]. Take A0 small enough so that A0 ≤ 1∧[2(C7 +C8)C10 +2C12]−1 and
∑∞

n=1(A0(C7 +
C8)C10)

n ≤ 1
2cC11

. Then for every b with ‖b‖∞ ≤ A0, we have by Lemma 3.1 for |x − y| ≤ 3t1/α and t ∈ (0,1] that

∞∑
n=1

∣∣qb
∣∣
n
(t, x, y) ≤ cC11

∞∑
n=1

(
A0(C7 + C8)C10

)n
p0(t, x, y) ≤ 1

2
p0(t, x, y).

Consequently, for |x − y| ≤ 3t1/α and t ∈ (0,1],
∞∑

n=0

qb
n(t, x, y) ≥ p0(t, x, y) −

∞∑
n=1

∣∣qb
n(t, x, y)

∣∣ ≥ 1

2
p0(t, x, y).

�

We now extend the results in Lemma 3.4 to any bounded b that satisfies condition (1.2). For λ > 0, define

b(λ)(x, z) = λβ/α−1b
(
λ−1/αx,λ−1/αz

)
. (3.14)

For a function f on Rd , set f (λ)(x) := f (λ−1/αx). By a change of variable, one has from (1.1) and (1.3) that

�α/2f (λ)(x) = λ−1(�α/2f
)(

λ−1/αx
)

and Sb(λ)

f (λ)(x) = λ−1(Sbf
)(

λ−1/αx
)
. (3.15)
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We remark here that condition (1.2) used in establishing (3.15). Note that the transition density function p0(t, x, y) of
the symmetric α-stable process has the following scaling property:

p0(t, x, y) = λ−d/αp0
(
λ−1t, λ−1/αx,λ−1/αy

)
. (3.16)

Recall qb
n(t, x, y) is the function defined inductively by (3.3) with qb

0 (t, x, y) := p0(t, x, y).

Lemma 3.5. Suppose that b is a bounded function on Rd ×Rd satisfying (1.2). For every λ > 0 and for every integer
n ≥ 0 and t > 0,

qb(λ)

n (t, x, y) = λ−d/αqb
n

(
λ−1t, λ−1/αx,λ−1/αy

)
, x, y ∈ Rd; (3.17)

or, equivalently,

qb
n(t, x, y) = λd/αqb(λ)

n

(
λt, λ1/αx,λ1/αy

)
, x, y ∈Rd . (3.18)

Proof. We prove it by induction. Clearly in view of (3.16), (3.17) holds when n = 0. Suppose that (3.17) holds for
n = j ≥ 0. Then by the definition (3.3), (3.15) and (3.16),

qb(λ)

j+1(t, x, y) =
∫ t

0

∫
Rd

qb(λ)

j (t − s, x, z)Sb(λ)

z p0(s, z, y) dz ds

=
∫ t

0

∫
Rd

λ−d/αqb
j

(
λ−1(t − s), λ−1/αx,λ−1/αz

)
λ−d/α−1(Sb

z p0
(
λ−1s, ·, λ−1/αy

))(
λ−1/αz

)
dzds

= λ−d/α

∫ λ−1t

0

∫
Rd

qb
j

(
λ−1t − r, λ−1/αx,w

)(
Sb

wp0
(
r, ·, λ−1/αy

))
(w)dw dr

= λ−d/αqb
j+1

(
λ−1t, λ−1/αx,λ−1/αy

)
.

This proves that (3.17) holds for n = j + 1 and so, by induction, it holds for every n ≥ 0. �

Recall that A0 is the positive constant in Lemma 3.4.

Theorem 3.6. For every λ > 0 and A > 0, there is a positive constant C14 = C14(d,α,β,A,λ) > 0 so that for every
bounded function b with ‖b‖∞ ≤ A, that satisfies condition (1.2) and n ≥ 0,∣∣qb

n(t, x, y)
∣∣ ≤ C142−n

(
t−d/α ∧

(
t

|x − y|d+α
+ Mb,λt

|x − y|d+β

))
(3.19)

for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd , and

∞∑
n=0

qb
n(t, x, y) ≥ 1

2
p0(t, x, y) for 0 < t ≤ 1 ∧ (

A0/‖b‖∞
)α/(α−β)

and |x − y| ≤ 3t1/α. (3.20)

Moreover, for every n ≥ 0, (3.5) holds and so Sb
x qb

n(t, x, y) exists pointwise in the sense of (1.5) with∣∣Sb
x qb

n(t, x, y)
∣∣ ≤ 2−n

(‖b‖∞/A0
)
f0(t, x, y) (3.21)

for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd . Moreover, (3.6) and (3.8) hold.

Proof. In view of Lemma 3.4, it suffices to prove the theorem for A0 < ‖b‖∞ ≤ A. Set r = (‖b‖∞/A0)
α/(α−β).

The function b(r) defined by (3.14) has the property ‖b(r)‖∞ = A0. Thus by Lemma 3.4, there is a constant C14 =
C14(d,α,β,A,λ) := C13(d,α,β, r1/αλ) > 0 so that for every integer n ≥ 0,∣∣qb(r)

n (t, x, y)
∣∣ ≤ C142−npM

b(r),r1/αλ
(t, x, y) for t ∈ (0,1] and x, y ∈Rd . (3.22)
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Noting r1−β/αMb(r),r1/αλ = Mb,λ, we have by (3.18), (3.22) and (1.10) that for every 0 < t ≤ 1/r = (A0/‖b‖∞)α/(α−β)

and x, y ∈Rd ,∣∣qb
n(t, x, y)

∣∣ = rd/α
∣∣qb(r)

n

(
rt, r1/αx, r1/αy

)∣∣
≤ C142−nrd/αpM

b(r),r1/αλ

(
rt, r1/αx, r1/αy

)
≤ 2CC142−n

(
t−d/α ∧

(
t

|x − y|d+α
+ r1−β/αMb(r),r1/αλt

|x − y|d+β

))
≤ 2CC142−n

(
t−d/α ∧

(
t

|x − y|d+α
+ Mb,λt

|x − y|d+β

))
,

which establishes (3.19). Similarly, (3.20) follows from (3.16) and(3.13) with b replaced by b(r), while the conclusion
of (3.21) is a direct consequence of (3.15), (3.18) and (3.12) with b replaced by b(r). That (3.6) and (3.8) hold follows
directly from Lemma 3.3 and Lemma 3.5. �

Recall that qb(t, x, y) := ∑∞
n=0 qb

n(t, x, y), whenever it is convergent. The following theorem follows immediately
from Lemmas 3.2, 3.4 and Theorem 3.6.

Theorem 3.7. For every λ > 0 and A > 0, let C14 = C14(d,α,β,A,λ) be the constant in Theorem 3.6. Then for every
bounded function b with ‖b‖∞ ≤ A that satisfies condition (1.2), qb(t, x, y) is well defined and is jointly continuous
in (0,1 ∧ (A0/‖b‖∞)α/(α−β)] ×Rd ×Rd . Moreover,

∣∣qb(t, x, y)
∣∣ ≤ 2C14

(
t−d/α ∧

(
t

|x − y|d+α
+ Mb,λt

|x − y|d+β

))
(3.23)

and Sb
x qb(t, x, y) exists pointwise in the sense of (1.5) with∣∣Sb

x qb(t, x, y)
∣∣ ≤ 2

(‖b‖∞/A0
)
f0(t, x, y)

for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd , and

qb(t, x, y) ≥ 1

2
p0(t, x, y) for 0 < t ≤ 1 ∧ (

A0/‖b‖∞
)α/(α−β)

and |x − y| ≤ 3t1/α. (3.24)

Moreover, for every 0 < t ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈Rd ,

qb(t, x, y) = p0(t, x, y) +
∫ t

0

∫
Rd

qb(t − s, x, z)Sb
z p0(s, z, y) dz ds (3.25)

= p0(t, x, y) +
∫ t

0

∫
Rd

p0(t − s, x, z)Sb
z qb(s, z, y) dz ds. (3.26)

Theorem 3.8. Suppose that b is a bounded function on Rd ×Rd satisfying (1.2). Let A0 be the constant in Lemma 3.4.
Then for every t, s > 0 with t + s ≤ 1 ∧ (A0/‖b‖∞)α/(α−β) and x, y ∈ Rd ,∫

Rd

qb(t, x, z)qb(s, z, y) dz = qb(t + s, x, y). (3.27)

Proof. In view of Theorem 3.6, we have∫
Rd

qb(t, x, z)qb(s, z, y) dz =
∞∑

j=0

j∑
n=0

∫
Rd

qb
n(t, x, z)qb

j−n(s, z, y) dz.
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So it suffices to show that for every j ≥ 0,

j∑
n=0

∫
Rd

qb
n(t, x, z)qb

j−n(s, z, y) dz = qb
j (t + s, x, y). (3.28)

Clearly, (3.28) holds for j = 0. Suppose that (3.28) holds for j = l ≥ 1. Then by (3.3) and Fubini’s theorem and using
the estimates in (3.1) and Theorem 3.6, one can prove that (3.28) holds for j = l + 1; see arXiv version [13] of this
paper for details. By induction, (3.28) holds for every j ≥ 0. �

For notational simplicity, denote 1 ∧ (A0/‖b‖∞)α/(α−β) by δ0. In view of Theorem 3.8, we can uniquely extend
the definition of qb(t, x, y) to t > δ0 by using the Chapman–Kolmogorov equation recursively as follows.

Suppose that qb(t, x, y) has been defined and satisfies the Chapman–Kolmogorov equation (3.27) on (0, kδ0] ×
Rd ×Rd . Then for t ∈ (kδ0, (k + 1)δ0], define

qb(t, x, y) =
∫
Rd

qb(s, x, z)qb(r, z, y) dz, x, y ∈ Rd (3.29)

for any s, r ∈ (0, kδ0] so that s + r = t . Such qb(t, x, y) is well defined on (0,∞) × Rd × Rd and satisfies (3.27)
for every s, t > 0. Moreover, since Chapman–Kolmogorov equation holds for qb(t, x, y) for all t, s > 0, we have by
Theorem 3.7 and (1.10) that for every A ≥ A0, there are constants ci = ci(d,α,β,A,λ), i = 1,2, so that for every
b(x, z) satisfying (1.2) with ‖b‖∞ ≤ A,∣∣qb(t, x, y)

∣∣ ≤ c1e
c2tpMb,λ

(t, x, y) for every t > 0 and x, y ∈Rd . (3.30)

Theorem 3.9. qb(t, x, y) satisfies (3.25) and (3.26) for every t > 0 and x, y ∈Rd .

Proof. Let δ0 := 1 ∧ (A0/‖b‖∞)α/(α−β). It suffices to prove that for every n ≥ 1, (3.25) and (3.26) hold for all
t ∈ (0, nδ0] and x, y ∈ Rd . Clearly, (3.25) holds for t ∈ (0, nδ0] with n = 1. Suppose that (3.25) holds for t ∈ (0, nδ0]
with n = k. For t ∈ (kδ0, (k + 1)δ0], take l, s ∈ (0, kδ0] so that l + s = t . Then we can verify by Chapman–Kolmogrov
equation of qb, Fubini’s theorem, Lemma 2.5, (3.1) and (3.30) that qb(l + s) satisfies (3.25) and (3.26). See the arXiv
version [13] of this paper for details. By induction, (3.25) and (3.26) hold for every t > 0 and x, y ∈Rd . �

Theorem 3.10. Suppose that b is a bounded function on Rd × Rd satisfying (1.2). Then qb(t, x, y) is the unique
continuous kernel that satisfies the Chapman–Kolmogorov equation (3.27) on (0,∞) × Rd × Rd and that for some
ε > 0,∣∣qb(t, x, y)

∣∣ ≤ cp1(t, x, y) (3.31)

and (3.25) hold for (t, x, y) ∈ (0, ε] ×Rd ×Rd . Moreover, (3.30) holds for qb(t, x, y).

Proof. Suppose that q is any continuous kernel that satisfies, for some ε > 0, (3.25) and (3.31) hold for (t, x, y) ∈
(0, ε] × Rd × Rd . Without loss of generality, we may and do assume that ε < 1 ∧ (A0/‖b‖∞)α/(α−β). Using (3.25)
recursively, one gets

q(t, x, y) =
n∑

j=0

qb
j (t, x, y) +

∫ t

0

∫
Rd

q(t − s, x, z)
(
Sbp0

)∗,n+1
z

(s, z, y) ds dz. (3.32)

Here (Sbp0)
∗,n
z (s, z, y) denotes the nth convolution operation of the function Sb

z p0(s, z, y); that is, (Sbp0)
∗,1
z (s,

z, y) = Sb
z p0(s, z, y) and

(
Sbp0

)∗,n

z
(s, z, y) =

∫ s

0

∫
Rd

Sb
z p0(r, z,w)

(
Sbp0

)∗,n−1
w

(s − r,w,y) dw dr for n ≥ 2. (3.33)
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It follows from (3.6) that Sb
z qb

n(s, z, y) = (Sbp0)
∗,n+1
z (s, z, y). Thus, by (3.32) we have

q(t, x, y) =
n∑

j=0

qb
j (t, x, y) +

∫ t

0

∫
Rd

q(t − s, x, z)Sb
z qb

n(s, z, y) ds dz. (3.34)

By the condition (3.31) and (3.21), there is a constant c1 > 0 so that for every n ≥ 1,∣∣∣∣∫ t

0

∫
Rd

q(t − s, x, z)
(
Sbp0

)∗,n

z
(s, z, y) ds dz

∣∣∣∣ ≤ c12−n

∫ t

0

∫
Rd

p1(t − s, x, z)f0(s, z, y) ds dz.

Noting that p1(t, x, y) 
 g1(t, x, y) on (0,1] ×Rd ×Rd and∫ t

0

∫
Rd

f0(s, z, y) dz ds ≤
∫ t

0

∫
|y−z|≤s1/α

s−(d+β)/α dz ds

+
∫ t

0

∫
|y−z|>s1/α

1

|y − z|d+β
dz ds

= c2t
1−β/α. (3.35)

Then by the similar proof in Lemma 2.5, we can get∫ t

0

∫
Rd

p1(t − s, x, z)f0(s, z, y) ds dz ≤ c3p1(t, x, y).

It follows that q(t, x, y) = ∑∞
n=0 qb

n(t, x, y) = qb(t, x, y) for every t ∈ (0, ε] and x, y ∈ Rd . Since both q and qb

satisfy the Chapman–Kolmogorov equation (3.27), q = qb on (0,∞) ×Rd ×Rd . �

In view of Lemma 3.5 and Chapman–Kolmogorov equation, we have the following.

Theorem 3.11. Suppose that b is a bounded function on Rd ×Rd satisfying (1.2). qb(t, x, y) = λd/αqb(λ)
(λt, λ1/αx,

λ1/αy) on (0,∞) ×Rd ×Rd , where b(λ)(x, z) := λβ/α−1b(λ−1/αx,λ−1/αz).

For a bounded function f on Rd , t > 0 and x ∈Rd , we define

T b
t f (x) =

∫
Rd

qb(t, x, y)f (y) dy and Ptf (x) =
∫
Rd

p0(t, x, y)f (y) dy.

The following lemma follows immediately from (3.27) and (3.29).

Lemma 3.12. Suppose that b is a bounded function on Rd × Rd satisfying (1.2). For all s, t > 0, we have T b
t+s =

T b
t T b

s .

Theorem 3.13. Let b be a bounded function on Rd ×Rd satisfying (1.2). Then for every f ∈ C2
b(Rd),

T b
t f (x) − f (x) =

∫ t

0
T b

s Lbf (x) ds for every t > 0, x ∈ Rd .

Proof. Note that by Theorem 3.9, for each bounded Borel function f in Rd ,

T b
t f (x) = Ptf (x) +

∫ t

0
T b

t−sSbPsf (x) ds = Ptf (x) +
∫ t

0
T b

s SbPt−sf (x) ds. (3.36)
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Hence, for f ∈ C2
b(Rd),

T b
t f (x) − f (x)

= Ptf (x) − f (x) +
∫ t

0
T b

s Sbf (x) ds +
∫ t

0
T b

s Sb(Pt−sf − f )(x) ds

=
∫ t

0
Ps�

α/2f (x)ds +
∫ t

0
T b

s Sbf (x) ds +
∫ t

0
T b

s Sb(Pt−sf − f )(x) ds

=
∫ t

0
T b

s �α/2f (x)ds −
∫ t

0

(∫ s

0
T b

r SbPs−r

(
�α/2f

)
(x) dr

)
ds

+
∫ t

0
T b

s Sbf (x) ds +
∫ t

0
T b

s Sb(Pt−sf − f )(x) ds

=
∫ t

0
T b

s

(
�α/2 + Sb

)
f (x)ds −

∫ t

0

(∫ t

r

T b
r SbPs−r

(
�α/2f

)
(x) ds

)
dr

+
∫ t

0
T b

s Sb(Pt−sf − f )(x) ds

=
∫ t

0
T b

s Lbf (x) ds −
∫ t

0
T b

r Sb(Pt−rf − f )(x) dr +
∫ t

0
T b

s Sb(Pt−sf − f )(x) ds

=
∫ t

0
T b

s Lbf (x) ds.

Here in the third inequality, we used (3.36); while in the fifth inequality we used Lemma 2.2 and (3.30), which allow
the interchange of the integral sign

∫ t

r
with T b

r Sb, and the fact that∫ t

r

Ps−r

(
�α/2f

)
(x) ds =

∫ t

r

(
d

ds
Ps−rf (x)

)
ds = Pt−rf (x) − f (x). �

Theorem 3.14. Let b be a bounded function on Rd × Rd satisfying (1.2). Then qb(t, x, y) is jointly continuous in
(0,∞) ×Rd ×Rd and

∫
Rd qb(t, x, y) dy = 1 for every x ∈ Rd and t > 0.

Proof. By Lemma 3.12, we have

qb(t + s, x, y) =
∫
Rd

qb(t, x, z)qb(s, z, y) dz, x, y ∈Rd , s, t > 0. (3.37)

Continuity of qb(t, x, y) in (t, x, y) ∈ (0,∞) × Rd × Rd follows from Theorem 3.7, (3.37) and the dominated con-
vergence theorem. For n ≥ 1 and t ∈ (0, T ], it follows from (3.1), Lemma 2.5, Theorem 3.6 and Fubini’s theorem that
for every t ∈ (0,1 ∧ (A0/‖b‖∞)α/(α−β)],∫

Rd

qb
n(t, x, y) dy =

∫
Rd

∫
Rd

∫ t

0
qb
n−1(t − s, x, z)Sb

z p0(s, z, y) ds dz dy

=
∫
Rd

∫ t

0
qb
n−1(t − s, x, z)Sb

z

(∫
Rd

p0(s, z, y) dy

)
ds dz = 0.

Hence we have by Lemma 3.4,∫
Rd

qb(t, x, y) dy =
∫
Rd

p0(t, x, y) dy = 1

for t ∈ (0,1 ∧ (A0/‖b‖∞)α/(α−β)]. This conservativeness property extends to all t > 0 by (3.37). �
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Theorem 1.1 now follows from (1.10), Theorems 3.7, 3.9, 3.10, 3.13 and 3.14.

4. C∞-Semigroups and positivity

Recall that A0 is the positive constant in Lemma 3.4.

Lemma 4.1. Suppose that b is a bounded function on Rd × Rd satisfying condition (1.2). Then {T b
t , t > 0} is a

strongly continuous semigroup in C∞(Rd).

Proof. Note that qb(t, x, y) is jointly continuous on (0,∞) ×Rd ×Rd and there are constants c1 and c2 so that∣∣qb(t, x, y)
∣∣ ≤ c1e

c2tp1(t, x, y) for every t > 0 and x, y ∈ Rd . (4.1)

Then by a similar argument of [9, Proposition 2.3], we can complete the proof. See arXiv version [13] of this paper
for details. �

Lemma 4.2. Let b be a bounded function on Rd × Rd satisfying (1.18). For each f ∈ C2∞(Rd), Lbf (x) exists
pointwise and is in C∞(Rd).

Proof. Suppose that γ ∈ (0,2) and f ∈ C2∞(Rd). Denote
∑d

i,j=1 |∂2
ij f (x)| by |D2f (x)|. Let R > 1 to be chosen

later. Then for each x ∈Rd , we have by Taylor expansion,

�f (x) :=
∫
Rd

∣∣f (x + z) − f (x) − ∇f (x) · z1{|z|≤1}
∣∣ 1

|z|d+γ
dz

≤
∫

|z|≤1

∣∣f (x + z) − f (x) − ∇f (x) · z1{|z|≤1}
∣∣ 1

|z|d+γ
dz

+
∫

1<|z|≤R

∣∣f (x + z) − f (x)
∣∣ 1

|z|d+γ
dz +

∫
|z|>R

∣∣f (x + z) − f (x)
∣∣ 1

|z|d+γ
dz

≤ c sup
|y|≤1

∣∣D2f (x + y)
∣∣ +

∫
1<|z|≤R

∣∣f (x + z) − f (x)
∣∣ 1

|z|d+γ
dz + cR−γ ‖f ‖∞.

For any given ε > 0, we can take R large so that cR−γ ‖f ‖∞ < ε/2 to conclude that

lim|x|→∞

∫
Rd

∣∣f (x + z) − f (x) − ∇f (x) · z1{|z|≤1}
∣∣ 1

|z|d+γ
dz = 0. (4.2)

By the same reason, applying the above argument to function x 
→ f (x +y)−f (x) in place of f yields that for every
ε > 0 and x0 ∈ Rd , there is δ > 0 so that �f (·+y)−f (x0) < ε for every |y| < δ. It follows from the last two displays,
the definition of Lb and (1.4) that Lbf (x) exists for every x ∈ Rd and Lbf ∈ C∞(Rd). �

Proof of Theorem 1.2. Since b satisfies condition (1.18), then Lbf ∈ C∞(Rd) for every f ∈ C2
c (Rd) by Lemma 4.2.

Let L̂b denote the infinitesimal generator of the strongly continuous semigroup {T b
t ; t ≥ 0} in C∞(Rd), which is a

closed linear operator. It follows from Theorem 3.13, Lemmas 4.1 and 4.2 that for every f ∈ C2∞(Rd), (T b
t f (x) −

f (x))/t converges uniformly to Lbf (x) as t → 0. So C2∞(Rd) ⊂ D(L̂b) and L̂bf = Lbf for f ∈ C2∞(Rd). In view
of Theorem 3.7, there are constants c1, c2 > 0 so that (4.1) holds. This implies that

sup
x∈Rd

∫ ∞

0
e−λt

∣∣T b
t f

∣∣(x) dt ≤ cλ‖f ‖∞, f ∈ C∞
(
Rd

)
for every λ > c2. Observe that e−c2t T b

t is a strongly continuous semigroup in C∞(Rd) whose infinitesimal generator
is L̂b − c2. The above display implies that (0,∞) is contained in the residual set ρ(L̂b − c2) of L̂b − c2. Therefore by
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Theorem 3.14 and the Hille–Yosida–Ray theorem [17, p. 165], {e−c2t T b
t ; t ≥ 0} is a positive preserving semigroup on

C∞(Rd) if and only if L̂b − c2 satisfies the positive maximum principle. On the other hand, Courrége’s first theorem
(see [1, p. 158]) tells us that L̂b − c2 satisfies the positive maximum principle if and only if for each x ∈Rd ,

A(d,−α)

|z|d+α
+ A(d,−β)b(x, z)

|z|d+β
≥ 0 for a.e. z ∈ Rd .

Since e−c2t T b
t has a continuous integral kernel e−c2t qb(t, x, y), it follows that qb(t, x, y) ≥ 0 on (0,∞) ×Rd × Rd

if and only if for each x ∈ Rd , (1.19) holds. If b(x, z) = b(x) is a function of x only, then by taking |z| → ∞, one
concludes that (1.19) holds if and only if b(x) ≥ 0 on Rd . �

5. Feller process and heat kernel estimates

Throughout this section, b is a bounded function satisfying condition (1.2) and (1.19). We will show that qb(t, x, y) >

0 and so it generates a Feller process Xb that has strong Feller property. We further derive the upper and lower bound
estimates on qb(t, x, y). We will first establish the Feller process Xb and its connection to the martingale problem
for (Lb,S(Rd)) under an additional assumption (1.18). We will then remove this additional assumption using an
approximation method and the uniqueness result on qb(t, x, y) from Theorem 3.10.

Suppose that b is a bounded function satisfying conditions (1.2), (1.18) and (1.19). Then it follows from Theo-
rem 1.2, Theorem 3.14, Lemma 4.1 and Theorem 3.8, T b is a Feller semigroup. So it uniquely determines a con-
servative Feller process Xb = {Xb

t , t ≥ 0,Px, x ∈ Rd} having qb(t, x, y) as its transition density function. Since, by
Theorem 3.10, qb(t, x, y) is continuous and qb(t, x, y) ≤ c1e

c2tpMb,λ
(t, x, y) for some positive constants c1 and c2,

Xb enjoys the strong Feller property.

Proposition 5.1. Suppose that b is a bounded function satisfying conditions (1.2), (1.18) and (1.19). For each x ∈ Rd

and f ∈ C2
b(Rd),

M
f
t := f

(
Xb

t

) − f
(
Xb

0

) −
∫ t

0
Lbf

(
Xb

s

)
ds

is a martingale under Px . So in particular, the Feller process (Xb,Px, x ∈ Rd) solves the martingale problem for
(Lb,C2∞(Rd)).

Proof. This follows immediately from Theorem 3.13 and the Markov property of Xb. �

We next determine the Lévy system of Xb. Recall that

J b(x, y) = A(d,−α)

|x − y|d+α
+ A(d,−β)b(x, y − x)

|x − y|d+β
.

By Proposition 5.1 and a similar argument of [9, Theorem 2.6], we have the following proposition. (See arXiv
version [13] of this paper for a proof.)

Proposition 5.2. Suppose that b is a bounded function satisfying conditions (1.2), (1.18) and (1.19). Let f be a non-
negative function on R+ ×Rd ×Rd vanishing on the diagonal. Then for stopping time T with respect to the minimal
admissible filtration generated by Xb ,

Ex

[∑
s≤T

f
(
s,Xb

s−,Xb
s

)] = Ex

[∫ T

0

∫
Rd

f
(
s,Xb

s , u
)
J b

(
Xb

s ,u
)
duds

]
.

To remove the assumption (1.18) on b, we approximate a general measurable function b(x, z) by continuous
kn(x, z). To show that qkn(t, x, y) converges to qb(t, x, y), we establish equi-continuity of qb(t, x, y) and apply the
uniqueness result, Theorem 3.10.
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Proposition 5.3. For each 0 < t0 < T < ∞ and A > 0, the function qb(t, x, y) is uniformly continuous in (t, x) ∈
(t0, T ) ×Rd for every b with ‖b‖∞ ≤ A that satisfies (1.2) and for all y ∈Rd .

Proof. In view of Theorem 3.11, it suffices to prove the theorem for A = A0, where A0 is the constant in Lemma 3.4
(or in Theorem 1.1). Using the Chapman–Kolmogorov equation for qb(t, x, y) (see Lemma 3.12) and (3.30), it suffices
to prove the proposition for T = 1.

Noting that by (3.8)

qb
n(t, x, y) =

∫ t

0

∫
Rd

p0(t − r, x, z)Sb
z qb

n−1(r, z, y) dz dr.

Hence, for T > t > s > t0, x1, x2 ∈ Rd and y ∈ Rd , we have∣∣qb
n(s, x1, y) − qb

n(t, x2, y)
∣∣

≤
∫ s

0

∫
Rd

∣∣p0(s − r, x1, z) − p0(t − r, x2, z)
∣∣∣∣Sb

z qb
n−1(r, z, y)

∣∣dzdr

+
∫ t

s

∫
Rd

p0(t − r, x2, z)
∣∣Sb

z qb
n−1(r, z, y)

∣∣dzdr

=: I + II.

It is known (see [11]) that there are positive constants c1 and θ so that for any t, s ∈ [t0, T ] and xi ∈Rd with i = 1,2,∣∣p0(s, x1, y) − p0(t, x2, y)
∣∣ ≤ c1t

−(d+θ)/α

0

(|t − s|1/α + |x1 − x2|
)θ

, y ∈Rd,

we have by (2.1), (3.12) and (3.35), for ρ ∈ (0, s/2),

I =
∫ s−ρ

0

∫
Rd

∣∣p0(s − r, x1, z) − p0(t − r, x2, z)
∣∣∣∣Sb

z qb
n−1(r, z, y)

∣∣dzdr

+
∫ s

s−ρ

∫
Rd

∣∣p0(s − r, x1, z) − p0(t − r, x2, z)
∣∣∣∣Sb

z qb
n−1(r, z, y)

∣∣dzdr

≤ c22−(n−1)ρ−(d+θ)/α
(|t − s|1/α + |x1 − x2|

)θ
∫ s−ρ

0

∫
Rd

f0(r, z, y) dz dr

+ c22−(n−1)

∫ s

s−ρ

∫
Rd

(
p0(s − r, x1, z) + p0(t − r, x2, z)

)
f0(r, z, y) dz dr

≤ c32−(n−1)ρ−(d+θ)/α
(|t − s|1/α + |x1 − x2|

)θ
s1−β/α + c32−(n−1)(s − ρ)−(d+β)/αρ. (5.1)

Moreover, by (2.1) and (3.12),

II ≤ 2−(n−1)

∫ t

s

∫
Rd

p0(t − r, x2, z)f0(r, z, y) dz dr ≤ 2−(n−1)s−(d+β)/α|t − s|. (5.2)

Therefore, noting that

∣∣qb(s, x1, y) − qb(t, x2, y)
∣∣ ≤ ∣∣p0(s, x1, y) − p0(t, x2, y)

∣∣ +
∞∑

n=1

∣∣qb
n(s, x1, y) − qb

n(t, x2, y)
∣∣,

then first taking |t − s| and |x1 − x2| small, and then making ρ small in (5.1) and (5.2) yields the conclusion of this
proposition. �
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Proposition 5.4. For each 0 < t0 < T < ∞ and A > 0, the function qb(t, x, y) is uniformly continuous in y for every
b with ‖b‖∞ ≤ A that satisfies (1.2) and for all (t, x) ∈ (t0, T ) ×Rd .

Proof. In view of Theorem 3.11, it suffices to prove the theorem for A = A0, where A0 is the constant in Lemma 3.4
(or in Theorem 1.1). Using the Chapman–Kolmogorov equation for qb(t, x, y) (see Lemma 3.12) and (3.30), it suffices
to prove the proposition for T = 1.

Define P(s, x, y) = p0(s, x) − p0(s, y). For s > 0, we have∣∣Sbp0(s, y1) − Sbp0(s, y2)
∣∣

≤ c1

∫
Rd

∣∣P(s, y1 + h,y2 + h) − P(s, y1, y2) − 〈∇(y1,y2)P (s, y1, y2), h1|h|≤1
〉∣∣ dh

|h|d+β

≤ c1

∫
|h|≤1

|h|2 sup
θ∈(0,1)

∣∣∣∣ ∂2

∂y2
1

p0(s, y1 + θh) − ∂2

∂y2
2

p0(s, y2 + θh)

∣∣∣∣ dh

|h|d+β

+ c1

∫
|h|>1

∣∣p0(s, y1 + h) − p0(s, y2 + h) − p0(s, y1) + p0(s, y2)
∣∣ dh

|h|d+β

≤ c2 sup
y

∣∣∣∣ ∂3

∂y3
p0(s, y)

∣∣∣∣|y1 − y2|
∫

|h|≤1
|h|2 dh

|h|d+β
+ c2 sup

y

∣∣∣∣ ∂

∂y
p0(s, y)

∣∣∣∣|y1 − y2|
∫

|h|>1

dh

|h|d+β

≤ c3|y1 − y2|
[
s−(d+3)/α + s−(d+1)/α

]
, (5.3)

where in the fourth inequality, | ∂3

∂y3 p0(s, y)| ≤ c3s
−(d+3)/α can be proved similarly by the argument in Lemma 2.1.

Take ρ ∈ (0, t0/2). Then for each n ≥ 1, we have by (1.9), (3.35), Lemma 2.4, Lemma 3.4 and (5.3), that for (t, x, y) ∈
(t0,1) ×Rd ×Rd ,∣∣qb

n(t, x, y1) − qb
n(t, x, y2)

∣∣
≤

∫ ρ

0

∫
Rd

qb
n−1(t − s, x, z)

∣∣Sb
z p0(s, z, y1) − Sb

z p0(s, z, y2)
∣∣dzds

+
∫ t

ρ

∫
Rd

qb
n−1(t − s, x, z)

∣∣Sb
z p0(s, z, y1) − Sb

z p0(s, z, y2)
∣∣dzds

≤ c42−(n−1)

∫ ρ

0

∫
Rd

p1(t − s, x, z)
∣∣Sb

z p0(s, z, y1) − Sb
z p0(s, z, y2)

∣∣dzds

+ c42−(n−1)

∫ t

ρ

∫
Rd

p1(t − s, x, z)
∣∣Sb

z p0(s, z − y1) − Sb
z p0(s, z − y2)

∣∣dzds

≤ c52−(n−1)t
−d/α

0

∫ ρ

0

∫
Rd

(∣∣Sb
z p0(s, z, y1)

∣∣ + ∣∣Sb
z p0(s, z, y2)

∣∣)dzds

+ c52−(n−1)ρ−(d+3)/α|y1 − y2|
∫ t

ρ

∫
Rd

p1(t − s, x, z) dz ds

≤ c62−(n−1)t
−d/α

0 ρ1−β/α + c62−(n−1)ρ−(d+3)/α|y1 − y2|.
Therefore we have∣∣qb(t, x, y1) − qb(t, x, y2)

∣∣
≤ ∣∣p0(t, x, y1) − p0(t, x, y2)

∣∣ +
∞∑

n=1

c62−(n−1)t
−d/α

0 ρ1−β/α +
∞∑

n=1

c62−(n−1)ρ−(d+3)/α|y1 − y2|.

By first taking |y1 − y2| small and then making ρ small yields the desired uniform continuity of qb(t, x, y). �
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Theorem 5.5. Suppose b is a bounded function on Rd ×Rd satisfying (1.2) and (1.19). The kernel qb(t, x, y) uniquely
determines a Feller process Xb = (Xb

t , t ≥ 0,Px, x ∈ Rd) on the canonical Skorokhod space D([0,∞),Rd) such
that Ex[f (Xb

t )] = ∫
Rd qb(t, x, y)f (y) dy for every bounded continuous function f on Rd . The Feller process Xb is

conservative and has a Lévy system (J b(x, y) dy, t), where J b is given by (1.25). Moreover, for each x ∈Rd , (Xb,Px)

is the unique solution to the martingale problem (Lb,S(Rd)) with initial value x. Here S(Rd) denotes the space of
tempered functions on Rd .

Proof. When b is a bounded function satisfying (1.2), (1.18) and (1.19), the theorem has already been established
via Propositions 5.1–5.2. We now remove the continuity assumption (1.18). Suppose that b(x, z) is a bounded func-
tion that satisfies (1.2) and (1.19). Let ϕ be a non-negative smooth function with compact support in Rd so that∫
Rd ϕ(x) dx = 1. For each n ≥ 1, define ϕn(x) = ndϕ(nx) and kn(x, z) := ∫

Rd ϕn(x − y)b(y, z) dy. Then kn is a
function that satisfies (1.2), (1.18) and (1.19) with ‖kn‖∞ ≤ ‖b‖∞.

By Theorem 1.1, Proposition 5.3 and Proposition 5.4, qkn(t, x, y) is uniformly bounded and equi-continuous on
[1/M,M]×Rd ×Rd for each M ≥ 1, then there is a subsequence {nj } of {n} so that q

knj (t, x, y) converges boundedly
and uniformly on compacts of (0,∞)×Rd ×Rd , to some continuous function q(t, x, y), which again satisfies (1.16).
Obviously, q(t, x, y) also satisfies the Chapman–Kolmogorov equation and

∫
Rd q(t, x, y) dy = 1. By Theorem 3.7,

q
knj (t, x, y) satisfies (3.23) and (3.25). By (3.1), Lemma 2.5 and the dominated convergence theorem, we have that

q(t, x, y) = p0(t, x, y) +
∫ t

0

∫
Rd

q(t − s, x, z)Sb
z p0(s, z, y) dy ds

and q(t, x, y) ≤ cpMb,λ
(t, x, y) for every 0 < t ≤ 1∧(A0/‖b‖∞)α/(α−β) and x, y ∈Rd . Hence we conclude from The-

orem 3.10 that q(t, x, y) = qb(t, x, y). This in particular implies that qb(t, x, y) ≥ 0. So there is a Feller process Xb

having qb(t, x, y) as its transition density function. The proof of Propositions 5.1–5.2 only uses the condition (1.18)
through its implication that qb(t, x, y) ≥ 0. So in view of what we just established, Propositions 5.1–5.2 continue to
hold for Xb under the current setting without the additional assumption (1.18). The non-local operator Lb satisfies the
assumptions [A1] and [A2] of [23]. So by [23, Theorem 3], solution to the martingale problem (Lb,S(Rd)) is unique.
Since S(Rd) ⊂ C2∞(Rd), the proof of the theorem is now complete. �

For each λ > 0, define

b̂λ(x, z) = b(x, z)1{|z|≤λ}(z) + b+(x, z)1{|z|>λ}(z). (5.4)

In the following, we use a method of Meyer [24] to construct from Xb, by adding suitable jumps, a strong Markov
process Y corresponding to the jumping kernel J b̂λ defined by (1.25) but with b̂λ in place of b.

Define J (x) = ∫
Rd (J

b̂λ(x, y)−J b(x, y)) dy. Then there exists a positive constant c1 so that 0 ≤ J (x) ≤ c1 for all

x ∈ Rd . Let q(x, y) = J b̂λ (x,y)−J b(x,y)
J (x)

. Let S1 be an exponential random variable of parameter 1 independent of Xb .
Set

Ct =
∫ t

0
J

(
Xb

s

)
ds, U1 = inf{t ≥ 0 : Ct ≥ S1}. (5.5)

We let Yt = Xb
t for 0 ≤ t < U1 and define YU1 with law q(YU1−, ·) = q(Xb

U1−, ·), and then repeat using an independent
exponential random variable S2 to define U2, etc. So the construction proceeds now in the same way from the new
starting point (U1, YU1). Since J (x) is bounded, only finitely many new jumps are introduced in any bounded time
interval. In [24], it is proved that the resulting process Y is a strong Markov process. By slightly abusing the notation,
we still use Px and Ex to denote the above constructed probability law and expectation induced on such enlarged
probability space under which Y0 = x.

Lemma 5.6. For each x ∈ Rd and f ∈ C2
b(Rd),

Ex

[
f (Yt ); t < U1

] = f (x) +Ex

[∫ t

0

(
Lb −J (Ys)

)
f (Ys)1{s<U1} ds

]
.
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Proof. By the definition of U1 and Ito’s formula, for each function f ∈ C2
b(Rd),

Ex

[
f (Yt ); t < U1

] = Ex

[
f

(
Xb

t

)
1{U1>t}

] = Ex

[
f

(
Xb

t

)
e−Ct

]
= f (x) +Ex

[∫ t

0

(
Lb −J

(
Xb

s

))
f

(
Xb

s

)
e−Cs ds

]
= f (x) +Ex

[∫ t

0

(
Lb −J (Ys)

)
f (Ys)1{s<U1} ds

]
. �

Proposition 5.7. For each x ∈Rd and f ∈ C2
b(Rd),

M
f
t := f (Yt ) − f (Y0) −

∫ t

0
Lb̂λf (Ys) ds

is a martingale under Px . So in particular, the strongly Markov process (Y,Px, x ∈ Rd) solves the martingale problem
for (Lb̂λ ,C2∞(Rd)).

Proof. Note that M
f
t is an additive function of Y . So by the Markov property of Y , it suffices to show that

Ex[Mf
t ] = 0 for every x ∈ Rd and t > 0. Recall that U1 is defined in (5.5), and denote by {Un,n ≥ 2} the sub-

sequent jump adding times inductively defined according to the construction of Meyer [24]. For every α > 0, set
uα(x) = Ex[

∫ U1
0 e−αtf (Yt ) dt]. We have by Lemma 5.6 and Fubini theorem that

uα(x) = f (x)

α
+ 1

α
Ex

[∫ U1

0
e−αs

(
Lb −J (Ys)

)
f (Ys) ds

]
.

Observe that in view of [28, p. 286] (see, for example, the proof of [15, Proposition 2.2]), for any non-negative function
ϕ on Rd and x ∈Rd ,

Ex

[
e−αU1ϕ(YU1−)

] = Ex

[∫ U1

0
e−αsJ (Ys)ϕ(Ys) ds

]
.

Set U0 = 0 and let θt to denote the time shift operator for the Markov process Y . Then we have from above and the
strong Markov property of Y that

Ex

[∫ ∞

0
e−αtf (Yt ) dt

]
=

∞∑
j=0

Ex

[∫ Uj+1

Uj

e−αtf (Yt ) dt

]
=

∞∑
j=0

Ex

[
e−αUj uα(YUj

)
]

= f (x)

α
+ 1

α

∞∑
j=1

Ex

[
e−αUj f (YUj

)
]

+ 1

α

∞∑
j=0

Ex

[∫ Uj+1

Uj

e−αs
(
Lb −J (Ys)

)
f (Ys) ds

]

= f (x)

α
+ 1

α

∞∑
j=1

Ex

[
e−αUj

∫
Rd

f (y)q(YUj −, y) dy

]

+ 1

α
Ex

[∫ ∞

0
e−αs

(
Lb −J (Ys)

)
f (Ys) ds

]

= f (x)

α
+ 1

α

∞∑
j=1

Ex

[
e−αUj−1

∫
Rd

f (y)
(
e−αU1q(YU1−, y)

) ◦ θUj−1 dy

]



634 Z.-Q. Chen and J.-M. Wang

+ 1

α
Ex

[∫ ∞

0
e−αs

(
Lb −J (Ys)

)
f (Ys) ds

]

= f (x)

α
+ 1

α

∞∑
j=1

Ex

[
e−αUj−1

∫
Rd

f (y)

(∫ U1

0
e−αsJ (Ys)q(Ys, y) ds

)
◦ θUj−1 dy

]

+ 1

α
Ex

[∫ ∞

0
e−αs

(
Lb −J (Ys)

)
f (Ys) ds

]
= f (x)

α
+ 1

α
Ex

[∫
Rd

f (y)

(∫ ∞

0
e−αsJ (Ys)q(Ys, y) ds

)
dy

]
+ 1

α
Ex

[∫ ∞

0
e−αs

(
Lb −J (Ys)

)
f (Ys) ds

]
= f (x)

α
+ 1

α
Ex

[∫ ∞

0
e−αs

(
Lbf (Ys) +

∫
Rd

J (Ys)q(Ys, y)
(
f (y) − f (Ys)

)
dy

)
ds

]
= f (x)

α
+ 1

α
Ex

[∫ ∞

0
e−αsLb̂λf (Ys) ds

]
.

By the uniqueness of the Laplace transform, we conclude from above that Ex[Mf
t ] = 0 for all t ≥ 0 and x ∈ Rd . �

Note that b̂λ defined by (5.4) is a bounded function on Rd × Rd satisfying (1.2) and (1.19). By Theorem 5.5, the

kernel qb̂λ(t, x, y) uniquely determines a Feller process Xb̂λ = (X
b̂λ
t , t ≥ 0,Px, x ∈ Rd) on the canonical Skorokhod

space D([0,∞),Rd), and (Xb̂λ,Px) is the unique solution to the martingale problem for (Lb̂λ ,S(Rd)) with initial
value x. This, together with Proposition 5.7 implies that the process Y coincides with Xb̂λ in the sense of distribution.

Theorem 5.8. For every λ > 0 and A > 0, there is a positive constant C15 = C15(d,α,β,A,λ) such that for any
bounded b satisfying (1.2) and (1.19) with ‖b‖∞ ≤ A,

qb(t, x, y) ≤ C15pMb+,λ
(t, x, y) for t ∈ (0,1] and x, y ∈ Rd .

Proof. Noting that b̂λ is a bounded function on Rd × Rd with ‖b̂λ‖∞ ≤ ‖b‖∞ satisfying (1.2) and (1.19), then by
Theorem 1.1, there is a positive constant C = C(d,α,β,A,λ) so that

qb̂λ(t, x, y) ≤ CpMb+,λ
(t, x, y) for t ∈ (0,1] and x, y ∈Rd . (5.6)

Let {Mt }t≥0 be the filtration generated by Xb. Note that Xb̂λ has the same distribution as Y . Then by Lemma 3.6 in
[2], for any A ∈ Mt ,

Px
(
X

b̂λ
t ∈ A

) = Px(Yt ∈ A) ≥ Px
({

Ys = Xb
s for all 0 ≤ s ≤ t

} ∩ A
) ≥ e−t‖J ‖∞Px

(
Xb

t ∈ A
)
.

Hence by (5.6), qb(t, x, y) ≤ e‖J ‖∞qb̂λ(t, x, y) ≤ Ce‖J ‖∞pMb+,λ
(t, x, y) for t ∈ (0,1] and x, y ∈ Rd . �

For a Borel set B ⊂Rd , we define τb
B = inf{t > 0 : Xb

t /∈ B} and σb
B := inf{t ≥ 0 : Xb

t ∈ B}.

Proposition 5.9. For each A > 0 and R0 > 0, there is a positive constant κ = κ(d,α,β,A,R0) < 2α(1 − (1/3)α) so
that for every b satisfying (1.2) and (1.19) with ‖b‖∞ ≤ A, r ∈ (0,R0] and x ∈ Rd ,

Px

(
τb
B(x,r) ≤ κrα

) ≤ 1

2
.
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Proof. Let f be a C2 function taking values in [0,1] such that f (0) = 0 and f (u) = 1 if |u| ≥ 1. Set fx,r (y) =
f (

y−x
r

). Note that fx,r is a C2 function taking values in [0,1] such that fx,r (x) = 0 and fx,r (y) = 1 if y /∈ B(x, r).

Moreover, supy∈Rd | ∂2fx,r (y)

∂yi ∂yj
| ≤ r−2 supy∈Rd | ∂2f (y)

∂yi ∂yj
|. Denote

∑d
i,j=1 |∂2

ij f (x)| by |D2f (x)|. By Taylor’s formula, it
follows that

∣∣Lbfx,r (u)
∣∣ ≤ c1

∫ ∣∣fx,r (u + h) − fx,r (u) − 〈∇fx,r (u),h
〉
1{|h|≤r}

∣∣( 1

|h|d+α
+ 1

|h|d+β

)
dh

≤ c2‖D2f ‖∞r−2
∫

|h|≤r

|h|2
(

1

|h|d+α
+ 1

|h|d+β

)
dh

+ c2‖f ‖∞
∫

{|h|>r}

(
1

|h|d+α
+ 1

|h|d+β

)
dh

≤ c3
(
r−α + r−β

) ≤ c3
(
1 + R

α−β

0

)
r−α,

where ci = ci(d,α,β,A), i = 1,2,3 are positive constants. Therefore, for each t > 0,

Px

(
τb
B(x,r) ≤ t

) ≤ Ex

[
fx,r

(
Xb

τb
B(x,r)

∧t

)] − fx,r (x) = Ex

[∫ τb
B(x,r)

∧t

0
Lbfx,r

(
Xb

s

)
ds

]
≤ c3

(
1 + R

α−β

0

) t

rα
.

Set κ = (2α(1 − (1/3)α)) ∧ (2c3(1 + R
α−β

0 ))−1, then Px(τ
b
B(x,r) ≤ κrα) ≤ 1/2. �

Recall that mb,λ = essinfx,z∈Rd ,|z|>λ b(x, z).

Proposition 5.10. For every A > 0, λ > 0, 0 < ε < 1 and R0 > 0, there exists a constant C16 = C16(d,α,β,A,λ,

ε,R0) > 0 so that for every b satisfying (1.2) and (1.23) with ‖b‖∞ ≤ A, r ∈ (0,R0] and x, y ∈Rd with |x − y| ≥ 3r ,

Px

(
σb

B(y,r) < κrα
) ≥ C16r

d+α

(
1

|x − y|d+α
+ mb+,λ

|x − y|d+β

)
.

Proof. By Proposition 5.9,

Ex

[
κrα ∧ τb

B(x,r)

] ≥ κrαPx

(
τb
B(x,r) ≥ κrα

) ≥ 1

2
κrα.

Note that J b(x, y) ≥ mb+,λA(d,−β)|x − y|−d−β1{|x−y|>λ}. Thus by (1.23) and Proposition 5.2, there are positive
constants c1 = c1(d,α,β) and c2 = c2(d,α,β,A,λ, ε,R0) so that

Px

(
σb

B(y,r) < κrα
) ≥ Px

(
Xb

κrα∧τb
B(x,r)

∈ B(y, r)
)

= Ex

∫ κrα∧τb
B(x,r)

0

∫
B(y,r)

J b
(
Xb

s ,u
)
duds

≥ c1Ex

[
κrα ∧ τb

B(x,r)

] ∫
B(y,r)

(
ε

|x − y|d+α
+ mb+,λ

|x − y|d+β
1{|x−y|>λ}

)
du

≥ c2εκrd+α

(
1

|x − y|d+α
+ mb+,λ

|x − y|d+β

)
.

Here in the last inequality, we used the fact that |x −y|−(d+α) ≥ (1+λα−βA)−1(|x −y|−(d+α) +mb,λ · |x −y|−(d+β))

for |x − y| ≤ λ. �
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Proposition 5.11. For every A > 0, there exists a constant C17 = C17(d,α,β,A) > 0 so that for every bounded b

that satisfies (1.2) and (1.19) with ‖b‖∞ ≤ A, and 3r ≤ |x − y| ≤ R∗ := 1
3 (2A

A(d,−β)
A(d,−α)

)1/(β−α),

Px

(
σb

B(y,r) < κrα
) ≥ C17

rd+α

|x − y|d+α
.

Proof. Note that for w ∈ B(x, r) and u ∈ B(y, r), we have |w − u| ≤ 3R∗, thus

J b(w,u) = A(d,−α)

|w − u|d+α
+ A(d,−β)b(x,u − x)

|w − u|d+β
≥ A(d,−α)

|w − u|d+α
− A

A(d,−β)

|w − u|d+β
≥ 1

2

A(d,−α)

|w − u|d+α
.

By a similar argument as that for Proposition 5.10, one can obtain the desired conclusion. See the arXiv version [13]
of this paper for details. �

Theorem 5.12. For every λ > 0, ε ∈ (0,1) and A > 0, there are positive constants C18 = C18(d,α,β,A,λ, ε) and
C19 = C19(d,α,β,A,λ) such that for any b with ‖b‖∞ ≤ A that satisfies (1.2) and (1.23),

C18pmb+,λ
(t, x, y) ≤ qb(t, x, y) ≤ C19pMb+,λ

(t, x, y), t ∈ (0,1], x, y ∈ Rd . (5.7)

Proof. Noting that the condition (1.23) in particular implies (1.19), so the upper bound estimate follows immediately
from Theorem 5.8. We only need to prove the lower bound. Let δ0 := 1 ∧ (A0/A)α/(α−β). (3.24) together with (1.8)
also yields that for any ‖b‖∞ ≤ A,

qb(t, x, y) ≥ c0t
−d/α for t ∈ (0, δ0] and |x − y| ≤ 3t1/α. (5.8)

Here c0 = c0(d,α,β) is a positive constant. For every t ∈ (0, δ0], by Proposition 5.9 and Proposition 5.10 with R0 = 1,
r = t1/α/2 and the strong Markov property of the process Xb, we get for |x − y| > 3t1/α ,

Px

(
Xb

2−ακt
∈ B

(
y, t1/α

))
≥ Px

(
Xb hits B

(
y, t1/α/2

)
before 2−ακt and stays there for at least 2−ακt units of time

)
≥ Px

(
σb

B(y,t1/α/2)
< 2−ακt

)
inf

z∈B(y,t1/α/2)
Pz

(
τb
B(z,t1/α/2)

≥ 2−ακt
)

≥ c1t
(d+α)/α

(
1

|x − y|d+α
+ mb+,λ

|x − y|d+β

)
. (5.9)

Here c1 = c1(d,α,β,A,λ, ε) is a positive constant. Hence, by (5.8) and (5.9), for |x − y| > 3t1/α and t ∈ (0, δ0],

qb(t, x, y) ≥
∫

B(y,t1/α)

qb
(
2−ακt, x, z

)
qb

((
1 − 2−ακ

)
t, z, y

)
dz

≥ inf
z∈B(y,t1/α)

qb
((

1 − 2−ακ
)
t, z, y

)
Px

(
Xb

2−ακt
∈ B

(
y, t1/α

))
≥ c2t

−d/αt(d+α)/α

(
1

|x − y|d+α
+ mb+,λ

|x − y|d+β

)
≥ c2

(
t

|x − y|d+α
+ tmb+,λ

|x − y|d+β

)
, (5.10)

where c2 = c2(d,α,β,A,λ, ε) > 0, the third inequality holds due to |z − y| ≤ t1/α ≤ 3((1 − 2−ακ)t)1/α when κ ≤
2α(1−3−α) and (5.8)–(5.9). Finally, (5.8), (5.10) together with (1.10) and the Chapman–Kolmogorov equation yields
the desired lower bound estimate. �
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Theorem 5.13. For every λ > 0 and A > 0, there are positive constants Ck = Ck(d,α,β,A), k = 20,21 and C22 =
C22(d,α,β,A,λ) such that for any bounded b satisfying (1.2) and (1.19) with ‖b‖∞ ≤ A,

C20p0(t,C21x,C21y) ≤ qb(t, x, y) ≤ C22pMb+,λ
(t, x, y) for t ∈ (0,1] and x, y ∈Rd . (5.11)

Proof. By Theorem 5.8, it suffices to prove the lower bound of qb. Let δ0 := 1 ∧ (A0/A)α/(α−β). By Chapman–
Kolmogorov equation, we only need to consider (5.11) for t ∈ (0, δ0]. By (1.20), (1.21) and (3.24), it suffices to prove
(5.11) when |x − y| > 3t1/α and t ∈ (0, δ0]. Let R∗ be the constant defined in Proposition 5.11.

First, by a similar argument as in the proof of Theorem 5.12, there exists c2 = c2(d,α,β,A) > 0 such that for
R∗ ≥ |x − y| > 3t1/α ,

qb(t, x, y) ≥ c2
t

|x − y|d+α
. (5.12)

Next we consider the case |x −y| > R∗ > 3t1/α . Take C∗ = R−1∗ . Then |x −y| > R∗ = C−1∗ ≥ t/C∗ for t ∈ (0, δ0].
Set R := |x − y| and c+ = R−1∗ ∨ 1. Let l ≥ 2 be an integer so that c+R ≤ l ≤ c+R + 1, and x = x0, x1, . . . , xl = y be
such that |xi − xi−1| 
 R/l 
 1/c+ for 1 ≤ i ≤ 1l − 1. Since t/ l ≤ C∗R/l ≤ C∗/c+ ≤ 1 and R/l ≤ 1/c+ ≤ R∗, we
have by (5.8) and (5.12),

qb(t/ l, xi, xi+1) ≥ c2

(
(t/ l)−d/α ∧ t/ l

(R/l)d+α

)
≥ c2

(
(t/ l)−d/α ∧ (t/ l)

) ≥ c3t/ l. (5.13)

Then by (5.13) and a similar chain argument as in [8, Theorem 3.6], we have

qb(t, x, y) ≥ c3

(
t

|x − y|
)c4|x−y|

, |x − y| > R∗ > 3t1/α. (5.14)

By (5.12), (5.14) and together with the estimates of p0 in (1.20)–(1.21), we get the desired conclusion. �

Proof of Theorem 1.3. Theorem 1.3 now follows from Theorems 5.5, 5.12 and 5.13. �

To prove Theorem 1.5, we use the main result in [10] of the heat kernel estimates for non-local operators under the
non-local Feynman–Kac perturbation. For each Borel function q(x) on Rd and Borel function F(x, y) on Rd × Rd

that vanishes along the diagonal, we define a non-local Feynman–Kac transform for the process Xb as follows:

T
b,F
t f (x) = Ex

[
exp

(∫ t

0
q
(
Xb

s

)
ds +

∑
s≤t

F
(
Xb

s−,Xb
s

))
f

(
Xb

t

)]
. (5.15)

By Ito’s formula, Proposition 5.1, the Stieljes exponential expression for the Feynman–Kac transform, and the Lévy
system formula in Proposition 5.2, we have the following proposition. See the arXiv version [13] of this paper for the
details of its proof.

Proposition 5.14. Suppose b is a bounded function on Rd ×Rd satisfying (1.2) and (1.19), q is a bounded function
on Rd and |F(x, y)| ≤ c(|x − y|2 ∧ 1) for some constant c. Then for each f in C2

b(Rd),

T
b,F
t f (x) = f (x) +

∫ t

0
T b,F

s Lb,F f (x) ds,

where Lb,F f (x) = Lbf (x) + ∫
Rd (e

F(x,y) − 1)f (y)J b(x, y) dy + q(x)f (x).

Proof of Theorem 1.5. Let b0(x, z) = b(x, z)1|z|≤1(z), which is a bounded function on Rd ×Rd satisfying (1.2) and
(1.19). By Theorem 1.3, qb0(t, x, y) is continuous on (0,∞) ×Rd ×Rd and

C4p0(t, x, y) ≤ qb0(t, x, y) ≤ C3p0(t, x, y) (5.16)

for all (t, x, y) ∈ (0,1] ×Rd ×Rd .
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Set F(x, y) = log J b(x,y)

J b0 (x,y)
and q(x) = ∫

Rd (J
b0(x, y) − J b(x, y)) dy. It is easy to see that q is a bounded function

on Rd and J b(x, y) = J b0(x, y) for |x − y| ≤ 1. Moreover, there exist two positive constants c3 and c4 so that
c3 ≤ J b(x,y)

J b0 (x,y)
≤ c4 for all |x − y| > 1 and any bounded b with ‖b‖∞ ≤ A. Hence, there is a positive constant c5 so that

|F(x, y)| ≤ c5(|x − y|2 ∧ 1). Let T
b0,F
t be the semigroup T

b,F
t defined by (5.15) but with b0 in place of b. By (5.16)

and [10, Theorem 1.3], the non-local Feynman–Kac semigroup (T
b0,F
t , t ≥ 0) has a continuous density q̃(t, x, y) and

there is a positive constant c6 so that for all (t, x, y) ∈ (0,1] ×Rd ×Rd ,

c−1
6 p0(t, x, y) ≤ q̃(t, x, y) ≤ c6p0(t, x, y). (5.17)

On the other hand, by the definition of F(x, y) and q(x), for each f in C2
b(Rd), Lb0,F f (x) = Lbf (x). By taking

f = 1 in Proposition 5.14, we get T
b0,F
t 1 = 1. Hence q̃(t, x, y) uniquely determines a conservative Feller process Ỹ

with {T b0,F
t ; t ≥ 0} as its transition semigroup. Proposition 5.14 implies that the distribution of Ỹ on the canonical

Skorokhod space D([0,∞),Rd) is a solution to the martingale problem (Lb,C2
b(Rd)) and in particular to the martin-

gale problem (Lb,S(Rd)). However by Theorem 1.3, martingale solution to the operator (Lb,S(Rd)) is unique. This
yields that q̃ = qb and so we get the desired conclusion from (5.17). �
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