
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2018, Vol. 54, No. 1, 51–74
https://doi.org/10.1214/16-AIHP794
© Association des Publications de l’Institut Henri Poincaré, 2018

Hydrostatics and dynamical large deviations for a
reaction-diffusion model

C. Landima,b and K. Tsunodac

aIMPA, Estrada Dona Castorina 110, CEP 22460 Rio de Janeiro, Brasil
bCNRS UMR 6085, Université de Rouen, Avenue de l’Université, BP 12, Technopôle du Madrillet, F76801 Saint-Étienne-du-Rouvray, France.

E-mail: landim@impa.br
cInstitute of Mathematics for Industry, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.

E-mail: k-tsunoda@imi.kyushu-u.ac.jp

Received 14 January 2016; revised 5 September 2016; accepted 12 September 2016

Abstract. We consider the superposition of a symmetric simple exclusion dynamics, speeded-up in time, with a spin-flip dynamics
in a one-dimensional interval with periodic boundary conditions. We prove the hydrostatics and the dynamical large deviation
principle.

Résumé. On considère la superposition de l’exclusion simple symétrique accélérée en temps avec une dynamique non-
conservative sur un intervalle uni-dimensionnel avec des conditions périodiques. On démontre le comportement hydrostatique
et un principe de grandes déviations dynamique.
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1. Introduction

In recent years, the large deviations of interacting particle systems have attracted much attention as an important
step in the foundation of a thermodynamic theory of nonequilibrium stationary states [4,6,8,17]. Notwithstanding the
absence of explicit expressions for the stationary states, large deviations principles for the empirical measure under
the stationary state have been derived from a dynamical large deviations principle [5,11,20], extending to an infinite-
dimensional setting [9,19] for the Freidlin and Wentzell approach [23].

We consider in this article interacting particle systems in which a symmetric simple exclusion dynamics, speeded-
up diffusively, is superposed to a non-conservative Glauber dynamics. De Masi, Ferrari and Lebowitz [13] proved that
the macroscopic evolution of the empirical measure is described by the solutions of the reaction-diffusion equation

∂tρ = (1/2)�ρ + B(ρ) − D(ρ), (1.1)

where � is the Laplacian and F = B − D is a reaction term determined by the stochastic dynamics. They also proved
that the equilibrium fluctuations evolve as generalized Ornstein-Uhlenbeck processes.

A large deviation principle for the empirical measure has been obtained in [24] in the case where the initial distribu-
tion is a local equilibrium. The lower bound of the large deviations principle was achieved only for smooth trajectories.
More recently, [11] extended the large deviations principle to a one-dimensional dynamics in contact with reservoirs
and proved the lower bound for general trajectories in the case where the birth and the death rates, B(ρ) and D(ρ),
respectively, are monotone, concave functions.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
https://doi.org/10.1214/16-AIHP794
mailto:landim@impa.br
mailto:k-tsunoda@imi.kyushu-u.ac.jp


52 C. Landim and K. Tsunoda

In this article, we first present a law of large numbers for the empirical measure under the stationary state [18,26].
More precisely, denote by μN the stationary state on a one-dimensional torus with N points of the superposition of
a Glauber dynamics with a symmetric simple exclusion dynamics speeded-up by N2. This probability measure is not
known explicitly and it exhibits long range correlations [2]. Let Vε denote an ε-neighborhood of the set of solutions
of the elliptic equation

(1/2)�ρ + F(ρ) = 0. (1.2)

Theorem 2.2 asserts that for any ε > 0, μN(V c
ε ) vanishes as N → ∞. In contrast with previous results, equation (1.2)

may not have a unique solution so that equation (1.1) may not have a global attractor, what prevents the use of the
techniques developed in [20,28]. This result solves partially a conjecture raised in Section 4.2 of [10].

The main results of this article concern the large deviations of the Glauber-Kawasaki dynamics. We first prove a full
large deviations principle for the empirical measure under the sole assumption that B and D are concave functions.
These assumptions encompass the case in which the potential F(ρ) = B(ρ) − D(ρ) presents two or more wells,
and open the way to the investigation of the metastable behavior of this dynamics. Previous results in this directions
include [3,14,15].

We also prove that the large deviations rate function is lower semicontinuous and has compact level sets. These
properties play a fundamental role in the proof of the static large deviation principle for the empirical measure under
the stationary state μN [9,19].

The main difficulty in the proof of the lower bound of the large deviation principle comes from the presence of
exponential terms in the rate function, denoted in this introduction by I . In contrast with conservative dynamics,
for a trajectory u(t, x), I (u) is not expressed as a weighted H−1 norm of ∂tu − (1/2)�u − F(u). This forces the
development of new tools to prove that smooth trajectories are I -dense.

Both the large deviations of the empirical measure under the stationary state and the metastable behavior of the
dynamics in the case where the potential admits more than one well are investigated in [21] based on the results
presented in this article.

Comments on the proof. The proof of the law of large numbers for the empirical measure under the stationary state
μN borrows ideas from [20,28]. On the one hand, by [13], the evolution of the empirical measure is described by the
solutions of the reaction-diffusion equation (1.1). On the other hand, by [12], for any density profile γ , the solution ρt

of (1.1) with initial condition γ converges to some solution of the semilinear elliptic equation (1.2). Assembling these
two facts, we show in the proof of Theorem 2.2 that the empirical measure eventually reaches a neighborhood of the
set of all solutions of the semilinear elliptic equation (1.2).

The proof that the rate function I is lower semicontinuous and has compact level set is divided in two steps.
Denote by Q(π) the energy of a trajectory π , defined in (2.4). Following [29], we first show in Proposition 4.2 that
the energy of a trajectory π is bounded by the sum of its rate function with a constant: Q(π) ≤ C0(I (π) + 1). It
is not difficult to show that a sequence in the set {π : Q(π) ≤ a}, a > 0, which converges weakly also converges
in L1. The lower semicontinuity of the rate function I follows from these two facts. Let πn be a sequence which
converges weakly to π . We may, of course, assume that the sequence I (πn) is bounded. In this case, by the two
results presented above, πn converges to π in L1. As the rate function I (·), defined in (2.5), is given by supG JG(·),
where the supremum is carried over smooth functions, and since for each such function JG is continuous for the L1

topology, JG(π) = limn JG(πn) ≤ lim infn I (πn). To conclude the proof of the lower semicontinuity of I , it remains
to maximize over G. The proof that the level sets are compact is similar.

Note that the previous argument does not require a bound of the H−1 norm of ∂tπ in terms of I (π) and Q(π).
Actually, such a bound does not hold in the present context. For example, let ρ represent the solution of the hydrody-
namic equation (1.1) starting from some initial condition γ . Due to the reaction term, the H−1 norm of ∂tρ might be
infinite, while I (ρ) = 0 and Q(ρ) < ∞. The fact that a bound on the H−1 norm of ∂tπ is not used, may simplify the
earlier proofs of the regularity of the rate function in the case of conservative dynamics [7,20].

The main difficulty in the proof of the lower bound lies in the I -density of smooth trajectories: each trajectory π

with finite rate function should be approachable by a sequence of smooth trajectories πn such that I (πn) converges
to I (π). We use in this step the hydrodynamic equation and several convolutions with mollifiers to smooth the paths.
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The concavity of B and D are used in this step and only in this one. We emphasize that we can not use Theorem 2.4 in
[24] in our setting due to the large deviations which come from initial configurations. Therefore we need to prove the
I -density, Theorem 5.2. It is possible that the theory of Orlicz spaces may allow to weaken these assumptions. Similar
difficulties appeared in the investigation of the large deviations of a random walk driven by an exclusion process and
of the exclusion process with a slow bond [1,22].

This article is organized as follows. In Section 2, we introduce a reaction-diffusion model and state the main results.
In Section 3 we prove the law of large numbers for the empirical measure under the stationary state. In Section 4, we
present the main properties of the rate function I . In Section 5, we prove that the smooth trajectories are I -dense and
we prove Theorem 2.5, the main result of the article. In the Appendix, we recall some results on the solution of the
hydrodynamic equation (1.1).

2. Notation and results

Throughout this article, we use the following notation. N0 stands for the set {0,1, . . .}. For a function f : X → R,
defined on some space X, let ‖f ‖∞ = supx∈X |f (x)|. We will use C0 > 0 and C > 0 as a notation for a generic
positive constant which may change from line to line.

2.1. Reaction-diffusion model

We fix some notation and define the model. Let TN be the one-dimensional discrete torus Z/NZ = {0,1, . . . ,N − 1}.
The state space of our process is given by XN = {0,1}TN . Let η denote a configuration in XN , x a site in TN , η(x) = 1
if there is a particle at site x, otherwise η(x) = 0.

We consider in the set TN the superposition of the symmetric simple exclusion process (Kawasaki) with a spin-flip
dynamics (Glauber). This model was introduced by De Masi, Ferrari and Lebowitz in [13] to derive a reaction-
diffusion equation from a microscopic dynamics. More precisely, the stochastic dynamics is a Markov process on XN

whose generator LN acts on functions f : XN →R as

LNf = N2

2
LKf +LGf,

where LK is the generator of a symmetric simple exclusion process (Kawasaki dynamics),

(LKf )(η) =
∑

x∈TN

[
f
(
ηx,x+1)− f (η)

]
,

and where LG is the generator of a spin flip dynamics (Glauber dynamics),

(LGf )(η) =
∑

x∈TN

c(x, η)
[
f
(
ηx
)− f (η)

]
.

In these formulas, ηx,x+1 (resp. ηx ) represents the configuration obtained from η by exchanging (resp. flipping) the
occupation variables η(x), η(x + 1) (resp. η(x)):

ηx(z) =
{

η(z) if z �= x,

1 − η(z) if z = x,
ηx,y(z) =

⎧⎪⎨
⎪⎩

η(y) if z = x,

η(x) if z = y,

η(z) otherwise.

Moreover, c(x, η) = c(η(x − M), . . . , η(x + M)), for some M ≥ 1 and some strictly positive cylinder function c(η),
that is, a function which depends only on a finite number of variables η(y). Note that the exclusion dynamics has
been speeded-up by a factor N2, and that the Markov process generated by LN is irreducible because c(η) is a strictly
positive function.
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2.2. Hydrodynamic limit

We briefly discuss in this subsection the limiting behavior of the empirical measure.
Denote by T the one-dimensional continuous torus T =R/Z= [0,1). Let M+ =M+(T) be the space of nonneg-

ative measures on T, whose total mass bounded by 1, endowed with the weak topology. For a measure π in M+ and
a continuous function G : T →R, denote by 〈π,G〉 the integral of G with respect to π :

〈π,G〉 =
∫
T

G(u)π(du).

The space M+ is metrizable. Indeed, if f2k(u) = cos(πku) and f2k+1(u) = sin(πku), k ∈ N0, one can define the
distance d on M+ as

d(π1,π2) :=
∞∑

k=0

1

2k

∣∣〈π1, fk〉 − 〈π2, fk〉
∣∣.

Denote by Cm(T), m in N0 ∪ {∞}, the set of all real functions on T which are m times differentiable and whose
mth derivative is continuous. Given a function G in C2(T), we shall denote by ∇G and �G the first and second
derivative of G, respectively.

Let {ηN
t : N ≥ 1} be the continuous-time Markov process on XN whose generator is given by LN . Let πN : XN →

M+ be the function which associates to a configuration η the positive measure obtained by assigning mass N−1 to
each particle of η,

πN(η) = 1

N

∑
x∈TN

η(x)δx/N ,

where δu stands for the Dirac measure which has a point mass at u ∈ T. Denote by πN
t the empirical measure process

πN(ηN
t ).

Fix arbitrarily T > 0. For a topological space X and an interval I = [0, T ] or [0,∞), denote by C(I,X) the set
of all continuous trajectories from I to X endowed with the uniform topology. Let D(I,X) be the space of all right-
continuous trajectories from I to X with left-limits, endowed with the Skorokhod topology. For a probability measure
ν in XN , denote by P

N
ν the measure on D([0, T ],XN) induced by the process ηN

t starting from ν.
Let νρ = νN

ρ , 0 ≤ ρ ≤ 1, be the Bernoulli product measure with the density ρ. Define the continuous functions
B,D : [0,1] → R by

B(ρ) =
∫ [

1 − η(0)
]
c(η) dνρ, D(ρ) =

∫
η(0)c(η) dνρ.

Since B(1) = 0, D(0) = 0 and B,D are polynomials in ρ,

B(ρ) = (1 − ρ)B̃(ρ), D(ρ) = ρD̃(ρ), (2.1)

where B̃(ρ), D̃(ρ) are polynomials.
The next result was proved by De Masi, Ferrari and Lebowitz in [13] for the first time. We refer to [13,24,25] for

its proof.

Theorem 2.1. Fix T > 0 and a measurable function γ : T → [0,1]. Let ν = νN be a sequence of probability measures
on XN associated to γ , in the sense that

lim
N→∞νN

(∣∣∣∣〈πN,G
〉− ∫

T

G(u)γ (u)du

∣∣∣∣> δ

)
= 0,
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for every δ > 0 and every continuous function G : T → R. Then, for every t ≥ 0, every δ > 0 and every continuous
function G : T →R, we have

lim
N→∞P

N
ν

(∣∣∣∣〈πN
t ,G

〉− ∫
T

G(u)ρ(t, u) du

∣∣∣∣> δ

)
= 0,

where ρ : [0,∞) ×T → [0,1] is the unique weak solution of the Cauchy problem{
∂tρ = (1/2)�ρ + F(ρ) on T,

ρ(0, ·) = γ (·), (2.2)

where F(ρ) = B(ρ) − D(ρ).

The definition, existence and uniqueness of weak solutions of the Cauchy problem (2.2) are discussed in the
Appendix.

2.3. Hydrostatic limit

We examine in this subsection the asymptotic behavior of the empirical measure under the stationary state. Fix N ≥ 1
large enough. Since the Markov process ηN

t is irreducible and the cardinality of the state space XN is finite, there
exists a unique invariant probability measure for the process ηN

t , denoted by μN . Let PN be the probability measure
on M+ defined by PN = μN ◦ (πN)−1.

For each p ≥ 1, let Lp(T) be the space of all real pth integrable functions G : T → R with respect to the Lebesgue
measure:

∫
T

|G(u)|p du < ∞. The corresponding norm is denoted by ‖ · ‖p:

‖G‖p
p :=

∫
T

∣∣G(u)
∣∣p du.

In particular, L2(T) is a Hilbert space equipped with the inner product

〈G,H 〉 =
∫
T

G(u)H(u)du.

For a function G in L2(T), we also denote by 〈G〉 the integral of G with respect to the Lebesgue measure: 〈G〉 :=∫
T

G(u)du.
Let E be the set of all classical solutions of the semilinear elliptic equation:

(1/2)�ρ + F(ρ) = 0 on T. (2.3)

Classical solution means a function ρ : T → [0,1] in C2(T) which satisfies the equation (2.3) for any u ∈ T. We
sometimes identify E with the set of all absolutely continuous measures whose density are a classical solution of
(2.3): {

π ∈M+ : π(du) = ρ(u)du,ρ is a classical solution of the equation (2.3)
}
.

Theorem 2.2. The measure PN asymptotically concentrates on the set E . Namely, for any δ > 0, we have

lim
N→∞PN

(
π ∈ M+ : inf

π̄∈E
d(π, π̄) ≥ δ

)
= 0.

If the set E is a singleton, it follows from Theorem 2.2 that the sequence {PN : N ≥ 1} converges:

Corollary 2.3. Assume that there exists a unique classical solution ρ : T → [0,1] of the semilinear elliptic equation
(2.3). Then PN converges to the Dirac measure concentrated on ρ(u)du as N → ∞.
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Remark 2.4. In [14,15], De Masi et al. examined the dynamics introduced above in the case of the double well
potential F(ρ) = −V ′(ρ) = a(2ρ − 1) − b(2ρ − 1)3, a, b > 0, which is symmetric around the density 1/2. They
proved that, starting from a product measure with mean 1/2, the unstable equilibrium of the ODE ẋ(t) = −V ′(x(t)),
the empirical density remains in a neighborhood of 1/2 in a time scale of order logN . Bodineau and Lagouge in
Subsection of [10] conjectured that Theorem 2.2 remains true if we replace E by the set of all stable equilibrium
solutions of the equation (2.3). This conjecture is proved in [21] and follows from the large deviation principle for the
sequence {PN : N ≥ 1}.
2.4. Dynamical large deviations

Denote by M+,1 the closed subset of M+ of all absolutely continuous measures with density bounded by 1:

M+,1 = {π ∈M+(T) : π(du) = ρ(u)du,0 ≤ ρ(u) ≤ 1 a.e. u ∈ T
}
.

Fix T > 0, and denote by Cm,n([0, T ] × T), m,n in N0 ∪ {∞}, the set of all real functions defined on [0, T ] ×
T which are m times differentiable in the first variable and n times on the second one, and whose derivatives are
continuous. Let Qη = QN

η , η ∈ XN , be the probability measure on D([0, T ],M+) induced by the measure-valued
process πN

t starting from πN(η).
Fix a measurable function γ : T → [0,1]. For each path π(t, du) = ρ(t, u) du in D([0, T ],M+,1), define the

energy Q : D([0, T ],M+,1) → [0,∞] as

Q(π) = sup
G∈C0,1([0,T ]×T)

{
2
∫ T

0
dt〈ρt ,∇Gt 〉 −

∫ T

0
dt

∫
T

duG2(t, u)

}
. (2.4)

It is known that the energy Q(π) is finite if and only if ρ has a generalized derivative and this generalized derivative
is square integrable on [0, T ] ×T:∫ T

0
dt

∫
T

du
∣∣∇ρ(t, u)

∣∣2 < ∞.

Moreover, it is easy to see that the energy Q is convex and lower semicontinuous.
For each function G in C1,2([0, T ] ×T), define the functional J̄G : D([0, T ],M+,1) → R by

J̄G(π) = 〈πT ,GT 〉 − 〈γ,G0〉 −
∫ T

0
dt

〈
πt , ∂tGt + 1

2
�Gt

〉

− 1

2

∫ T

0
dt
〈
χ(ρt ), (∇Gt)

2〉− ∫ T

0
dt
{〈

B(ρt ), e
Gt − 1

〉+ 〈D(ρt ), e
−Gt − 1

〉}
,

where χ(r) = r(1 − r) is the mobility. Let JG : D([0, T ],M+) → [0,∞] be the functional defined by

JG(π) =
{

J̄G(π) if π ∈ D([0, T ],M+,1),

∞ otherwise.

We define the large deviation rate function IT (·|γ ) : D([0, T ],M+) → [0,∞] as

IT (π |γ ) =
{

supJG(π) if Q(π) < ∞,

∞ otherwise,
(2.5)

where the supremum is taken over all functions G in C1,2([0, T ] ×T).
We review here an explicit formula for the functional IT at smooth trajectories obtained in Lemma 2.1 of [24]. Let

ρ be a function in C2,3([0, T ] × T) with c ≤ ρ ≤ 1 − c, for some 0 < c < 1/2, and set π(t, du) = ρ(t, u) du. Then
there exists a unique solution H ∈ C1,2([0, T ] ×T) of the partial differential equation

∂tρ = (1/2)�ρ − ∇(χ(ρ)∇H
)+ B(ρ)eH − D(ρ)e−H ,
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with some initial profile γ . In the case, IT (π |γ ) can be expressed as

IT (π |γ ) = 1

2

∫ T

0
dt
〈
χ(ρt ), (∇Ht)

2〉

+
∫ T

0
dt
〈
B(ρt ), f (Ht )

〉+ ∫ T

0
dt
〈
D(ρt ), f (−Ht)

〉
,

where f (a) = 1 − ea + aea .
The following theorem is one of main results of this paper.

Theorem 2.5. Assume that the functions B and D are concave on [0,1]. Fix T > 0 and a measurable function
γ : T → [0,1]. Assume that a sequence ηN of initial configurations in XN is associated to γ , in the sense that

lim
N→∞

〈
πN
(
ηN
)
,G
〉= ∫

T

G(u)γ (u)du

for every continuous function G : T → R. Then, the measure QηN on D([0, T ],M+) satisfies a large deviation
principle with the rate function IT (·|γ ). That is, for each closed subset C ⊂ D([0, T ],M+),

lim
N→∞

1

N
logQηN (C) ≤ − inf

π∈C
IT (π |γ ),

and for each open subset O ⊂ D([0, T ],M+),

lim
N→∞

1

N
logQηN (O) ≥ − inf

π∈O
IT (π |γ ).

Moreover, the rate function IT (·|γ ) is lower semicontinuous and has compact level sets.

Remark 2.6. Jona-Lasinio, Landim and Vares [24] proved the dynamical large deviations principle stated above,
but the lower bound was obtained only for smooth trajectories. Bodineau and Lagouge [11] proved the lower bound
for one-dimensional reaction-diffusion models in contact with reservoirs in the case where B and D are concave,
monotone functions.

Remark 2.7. Proposition 4.2 asserts that there exists a finite constant C0 such that if π is a trajectory with finite
energy, Q(π) < ∞, then Q(π) ≤ C0(IT (π |γ ) + 1). In the case where B and D are concave functions, we can
use Theorem 5.2, which asserts that the smooth trajectories are IT (|γ )-dense, to prove the same bound without the
assumption that the trajectory π has finite energy. In particular, in this case we can define the rate function IT (|γ )

simply as

IT (π |γ ) = sup
G

JG(π).

Remark 2.8. In the proof that the rate function IT (·|γ ) is lower semicontinuous and has compact level sets we do not
use a bound on the H−1 norm of ∂tρ in terms of its rate function IT (π |γ ). Actually, as mentioned in the introduction,
such a bound does not hold for reaction-diffusion models. Therefore, the arguments presented here permit to simplify
the proof of the regularity of the rate function in other models, such as the weakly asymmetric simple exclusion
process [7,20].

3. Proof of Theorem 2.2

We prove in this section Theorem 2.2. Our approach is a generalization of the one developed in [20,28], but it does
not require the existence of a global attractor for the underlying dynamical system. The method can be applied to
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any dynamics which fulfills two conditions: the macroscopic evolution of the empirical measure is described by a
hydrodynamic equation, and for any initial condition the solution of this equation converges to a stationary profile as
time goes to infinity. For instance, the boundary driven reaction-diffusion models examined in [11].

Recall from Section 2.3 the definition of the measure μN on XN , the map πN from XN to M+ and the measure
PN = μN ◦ (πN)−1 on M+. Denote by QN the probability measure on the Skorokhod space D([0,∞),M+) induced
by the measure-valued process πN

t under the initial distribution PN . Since the measure μN is stationary under the
dynamics, PN(B) = QN(π : πT ∈ B), for each T > 0 and Borel set B ⊂M+.

Lemma 3.1. The sequence {QN : N ≥ 1} is tight and all its limit points Q∗ are concentrated on absolutely continuous
paths π(t, du) = ρ(t, u) du whose density ρ is nonnegative and bounded above by 1:

Q∗{π : π(t, du) = ρ(t, u) du, for t ∈ [0,∞)
}= 1,

Q∗{π : 0 ≤ ρ(t, u) ≤ 1, for (t, u) ∈ [0,∞) ×T
}= 1.

The proof of this lemma is similar to the one of Proposition 3.1 in [27].
Let A be the set of all trajectories π(t, du) = ρ(t, u) du in D([0,∞),M+,1) whose density ρ is a weak solution

to the Cauchy problem (2.2) for some initial profile ρ0 : T → [0,1].

Lemma 3.2. All limit points Q∗ of the sequence {QN : N ≥ 1} are concentrated on paths π(t, du) = ρ(t, u) du in A:

Q∗(A) = 1.

The proof of this lemma is similar to the one of Lemma A.1.1 in [25].

Proof of Theorem 2.2. Fix a positive δ > 0. Let Eδ be the δ-neighborhood of E in M+:

Eδ :=
{
π ∈ M+ : inf

π̄∈E
d(π, π̄) < δ

}
.

Denote by Ec
δ the complement of the set Eδ . The assertion of Theorem 2.2 can be rephrased as

lim
N→∞PN

(
Ec

δ

)= 0.

Therefore, to conclude the theorem it is enough to show that any limit point of the sequence PN(Ec
δ ) is equal to zero.

Fix T > 0. Since the measure μN is invariant under the dynamics,

PN

(
Ec

δ

)= QN
(
π : πT ∈ Ec

δ

)
. (3.1)

Let Q∗ be a limit point of {QN : N ≥ 1} and take a subsequence Nk so that the sequence {QNk : k ≥ 1} converges to
Q∗ as k → ∞. Note that the set {π : πT ∈ Ec

δ } is not closed in D([0,∞),M+). However, we claim that

lim
k→∞ QNk

(
π : πT ∈ Ec

δ

)≤ Q∗({π : πT ∈ Ec
δ

}∩A
)
, (3.2)

where A is the set introduced just before Lemma 3.2. Indeed, denote by {π : πT ∈ Ec
δ } the closure of the set {π : πT ∈

Ec
δ } under the Skorokhod topology. By definition of the weak topology and by Lemma 3.2,

lim
k→∞ QNk

(
π : πT ∈ Ec

δ

)≤ Q∗({π : πT ∈ Ec
δ

})= Q∗({π : πT ∈ Ec
δ

}∩A
)
.

It remains to prove that

{
π : πT ∈ Ec

δ

}∩A = {π : πT ∈ Ec
δ

}∩A.
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Let π be a path in {π : πT ∈ Ec
δ } ∩ A. Then there exists a sequence {πn : n ≥ 1} such that πn converges to π in

D([0,∞),M+) as n → ∞ and πn
T belongs to Ec

δ for any n ≥ 1. Since A is contained in C([0,∞),M+,1), the
sequence {πn : n ≥ 1} converges to π under the uniform topology. Hence πn

T converges to πT . Since Ec
δ is closed in

M+, πT also belongs to Ec
δ , which proves (3.2).

Fix a path π(t, du) = ρ(t, u) du in A. By Proposition A.6, there exists a density profile ρ∞ in E such that ρt

converges to ρ∞ in C2(T). Hence,

A⊂
⋃
j≥1

⋂
k≥j

{πk ∈ Eδ}. (3.3)

By (3.1) and (3.2),

lim
N→∞PN

(
Ec

δ

)≤ Q∗({π : πk ∈ Ec
δ

}∩A
)

for all k ≥ 1.

Since this bound holds for any k ≥ 1,

lim
N→∞PN

(
Ec

δ

)≤ lim
k→∞ Q∗({πk ∈ Ec

δ

}∩A
)≤ Q∗

(⋂
j≥1

⋃
k≥j

{
πk ∈ Ec

δ

}∩A
)

.

This latter set is empty in view of (3.3), which completes the proof of the theorem. �

4. The rate function IT (·|γ )

We prove in this section that the large deviations rate function is lower semicontinuous and has compact level sets.
These properties play a fundamental role in the proof of the static large deviation principle, cf. [9,19]. One of the main
steps in the proof of these properties is Proposition 4.2. It asserts that there exists a finite constant C0 such that for all
trajectory π(t, du) = ρ(t, u) whose density ρ has finite energy, we have Q(π) ≤ C0(IT (π |γ ) + 1). Such bound was
first proved in [29].

Proposition 4.1. Let π be a path in D([0, T ],M+) such that IT (π |γ ) is finite. Then π(0, du) = γ (u)du and π

belongs to C([0, T ],M+,1).

Proof. The proof of this proposition is similar to the one of Lemma 3.5 in [5]. Actually, the computation performed
in the proof of Lemma 3.5 in [5] gives that, for any g in C2(T) and any 0 ≤ s < t ≤ T ,∣∣〈πt , g〉 − 〈πs, g〉∣∣≤ Cαs,r

{
IT (π |γ ) + 1

}
, (4.1)

for some positive constant C = C(g), which depends only on g. In the inequality (4.1), the constant αs,r is given by
(log (r − s)−1)−1. Equation (4.1) implies the desired continuity. �

The next proposition plays an important role in the proof of Theorem 4.7.

Proposition 4.2. There exists a constant C0 > 0 such that, for any path π(t, du) = ρ(t, u) du in D([0, T ],M+,1)

with finite energy, we have∫ T

0
dt

∫
T

du
|∇ρ(t, u)|2
χ(ρ(t, u))

≤ C0
{
IT (π |γ ) + 1

}
.

We fix some notation before proving Proposition 4.2.
Let H 1(T) be the Sobolev space of functions G with generalized derivatives ∇G in L2(T). H 1(T) endowed with

the scalar product 〈·, ·〉1,2, defined by

〈G,H 〉1,2 = 〈G,H 〉 + 〈∇G,∇H 〉,
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is a Hilbert space. The corresponding norm is denoted by ‖ · ‖1,2:

‖G‖2
1,2 :=

∫
T

∣∣G(u)
∣∣2 du +

∫
T

∣∣∇G(u)
∣∣2 du.

For a Banach space (B,‖ · ‖B) and T > 0, we denote by L2([0, T ],B) the Banach space of measurable functions
U : [0, T ] → B for which

‖U‖2
L2([0,T ],B)

=
∫ T

0
‖Ut‖2

B
dt < ∞

holds. For each p ≥ 1 and T > 0, let Lp([0, T ]×T) be the space of all real pth integrable functions U : [0, T ]×T →
R with respect to the Lebesgue measure:

∫ T

0 dt
∫
T

|U(t, u)|p du < ∞.
Fix a path π(t, du) = ρ(t, u) du in D([0, T ],M+,1) with finite energy. For a smooth function G : [0, T ] ×T →R

and for a bounded function H in L2([0, T ],H 1(T)), define the functionals

LG(π) = 〈πT ,GT 〉 − 〈π0,G0〉 −
∫ T

0
dt〈πt , ∂tGt 〉,

B1
H (π) = 1

2

∫ T

0
dt〈∇ρt ,∇Ht 〉 − 1

2

∫ T

0
dt
〈
χ(ρt ), (∇Ht)

2〉,
B2

H (π) =
∫ T

0
dt
{〈

B(ρt ), e
Ht − 1

〉+ 〈D(ρt ), e
−Ht − 1

〉}
.

Note that, for paths π(t, du) such that π(0, du) = γ (u)du,

sup
H∈C1,2([0,T ]×T)

{
LH (π) + B1

H (π) − B2
H (π)

}= IT (π |γ ). (4.2)

Consider the function φ :R → [0,∞) defined by

φ(r) :=
{

1
Z

exp {− 1
(1−r2)

} if |r| < 1,

0 otherwise,

where the constant Z is chosen so that
∫
R

φ(r) dr = 1. For each δ > 0, let

φδ(r) := 1

δ
φ

(
r

δ

)
.

Since the support of the function φδ is contained in [−δ, δ], the function φδ can be regarded as a function on T. To
distinguish convolution in time from convolution in space, we denote by ψδ : T → [0,∞) the function φε defined on
T with ε = δ.

Denote by f ∗ g the space or time convolution of two functions f , g:

(f ∗ g)(a) =
∫

f (a − b)g(b) db,

where the integral runs over R in the case where f , g are functions of time and over T in the case where f and g are
functions of space.
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Throughout this section, we adopt the following notation: For a bounded measurable function ρ : [0, T ] ×T →R,
define the smooth approximation in space, time and space-time by

ρε(t, u) := [ρ(t, ·) ∗ ψε
]
(u) =

∫
T

ρ(t, u + v)ψε(v) dv,

ρδ(t, u) := [ρ(·, u) ∗ φδ
]
(t) =

∫ δ

−δ

ρ(t + r, u)φδ(r) dr,

ρε,δ(t, u) :=
∫ δ

−δ

dr

∫
T

dv ρ(t + r, u + v)ψε(v)φδ(r).

In the above formulas, we extend the definition of ρ to [−1, T + 1] by setting ρt = ρ0 for −1 ≤ t ≤ 0 and ρt = ρT

for T ≤ t ≤ T + 1. Remark that we use similar notation, ρε and ρδ , for different objects. However, ρε and ρδ always
represent a smooth approximation of ρ in space and time, respectively. For each π(t, du) = ρ(t, u) du, we also define
paths πε(t, du) = ρε(t, u) du, πδ(t, du) = ρδ(t, u) du and πε,δ(t, du) = ρε,δ(t, u) du.

We summarize some properties of ρε in the next proposition. The proof is elementary and is thus omitted.

Proposition 4.3. Let ρ : [0, T ] × T → R be a function in L2([0, T ],H 1(T)). Then, for each ε > 0, ρε and ∇ρε

converges to ρ and ∇ρ in L2([0, T ] × T), respectively. Moreover, if ρ is bounded in [0, T ] × T and the application
〈ρt , g〉 is continuous on the time interval [0, T ] for any function g in C∞(T), then, for each ε > 0, ρε is uniformly
continuous on [0, T ] ×T.

For each a > 0, define the functions h = ha and χa on [0,1] by

h(ρ) := 1

2(1 + 2a)

{
(ρ + a) log (ρ + a) + (1 − ρ + a) log (1 − ρ + a)

}
,

χa(ρ) := (ρ + a)(1 − ρ + a).

Note that h′′ = (2χa)
−1.

Until the end of this section, 0 < C0 < ∞ represents a constant independent of ε, δ and a and which may change
from line to line.

Lemma 4.4. Let Rε,δ be the difference between LH (πε,δ) and LHε,δ (π):

Rε,δ = LH

(
πε,δ

)− LHε,δ (π),

where H = h′
a(ρ

ε,δ). Then, for any fixed ε > 0, Rε,δ converges to 0 as δ ↓ 0.

Proof. Keep in mind that H = h′
a(ρ

ε,δ) depends on ε and δ, although this does not appears in the notation, and recall
that C0 represents a constant independent of ε, δ and a which may change from line to line. A change of variables
shows that

LH

(
πε,δ

)= 〈ρδ
T ,Hε

T

〉− 〈ρδ
0,Hε

0

〉− ∫ T

0
dt
〈
ρδ

t , ∂tH
ε
t

〉

= 〈ρT ,H
ε,δ
T

〉− 〈ρ0,H
ε,δ
0

〉− ∫ T

0
dt
〈
ρδ

t , ∂tH
ε
t

〉+ R
ε,δ
1 ,

where

R
ε,δ
1 := Rε,δ,T − R

ε,δ,0
0 and Rε,δ,t := 〈ρδ

t − ρt ,H
ε
t

〉+ 〈ρt ,H
ε
t − H

ε,δ
t

〉
for 0 ≤ t ≤ T .
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From a simple computation it is easy to see that

∫ T

0
dt
〈
ρδ

t , ∂tH
ε
t

〉= ∫ T

0
dt
〈
ρt , ∂tH

ε,δ
t

〉+ R
ε,δ
2 ,

where |Rε,δ
2 | ≤ C0δ‖∂tH

ε‖∞. To conclude the proof, it is enough to show that, for each fixed ε > 0, R
ε,δ
1 and

δ‖∂tH
ε‖∞ converge to zero as δ ↓ 0.

Fix ε > 0. We first prove that

lim
δ↓0

Rε,δ,t = 0 for t = 0 and t = T . (4.3)

We prove this assertion for t = T , the argument being similar for t = 0. A change of variables shows that

Rε,δ,T = 〈ρε,δ
T − ρε

T ,HT

〉+ 〈ρε
T ,HT − Hδ

T

〉
.

By Proposition 4.3, ρε(·, u) is continuous for any u ∈ T. Therefore, for any (t, u) ∈ [0, T ] ×T,

lim
δ↓0

ρε,δ(t, u) = ρε(t, u),

lim
δ↓0

Hδ(T ,u) = h′
a

(
ρε(T ,u)

)= lim
δ↓0

H(T ,u).
(4.4)

Since h′ is bounded and continuous on [0,1], (4.3) is proved by letting δ ↓ 0 and by the bounded convergence theorem.
It remains to show that δ‖∂tH

ε‖∞ converges to 0 as δ ↓ 0. An elementary computation gives that, for any (t, u) ∈
[0, T ] ×T,

∂tH
ε(t, u) =

∫
T

dv h′′(ρε,δ(t, u + v)
)
ψε(v)

∫ δ

−δ

dr ρε(t + r, u + v)
(
φδ
)′
(r).

Since φδ is a symmetric function, a change of variables shows that

∫ δ

−δ

dr ρε(t + r, u + v)
(
φδ
)′
(r) =

∫ 0

−δ

dr
{
ρε(t + r, u + v) − ρε(t − r, u + v)

}(
φδ
)′
(r).

By Proposition 4.3, ρε is uniformly continuous on [−1, T + 1] × T. On the other hand, δ
∫ 0
−δ

(φδ)′(r) dr = φ(0).
Therefore, the last expression multiplied by δ converges to 0 as δ ↓ 0 uniformly in (t, u) ∈ [0, T ] × T. Since h′′ and
ψε are uniformly bounded, δ‖∂tH

ε‖∞ converges to 0 as δ ↓ 0. �

Lemma 4.5. For any path π(t, du) = ρ(t, u) du such that Q(π) < ∞ and for i = 1,2,

lim
ε↓0

lim
δ↓0

Bi
Hε,δ (π) = Bi

h′(ρ)(π).

Moreover, there exists a positive constant C0 < ∞, independent of a > 0, such that

∫ T

0
dt

∫
T

du
(∇ρ(t, u))2

χa(ρ(t, u))
≤ C0B

1
h′(ρ)(π),

∣∣B2
h′(ρ)(π)

∣∣≤ C0. (4.5)

Proof. Throughout this proof, C(a) expresses a constant depending only on a > 0 which may change from line to
line.

Let π(t, du) = ρ(t, u) du be a path in D([0, T ],M+,1) such that Q(π) < ∞. We first show that

lim
ε↓0

lim
δ↓0

B1
Hε,δ (π) = B1

h′(ρ)(π). (4.6)
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Since ∇ρε = ρ ∗ ∇ψε , by Proposition 4.3, ∇ρε is uniformly continuous in [0, T ] ×T. Therefore, for any (t, u) ∈
[0, T ] ×T, we have

lim
δ↓0

∇ρε,δ(t, u) = ∇ρε(t, u),

lim
δ↓0

∇Hε,δ(t, u) =
∫
T

dv ψε(v)h′′
a

(
ρε(t, u + v)

)∇ρε(t, u + v).

Hence, by the bounded convergence theorem and a change of variables,

lim
δ↓0

B1
Hε,δ (π) = 1

2

∫ T

0
dt
{〈∇ρε

t , h
′′
a

(
ρε

t

)∇ρε
t

〉− 〈χ(ρt ),
([

h′′
a

(
ρε

t

)∇ρε
t

]ε)2〉}
. (4.7)

On the one hand, since for any fixed a > 0 h′′
a is bounded, and since by Proposition 4.3, ∇ρε converges to ∇ρ in

L2([0, T ] ×T),

lim
ε↓0

∫ T

0
dt
〈
h′′

a

(
ρε

t

)[∇ρε
t − ∇ρt

]2〉= 0.

As ρ has finite energy and h′′
a is bounded, the family {h′′

a(ρ
ε)[∇ρ]2; ε > 0} is uniformly integrable. Moreover, since h′′

a

is Lipschitz continuous, by Proposition 4.3, h′′
a(ρ

ε) converges to h′′
a(ρ) as ε ↓ 0 in measure, that is, for any b > 0, the

Lebesgue measure of the set {(t, u) ∈ [0, T ] ×T; |h′′
a(ρ

ε(t, u)) − h′′
a(ρ(t, u))| ≥ b} converges to 0 as ε ↓ 0. Therefore

lim
ε↓0

∫ T

0
dt
〈
h′′

a

(
ρε

t

)[∇ρt ]2〉= ∫ T

0
dt
〈
h′′

a(ρt )[∇ρt ]2〉. (4.8)

On the other hand, by Schwarz inequality,

lim sup
ε↓0

∫ T

0
dt
〈
χ(ρt )

{[
h′′

a

(
ρε

t

)∇ρε
t − h′′

a(ρt )∇ρt

]ε}2〉

≤ lim sup
ε↓0

∫ T

0
dt
〈
χ(ρt )

{
h′′

a

(
ρε

t

)∇ρε
t − h′′

a(ρt )∇ρt

}2〉
.

We may now repeat the arguments presented to estimate the first term on the right hand side of (4.7) to show that the
last expression vanishes.

Since χ is a bounded function, to complete the proof of (4.6), it remains to show that

lim sup
ε↓0

∫ T

0
dt
〈{[

h′′
a(ρt )∇ρt

]ε − h′′
a(ρt )∇ρt

}2〉= 0.

We estimate the previous integral by the sum of two terms, the first one being∫ T

0
dt
〈{[

h′′
a(ρt )∇ρt

]ε − [h′′
a(ρt )

]ε∇ρt

}2〉

≤ C(a)

∫ T

0
dt

∫
T

dv ψε(v)
〈{∇ρt (u + v) − ∇ρt (u)

}2〉
,

where we used Schwarz inequality and the fact that h′′
a is uniformly bounded. This expression vanishes as ε → 0

because ∇ρ belongs to L2([0, T ] ×T). The second term in the decomposition is∫ T

0
dt
〈[∇ρt ]2{[h′′

a(ρt )
]ε − h′′

a(ρt )
}2〉

. (4.9)

By the argument leading to (4.8), the expression (4.9) converges to 0 as ε ↓ 0.
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We turn to the proof that

lim
ε↓0

lim
δ↓0

∣∣B2
Hε,δ (π) − B2

h′(ρ)(π)
∣∣= 0. (4.10)

Since B , D and h′ are bounded functions, the difference appearing in the previous formula is less than or equal to

C(a)

{∫ T

0

∥∥eH
ε,δ
t − eh′(ρt )

∥∥
1 dt +

∫ T

0

∥∥e−H
ε,δ
t − e−h′(ρt )

∥∥
1 dt

}

≤ C(a)

∫ T

0

∥∥Hε,δ
t − h′(ρt )

∥∥
1 dt.

By Proposition 4.3, ρε is uniformly continuous in [0, T ] × T. Therefore letting δ → 0, the previous expression con-
verges to

C(a)

∫ T

0
dt
∥∥[h′(ρε

t

)]ε − h′(ρt )
∥∥

1 dt

≤ C(a)

{∫ T

0

∥∥[h′(ρε
t

)]ε − h′(ρε
t

)∥∥
1 dt +

∫ T

0

∥∥h′(ρε
t

)− h′(ρt )
∥∥

1 dt

}
.

Since h′ is Lipschitz continuous and ρε converges to ρ in L2([0, T ] ×T), the second integral vanishes in the limit as
ε ↓ 0. On the other hand, the first integral is bounded above by

C(a)

∫ T

0
dt

∫
T

dv ψε(v)

∫
T

du
∣∣ρε

t (u + v) − ρε
t (u)

∣∣
≤ C(a)

∫ T

0
dt

∫
T

dv ψε(v)

∫
T

du
∣∣ρt (u + v) − ρt (u)

∣∣.
This last integral vanishes in the limit as ε ↓ 0 because ρ belongs to L2([0, T ] ×T).

To proof of the first bound in (4.5) is elementary and left to the reader. To prove the second one, recall from (2.1)
that there exist polynomials B̃ , D̃ such that B(ρ) = (1 − ρ)B̃(ρ) and D(ρ) = ρD̃(ρ). From this fact, it is easy to see
that the second bound in (4.5) holds for some finite constant C0, independent of a > 0. �

Proof of Proposition 4.2. We may assume, without loss of generality, that IT (π |γ ) is finite. From the variational
formula (4.2) and Lemma 4.4,

LH

(
πε,δ

)+ B1
Hε,δ (π) − B2

Hε,δ (π) − Rε,δ ≤ IT (π |γ ), (4.11)

where H stands for the function h′(ρε,δ).
Since ρε,δ is smooth, an integration by parts yields the identity

LH

(
πε,δ

)= 〈h(ρε,δ
T

)〉− 〈h(ρε,δ
0

)〉
.

There exists, therefore, a constant C0, independent of ε, δ and a, such that∣∣LH

(
πε,δ

)∣∣≤ C0.

In (4.11), let δ ↓ 0 and then ε ↓ 0. It follows from the previous bound, and from Lemmas 4.4 and 4.5 that

∫ T

0
dt

∫
T

du
|∇ρ(t, u)|2
χa(ρ(t, u))

≤ C0
{
IT (π |γ ) + 1

}
.

It remains to let a ↓ 0 and to use Fatou’s lemma. �
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Corollary 4.6. The density ρ of a path π(t, du) = ρ(t, u) du in D([0, T ],M+,1) is the weak solution of the Cauchy
problem (2.2) with initial profile γ if and only if the rate function IT (π |γ ) is equal to 0. Moreover, in that case∫ T

0
dt

∫
T

du
|∇ρ(t, u)|2
χ(ρ(t, u))

< ∞. (4.12)

Proof. If the density ρ of a path π(t, du) = ρ(t, u) du in D([0, T ],M+,1) is the weak solution of the Cauchy problem
(2.2), then for any G in C1,2([0, T ] ×T) we have

JG(π) = −1

2

∫ T

0
dt
〈
χ(ρt ), (∇Gt)

2〉

−
∫ T

0
dt
{〈

B(ρt ), e
Gt − Gt − 1

〉+ 〈D(ρt ), e
−Gt + Gt − 1

〉}
.

Since ex − x − 1 ≥ 0 for any x in R, IT (π |γ ) = 0. In addition, the bound (4.12) follows from Proposition 4.2.
On the other hand, if IT (π |γ ) is equal to 0, then, for any G in C1,2([0, T ] × T) and ε in R, we have JεG(π) ≤ 0.

Note that J0(π) is equal to 0. Hence the derivative of JεG(π) in ε at ε = 0 is equal to 0. This implies that the density
ρ is a weak solution of the Cauchy problem (2.2). �

Theorem 4.7. The function IT (·|γ ) : D([0, T ],M+) → [0,∞] is lower semicontinuous and has compact level sets.

Proof. For each q ≥ 0, let Eq be the level set of the rate function IT (·|γ ):

Eq := {π ∈ D
([0, T ],M+

)∣∣IT (π |γ ) ≤ q
}
.

Let {πn : n ≥ 1} be a sequence in D([0, T ],M+) such that πn converges to some element π in D([0, T ],M+). We
show that IT (π |γ ) ≤ lim infn→∞ IT (πn|γ ). If lim inf IT (πn|γ ) is equal to ∞, the conclusion is clear. Therefore, we
may assume that the set {IT (πn|γ ) : n ≥ 1} is contained in Eq for some q > 0. From the lower semicontinuity of the
energy Q and Proposition 4.2, we have

Q(π) ≤ lim
n→∞

Q
(
πn
)≤ C(q + 1) < ∞.

Since πn belongs to D([0, T ],M+,1), so does π .
Let ρ and ρn be the density of π and πn respectively. We now claim that the sequence {ρn : n ≥ 1} converges to ρ

in L1([0, T ] ×T). Indeed, by the triangle inequality,∫ T

0

∥∥ρt − ρn
t

∥∥
1 dt

≤
∫ T

0

∥∥ρt − ρε
t

∥∥
1 dt +

∫ T

0

∥∥ρε
t − ρ

n,ε
t

∥∥
1 dt +

∫ T

0

∥∥ρn,ε
t − ρn

t

∥∥
1 dt, (4.13)

where ρ
n,ε
t = ρn

t ∗ ψε . The first term on the right hand side in (4.13) can be computed as∫ T

0

∥∥ρt − ρε
t

∥∥
1 dt ≤

∫ T

0
dt

∫
T

du

∫
T

dv ψε(v)
∣∣ρ(t, u + v) − ρ(t, u)

∣∣
≤
∫ T

0
dt

∫
T

du

∫
T

dv ψε(v)

∫ u+v

u

dw
∣∣∇ρ(t,w)

∣∣.
Note that suppψε ⊂ [−ε, ε]. From the fundamental inequality 2ab ≤ A−1a2 + Ab2, for any A > 0, the above expres-
sion can be bounded above by

Q(π)

2A
+ AT ε

2
.
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Similarly, the last term on the right hand side in (4.13) can be bounded above by

∫ T

0

∥∥ρε,n
t − ρn

t

∥∥
1 dt ≤ Q(πn)

2A
+ AT ε

2
.

Since, for fixed ε > 0, ρ
ε,n
t converges to ρε

t weakly as n → ∞ for a.e. t ∈ [0, T ], letting n → ∞ in (4.13) gives that

lim
n→∞

∫ T

0

∥∥ρt − ρn
t

∥∥
1 dt ≤ C(q,T )

{
1

A
+ Aε

}
,

for some constant C(q,T ) > 0 which depends on q and T . Optimizing in A and letting ε ↓ 0, we complete the proof
of the claim made above (4.13).

It follows from this claim that for any function G in C1,2([0, T ] ×T),

lim
n→∞JG

(
πn
)= JG(π).

This limit implies that IT (π |γ ) ≤ lim infn→∞ IT (πn|γ ), proving that IT (·|γ ) is lower-semicontinuous.
The same argument shows that Eq is closed in D([0, T ],M+). Since it is shown in [24] that Eq is relatively

compact in D([0, T ],M+), Eq is compact in D([0, T ],M+), and the proof is completed. �

5. IT (·|γ )-Density

The lower bound of the large deviations principle stated in Theorem 2.5 has been established in [24] for smooth
trajectories. To remove this restriction, we have to show that any trajectory πt , 0 ≤ t ≤ T , with finite rate function can
be approximated by a sequence of smooth trajectories {πn : n ≥ 1} such that

πn −→ π and IT

(
πn|γ )−→ IT (π |γ ).

This is the content of this section. We first introduce some terminology.

Definition 5.1. Let A be a subset of D([0, T ],M+). A is said to be IT (·|γ )-dense if for any π in D([0, T ],M+)

such that IT (π |γ ) < ∞, there exists a sequence {πn : n ≥ 1} in A such that πn converges to π in D([0, T ],M+) and
IT (πn|γ ) converges to IT (π |γ ).

Let � be the set of all trajectories π(t, du) = ρ(t, u) du in D([0, T ],M+,1) whose density ρ is a weak solution of
the Cauchy problem{

∂tρ = 1
2�ρ − ∇(χ(ρ)∇H) + B(ρ)eH − D(ρ)e−H on T,

ρ(0, ·) = γ (·), (5.1)

for some function H in C1,2([0, T ] ×T).

Theorem 5.2. Assume that the functions B and D are concave. Then, the set � is IT (·|γ )-dense.

The proof of Theorem 5.2 is divided into several steps. Throughout this section, denote by λ : [0, T ] ×T → [0,1]
the unique weak solution of the Cauchy problem (2.2) with initial profile γ , and assume that the functions B and D

are concave.
Let �1 be the set of all paths π(t, du) = ρ(t, u) du in D([0, T ],M+,1) whose density ρ is a weak solution of the

Cauchy problem (2.2) in some time interval [0, δ], δ > 0.

Lemma 5.3. The set �1 is IT (·|γ )-dense.
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Proof. Fix π(t, du) = ρ(t, u) du in D([0, T ],M+,1) such that IT (π |γ ) < ∞. For each δ > 0, set the path
πδ(t, du) = ρδ(t, u) du where

ρδ(t, u) =

⎧⎪⎨
⎪⎩

λ(t, u) if t ∈ [0, δ],
λ(2δ − t, u) if t ∈ [δ,2δ],
ρ(t − 2δ,u) if t ∈ [2δ, T ].

It is clear that πδ converges to π in D([0, T ],M+) as δ ↓ 0 and that πδ belongs to �1. To conclude the proof it is
enough to show that IT (πδ|γ ) converges to IT (π |γ ) as δ ↓ 0.

Since the rate function is lower semicontinuous, IT (π |γ ) ≤ lim infδ→0 IT (πδ|γ ). Note that Q(πδ) ≤ 2Q(λ) +
Q(π). From Corollary 4.6, we have Q(πδ) < ∞. To prove the upper bound lim supδ→0 IT (πδ|γ ) ≤ IT (π |γ ), we
now decompose the rate function IT (πδ|γ ) into the sum of the contributions on each time interval [0, δ], [δ,2δ] and
[2δ, T ]. The first contribution is equal to 0 since the density ρδ is a weak solution of the equation (2.2) on this interval.
The third contribution is bounded above by IT (π |γ ) since πδ on this interval is a time translation of the path π .

On the time interval [δ,2δ], the density ρδ solves the backward reaction-diffusion equation: ∂tρ
δ = −(1/2)�ρδ −

F(ρδ). Therefore, the second contribution can be written as

sup
G∈C1,2([0,T ]×T)

{∫ δ

0
dt

{
〈∇λt ,∇Gt 〉 − 1

2

〈
χ(λt ), (∇Gt)

2〉}

+
∫ δ

0
dt
{〈

B(λt ),1 − eGt − Gt

〉+ 〈D(λt ),1 − e−Gt + Gt

〉}}
.

By Schwarz inequality, the first integral inside the supremum is bounded above by

1

2

∫ δ

0
dt

∫
T

du
|∇λ(t, u)|2
χ(λ(t, u))

. (5.2)

On the other hand, taking advantage of the relation (2.1) and of the fact that B and D are bounded functions, a simple
computation shows that the second integral inside the supremum in the penultimate displayed equation is bounded
above by

C

∫ δ

0
dt

∫
T

du log
1

χ(λ(t, u))
+ Cδ,

for some finite constant C independent of δ. By Corollary 4.6, the expression (5.2) converges to 0 as δ ↓ 0. Hence, to
conclude the proof it suffices to show that

lim
δ↓0

∫ δ

0
dt

∫
T

du logχ
(
λ(t, u)

)= 0. (5.3)

Let λ
j
t : [0, T ] → R, j = 0,1, be the unique solution of the ordinary differential equation

d

dt
λ

j
t = F

(
λ

j
t

)
, (5.4)

with initial condition λ
j

0 = j and set λj (t, u) ≡ λ
j
t for (t, u) ∈ [0, T ] × T. Since λj is constant in spatial variable,

�λj = 0. Therefore it follows from (5.4) that λj is a unique weak solution of the Cauchy problem (2.2) with initial
profile λ

j

0(u) ≡ j . By Proposition A.5,

λ0
t ≤ λ(t, u) and 1 − λ1

t ≤ 1 − λ(t, u), (5.5)



68 C. Landim and K. Tsunoda

for any (t, u) ∈ [0, T ] ×T. Since F(1) < 0 < F(0), an elementary computation shows that

lim
δ↓0

∫ δ

0
dt logλ0

t = 0 and lim
δ↓0

∫ δ

0
dt log

(
1 − λ1

t

)= 0. (5.6)

By definition of χ and by (5.5),

logχ
(
λ(t, u)

)= logλ(t, u) + log
(
1 − λ(t, u)

)≥ logλ0
t + log

(
1 − λ1

t

)
.

To conclude the proof of (5.3), it remains to recall (5.6). �

Let �2 be the set of all paths π(t, du) = ρ(t, u) du in �1 with the property that for every δ > 0 there exists ε > 0
such that ε ≤ ρ(t, u) ≤ 1 − ε for all (t, u) ∈ [δ, T ] ×T.

Lemma 5.4. The set �2 is IT (·|γ )-dense.

Proof. Fix π(t, du) = ρ(t, u) du in �1 such that IT (π |γ ) < ∞. For each ε > 0, set the path πε(t, du) = ρε(t, u) du

with ρε = (1 − ε)ρ + ελ. It is clear that πε converges to π in D([0, T ],M+) as ε ↓ 0. Let λj (t, u) ≡ λ
j
t , j = 0,1, be

the weak solution of the equation (2.2) with initial profile λ
j

0(u) ≡ j . By Proposition A.5, ελ0 ≤ ρε ≤ (1 − ε) + ελ1.
Moreover it is easy to see that λj , j = 1,2, belongs to the set �2 since λj solves the ordinary differential equation

d

dt
λ

j
t = F

(
λ

j
t

)
,

and F(1) < 0 < F(0). Therefore πε belongs to �2. To conclude the proof it is enough to show that IT (πε|γ ) con-
verges to IT (π |γ ) as ε ↓ 0.

Since the rate function is lower semicontinuous, IT (π |γ ) ≤ lim infε↓0 IT (πε|γ ). By the convexity of the energy,
Q(πε) ≤ εQ(λ) + (1 − ε)Q(π), hence Q(πε) < ∞. Let G be a function in C1,2([0, T ] × T). Since B,D and χ are
concave and Lipschitz continuous,

JG

(
πε
)≤ (1 − ε)JG(π) + εJG(λ) + C0

{
ε +
∫ T

0

∥∥ρε
t − ρt

∥∥
1 dt

}

for some finite constant C0, which may change from line to line. Therefore,

IT

(
πε|γ )≤ (1 − ε)IT (π |γ ) + εIT (λ|γ ) + C0T ε.

Letting ε ↓ 0 gives lim supε↓0 IT (πε|γ ) ≤ IT (π |γ ), which completes the proof. �

Let �3 be the set of all paths π(t, du) = ρ(t, u) du in �2 whose density ρ(t, ·) belongs to the space C∞(T) for
any t ∈ (0, T ].

Lemma 5.5. The set �3 is IT (·|γ )-dense.

Proof. Fix π(t, du) = ρ(t, u) du in �2 such that IT (π |γ ) < ∞. Since π belongs to the set �1, we may assume
that the density solves the equation (2.2) in some time interval [0,2δ], δ > 0. Take a smooth nondecreasing function
α : [0, T ] → [0,1] with the following properties:

⎧⎪⎨
⎪⎩

α(t) = 0 if t ∈ [0, δ],
0 < α(t) < 1 if t ∈ (δ,2δ),

α(t) = 1 if t ∈ [2δ, T ].
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Let ψ(t, u) : (0,∞)×T → (0,∞) be the transition probability density of the Brownian motion on T at time t starting
from 0. For each n ∈N, denote by ψn the function

ψn(t, u) := ψ

(
1

n
α(t), u

)

and define the path πn(t, du) = ρn(t, u) du where

ρn(t, u) =
{

ρ(t, u) if t ∈ [0, δ],
(ρt ∗ ψn

t )(u) = ∫
T

dv ρ(t, v)ψn(t, u − v) if t ∈ (δ, T ].
It is clear that πn converges to π in D([0, T ],M+) as n → ∞. Since the density ρn is a weak solution to the Cauchy
problem (2.2) in time interval [0, δ], by Proposition A.4, ρn(t, ·) belongs to the space C∞(T) for t ∈ (0, δ]. On the
other hand, by the definition of ρn, it is clear that ρn(t, ·) belongs to the space C∞(T) for t ∈ (δ, T ]. Therefore πn

belongs to �3. To conclude the proof it is enough to show that IT (πn|γ ) converges to IT (π |γ ) as n → ∞.
Since the rate function is lower semicontinuous, IT (π |γ ) ≤ lim infn→∞ IT (πε|γ ). Note that the generalized deriva-

tive of ρn is given by

∇ρn(t, u) =
{

∇ρ(t, u) if t ∈ [0, δ],
(∇ρt ∗ ψn

t )(u) if t ∈ (δ, T ].
Therefore, by Schwarz inequality, Q(πn) ≤Q(π) < ∞.

The strategy of the proof of the upper bound is similar to the one of Lemma 5.3. We decompose the rate function
IT (πn|γ ) into the sum of the contributions on each time interval [0, δ], [δ,2δ] and [2δ, T ]. The first contribution is
equal to 0 since the density ρn is a weak solution of the Cauchy problem (2.2) on this interval. Since πn is defined as
a spatial average of π , and since the functions B and D are concave, similar arguments to the ones presented in the
proof of Lemma 5.4 yield that the third contribution is bounded above by IT (π |γ ) + on(1). Hence it suffices to show
that the second contribution converges to 0 as n → ∞.

Since ∂tψ = (1/2)�ψ , an integration by parts yields that in the time interval (δ,2δ),

∂tρ
n = ∂tρ ∗ ψn + α′(t)

2n
�ρ ∗ ψn.

Thus, since ρ is a weak solution of the hydrodynamic equation (2.2) in the time interval [δ,2δ], for any function G in
C1,2([0, T ] ×T),

〈
ρn

2δ,G2δ

〉− 〈ρn
δ ,Gδ

〉− ∫ 2δ

δ

dt
〈
ρn

t , ∂tGt

〉

=
∫ 2δ

δ

dt

{〈
ρn

t ,
1

2
�Gt

〉
− α′(t)

2n

〈∇ρn
t ,∇Gt

〉+ 〈Fn
t ,Gt

〉}
,

where Fn
t = F(ρt ) ∗ ψn

t . Therefore, the contribution to IT (π |γ ) of the piece of the trajectory in the time interval
[δ,2δ] can be written as

sup
G∈C1,2([0,T ]×T)

{∫ 2δ

δ

dt

(
−α′(t)

2n

〈∇ρn
t ,∇Gt

〉− 1

2

〈
χ
(
ρn

t

)
, (∇Gt)

2〉)

+
∫ 2δ

δ

dt
〈
Fn

t Gt − B
(
ρn

t

)(
eGt − 1

)− D
(
ρn

t

)(
e−Gt − 1

)〉}
. (5.7)

By Schwarz inequality, the first integral inside the supremum is bounded above by

‖α′‖2∞
8n2

∫ 2δ

δ

dt

∫
T

du
|∇ρn(t, u)|2
χ(ρn(t, u))

.
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Since π belongs to �2, there exists a positive constant C(δ), depending only on δ, such that C(δ) ≤ ρn ≤ 1 − C(δ)

on time interval [δ,2δ]. This bounds together with the fact that Q(πn) ≤ Q(π) permit to prove that the previous
expression converges to 0 as n → ∞. On the other hand, the second integral inside the supremum (5.7) is bounded
above by

∫ 2δ

δ

dt
〈
Fn

t mn
t − B

(
ρn

t

)(
emn

t − 1
)− D

(
ρn

t

)(
e−mn

t − 1
)〉
, (5.8)

where

mn
t = log

Fn
t +√(F n

t )2 + 4B(ρn
t )D(ρn

t )

2B(ρn
t )

.

Note that mn
t is well-defined and that the integrand in (5.8) is uniformly bounded in n because in the time interval

[δ,2δ] ρt is bounded below by a strictly positive constant and bounded above by a constant strictly smaller than 1.
Since mn(t, u) converges to 0 as n → ∞ for any (t, u) ∈ [δ,2δ] × T, the expression in (5.8) converges to 0 as
n → ∞. �

Let �4 be the set of all paths π(t, du) = ρ(t, u) du in �3 whose density ρ belongs to C∞,∞((0, T ] ×T).

Lemma 5.6. The set �4 is IT (·|γ )-dense.

Proof. Fix π(t, du) = ρ(t, u) du in �3 such that IT (π |γ ) < ∞. Since π belongs to the set �1, we may assume that
the density ρ solves the equation (2.2) in the time interval [0,3δ] for some δ > 0. Take a smooth nonnegative function
φ : R→ R with the following properties:

suppφ ⊂ [0,1] and
∫ 1

0
φ(s) ds = 1.

Let α be the function introduced in the previous lemma. For each ε > 0 and n ∈N, let

�(ε, s) := 1

ε
φ

(
s

ε

)
, αn(t) := 1

n
α(t),

and let πn(t, du) = ρn(t, u) du where

ρn(t, u) =
∫ 1

0
ρ
(
t + αn(t)s, u

)
φ(s) ds =

∫
R

ρ(t + s, u)�
(
αn(t), s

)
ds.

In the above formula, we extend the definition of ρ to [0, T + 1] by setting ρt = λ̃t−T for T ≤ t ≤ T + 1, where
λ̃ : [0,1] × T → [0,1] stands for the unique weak solution of the equation (2.2) with initial profile ρT . Note that it
follows from the construction of ρn that ρt = ρn

t for any t ∈ [0, δ], therefore, ρn is a weak solution of the equation
(2.2) in time interval [0, δ].

It is clear that πn converges to π in D([0, T ],M+). Since on the time interval (0,3δ), the function ρ is smooth
in time, for n large enough the function ρn is smooth in time on (0, T ] × T. Hence, πn belongs to �4 and Q(πn) is
finite.

The remaining part of the proof is similar to the one of the previous lemma. We only present the arguments leading
to the bound lim supn→∞ IT (πn|γ ) ≤ IT (π |γ ). The rate function can be decomposed in three pieces, two of which can
be estimated as in Lemma 5.5. We consider the contribution to IT (πn|γ ) of the piece of the trajectory corresponding
to the time interval [δ,2δ].

The derivative of ρn in time on (δ,2δ) is computed as

∂tρ
n(t, u) =

∫
R

∂tρ(t + s, u)�
(
αn(t), s

)
ds +

∫
R

ρ(t + s, u)∂t

[
�
(
αn(t), s

)]
ds.
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It follows from this equation and from the fact that the density ρ solves the hydrodynamic equation (2.2) on the time
interval [δ,3δ], that for any function G in C1,2([0, T ] ×T),

〈
ρn

2δ,G2δ

〉− 〈ρn
δ ,Gδ

〉− ∫ 2δ

δ

dt
〈
ρn

t , ∂tGt

〉= ∫ 2δ

δ

dt

{〈
ρn

t ,
1

2
�Gt

〉
+ 〈Fn

t + rn
t ,Gt

〉}
,

where

Fn(t, u) :=
∫
R

F
(
ρ(t + s, u)

)
�
(
αn(t), s

)
ds,

rn(t, u) :=
∫
R

ρ(t + s, u)∂t

[
�
(
αn(t), s

)]
ds.

Therefore, the second contribution can be bounded above by

sup
G∈C1,2([0,T ]×T)

{∫ 2δ

δ

dt
〈(
Fn

t + rn
t

)
Gt − B

(
ρn

t

)(
eGt − 1

)− D
(
ρn

t

)(
e−Gt − 1

)〉}
. (5.9)

We now show that rn(t, u) converges to 0 as n → ∞ uniformly in (t, u) ∈ (δ,2δ) × T. Let (t, u) in (δ,2δ) × T.
Since

∫
R

∂t [�(αn(t), s)]ds = ∂t [
∫
R

�(αn(t), s) ds] = 0, rn(t, u) can be written as

∫
R

{
ρ(t + s, u) − ρ(t, u)

}
∂t

[
�
(
αn(t), s

)]
ds.

Since ρ is Lipschitz continuous on [δ,3δ] × T, there exists a positive constant C(δ) > 0, depending only on δ, such
that

∣∣ρ(t + s, u) − ρ(t, u)
∣∣≤ C(δ)s,

for any (t, u) ∈ [δ,2δ] ×T and s ∈ [0, δ]. Therefore rn(t, u) is bounded above by

C(δ)

∫
R

s
∣∣∂t

[
�
(
αn(t), s

)]∣∣ds.

It follows from a simple computation and from the change of variables αn(t)s = s̄ that

∫
R

s
∣∣∂t

[
�
(
αn(t), s

)]∣∣ds ≤ ‖α′(t)‖∞
n

∫ 1

0

{
sφ(s) + s2

∣∣φ′(s)
∣∣}ds.

Therefore rn(t, u) converges to 0 as n → ∞ uniformly in (t, u) ∈ (δ,2δ) ×T.
To complete the proof, it remains to take a supremum in G ∈ C1,2([0, T ] ×T) in formula (5.9) and to let n → ∞.

�

Proof of Theorem 5.2. From the previous lemma, all we need is to prove that �4 is contained in �. Let π(t, du) =
ρ(t, u) du be a path in �4. There exists some δ > 0 such that the density ρ solves the equation (2.2) on time interval
[0,2δ]. In particular, the density ρ also solves the equation (5.1) with H = 0 on time interval [0,2δ]. On the one hand,
since the density ρ is smooth on [δ, T ] and there exists ε > 0 such that ε ≤ ρ(t, u) ≤ 1 − ε for any (t, u) ∈ [δ, T ]×T,
from Lemma 2.1 in [24], there exits a unique function H in C1,2([δ, T ] × T) satisfying the equation (5.1) with ρ on
[δ, T ], and it is proved that π belongs to �. �

Proof of Theorem 2.5. We have already proved in Section 4 that the rate function is lower semicontinuous and that
it has compact level sets.
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Recall from the beginning of this section the definition of the set �. It has been proven in [24] that for each closed
subset C of D([0, T ],M+),

lim
N→∞

1

N
logQηN (C) ≤ − inf

π∈C
IT (π |γ ),

and that for each open subset O of D([0, T ],M+),

lim
N→∞

1

N
logQηN (O) ≥ − inf

π∈O∩�
IT (π |γ ).

Since O is open in D([0, T ],M+), by Theorem 5.2,

inf
π∈O∩�

IT (π |γ ) = inf
π∈O

IT (π |γ ),

which completes the proof. �

Appendix

In sake of completeness, we present in this section results on the Cauchy problem (2.2).

Definition A.1. A measurable function ρ : [0, T ] × T → [0,1] is said to be a weak solution of the Cauchy problem
(2.2) in the layer [0, T ] ×T if, for every function G in C1,2([0, T ] ×T),

〈ρT ,GT 〉 − 〈γ,G0〉 −
∫ T

0
dt〈ρt , ∂tGt 〉

= 1

2

∫ T

0
dt〈ρt ,�Gt 〉 +

∫ T

0
dt
〈
F(ρt ),Gt

〉
. (A.1)

For each t ≥ 0, let Pt be the semigroup on L2(T) generated by (1/2)�.

Definition A.2. A measurable function ρ : [0, T ] × T → [0,1] is said to be a mild solution of the Cauchy problem
(2.2) in the layer [0, T ] ×T if, for any t in [0, T ], it holds that

ρt = Ptγ +
∫ t

0
Pt−sF (ρs) ds. (A.2)

The first proposition asserts existence and uniqueness of weak and mild solutions, a well known result in the
theory of partial differential equations. We give a brief proof because uniqueness of the Cauchy problem (2.2) plays
an important role in the proof of Theorem 2.1.

Proposition A.3. Definitions A.1 and A.2 are equivalent. Moreover, there exists a unique weak solution of the Cauchy
problem (2.2).

Proof. Since F is Lipschitz continuous, by the method of successive approximation, there exists a unique mild so-
lution of the Cauchy problem (2.2). Therefore to conclude the proposition it is enough to show that the above two
notions of solutions are equivalent.

Assume that ρ : [0, T ]×T → [0,1] is a weak solution of the Cauchy problem (2.2). Fix a function g in C2(T) and
0 ≤ t ≤ T . For each δ > 0, define the function Gδ as

Gδ(s,u) =

⎧⎪⎨
⎪⎩

(Pt−sg)(u) if 0 ≤ s ≤ t,

δ−1(t + δ − s)g(u) if t ≤ s ≤ t + δ,

0 if t + δ ≤ s ≤ T .
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One can approximate Gδ by functions in C1,2([0, T ]×T). Therefore, by letting δ ↓ 0 in (A.1) with G replaced by Gδ

and by a summation by parts,

〈ρt , g〉 = 〈Ptγ, g〉 +
∫ t

0

〈
Pt−sF (ρs), g

〉
ds. (A.3)

Since (A.3) holds for any function g in C2(T), ρ is a mild solution of the Cauchy problem (2.2).
Conversely, assume that ρ : [0, T ] ×T → [0,1] is a weak solution of the Cauchy problem (2.2). In this case, (A.3)

is true for any function g in C2(T) and any 0 ≤ t ≤ T . Differentiating (A.3) in t gives that

d

dt
〈ρt , g〉 = 1

2
〈ρt ,�g〉 + 〈F(ρt ), g

〉
.

Therefore (A.1) holds for any function G(t,u) = g(u) in C2(T). It is not difficult to extend this to any function G in
C1,2([0, T ] ×T). Hence ρ is a weak solution of the Cauchy problem (2.2). �

The following two propositions assert the smoothness and the monotonicity of weak solutions of the Cauchy
problem (2.2).

Proposition A.4. Let ρ be the unique weak solution of the Cauchy problem (2.2). Then ρ is infinitely differentiable
over (0,∞) ×T.

Proposition A.5. Let ρ1
0 and ρ2

0 be two initial profiles. Let ρj , j = 1,2, be the weak solutions of the Cauchy problem

(2.2) with initial condition ρ
j

0 . Assume that

m
{
u ∈ T : ρ1

0(u) ≤ ρ2
0(u)

}= 1,

where m is the Lebesgue measure on T. Then, for any t ≥ 0, it holds that

m
{
u ∈ T : ρ1(t, u) ≤ ρ2(t, u)

}= 1.

The proofs of Propositions A.4 and A.5 can be found in the ones of Proposition 2.1 of [16].
The last proposition asserts that, for any initial density profile γ , the weak solution ρt of the Cauchy problem (2.2)

converges to some solution of the semilinear elliptic equation (2.3). Recall, from Section 2.3, the definition of the
set E .

Proposition A.6. Let ρ : [0,∞) × T → [0,1] be the unique weak solution of the Cauchy problem (2.2). Then there
exists a density profile ρ∞ in E such that ρt converges to ρ∞ as t → ∞ in C2(T).

The proof of this proposition can be found in the one of Theorem D of [12].
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