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Abstract. Consider a system of infinitely many Brownian particles on the real line. At any moment, these particles can be ranked
from the bottom upward. Each particle moves as a Brownian motion with drift and diffusion coefficients depending on its current
rank. The gaps between consecutive particles form the (infinite-dimensional) gap process. We find a stationary distribution for the
gap process. We also show that if the initial value of the gap process is stochastically larger than this stationary distribution, this
process converges back to this distribution as time goes to infinity. This continues the work by Pal and Pitman (Ann. Appl. Probab.
18 (2008) 2179–2207). Also, this includes infinite systems with asymmetric collisions, similar to the finite ones from Karatzas, Pal
and Shkolnikov (Ann. Inst. H. Poincare 52 (2016) 323–354).

Résumé. Nous considérons un système infini de particules browniennes sur la droite réelle. À tout moment ces particules peuvent
être ordonnées de façon croissante. Chaque particule se déplace suivant un mouvement brownien dont les coefficients de dérive et de
diffusion dépendent du rang de la particule. Les distances entre les particules successives forment le processus (infini dimensionnel)
des écarts. Nous trouvons une mesure stationnaire du processus des écarts. Nous montrons aussi que si la distribution initiale du
processus des écarts domine stochastiquement la distribution stationnaire, le processus converge vers cette distribution en grand
temps. Ce travail poursuit donc l’étude de Pal et Pitman (Ann. Appl. Probab. 18 (2008) 2179–2207). Il inclut aussi le cas des
systèmes infinis avec collisions asymétriques, similaire au cas fini de Karatzas et Shkolnikov (Ann. Inst. H. Poincare 52 (2016)
323–354).
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1. Introduction

Consider the standard setting: a filtered probability space (�,F, (Ft )t≥0,P), with the filtration satisfying the usual
conditions. Take i.i.d. (Ft )t≥0-Brownian motions Wi = (Wi(t), t ≥ 0), i = 1,2, . . . . Consider an infinite system
X = (Xi)i≥1 of real-valued adapted processes Xi = (Xi(t), t ≥ 0), i = 1,2, . . . , with P-a.s. continuous trajectories.
Suppose we can rank them in the increasing order at every time t ≥ 0:

X(1)(t) ≤ X(2)(t) ≤ · · · .

If there is a tie: Xi(t) = Xj(t) for some i < j and t ≥ 0, we assign a lower rank to Xi and higher rank to Xj . Now,
fix coefficients g1, g2, . . . ∈ R and σ1, σ2, . . . > 0. Assume each process Xi (we call it a particle) moves according
to the following rule: if at time t Xi has rank k, then it evolves as a one-dimensional Brownian motion with drift
coefficient gk and diffusion coefficient σ 2

k . Letting 1(A) be the indicator function of an event A, we can write this as
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the following system of SDEs:

dXi(t) =
∞∑

k=1

1(Xi has rank k at time t)
(
gk dt + σ dWi(t)

)
, i = 1,2, . . . . (1)

The gaps Zk(t) = X(k+1)(t) − X(k)(t) for k = 1,2, . . . form the gap process Z = (Z(t), t ≥ 0), Z(t) = (Zk(t))k≥1.
Then X is called an infinite system of competing Brownian particles. A more precise definition is given in Definitions 6
and 7 later in this article.

This system was studied in [18,34]. For g1 = 1, g2 = g3 = · · · = 0 and σ1 = σ2 = · · · = 1, this is called the infinite
Atlas model, which was studied in [8,26]. The term Atlas stands for the bottom particle, which moves as a Brownian
motion with drift 1 (as long as it does not collide with other particles) and “supports other particles on its shoulders”.
This system is, in fact, a generalization of a similar finite system X = (X1, . . . ,XN)′, which is defined analogously
to the equation (1). Finite systems of competing Brownian particles were originally introduced in [2] as a model
in Stochastic Portfolio Theory, see [10,13]. They also serve as scaling limits for exclusion processes on Z, see [22,
Section 3], and as a discrete analogue of McKean–Vlasov equation, which governs a nonlinear diffusion process,
[7,20,21,28,35]. Finite systems were thoroughly studied recently. We can ask the following questions about them:

(a) Does this system exist in the weak or strong sense? Is it unique in law or pathwise?
(b) Do we have triple collisions between particles, when three or more particles occupy the same position at the same

time?
(c) Does the gap process have a stationary distribution? Is it unique?
(d) What is the exact form of this stationary distribution?
(e) Does Z(t) converge weakly to this stationary distribution as t → ∞?

For finite systems, these questions have been to a large extent answered.

(a) The system exists in the weak sense and is unique in law, [4]. Until the first moment of a triple collision, it exists
in the strong sense and is pathwise unique, [18]. It is not known whether it exists in the strong sense after this first
triple collision.

(b) It was shown in [17,18,30] that there are a.s. no triple collisions if and only if the sequence (σ 2
1 , . . . , σ 2

N) is
concave:

σ 2
k ≥ 1

2

(
σ 2

k−1 + σ 2
k+1

)
, k = 2, . . . ,N − 1. (2)

(c) The gap process has a stationary distribution if and only if

gk > gN, k = 1, . . . ,N − 1, where gk := 1

k
(g1 + · · · + gk) for k = 1, . . . ,N. (3)

In this case, this stationary distribution is unique, see [2,3].
(d) If, in addition to (3), the sequence (σ 2

1 , . . . , σ 2
N) is linear:

σ 2
k+1 − σ 2

k = σ 2
k − σ 2

k−1 for k = 2, . . . ,N − 1, (4)

then this stationary distribution has a product-of-exponentials form, see [2,3].
(e) The answer is affirmative, under the condition (3), see [3,6,39]. Rate of convergence was studied in [19].

Before surveying the answers for infinite systems, let us define some notation. Let N ∈ {1,2, . . .} ∪ {∞}. Introduce
a componentwise (partial) order on RN . Namely, take x = (xi) and y = (yi) from RN . For M ≤ N , we let [x]M :=
(xi)i≤M . For a distribution π on RN , we let [π]M be the marginal distribution on RM , corresponding to the first M

components. For a matrix C = (cij )i,j≤N , we let [C]M = (cij )i,j≤M . We say that x ≤ y if xi ≤ yi for all i ≥ 1. For
x ∈ RN , we let [x,∞) := {y ∈RN | y ≥ x}. We say that two probability measures ν1 and ν2 on RN satisfy ν1 	 ν2, or,
equivalently, ν2 
 ν1, if for every y ∈ R∞ we have: ν1[y,∞) ≤ ν2[y,∞). In this case, we say that ν1 is stochastically
dominated by ν2, and ν2 stochastically dominates ν1, or ν1 is stochastically smaller than ν2, or ν2 is stochastically
larger than ν1. We denote weak convergence of probability measures by νn ⇒ ν. We denote by Ik the k × k-identity
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matrix. For a vector x = (x1, . . . , xd)′ ∈Rd , let ‖x‖ := (x2
1 + · · · + x2

d)1/2 be its Euclidean norm. For any two vectors
x, y ∈ Rd , their dot product is denoted by x · y = x1y1 + · · · + xdyd . The Lebesgue measure is denoted by mes.
A one-dimensional Brownian motion with zero drift and unit diffusion, starting from 0, is called a standard Brownian
motion. Let

�(u) := 1√
2π

∫ ∞

u

e−v2/2 dv, u ∈ R,

be the tail of the standard normal distribution.
For infinite systems, the answers to questions (a)–(e) are quite different.
(a) For infinite systems, it seems that a necessary condition for weak existence is that initial positions Xi(0) = xi ,

i = 1,2, . . . of the particles should be “far apart”. Indeed, it is an easy exercise to show that a system of i.i.d standard
Brownian motions starting from the same point is not rankable from bottom to top at any fixed time t > 0. Some
sufficient conditions for weak existence and uniqueness in law are found in [18,34]. We restate them in Theorem 3.1
in a slightly different form:

lim
i→∞xi = ∞ and

∞∑
i=1

e−αx2
i < ∞, α > 0. (5)

We also prove a few other similar results: Theorem 3.2 and Theorem 3.3, under slightly different conditions. Strong
existence and pathwise uniqueness for finite systems are known from [18] to hold until the first triple collision, when
three or more particles simltaneously occupy the same position. It is not known whether these hold after this first triple
collision.

(b) In this paper, we continue on the research in [18] and prove essentially the same result as for finite systems.
There are a.s. no triple collisions if and only if the sequence (σ 2

k )k≥1 is concave: see Theorem 5.1 and Remark 7.
(c) In this paper, see Theorem 4.4, we prove that there exists a certain stationary distribution π under the condition

which is very similar to (3):

gk > gl, 1 ≤ k < l. (6)

Actually, we can even relax this condition (6) a bit, see (25). The question whether it is unique or not is still open.
(d) The exact form of this distribution π is found in (26) for a special case (4); it is also a product of exponentials,

as in the finite case.
(e) We prove a partial convergence result in Theorem 4.6 and Theorem 4.7: if Z(0) stochastically dominates this

stationary distribution π : Z(0) 
 π , then Z(t) ⇒ π as t → ∞. However, we do not know whether Z(t) weakly
converges as t → ∞ for other initial distributions. Since we do not know whether a stationary distribution is unique,
this means that we do not know what are the “domains of attraction”.

Let us give a preview of results for a special case:

g1 = g2 = · · · = gM = 1, gM+1 = gM+2 = · · · = 0, σ1 = σ2 = · · · = 1. (7)

The following theorem is a corollary of more general results (which are enumerated above) from this paper; see
Example 2 below.

Theorem 1.1. Under conditions (7), the system (1) exists in the strong sense, is pathwise unique, there are a.s. no
triple and simultaneous collisions, and the stationary distribution π for the gap process is given by

πM := Exp(2) ⊗ Exp(4) ⊗ · · · ⊗ Exp(2M) ⊗ Exp(2M) ⊗ · · · . (8)

For M = 1, this is the infinite Atlas model, and the stationary distribution πM = π1 =⊗∞
k=1 Exp(2) is already

known from [26, Theorem 14]. It is worth noting that the Harris system of Brownian particles (independent Brownian
motions Bn,n ∈ Z, starting from Bn(0) = xn), in fact, has infinitely many stationary distributions for its gap process,
[16]. Indeed, a Poisson point process with constant intensity λ is invariant with respect to this system for any λ > 0.
Therefore, the product

⊗
n∈Z Exp(λ) is a stationary distribution for this system, for all λ > 0.
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We also direct the reader to our paper [38], which is complementary to the current paper. In [38], we find other
stationary distributions for the gap process. Instead of stating the main result, we consider the particular case of the
system (1). There, for every a > 0, the following is a stationary distribution for the gap process:

πM(a) :=
∞⊗

k=1

Exp
(
2(k ∧ M) + ka

)
. (9)

In particular, for the infinite Atlas model we have:

π1(a) :=
∞⊗

k=1

Exp(2 + ka).

Note that the distribution (8) can also be included in the family (9), if we let a = 0.
Other ordered particle systems derived from independent driftless Brownian motions were studied by Arratia in

[1], and by Sznitman in [37]. Several other papers study connections between systems of queues and one-dimensional
interacting particle systems: [14,15,24,33]. Links to the directed percolation and the directed polymer models, as well
as the GUE random matrix ensemble, can be found in [25].

An important generalization of a finite system of competing Brownian particles is a system with asymmetric col-
lisions, when, roughly speaking, ranked particles Yk , have “different mass”, and when they collide, they “fly apart”
with “different speed”. This generalization was introduced in [22] for finite systems. We carry out this generalization
for infinite systems, and prove weak existence (but not uniqueness) in Section 3. All results answering the questions
(a)–(e) above are stated also for this general case of asymmetric collisions.

There are other generalizations of competing Brownian particles: competing Lévy particles, [34]; a second-order
stock market model, when the drift and diffusion coefficients depend on the name as well as the rank of the particle,
[3,11]; competing Brownian particles with values in the positive orthant RN+ , see [12]. Two-sided infinite systems
(Xi)i∈Z of competing Brownian particles are studied in [31].

The proofs in this article rely heavily on comparison techniques for systems of competing Brownian particles,
developed in [29].

1.1. Organization of the paper

Section 2 is devoted to the necessary background: finite systems of competing Brownian particles. It does not contain
any new results, just an outline of already known results. Section 3 introduces infinite systems of competing Brownian
particles and states existence and uniqueness results (including Theorem 3.7). In this section, we also generalize these
comparison techniques for infinite systems. Section 4 deals with the gap process: stationary distributions and the
questions of weak convergence as t → ∞. In particular, we state Theorems 4.4 and 4.6 and in this section. Section 5
contains results about triple collisions. Section 6 is devoted to proofs for most of the results. The Appendix contains
some technical lemmas.

2. Background: Finite systems of competing Brownian particles

In this section, we recall definitions and results which are already known. First, as in [2,30], we rigorously define finite
systems of competing Brownian particles for the case of symmetric collisions, when the kth ranked particles moves
as a Brownian motion with drift coefficient gk and diffusion coefficient σ 2

k . This gives us a system of named particles;
we shall call them classical systems of competing Brownian particles. Then we find an equation for corresponding
ranked particles, following [2,3]. This gives us a motivation to introduce systems of ranked competing Brownian
particles with asymmetric collisions, as in [22]. Finally, we state results about the gap process: stationary distribution
and convergence.
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2.1. Classical systems of competing Brownian particles

In this subsection, we use definitions from [2]. Assume the usual setting: a filtered probability space (�,F, (Ft )t≥0,P)

with the filtration satisfying the usual conditions. Let N ≥ 2 (the number of particles). Fix parameters

g1, . . . , gN ∈R; σ1, . . . , σN > 0.

We wish to define a system of N Brownian particles in which the kth smallest particle moves according to a Brownian
motion with drift gk and diffusion σ 2

k . We resolve ties in the lexicographic order, as described in the Introduction.

Definition 1. Take i.i.d. standard (Ft )t≥0-Brownian motions W1, . . . ,WN . For a continuous RN -valued process X =
(X(t), t ≥ 0), X(t) = (X1(t), . . . ,XN(t))′, let us define pt , t ≥ 0, the ranking permutation for the vector X(t): this is
the permutation on {1, . . . ,N} such that:

(i) Xpt (i)(t) ≤ Xpt (j)(t) for 1 ≤ i < j ≤ N ;
(ii) if 1 ≤ i < j ≤ N and Xpt (i)(t) = Xpt (j)(t), then pt (i) < pt (j ).

Suppose the process X satisfies the following SDE:

dXi(t) =
N∑

k=1

1
(
pt (k) = i

)[
gk dt + σk dWi(t)

]
, i = 1, . . . ,N. (10)

Then this process X is called a classical system of N competing Brownian particles with drift coefficients g1, . . . , gN

and diffusion coefficients σ 2
1 , . . . , σ 2

N . For i = 1, . . . ,N , the component Xi = (Xi(t), t ≥ 0) is called the ith named
particle. For k = 1, . . . ,N , the process

Yk = (Yk(t), t ≥ 0
)
, Yk(t) := Xpt (k)(t) ≡ X(k)(t),

is called the kth ranked particle. They satisfy Y1(t) ≤ Y2(t) ≤ · · · ≤ YN(t), t ≥ 0. If pt (k) = i, then we say that the
particle Xi(t) = Yk(t) at time t has name i and rank k.

The coefficients of the SDE (10) are piecewise constant functions of X1(t), . . . ,XN(t); therefore, weak existence
and uniqueness in law for such systems follow from [4].

2.2. Asymmetric collisions

In this subsection, we consider the model defined in [22]: finite systems of competing Brownian particles with
asymmetric collisions. For k = 2, . . . ,N , let the process L(k−1,k) = (L(k−1,k)(t), t ≥ 0) be the semimartingale lo-
cal time at zero of the nonnegative semimartingale Yk − Yk−1. For notational convenience, we let L(0,1)(t) ≡ 0 and
L(N,N+1)(t) ≡ 0. Then for some i.i.d. standard Brownian motions B1, . . . ,BN , the ranked particles Y1, . . . , YN satisfy
the following equation:

Yk(t) = Yk(0) + gkt + σkBk(t) + 1

2
L(k−1,k)(t) − 1

2
L(k,k+1)(t), k = 1, . . . ,N. (11)

This was proved in [3, Lemma 1]; see also [2, Section 3]. The process L(k−1,k) is called the local time of collision
between the particles Yk−1 and Yk . The local time process L(k−1,k) has the following properties: L(k−1,k)(0) = 0,
L(k−1,k) is nondecreasing, and∫ ∞

0
1
(
Yk(t) �= Yk−1(t)

)
dL(k−1,k)(t) = 0. (12)

If we change coefficients 1/2 in (11) to some other real numbers, we get the model with asymmetric collisions from
the paper [22]. The local times in this new model are split unevenly between the two colliding particles, as if these
particles have different mass.
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Let us now formally define this model with asymmetric collisions. Let N ≥ 2 be the quantity of particles. Fix real
numbers g1, . . . , gN and positive real numbers σ1, . . . , σN , as before. In addition, fix real numbers q+

1 , q−
1 , . . . , q+

N ,
q−
N , which satisfy the following conditions:

q+
k+1 + q−

k = 1, k = 1, . . . ,N − 1;0 < q±
k < 1, k = 1, . . . ,N.

Definition 2. Take i.i.d. standard (Ft )t≥0-Brownian motions B1, . . . ,BN . Consider a continuous adapted RN -valued
process

Y = (Y(t), t ≥ 0
)
, Y (t) = (Y1(t), . . . , YN(t)

)′
,

and N − 1 continuous adapted real-valued processes

L(k−1,k) = (L(k−1,k)(t), t ≥ 0
)
, k = 2, . . . ,N,

with the following properties:

(i) Y1(t) ≤ · · · ≤ YN(t), t ≥ 0;
(ii) the process Y satisfies the following system of equations:

Yk(t) = Yk(0) + gkt + σkBk(t) + q+
k L(k−1,k)(t) − q−

k L(k,k+1)(t), k = 1, . . . ,N (13)

(we let L(0,1)(t) ≡ 0 and L(N,N+1)(t) ≡ 0 for notational convenience);
(iii) for each k = 2, . . . ,N , the process L(k−1,k) = (L(k−1,k)(t), t ≥ 0) has the properties mentioned above:

L(k−1,k)(0) = 0, L(k−1,k) is nondecreasing and satisfies (12).

Then the process Y is called a system of N competing Brownian particles with asymmetric collisions, with
drift coefficients g1, . . . , gN , diffusion coefficients σ 2

1 , . . . , σ 2
N , and parameters of collision q±

1 , . . . , q±
N . For each

k = 1, . . . ,N , the process Yk = (Yk(t), t ≥ 0) is called the kth ranked particle. For k = 2, . . . ,N , the process L(k−1,k)

is called the local time of collision between the particles Yk−1 and Yk . The Brownian motions B1, . . . ,BN are called
driving Brownian motions for this system Y . The process L = (L(1,2), . . . ,L(N−1,N))

′ is called the vector of local
times.

The state space of the process Y is WN := {y = (y1, . . . , yN)′ ∈ RN | y1 ≤ y2 ≤ · · · ≤ yN }. Strong existence and
pathwise uniqueness for Y and L are proved in [22, Section 2.1].

2.3. The gap process for finite systems

The results of this subsection are taken from [2,3,22,39]. However, we present an outline of proofs in Section 6 for
completeness.

Definition 3. Consider a finite system (classical or ranked) of N competing Brownian particles. Let

Zk(t) = Yk+1(t) − Yk(t), k = 1, . . . ,N − 1, t ≥ 0.

Then the process Z = (Z(t), t ≥ 0), Z(t) = (Z1(t), . . . ,ZN−1(t))
′ is called the gap process. The component Zk =

(Zk(t), t ≥ 0) is called the gap between the kth and k + 1st ranked particles.

The following propositions about the gap process are already known. We present them in a slightly different form
than that from the sources cited above; for the sake of completeness, we present short outlines of their proofs in



Infinite systems of competing Brownian particles 2285

Section 6. Let

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −q−
2 0 0 . . . 0 0

−q+
2 1 −q−

3 0 . . . 0 0
0 −q+

3 1 −q−
4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1 −q−
N−1

0 0 0 0 . . . −q+
N−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

μ = (g2 − g1, g3 − g2, . . . , gN − gN−1)
′. (15)

Proposition 2.1.

(i) The matrix R is invertible, and R−1 ≥ 0, with strictly positive diagonal elements (R−1)kk, k = 1, . . . ,N − 1.
(ii) The family of random variables Z(t), t ≥ 0, is tight in RN−1+ , if and only if R−1μ < 0. In this case, for every

initial distribution of Y(0) we have: Z(t) ⇒ π as t → ∞, where π is the unique stationary distribution of Z.
(iii) If, in addition, the skew-symmetry condition holds:(

q−
k−1 + q+

k+1

)
σ 2

k = q−
k σ 2

k+1 + q+
k σ 2

k−1, k = 2, . . . ,N − 1, (16)

then

π =
N−1⊗
k=1

Exp(λk), λk = 2

σ 2
k + σ 2

k+1

(−R−1μ
)
k
, k = 1, . . . ,N − 1.

For symmetric collisions, we can refine Proposition 2.1. Recall the notation from (3):

gk := g1 + · · · + gk

k
, k = 1, . . . ,N.

Proposition 2.2. For the case of symmetric collisions q±
k = 1/2, k = 1, . . . ,N , we have:

(i) −R−1μ = 2(g1 − gN,g1 + g2 − 2gN, . . . , g1 + g2 + · · · + gN−1 − (N − 1)gN)′;
(ii) the tightness condition from Proposition 2.1 can be written as

gk > gN, k = 1, . . . ,N − 1;
(iii) the skew-symmety condition can be equivalently written as

σ 2
k+1 − σ 2

k = σ 2
k − σ 2

k−1, k = 2, . . . ,N − 1;
in other words, σ 2

k must linearly depend on k;
(iv) if both the tightness condition and the skew-symmetry condition are true, then

π =
N−1⊗
k=1

Exp(λk), λk := 4k

σ 2
k + σ 2

k+1

(gk − gN).

Example 1. If g1 = 1, g2 = g3 = · · · = gN = 0, and σ1 = σ2 = · · · = σN = 1 (the finite Atlas model with N particles),
then

π =
N−1⊗
k=1

Exp

(
2 · N − k

N

)
.

The following is a technical lemma, with a (very short) proof in Section 6.
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Lemma 2.3. Take a finite system of competing Brownian particles (either classical or ranked). For every t > 0, the
probability that there is a tie at time t is zero.

3. Existence and uniqueness results for infinite systems

In this section, we first state existence results for classical infinite systems of competing Brownian particles (recall that
classical means particles with individual names rather than ranks): Theorem 3.1, Theorem 3.2, and Theorem 3.3. Then
we define infinite ranked systems with asymmetric collisions. We prove an existence theorem: Theorem 3.7 for these
systems. Unfortunately, we could not prove uniqueness: we just construct a copy of an infinite ranked system using
approximation by finite ranked systems. This copy is called an approximative version of the infinite ranked system. We
also develop comparison techniques for infinite systems, which parallel similar techniques for finite systems from [29].

Assume the usual setting: (�,F, (Ft )t≥0,P), with the filtration satisfying the usual conditions.

3.1. Infinite classical systems

Fix parameters g1, g2, . . . ∈ R and σ1, σ2, . . . > 0. We say that a sequence (xn)n≥1 of real numbers is rankable if there
exists a one-to-one mapping (permutation) p : {1,2,3, . . .} → {1,2,3, . . .} which ranks the components of x:

xp(i) ≤ xp(j) for i, j = 1,2, . . . , i < j.

As in the case of finite systems, we resolve ties (when xi = xj for i �= j ) in the lexicographic order: we take a
permutation p which ranks the components of x, and, in addition, if i < j and xp(i) = xp(j), then p(i) < p(j). There
exists a unique such permutation p, which is called the ranking permutation and is denoted by px . For example, if
x = (2,2,1,4,5,6,7, . . .)′ (that is, x(i) = i for i ≥ 4), then px(1) = 3,px(2) = 1,px(3) = 2,px(n) = n,n ≥ 4. Not
all sequences of real numbers are rankable: for example, x = (xi = i−1, i ≥ 1), is not rankable.

Definition 4. Consider an R∞-valued process

X = (X(t), t ≥ 0
)
, X(t) = (Xn(t)

)
n≥1,

with continuous adapted components, such that for every t ≥ 0, the sequence X(t) = (Xn(t))n≥1 is rankable. Let pt

be the ranking permutation of X(t). Let W1,W2, . . . be i.i.d. standard (Ft )t≥0-Brownian motions. Assume that the
process X satisfies an SDE

dXi(t) =
∞∑

k=1

1
(
pt (k) = i

)(
gk dt + σk dWi(t)

)
, i = 1,2, . . . .

Then the process X is called an infinite classical system of competing Brownian particles with drift coefficients (gk)k≥1
and diffusion coefficients (σ 2

k )k≥1. For each i = 1,2, . . . , the component Xi = (Xi(t), t ≥ 0) is called the ith named
particle. If we define Yk(t) ≡ Xpt (k)(t) for t ≥ 0 and k = 1,2, . . . , then the process Yk = (Yk(t), t ≥ 0) is called the
kth ranked particle. The R∞+ -valued process

Z = (Z(t), t ≥ 0
)
, Z(t) = (Zk(t)

)
k≥1,

defined by

Zk(t) = Yk+1(t) − Yk(t), k = 1,2, . . . , t ≥ 0,

is called the gap process. If X(0) = x ∈R∞, then we say that the system X starts from x. This system is called locally
finite if for any u ∈R and T > 0 there a.s. exists only finitely many i ≥ 1 such that min[0,T ] Xi(t) ≤ u.

The following existence and uniqueness theorem was partially proved in [18] and [34]. We restate it here in a
different form.
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Theorem 3.1. Suppose x ∈ R∞ is a vector which satisfies the condition (5). Assume also that there exists n0 ≥ 1 for
which

gn0+1 = gn0+2 = · · · and σn0+1 = σn0+2 = · · · > 0.

Then, in a weak sense there exists an infinite classical system of competing Brownian particles with drift coefficients
(gk)k≥1 and diffusion coefficients (σ 2

k )k≥1, starting from x, and it is unique in law.

Let us also show a different existence and uniqueness result, analogous to [26, Lemma 11].

Theorem 3.2. Suppose x ∈ R∞ is a vector which satisfies the condition (5). Assume also that

σn = 1, n ≥ 1; and G :=
∞∑

n=1

g2
n < ∞.

Then in a weak sense there exists an infinite classical system of competing Brownian particles with drift coefficients
(gk)k≥1 and diffusion coefficients (σ 2

k )k≥1, starting from x, and it is unique in law.

Now, let us define an approximative version of an infinite classical system. Fix parameters (gn)n≥1 and (σ 2
n )n≥1

and an initial condition x = (xi)i≥1. For each N ≥ 1, consider a finite system of N competing Brownian particles

X(N) = (X(N)
1 , . . . ,X

(N)
N

)′
with drift coefficients (gn)1≤n≤N and diffusion coefficients (σ 2

n )1≤n≤N , starting from [x]N . Let

Y (N) = (Y (N)
1 , . . . , Y

(N)
N

)′
be the ranked version of this system. Take an increasing sequence (Nj )j≥1.

Definition 5. Consider a version of the infinite classical system X = (Xi)i≥1 of competing Brownian particles with
parameters (gn)n≥1, (σ 2

n )n≥1, starting from x. Let Yk be the kth ranked particle. Take an increasing sequence (Nj )j≥1

of positive integers. Assume for every T > 0 and M ≥ 1, weakly in C([0, T ],R2M), we have:

(
X

(Nj )

1 , . . . ,X
(Nj )

M ,Y
(Nj )

1 , . . . , Y
(Nj )

M

)′ ⇒ (X1, . . . ,XM,Y1, . . . , YM)′.

Then X is called an approximative version of this infinite classical system, corresponding to the approximation se-
quence (Nj )j≥1.

We prove weak existence (but not uniqueness in law) under the following conditions, which are slightly more
general than the ones in Theorem 3.1 and Theorem 3.2.

Theorem 3.3. Consider parameters (gn)n≥1 and (σ 2
n )n≥1 which satisfy

g := sup
n≥1

|gn| < ∞, and σ 2 := sup
n≥1

σ 2
n < ∞. (17)

Take initial conditions x = (xi)i≥1 satisfying the conditions (5). Fix an increasing sequence (Nj )j≥1. Then there
exists a subsequence (N ′

j )j≥1 which serves as an approximation sequence for an approximative version X of the

infinite classical system of competing Brownian particles with parameters (gn)n≥1, (σ 2
n )n≥1, starting from x.

This infinite classical system has the following properties.
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Lemma 3.4. Consider any infinite classical system X = (Xi)i≥1, of competing Brownian particles with parameters
(gn)n≥1, (σ 2

n )n≥1, satisfying the condition (17). Assume the initial condition X(0) = x satisfies (5). Then this system
is locally finite. Also, the following set is the state space for X = (X(t), t ≥ 0):

V :=
{
x = (xi)i≥1 ∈R∞ ∣∣ lim

i→∞xi = ∞ and
∞∑
i=1

e−αx2
i < ∞ for all α > 0

}
.

Now, let us describe the dynamics of the ranked particles Yk . Denote by L(k,k+1) the local time process at zero of
Zk , k = 1,2, . . . . For notational convenience, let L(0,1)(t) ≡ 0. For k = 1,2, . . . and t ≥ 0, let

Bk(t) =
∞∑
i=1

∫ t

0
1
(
ps(k) = i

)
dWi(s).

Lemma 3.5. Take a version of an infinite classical system of competing Brownian particles with parameters (gn)n≥1
and (σ 2

n )n≥1. Assume this version is locally finite. Then the processes Bk = (Bk(t), t ≥ 0), k = 1,2, . . . are i.i.d.
standard Brownian motions. For t ≥ 0 and k = 1,2, . . . , we have:

Yk(t) = Yk(0) + gkt + σkBk(t) − 1

2
L(k,k+1)(t) + 1

2
L(k−1,k)(t). (18)

Lemma 3.6. Under conditions of Lemma 3.5, for every t > 0 there is a.s. no tie at time t > 0.

3.2. Infinite systems with asymmetric collisions

Lemma 3.5 provides motivation to introduce infinite systems of competing Brownian particles with asymmetric col-
lisions, when we have coefficients other than 1/2 at the local times in (18). We prove an existence theorem for these
systems. Unfortunately, we could not prove uniqueness: we just construct a copy of an infinite ranked system using
approximation by finite ranked systems. This copy is called the approximative version of the infinite ranked system.

Definition 6. Fix parameters g1, g2, . . . ∈R, σ1, σ2, . . . > 0 and (q±
n )n≥1 such that

q+
n+1 + q−

n = 1, 0 < q±
n < 1, n = 1,2, . . . .

Take a sequence of i.i.d. standard (Ft )t≥0-Brownian motions B1,B2, . . . Consider an R∞-valued process Y =
(Y (t), t ≥ 0) with continuous adapted components and continuous adapted real-valued processes L(k,k+1) =
(L(k,k+1)(t), t ≥ 0), k = 1,2, . . . (for convenience, let L(0,1) ≡ 0), with the following properties:

(i) Y1(t) ≤ Y2(t) ≤ Y3(t) ≤ · · · for t ≥ 0;
(ii) for k = 1,2, . . . , t ≥ 0, we have:

Yk(t) = Yk(0) + gkt + σkBk(t) + q+
k L(k−1,k)(t) − q−

k L(k,k+1)(t);
(iii) each process L(k,k+1) is nondecreasing, L(k,k+1)(0) = 0 and∫ ∞

0

(
Yk+1(t) − Yk(t)

)
dL(k,k+1)(t) = 0, k = 1,2, . . . .

The last equation means that L(k,k+1) can increase only when Yk(t) = Yk+1(t).

Then the process Y is called an infinite ranked system of competing Brownian particles with drift coefficients
(gk)k≥1, diffusion coefficients (σ 2

k )k≥1, and parameters of collisions (q±
k )k≥1. The process Yk = (Yk(t), t ≥ 0) is

called the kth ranked particle. The R∞+ -valued process Z = (Z(t), t ≥ 0),Z(t) = (Zk(t))k≥1, defined by

Zk(t) = Yk+1(t) − Yk(t), k = 1,2, . . . , t ≥ 0,
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is called the gap process. The process L(k,k+1) is called the local time of collision between Yk and Yk+1. If Y(0) = y,
then we say that this system Y starts from y. The processes B1,B2, . . . are called driving Brownian motions. The
system Y = (Yk)k≥1 is called locally finite if for all u ∈ R and T > 0 there exist only finitely many k such that
min[0,T ] Yk(t) ≤ u.

Remark 1. We can reformulate Lemma 3.5 as follows: take an infinite classical system X = (Xi)i≥1 of competing
Brownian particles with drift coefficients (gn)n≥1 and diffusion coefficients (σ 2

n )n≥1. Rank this system X; in other
words, switch from named particles X1,X2, . . . , to ranked particles Y1, Y2, . . . . The resulting system Y = (Yk)k≥1
is an infinite ranked system of competing Brownian particles with drift coefficients (gn)n≥1, diffusion coefficients
(σ 2

n )n≥1, and parameters of collision q±
n = 1/2, for n ≥ 1.

We construct this infinite system by approximating it with finite systems of competing Brownian particles with the
same parameters.

Definition 7. Using the notation from Definition 6, for every N ≥ 2, let

Y (N) = (Y (N)
1 , . . . , Y

(N)
N

)′
be the system of N ranked competing Brownian particles with drift coefficients g1, . . . , gN , diffusion coefficients
σ 2

1 , . . . , σ 2
N and parameters of collision (q±

n )1≤n≤N , driven by Brownian motions B1, . . . ,BN . Suppose there exist
limits

lim
N→∞Y

(N)
k (t) =: Yk(t),

which are uniform on every [0, T ], for every k = 1,2, . . . . Assume that Y = (Yk)k≥1 turns out to be an infinite system
of competing Brownian particles with parameters (gn)n≥1, (σ 2

n )n≥1, (q±
n )n≥1. Then we say that Y is an approximative

version of this system.

Remark 2. From Theorem 3.3, Lemma 3.4, and Lemma 3.5, we know that if we take an approximative version of an
infinite classical system of competing Brownian particles and rank it, we get the approximative version of an infinite
ranked system. This allows us to use subsequent results of Sections 3, 4, and 5 for approximative versions of infinite
classical systems. In particular, if (under conditions of Theorem 3.1 or Theorem 3.2) there is a unique in law version
of an infinite classical system, then this only version is necessarily the approximative version, and we can apply results
of Sections 3, 4, and 5 to this system.

Now comes the main result of this subsection.

Theorem 3.7. Take a sequence of drift coefficients (gn)n≥1, a sequence of diffusion coefficients (σ 2
n )n≥1, and a se-

quence of parameters of collision (q±
n )n≥1. Suppose that the initial conditions y ∈ R∞ are such that y1 ≤ y2 ≤ . . . ,

and

∞∑
n=1

e−αy2
n < ∞ for all α > 0.

Assume that

inf
n≥1

gn =: g > −∞, sup
n≥1

σ 2
n =: σ 2 < ∞, (19)

and there exists n0 ≥ 1 such that

q+
n ≥ 1

2
for n ≥ n0. (20)
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Take any i.i.d. standard Brownian motions B1,B2, . . . . Then there exists the approximative version of the infinite
ranked system of competing Brownian particles with parameters

(gn)n≥1,
(
σ 2

n

)
n≥1,

(
q±
n

)
n≥1,

starting from y, with driving Brownian motions B1,B2, . . . .

Remark 3. We have not proved uniqueness for infinite ranked system from Theorem 3.7. We can so far only claim
uniqueness for infinite classical systems. Now, suppose we take the infinite ranked system from Theorem 3.7 with
symmetric collisions, when q±

n = 1/2 for all n. Under the additional assumption that this system must be the result
of ranking a classical system, we also get uniqueness. But without this special condition, it is not known whether this
ranked system is unique.

Let us now present some additional properties of this newly constructed approximative version of an infinite system
of competing Brownian particles. These are analogous to the properties of an infinite classical system of competing
Brownian particles, stated in Lemma 3.4 and Lemma 3.6 above.

Lemma 3.8. An approximative version of an infinite ranked system from Theorem 3.7 is locally finite. The process
Y = (Y (t), t ≥ 0) has the state space

W :=
{
y = (yk)k≥1 ∈ R∞ ∣∣y1 ≤ y2 ≤ y3 ≤ . . . , lim

k→∞yk = ∞,

∞∑
k=1

e−αy2
k < ∞, for all α > 0

}
.

Lemma 3.9. Consider an infinite system from Definition 6, which is locally finite. Then for every t > 0 a.s. the vector
Y(t) = (Yk(t))k≥1 has no ties.

3.3. Comparison techniques for infinite systems

We developed comparison techniques for finite systems of competing Brownian particles in [29]. These techniques
also work for approximative versions of infinite ranked systems. By taking limits as the number N of particles goes
to infinity, we can formulate the same comparison results for these two infinite systems. Let us give a few examples.
The proofs trivially follow from the corresponding results for finite systems from [29, Section 3]. These techniques
are used later in Section 4 of this article, as well as in proofs of statements from Section 3.

Corollary 3.10. Take two approximative versions Y and Y of an infinite system of competing Brownian particles with
the same parameters

(gn)n≥1,
(
σ 2

n

)
n≥1,

(
q±
n

)
n≥1,

with the same driving Brownian motions, but starting from different initial conditions Y(0) and Y (0). Let Z and Z be
the corresponding gap processes, and let L and L be the corresponding vectors of local time terms. Then the following
inequalities hold a.s.:

(i) If Y(0) ≤ Y(0), then Y(t) ≤ Y(t), t ≥ 0.
(ii) If Z(0) ≤ Z(0), then Z(t) ≤ Z(t), t ≥ 0, and L(t) − L(s) ≥ L(t) − L(s), 0 ≤ s ≤ t .

Corollary 3.11. Fix M ≥ 2. Take two approximative versions Y = (Yn)n≥M and Y = (Y n)n≥1 of an infinite system of
competing Brownian particles with parameters

(gn)n≥M,
(
σ 2

n

)
n≥M

,
(
q±
n

)
n≥M

;
(gn)n≥1,

(
σ 2

n

)
n≥1,

(
q±
n

)
n≥1.
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Assume that Yk(0) = Y k(0) for k ≥ M . If B1,B2, . . . are driving Brownian motions for Y , then let BM,BM+1, . . . be
the driving Brownian motions for Y . Let Z = (Zk)k≥M and Z = (Zk)k≥1 be the corresponding gap processes, and
let L = (L(k,k+1))k≥M and L = (L(k,k+1))k≥1 be the vectors of boundary terms. Then a.s. the following inequalities
hold:

Yk(t) ≤ Y k(t), k ≥ M, t ≥ 0;
L(k,k+1)(t) − L(k,k+1)(s) ≤ L(k,k+1)(t) − L(k,k+1)(s), 0 ≤ s ≤ t, k ≥ M;
Zk(t) ≥ Zk(t), t ≥ 0, k ≥ M.

Corollary 3.12. Take two approximative versions Y and Y of an infinite system of competing Brownian particles with
parameters

(gn)n≥1,
(
σ 2

n

)
n≥1,

(
q±
n

)
n≥1;

(gn)n≥1,
(
σ 2

n

)
n≥1,

(
q±

n

)
n≥1,

with the same driving Brownian motions, starting from the same initial conditions. Let Z and Z be the corresponding
gap processes. Then:

(i) If q±
n = q±

n , but gn ≤ gn for n = 1,2, . . . , then Y(t) ≤ Y (t), t ≥ 0;
(ii) If q±

n = q±
n , but gn+1 − gn ≤ gn+1 − gn for n = 1,2, . . . , then Z(t) ≤ Z(t), t ≥ 0;

(iii) If gn = gn, but q+
n ≤ q+

n for n = 1,2, . . . , then Y(t) ≤ Y (t), t ≥ 0.

Remark 4. Suppose that in each of these three corollaries, we remove the requirement that the two infinite systems
have the same driving Brownian motions. Then we get stochastic ordering instead of pathwise ordering. The same
applies to Corollary 3.10 if we switch from a.s. comparison to stochastic comparison in the inequalities Y(0) ≤ Y(0)

and Z(0) ≤ Z(0), respectively.

4. The gap process: Stationary distributions and weak convergence

In this section, we construct a stationary distribution π for the gap process Z = (Z(t), t ≥ 0) of such system. Then
we prove weak convergence results for Z(t) as t → ∞.

4.1. Construction of a stationary distribution

Consider again an infinite system Y of competing Brownian particles with parameters (gn)n≥1, (σ 2
n )n≥1, (q±

n )n≥1. Let
Z be its gap process. Let us recall a definition from the Introduction.

Definition 8. Let π be a probability measure on R∞+ . We say that π is a stationary distribution for the gap process
for the system above if there exists a version Y of this system such that for every t ≥ 0, we have: Z(t) ∼ π .

Let us emphasize that in this section, we do not study uniqueness and Markov property. We simply construct a
copy of the system with required properties.

Assumption 1. Consider, for each N ≥ 2, the ranked system of N competing Brownian particles with parameters
(gn)1≤n≤N, (σ 2

n )1≤n≤N, (q±
n )1≤n≤N . There exists a sequence (Nj )j≥1 such that Nj → ∞ and for every j ≥ 1, the

system of N = Nj particles is such that its gap process has a stationary distribution. Let π(Nj ) be this stationary

distribution on R
Nj −1
+ .
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Define an (N − 1) × (N − 1)-matrix R(N) and a vector μ(N) from RN−1, as in (14) and (15). By Proposition 2.1,
Assumption 1 holds if and only if

[
R(Nj )

]−1
μ(Nj ) < 0.

Let B1,B2, . . . be i.i.d. standard Brownian motions. Let z(Nj ) ∼ π(Nj ) be an F0-measurable random variable.
Consider the system Y

(Nj )
of Nj ranked competing Brownian particles with parameters

(gn)1≤n≤Nj
,
(
σ 2

n

)
1≤n≤Nj

,
(
q±
n

)
1≤n≤Nj

,

starting from

(
0, z

(Nj )

1 , . . . , z
(Nj )

1 + · · · + z
(Nj )

Nj −1

)′
,

with driving Brownian motions B1, . . . ,BNj
. The following statement, which we state separately as a lemma, is a

direct corollary of [29, Corollary 3.14].

Lemma 4.1. [π(Nj+1)]Nj −1 	 π(Nj ).

Without loss of generality, by changing the probability space we can take z(Nj ) ∼ π(Nj ) such that a.s.
[z(Nj+1)]Nj −1 ≤ z(Nj ), for j ≥ 1. In other words, for all j = 1,2, . . . and k = 1, . . . ,Nj − 1, we have:

0 ≤ z
(Nj+1)

k ≤ z
(Nj )

k .

A bounded monotone sequence has a limit:

zk = lim
j→∞ z

(Nj )

k , k ≥ 1.

Denote by π the distribution of (z1, z2, . . .) on R∞+ . Then π becomes a prospective stationary distribution for the gap
process for the infinite system of competing Brownian particles. Equivalently, we can define π as follows: for every
M ≥ 1, let[

π(Nj )
]
M

⇒ ρ(M), j → ∞.

These finite-dimensional distributions ρ(M) are consistent:[
ρ(M+1)

]
M

= ρ(M), M ≥ 1.

By Kolmogorov’s theorem there exists a unique distribution π on R∞+ such that [π]M = ρ(M) for all M ≥ 1. Note that
this limiting distribution does not depend on the sequence (Nj )j≥1, as shown in the next lemma.

Lemma 4.2. If there exist two sequences (Nj )j≥1 and (Ñj )j≥1 which satisfy Assumption 1, and if π and π̃ are the
resulting limiting distributions, then π = π̃ .

The next lemma allows us to rewrite the condition (5) in terms of the gap process.

Lemma 4.3. For a sequence y = (yn)n≥1 ∈ R∞ such that yn ≤ yn+1, n ≥ 1, let z = (zn)n≥1 ∈ R∞ be defined by
zn = yn+1 − yn,n ≥ 1. Then y satisfies (5) if and only if z satisfies

∞∑
n=1

exp
(−α(z1 + · · · + zn)

2)< ∞ for all α > 0. (21)
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Now, let us state one of the two main results of this section.

Theorem 4.4. Consider an infinite system of competing Brownian particles with parameters

(gn)n≥1,
(
σ 2

n

)
n≥1,

(
q±
n

)
n≥1.

(i) Let the Assumption 1 and (19), (20) be true. Then we can construct the distribution π .
(ii) Assume, in addition, that if a R∞+ -valued random variable z is distributed according to π , then z = (z1, z2, . . .)

a.s. satisfies (21). Then we can construct an approximative version of the infinite system of competing Brownian
particles with parameters

(gn)n≥1,
(
σ 2

n

)
n≥1,

(
q±
n

)
n≥1,

such that π is a stationary distribution for the gap process.

Remark 5. As mentioned in the Introduction, if a stationary distribution for the gap process of finite systems exists,
it is unique. This was proved in [3]. For infinite systems, this is an open question.

In this subsection, we apply Theorem 4.4 to the case of the skew-symmetry condition, similar to (16):(
q−
k−1 + q+

k+1

)
σ 2

k = q−
k σ 2

k+1 + q+
k σ 2

k−1, k = 2,3, . . . . (22)

Under this condition, by Proposition 2.1,

π(Nj ) =
Nj −1⊗
k=1

Exp
(
λ

(Nj )

k

)
,

where we define for k = 1, . . . ,Nj − 1:

λ
(Nj )

k = 2

σ 2
k + σ 2

k+1

(−[R(Nj )
]−1

μ(Nj )
)
k
.

Consider the following marginal of this stationary distribution:

[
π(Nj+1)

]
Nj −1 =

Nj −1⊗
k=1

Exp
(
λ

(Nj+1)

k

)
.

By Lemma 4.1, we can compare:

[
π(Nj+1)

]
Nj −1 	 π(Nj ) =

Nj −1⊗
k=1

Exp
(
λ

(Nj )

k

)
.

But Exp(λ′) 	 Exp(λ′′) is equivalent to λ′ ≥ λ′′. Therefore, λ
(Nj )

k ≤ λ
(Nj+1)

k , for k = 1, . . . ,Nj − 1. In other words,

for every k, the sequence (λ
(Nj )

k ) is nondecreasing. There exists a limit (possibly infinite)

λk := lim
j→∞λ

(Nj )

k , k = 1,2, . . . .

Assume that λk < ∞ for all k = 1,2, . . . . Then

π =
∞⊗

k=1

Exp(λk). (23)
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If λk = ∞ for some k, then we can also write (23), understanding that Exp(∞) = δ0 is the Dirac point mass at zero.
This π is a candidate for a stationary distribution. If the condition (21) is satisfied π -a.s., then π is, indeed, a stationary
distribution. Let us give a sufficient condition for (21).

Lemma 4.5. Consider a distribution π as in (23). Let �n :=∑n
k=1 λ−1

k .

(i) If supn≥1 λn < ∞, then π -a.s. (21) is satisfied.
(ii) If

∑∞
n=1 λ−2

n < ∞, then π -a.s. (21) is satisfied if and only if

∞∑
n=1

e−α�2
n < ∞ for all α > 0. (24)

4.2. The case of symmetric collisions

Assume now that the collisions are symmetric: q±
n = 1/2, n = 1,2, . . . . Then the skew-symmetry condition (22) takes

the form σ 2
k+1 − σ 2

k = σ 2
k − σ 2

k−1, for k = 2,3, . . . . In other words, σ 2
k must linearly depend on k. If, in addition, (19)

holds, then σ 2
k = σ 2, k = 1,2, . . . . Recall the definition of gk from (3). It was shown in Proposition 2.2 that in this

case, [R(Nj )]−1μ(Nj ) < 0 if and only if

gk > gNj
, k = 1, . . . ,Nj − 1. (25)

If the inequality (25) is true for j = 1,2, . . . , then

π(Nj ) =
Nj −1⊗
k=1

Exp
(
λ

(Nj )

k

)
, λ

(Nj )

k := 2k

σ 2
(gk − gNj

).

Assume the sequence (gn)n≥1 is bounded from below, as in (19). Then the sequence (gNj
)j≥1 is also bounded below.

From (25), we get: gNj
> gNj+1

for j = 1,2, . . . . Therefore, there exists the limit limj→∞ gNj
=: g∞. Then, as

j → ∞, we get:

λ
(Nj )

k → λk := 2k

σ 2
(gk − g∞).

Thus, the distribution π has the following product-of-exponentials form:

π =
∞⊗

k=1

Exp(λk) =
∞⊗

k=1

Exp

(
2k

σ 2
(gk − g∞)

)
. (26)

If λk, k = 1,2, . . . , satisfy Lemma 4.5, then π is a stationary distribution.

Example 2. Consider an infinite system with symmetric collisions, with drift and diffusion coefficients

g1, g2, . . . , gM > 0, gM+1 = gM+2 = · · · = 0, σ1 = σ2 = · · · = 1.

Then

gk = g1 + · · · + gM

k
, k > M.

Therefore, g∞ = limk→∞ gk = 0, and the parameters λk from (26) are equal to

λk =
{

2(g1 + · · · + gk), 1 ≤ k ≤ M;
2(g1 + · · · + gM), k > M.
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These parameters satisfy Lemma 4.5(i). Therefore, the conclusions of this section are valid. In particular, if g1 = · · · =
gM = 1, as in Theorem 1.1 from the Introduction, then

π = Exp(2) ⊗ Exp(4) ⊗ · · · ⊗ Exp(2M) ⊗ Exp(2M) ⊗ · · · .

4.3. Convergence results

Now, consider questions of convergence of the gap process as t → ∞ to the stationary distribution π constructed
above. Let us outline the facts proved in this subsection (omitting the required conditions for now).

(a) The family of random variables Z(t), t ≥ 0, is tight in R∞+ with respect to the componentwise convergence (which
is metrizable by a certain metric). Any weak limit point of Z(t) as t → ∞ is stochastically dominated by π .

(b) If we start the approximative version of the infinite system Y with gaps stochastically larger than π , then the gap
process converges weakly to π .

(c) Any other stationary distribution for the gap process (if it exists) must be stochastically smaller than π .

The rest of this subsection is devoted to precise statements of these results.

Theorem 4.6. Consider any version (not necessarily approximative) of the infinite system of competing Brownian
particles with parameters

(gn)n≥1,
(
σ 2

n

)
n≥1,

(
q±
n

)
n≥1.

Suppose Assumption 1 holds.

(i) Then the family of R∞+ -valued random variables Z(t), t ≥ 0 is tight in R∞+ .
(ii) Suppose for some sequence tj ↑ ∞ we have: Z(tj ) ⇒ ν as j → ∞, where ν is some probability measure on R∞+ .

Then ν 	 π : the measure ν is stochastically dominated by π .
(iii) Under conditions of Theorem 4.4(ii), every stationary distribution π ′ for the gap process is stochastically domi-

nated by π : π ′ 	 π .

Remark 6. Let us stress: we do not need Y to be an approximative version of the system, and we do not need the
initial conditions Y(0) = y to satisfy (5).

Theorem 4.7. Consider an approximative version Y of the infinite system of competing Brownian particles with
parameters (gn)n≥1, (σ

2
n )n≥1, (q

±
n )n≥1. Let Z be the corresponding gap process. Suppose it satisfies conditions of

Theorem 4.4(ii). Then we can construct the distribution π , and it is a stationary distribution for the gap process. If
Z(0) 
 π , then

Z(t) ⇒ π, t → ∞.

Proof. Let us show that for each t ≥ 0 we have: Z(t) 
 π . (Together with Theorem 4.6(i), (ii), this completes the
proof.) Consider another system Y : an approximative version of the system with the gap process Z having stationary
distribution π . Then Z(0) 
 Z(0) ∼ π . By Corollary 3.10(ii) above, Z(t) 
 Z(t) ∼ π, t ≥ 0. �

5. Triple collisions for infinite systems

Let us define triple and simultaneous collisions for an infinite ranked system Y = (Yn)n≥1 of competing Brownian
particles.

Definition 9. We say that a triple collision between particles Yk−1, Yk and Yk+1 occurs at time t ≥ 0 if

Yk−1(t) = Yk(t) = Yk+1(t).
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We say that a simultaneous collision occurs at time t ≥ 0 if for some 1 ≤ k < l, we have:

Yk(t) = Yk+1(t) and Yl(t) = Yl+1(t).

A triple collision is a particular case of a simultaneous collision. For finite systems of competing Brownian particles
(both classical and ranked), the question of a.s. absence of triple collisions was studied in [17,18,22]. A necessary and
sufficient condition for a.s. absence of any triple collisions was found in [30]; see also [5] for related work. This
condition also happens to be sufficient for a.s. absence of any simultaneous collisions. In general, triple collisions are
undesirable, because strong existence and pathwise uniqueness for classical systems of competing Brownian particles
was shown in [18] only up to the first moment of a triple collision. Some results about triple collisions for infinite
classical systems were obtained in the paper [18]. Here, we strengthen them a bit and also prove results for asymmetric
collisions.

It turns out that the same necessary and sufficient condition works for infinite systems as well as for finite systems.

Theorem 5.1. Consider a version of the infinite ranked system of competing Brownian particles Y = (Yn)n≥1 with
parameters

(gn)n≥1,
(
σ 2

n

)
n≥1,

(
q±
n

)
n≥1.

(i) Assume this version is locally finite. If

(
q−
k−1 + q+

k+1

)
σ 2

k ≥ q−
k σ 2

k+1 + q+
k σ 2

k−1, k = 2,3, . . . . (27)

Then a.s. for any t > 0 there are no triple and no simultaneous collisions at time t .
(ii) If the condition (27) is violated for some k = 2,3, . . . , then with positive probability there exists a moment t > 0

such that there is a triple collision between particles with ranks k − 1, k, and k + 1 at time t .

An interesting corollary of [30, Theorem 1.2] for finite systems is that if there are a.s. no triple collisions, then
there are also a.s. no simultaneous collisions. This is also true for infinite systems constructed in Theorem 3.7.

Remark 7. For symmetric collisions: q±
n = 1/2, n = 1,2, . . . , this result takes the following form. There are a.s.

no triple collisions if and only if the sequence (σ 2
k )k≥1 is concave. In this case, there are also a.s. no simultaneous

collisions. If for some k ≥ 1 we have:

σ 2
k+1 <

1

2

(
σ 2

k + σ 2
k+2

)
,

then with positive probability there exists t > 0 such that Yk(t) = Yk+1(t) = Yk+2(t).

Remark 8. Let us restate the main result of [18]: for a infinite classical systems of competing Brownian particles
which satisfies conditions of Theorem 3.1, there exists a unique strong version up to the first triple collision. In
particular, if the sequence of diffusion coefficients (σ 2

k )k≥1 is concave, then there exists a unique strong solution on
the infinite time horizon.

Remark 9. Partial results of [18] for infinite classical systems of competing Brownian particles are worth mentioning:
if there are a.s. no triple collisions, then (σ 2

k )k≥1 is concave; if the sequence (0, σ 2
1 , σ 2

2 , . . .) is concave, then there are
a.s. no triple collisions. In particular, it was already shown in [18] that the model (7), as any model with σ1 = σ2 =
· · · = 1, a.s. does not have triple collisions.
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6. Proofs

6.1. Proof of Proposition 2.1

The concept of a semimartingale reflected Brownian motion (SRBM) in the positive orthant Rd+ is discussed in the
survey [39]; we refer the reader to this article for definition and main known results about this process. Here, we
informally introduce the concept. Take a d × d-matrix R with diagonal elements equal to 1, and denote by ri the ith
column of R. Next, take a symmetric positive definite d × d-matrix A, as well as μ ∈Rd . A semimartingale reflected
Brownian motion (SRBM) in the orthant with drift vector μ, covariance matrix A, and reflection matrix R is a Markov
process in Rd+ such that:

(i) when it is in the interior of the orthant, it behaves as a d-dimensional Brownian motion with drift vector μ and
covariance matrix A;

(ii) at each face {x ∈ Rd+ | xi = 0} of the boundary of this orthant, it is reflected instantaneously according to the
vector ri (if ri = ei , which is the ith standard unit vector in Rd , this is normal reflection).

It turns out that Z is an SRBM in the orthant RN−1+ with reflection matrix R given by (14), drift vector μ as in (15),
and covariance matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
1 + σ 2

2 −σ 2
2 0 0 . . . 0 0

−σ 2
2 σ 2

2 + σ 2
3 −σ 2

3 0 . . . 0 0
0 −σ 2

3 σ 2
3 + σ 2

4 −σ 2
4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . σ 2
N−2 + σ 2

N−1 −σ 2
N−1

0 0 0 0 . . . −σ 2
N−1 σ 2

N−1 + σ 2
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

See [22, Section 2.1], [3,30]. The results of Proposition 2.1 follow from the properties of an SRBM. Property (i) of
the matrix R was proved in [22, Section 2.1]; see also [30, Lemma 2.9]. The skew-symmetry condition for an SRBM
is written in the form

RD + DR′ = 2A,

where D = diag(A) is the (N − 1) × (N − 1)-diagonal matrix with the same diagonal entries as A. As mentioned
in [39, Theorem 3.5], this is a necessary and sufficient condition for the stationary distribution to have product-of-
exponentials form. This condition can be rewritten for R and A from (14) and (28) as (16).

6.2. Proof of Lemma 2.3

There is a tie for a system of competing Brownian particles at time t > 0 if and only if the gap process at time t hits
the boundary of the orthant RN−1+ . But the gap process is an SRBM Z = (Z(t), t ≥ 0) in RN−1+ , with the property
from [27]: P(Z(t) ∈ ∂RN−1+ ) = 0 for every t > 0.

6.3. Proof of Theorem 3.1

Because of the results of [18], we need only to prove the following condition. Fix T > 0 and x ∈ R. Let 
 be the set
of all progressively measurable real-valued processes ζ = (ζ(t))0≤t≤T with values in [mini≥1 σi,maxi≥1 σi]. Then for
every ζ ∈ 
,

∞∑
i=1

sup
ξ∈


P
(

xi − gT − max
0≤t≤T

∫ t

0
ζ(s)dWi(s) < x

)
< ∞. (29)

But this follows from Lemma A.2 and Lemma A.1.
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6.4. Proof of Theorem 3.2

The proof closely follows that of [26, Lemma 11]. Assume without loss of generality that initially, the particles
are ranked, that is, xk ≤ xk+1 for k ≥ 1. Consider i.i.d. standard Brownian motions W1,W2, . . . , and let Xi(t) =
xi + Wi(t), i ≥ 1.

Lemma 6.1. For every t ≥ 0, the sequence X(t) = (Xn(t))n≥1 is rankable.

Proof. It suffices to show that the system X is locally finite. This statement follows from Lemma A.2, Lemma A.1,
the Borel–Cantelli lemma and the fact that the initial condition x satisfies (5). �

Recall our standard setting: (�,F, (Ft )t≥0,P). Let pt be the ranking permutation of the sequence X(t). Fix T > 0
and apply Girsanov theorem to X = (Xn)n≥1 on FT . We construct the new measure

Q|Ft
= D(t) · P|Ft

, where D(t) := exp

(
M∞(t) − 1

2
〈M∞〉t

)
, t ≥ 0,

and

M∞(t) =
∞∑
i=1

∞∑
k=1

∫ t

0
gk1
(
ps(k) = i

)
dWi(s). (30)

It suffices to show that the process M∞ exists and is a continuous square-integrable martingale, with 〈M∞〉t = Gt for
all t ≥ 0. Indeed, the rest follows from Girsanov theorem. Fix T > 0. Consider the space M of continuous square-
integrable martingales M = (M(t),0 ≤ t ≤ T ), starting from M(0) = 0. This is a Hilbert space with the following
inner product and norm:

(
M ′,M ′′) := E

〈
M ′,M ′′〉

T
, and ‖M‖ := [E〈M〉T

]1/2
.

For each i, k = 1,2, . . . , define

Mi,k(t) :=
∫ t

0
gk1
(
ps(k) = i

)
dWi(s), t ≥ 0.

Then the process M∞ from (30) can be represented as

M∞(t) =
∞∑
i=1

∞∑
k=1

Mi,k(t), t ≥ 0. (31)

Lemma 6.2. All processes Mi,k , i, k = 1,2, . . . , are elements of the space M and are orthogonal in this space.

Proof. That each of these processes is a continuous square-integrable martingale is straightforward. Let us show
that (Mi′,k′ ,Mi′′,k′′) = 0 when i′ �= i′′ or k′ �= k′′. Indeed, for i′ �= i′′, this follows from the fact that the Brownian
motions Wi′ and Wi′′ are independent, and therefore, 〈Wi′,Wi′′ 〉s ≡ 0. For i′ = i′′ = i and k′ �= k′′, this follows from
an observation that the mapping ps : {1,2, . . .} → {1,2, . . .} is one-to-one for every s ≥ 0, and therefore

1
(
ps

(
k′)= i

)
1
(
ps

(
k′′)= i

)≡ 0. �

It is easy to see that

∞∑
i=1

∞∑
k=1

‖Mi,k‖2 =
∞∑
i=1

∞∑
k=1

∫ T

0
g2

k1
(
ps(k) = i

)
ds = T

∞∑
k=1

g2
k = T G. (32)
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From (32) and Lemma 6.2, we get that the series (31) converges in the space M, which proves that M∞ is a continuous
square-integrable martingale. The calculation similar to the one in (32) with t instead of T shows that 〈M∞〉t ≡ Gt .
This completes the proof of Theorem 3.2.

6.5. Proof of Lemma 3.4

Parts of this result were already proved in [18] for (slightly more restrictive) conditions of Theorem 3.1. We can write
each Xi in the form

Xi(t) = xi +
∫ t

0
βi(s)ds +

∫ t

0
ρi(s)dWi(s), t ≥ 0,

where the drift and diffusion coefficients

βi(t) =
∞∑

k=1

1
(
pt (k) = i

)
gk, ρi(t) =

∞∑
k=1

1
(
pt (k) = i

)
σk

satisfy the following inequalities:∣∣βi(t)
∣∣≤ g,

∣∣ρi(t)
∣∣≤ σ, 0 ≤ t ≤ T .

There exists a random but a.s. finite i0 such that for i ≥ i0 we have: xi > gT +u. For these i, by Lemma A.2 we have:

P
(

min
0≤t≤T

Xi(t) ≤ u
)

≤ 2�

(
xi − gT − u

σ
√

T

)
.

Apply Lemma A.1 and the Borel–Cantelli lemma and finish the proof of the local finiteness. Now, let us show that
a.s. there exist only finitely many i such that Xi(t) ≤ xi/2. There exists a random but a.s. finite i1 such that for i ≥ i1
we have: xi/2 > gT . Then xi > xi/2 + gT for these i. For i ≥ i0 ∨ i1, by Lemma A.2 we have:

P
(
Xi(t) ≤ xi/2

)≤ P
(

min
0≤s≤t

Xi(s) ≤ xi/2
)

≤ 2�

(
xi − xi/2 − gT

σ
√

T

)
.

Apply Lemma A.1 and the Borel–Cantelli lemma. This proves that there exists a random but a.s. finite i2 ≥ i0 ∨ i1
such that Xi(t) ≥ xi/2 for i ≥ i2. Thus, for i ≥ i2, we have: Xi(t) ≥ xi/2 ≥ 0, and almost surely, we get:

∞∑
i=i2

e−αXi(t)
2 ≤

∞∑
i=i2

e−α(xi/2)2
< ∞.

Because i2 is a.s. finite, this completes the proof.

6.6. Proof of Lemma 3.5

This statement follows from similar statement for finite systems (see (11)). Indeed, take the kth ranked particle Yk and
let u := max[0,T ] Yk + 1. Let us show that for every t ∈ [0, T ] there exists a (possibly random) neighborhood of t in
[0, T ] such that (18) holds. The statement of Lemma 3.5 would then follow from compactness of [0, T ] and the fact
that T > 0 is arbitrary.

Indeed, there exists an i0 such that min[0,T ] Xi > u for i > i0. Take the minimal such i0. Then, take m > k and
assume the event {i0 ≤ m} happened. Fix time t ∈ [0, T ]. We claim that if Yk does not collide at time t with other
particles, then there exists a (random) neighborhood when Yk does not collide with other particles. Indeed, particles
Xi, i > m, cannot collide with Yk , by definition of u and i0. And for every particle Xi, i = 1, . . . ,m, other than Yk

(say Yk has name j at time t ), there exists a (random) open time neighborhood of t such that this particle does not
collide with Yk = Xj in this neighborhood. Take the finite intersection of these m − 1 neighborhoods and complete
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the proof of the claim. In this case, the formula (18) is trivial, because the local time terms L(k−1,k) and L(k,k+1) are
constant in this neighborhood.

Now, if Yk(t) does collide with particles Xi, i ∈ I , then I ⊆ {1, . . . ,m}. We claim that there exists a neighborhood
of t such that, in this neighborhood, the particles Xi, i ∈ I , do not collide with any other particles. Indeed, for every
i ∈ I , we have: Xi(t) = Yk(t) ≤ u−1. There exists a neighborhood of t in which Xi does not collide with any particles
Xl, l ∈ {1, . . . ,m} \ I . There exists another neighborhood in which Xi(t) < u. Therefore, Xi does not collide with any
particles Xl, l > m. Intersect all these neighborhoods (there are 2|I | of them) and complete the proof of this claim. In
this neighborhood, the system (Xi)i∈I behaves as a finite system of competing Brownian particles. It suffices to refer
to (11).

6.7. Proof of Theorem 3.7

Step 1. q+
n ≥ 1/2 for all n ≥ 1. For N ≥ 2, consider a ranked system

Y (N) = (Y (N)
1 , . . . , Y

(N)
N

)′
,

of N competing Brownian particles, with parameters

(gn)1≤n≤N,
(
σ 2

n

)
1≤n≤N

,
(
q±
n

)
1≤n≤N

,

starting from Y
(N)
k (0) = yk, k = 1, . . . ,N , with driving Brownian motions B1,B2, . . . ,BN . Define the new parameters

of collision

q±
n = 1

2
, n ≥ 1.

Consider another ranked system

Y
(N) = (Y (N)

1 , . . . , Y
(N)

N

)′
,

of N competing Brownian particles, with parameters

(gn)1≤n≤N,
(
σ 2

n

)
1≤n≤N

,
(
q±

n

)
1≤n≤N

,

starting from the same initial conditions Y
(N)
k (0) = Y

(N)

k (0) = yk, k = 1, . . . ,N , with the same driving Brownian
motions B1,B2, . . . ,BN . We can construct such a system in the strong sense, by result of Section 2 and [22] so that
the sequences of driving Brownian motions (B1, . . . ,BN) for each N are nested into each other. By [29, Corollary 3.9],
for k = 1, . . . ,N and t ≥ 0, we have:

Y
(N+1)

k (t) ≤ Y
(N)

k (t), Y
(N+1)
k (t) ≤ Y

(N)
k (t). (33)

Since q+
n ≥ q+

n = 1/2 for n = 1, . . . ,N , by [29, Corollary 3.12], we have:

Y
(N)

k (t) ≤ Y
(N)
k (t), t ≥ 0, k = 1, . . . ,N. (34)

Lemma 6.3. For every T > 0, we have a.s.

lim
N→∞ min

0≤t≤T
Y

(N)

1 (t) = inf
N≥2

min
0≤t≤T

Y
(N)

1 (t) > −∞.

The proof of Lemma 6.3 is postponed until the end of the proof of Theorem 3.7. This lemma is used for the

pathwise lower bound of the sequence (Y
(N)

1 )N≥2 of processes. Assuming we proved this lemma, let us continue the
proof of Theorem 3.7.
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Step 2. Note that for all s ∈ [0, T ],

min
0≤t≤T

Y
(N)

1 (t) ≤ Y
(N)

1 (s).

Therefore, by Lemma 6.3, for every k ≥ 1, t ≥ 0, N ≥ k, we have:

Y
(N)
k (t) ≥ Y

(N)

k (t) ≥ Y
(N)

1 (t) ≥ lim
N→∞ min

0≤t≤T
Y

(N)

1 (t).

By (33), there exists a finite pointwise limit

Yk(t) := lim
N→∞Y

(N)
k (t). (35)

Now, let L(N) = (L
(N)
(1,2), . . . ,L

(N)
(N−1,N))

′ be the vector of local times for the system Y (N).

Lemma 6.4. There exist a.s. continuous limits

L(k,k+1)(t) := lim
N→∞L

(N)
(k,k+1)(t),

for each k ≥ 1, uniform on every [0, T ]. The limit Yk(t) from (35) is also continuous and uniform on every [0, T ] for
every k ≥ 1.

The proof of Lemma 6.4 is also postponed until the end of the proof of Theorem 3.7. Assuming we proved this
lemma, let us complete the proof of Theorem 3.7 for the case when q+

n ≥ 1/2 for all n ≥ 1. For k = 1,2, . . . and t ≥ 0,
we have:

Y
(N)
k (t) = yk + gkt + σkBk(t) + q+

k L
(N)
(k−1,k)(t) − q−

k L
(N)
(k,k+1)(t).

Letting N → ∞, we have:

Yk(t) = yk + gkt + σkBk(t) + q+
k L(k−1,k)(t) − q−

k L(k,k+1)(t).

Finally, let us show that L(k,k+1) and Yk satisfy the properties (i)–(iii) of Definition 6. Some of these properties follow
directly from the uniform covergence and the corresponding properties for finite systems Y (N). The nontrivial part is to
prove that L(k,k+1) can increase only when Yk = Yk+1. Suppose that for some k ≥ 1 we have: Yk(t) < Yk+1(t) for t ∈
[α,β] ⊆ R+. By continuity, there exists ε > 0 such that Yk+1(t) − Yk(t) ≥ ε for t ∈ [α,β]. By uniform convergence,
there exists an (a.s. finite) N0 such that for N ≥ N0 we have:

Y
(N)
k+1(t) − Y

(N)
k (t) ≥ ε

2
, t ∈ [α,β].

Therefore, L
(N)
(k,k+1) is constant on [α,β]: L

(N)
(k,k+1)(α) = L

(N)
(k,k+1)(β). This is true for all N ≥ N0. Letting N → ∞, we

get: L(k,k+1)(α) = L(k,k+1)(β). Therefore, L(k,k+1) is also constant on [α,β].
Step 3. Now, consider the case when q+

n ≥ 1/2 only for n ≥ n0. It suffices to show that the sequence (Y
(N)
k (t))N≥k

is bounded from below, since this is the crucial part of the proof. For N ≥ n0 + 2, consider the system

Ỹ (N) = (Ỹ (N)
n0+1, . . . , Ỹ

(N)
N

)′
of N − n0 competing Brownian particles with parameters

(gn)n0<n≤N,
(
σ 2

n

)
n0<n≤N

,
(
q±
n

)
n0<n≤N

,
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starting from (yn0+1, . . . , yN)′, with driving Brownian motions Bn0+1, . . . ,BN . By [29, Corollary 3.9, Remark 8], we
have:

Y
(N)
k (t) ≥ Ỹ

(N)
k (t), for n0 < k ≤ N and t ≥ 0. (36)

But for every k > n0 and t ∈ [0, T ], the sequence (Ỹ
(N)
k (t))N>k is bounded below: we proved this earlier in the proof

of Theorem 3.7, thanks to Lemma 6.3 and (34). Let us show that for every t ∈ [0, T ], the sequence (Y
(N)
1 (t))N≥2 is

bounded below. Indeed, again applying [29, Corollary 3.9], we get:

Z
(n0+1)
k (t) ≥ Z

(N)
k (t), t ≥ 0, k = 1, . . . , n0,N ≥ n0 + 2.

Note that (Y
(N)
n0+1(t))N≥n0+2 is bounded from below, and Z

(n0+1)
k (t) for k = 1, . . . , n0 are independent of N . Combin-

ing this with

Y
(N)
1 (t) = Y

(N)
n0+1(t) − Z(N)

n0
(t) − · · · − Z

(N)
1 (t) ≥ Y

(N)
n0+1(t) − Z

(n0+1)
1 (t) − · · · − Z(n0+1)

n0
(t),

we get that (Y
(N)
1 (t))N≥2 is bounded from below. The rest of the proof is the same as in the case when q+

n ≥ 1/2 for
all n = 1,2, . . . .

Proof of Lemma 6.3. It suffices to show that, as u → ∞, we have:

sup
N≥2

P
(

min
0≤t≤T

Y
(N)

1 (t) < −u
)

→ 0.

The ranked system Y
(N)

has the same law as the result of ranking of a classical system

X(N) = (X(N)
1 , . . . ,X

(N)
N

)′
with the same parameters: drift coefficients (gn)1≤n≤N , diffusion coefficients (σ 2

n )1≤n≤N , starting from X(N)(0) =
(y1, . . . , yN)′. These components satisfy the following system of SDE:

dX
(N)
i (t) =

N∑
k=1

1
(
X

(N)
i has rank k at time t

)(
gk dt + σk dWi(t)

)
, (37)

for some i.i.d. standard Brownian motions W1, . . . ,WN . In particular,

Y
(N)
1 (t) ≡ min

i=1,...,N
X

(N)
i (t).

Therefore,

min
0≤t≤T

Y
(N)
1 (t) = min

1≤i≤N
min

0≤t≤T
X

(N)
i (t). (38)

We can rewrite (37) as

X
(N)
i (t) = yi +

∫ t

0
βN,i(s)ds +

∫ t

0
ρN,i(s)dWi(s),

where

βN,i(t) :=
N∑

k=1

gk1
(
X

(N)
i has rank k at time t

)
,

ρN,i(t) :=
N∑

k=1

σk1
(
X

(N)
i has rank k at time t

)
.
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Because of (19), we have the following estimates: βN,i(t) ≥ g and |ρN,i(t)| ≤ σ , for t ≥ 0. Therefore, by Lemma A.2
we get:

P
(

min
0≤t≤T

X
(N)
i (t) < −u

)
≤ 2�

(
u + yi − (gT )−

σ
√

T

)
.

From (38), we have:

P
(

min
0≤t≤T

Y
(N)

1 (t) < −u
)

≤ 2
N∑

i=1

�

(
u + yi − (gT )−

σ
√

T

)
. (39)

By Lemma A.1, we have:

∞∑
N=1

N∑
i=1

�

(
u + yi − (gT )−

σ
√

T

)
< ∞. (40)

Comparing (39) and (40), we get:

sup
N≥2

P
(

min
0≤t≤T

Y
(N)

1 (t) < −u
)

< ∞.

Let u → ∞. Then

yi + (gT )− + u

σ
√

T
→ ∞, �

(
yi + (gT )− + u

σ
√

T

)
→ 0.

Applying Lebesgue dominated convergence theorem to this series (and using the fact that � is decreasing), we get:

∞∑
i=1

�

(
u + yi + (gT )−

σ
√

T

)
→ 0 as u → ∞.

This completes the proof of Lemma 6.3. �

Proof of Lemma 6.4. Applying [29, Corollary 3.9], we have: for 0 ≤ s ≤ t and 1 ≤ k < N < M ,

L
(N)
(k,k+1)(t) − L

(N)
(k,k+1)(s) ≤ L

(M)
(k,k+1)(t) − L

(M)
(k,k+1)(s). (41)

By construction of these systems, the initial conditions yk = Y
(N)
k (0),N ≥ k, do not depend on N . Therefore,

Y
(N)
1 (t) = y1 + g1t + σ1B1(t) − q−

1 L
(N)
(1,2)(t).

Since Y
(N)
1 (t) → Y1(t) and q−

1 > 0: the sequence (L
(N)
(1,2)(t))N≥2 has a limit

L(1,2)(t) := lim
N→∞L

(N)
(1,2)(t), for every t ≥ 0.

Letting M → ∞ in (41), we get: for t ≥ s ≥ 0,

L(1,2)(t) − L(1,2)(s) ≥ L
(N)
(1,2)(t) − L

(N)
(1,2)(s).

We can equivalently rewrite this as

L(1,2)(t) − L
(N)
(1,2)

(t) ≥ L(1,2)(s) − L
(N)
(1,2)

(s). (42)
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But we also have: (L
(N)
(1,2)(t))N≥2 is nondecreasing. Therefore,

L(1,2)(s) − L
(N)
(1,2)(s) ≥ 0. (43)

In addition, we get the following convergence:

L
(N)
(1,2)(t) → L(1,2)(t) as N → ∞. (44)

Combining (42), (43), (44), we get:

lim
N→∞L

(N)
(1,2)(s) = L(1,2)(s) uniformly on every [0, t].

Therefore, letting N → ∞ in (33), we get:

Y1(t) = y1 + g1t + σ1B1(t) − q−
1 L(1,2)(t), t ≥ 0,

and Y
(N)
1 (s) → Y1(s) uniformly on every [0, t]. Since Y

(N)
1 and L

(N)
(1,2) are continuous for every N ≥ 2, and the uniform

limit of continuous functions is continuous, we conclude that the functions Y1 and L(1,2) are also continuous. Now,

Y
(N)
2 (t) = y2 + g2t + σ2B2(t) + q+

2 L
(N)
(1,2)(t) − q−

2 L
(N)
(2,3)(t), t ≥ 0.

But

Y
(N)
2 (t) → Y2(t) and L

(N)
(1,2)(t) → L(1,2)(t) as N → ∞.

Since q−
2 > 0, we have: there exists a limit L(2,3)(t) := limN→∞ L

(N)
(2,3)(t). Similarly, we prove that this convergence is

uniform on every [0, T ]. Therefore, limN→∞ Y
(N)
2 = Y2 uniformly on every [0, T ]. Thus Y2 and L(2,3) are continuous.

Analogously, we can prove that for every k ≥ 1, the limits

L(k,k+1)(t) = lim
N→∞L

(N)
(k,k+1)(t) and Yk(t) = lim

N→∞Y
(N)
k (t)

exist and are uniform on every [0, T ]. This completes the proof of Lemma 6.4, and with it the proof of Theorem 3.7. �

6.8. Proof of Lemma 3.8

Step 1. First, consider the case q+
n ≥ 1/2 for all n ≥ 1. Take an approximative version Ỹ = (Ỹ1, Ỹ2, . . .) of the

infinite classical system with parameters (gk)k≥1 and (σ 2
k )k≥1, with symmetric collisions, and with the same initial

conditions. By comparison techniques, Corollary 3.12(iii), we have the stochastic domination:

Yk(t) 
 Ỹk(t), k = 1,2, . . . ,0 ≤ t ≤ T . (45)

Step 2. Now, let us prove the two statements for the general case. Consider the approximative version Ỹ = (Ỹk)k>n0

of the infinite ranked system of competing Brownian particles with parameters (gn)n>n0 , (σ
2
n )n>n0 , (q

±
n )n>n0 . But

q+
n ≥ 1/2 for all n > n0, and therefore the system Ỹ satisfies the statements of Lemma 3.8. By comparison techniques

for infinite systems, see Corollary 3.11, we get:

Yk(t) ≥ Ỹk(t), t ∈ [0, T ], n0 < k ≤ N.

Therefore, the system (Yk)k≥1 also satisfies the statements of Lemma 3.8.
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6.9. Proof of Lemma 3.9

Let D = {Y(t)has a tie}. Assume ω ∈ D, that is, the vector Y has a tie:

Yk−1(t) < Yk(t) = Yk+1(t) = · · · = Yl(t) < Yl+1(t). (46)

This tie cannot contain infinitely many particles, because this would contradict Lemma 3.8. Fix a rational q ∈
(Yl(t), Yl+1(t)). By continuity of Yl and Yl+1, there exists M ≥ 1 such that for s ∈ [t − 1/M, t + 1/M] we have:
Yl(s) < q < Yl+1(s). Let

C(k, l, q,M) =
{
Yk−1(t) < Yk(t) = Yk+1(t) = · · · = Yl(t) < Yl+1(t),

and Yl(s) < q < Yl+1(s) for all s ∈
[
t − 1

M
, t + 1

M

]}
.

We just proved that

P

(
D
∖ ∞⋃

M=1

⋃
q∈Q

⋃
k<l

C(k, l, q,M)

)
= 0. (47)

Now let us show that for every k, l,M = 1,2, . . . with k < l and for every q ∈ Q, we have:

P
(
D ∩ C(k, l, q,M)

)= 0. (48)

Since the union in (47) is countable, this completes the proof. If the event C(k, l, q,M) happened, then we have:
([Y(u + t − 1/M)]l ,0 ≤ u ≤ 1/M) behaves as a system of l ranked competing Brownian particles with parameters

(gn)1≤n≤l ,
(
σ 2

n

)
1≤n≤l

,
(
q±
n

)
1≤n≤l

.

By Lemma 2.3, the probability of a tie at t = 1/M for the system ([Y(u + t − 1/M)]l ,0 ≤ u ≤ 1/M) of l competing
Brownianb particles is zero, which proves (48).

6.10. Proof of Theorem 3.3

Let p(N)
t be the ranking permutation for the vector X(N)(t) ∈RN . Then for 1 ≤ i ≤ N we have:

X
(N)
i (t) = xi +

∫ t

0
βN,i(s)ds +

∫ t

0
ρN,i(s)dWN,i(s), t ≥ 0, (49)

where WN,1, . . . ,WN,N are i.i.d. standard Brownian motions,

βN,i(t) =
N∑

k=1

1
(
p(N)

t (k) = i
)
gk, and ρN,i(s) =

N∑
k=1

1
(
p(N)

t (k) = i
)
σk.

Note that∣∣βN,i(t)
∣∣≤ max

k≥1
|gk| =: g,

and ∣∣ρN,i(t)
∣∣≤ max

k≥1
σk =: σ .
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Fix T > 0. It follows from the Arzela–Ascoli criterion and Lemma A.4 that the sequence (X
(N)
i )N≥i is tight in

C[0, T ]. Now, let us show that the following sequence is also tight in C([0, T ],R3k), for each k ≥ 1:(
X

(N)
i , Y

(N)
i ,WN,i, i = 1, . . . , k

)
N≥k

. (50)

For the components Y
(N)
i , this follows from Theorem 4.4: as N → ∞, Y (N)

i ⇒ Yi , where Y = (Yi)i≥1 is an approxima-
tive version of the infinite system of competing Brownian particles with parameters (gn)n≥1, (σ 2

n )n≥1, (q±
n = 1/2)n≥1.

For the components WN,i , this is immediate, because all these elements have the same law in C([0, T ],Rd) (the law
of the d-dimensional Brownian motion starting from the origin). By the diagonal argument, for every subsequence
(Nm)m≥1 there exists a sub-subsequence (N ′

m)m≥1 such that for every k ≥ 1, the following subsequence of (50)

(
X

(N ′
m)

1 , . . . ,X
(N ′

m)

k , Y
(N ′

m)

1 , . . . , Y
(N ′

m)

k ,WN ′
m,1, . . . ,WN ′

m,k

)
m≥1

converges weakly in C([0, T ],R3k). By Skorohod theorem, we can assume that the convergence is, in fact, a.s. Let

Xi := lim
m→∞X

(N ′
m)

i , Yi := lim
m→∞Y

(N ′
m)

i , Wi := lim
m→∞WN ′

m,i , i ≥ 1

be the a.s. uniform limit on [0, T ]. As mentioned earlier, Y = (Yi)i≥1 is an approximative version of the infinite system
of competing Brownian particles with parameters (gn)n≥1, (σ 2

n )n≥1, (q±
n = 1/2)n≥1. Also, Wi are i.i.d. standard

Brownian motions.
Next, it suffices to show that X is a version of the infinite classical system, because the subsequence (Nm)m≥1 is

arbitrary, and the tightness is established above. Take the (random) set N (ω) of times t ∈ [0, T ] when the system Y or
a system Y (N ′

m) for some m ≥ 1 has a tie. By Lemmata 3.9 and 2.3, there exists a set �∗ ⊆ � of measure P(�∗) = 1
such that for all ω ∈ �∗, the set N (ω) has Lebesgue measure zero. Therefore, for every ε > 0 and every ω ∈ �∗, there
exists an open subset Uε(ω) ⊆ [0, T ] with measure mes(Uε(ω)) < ε such that N (ω) ⊆ Uε(ω).

Lemma 6.5. Fix i ≥ 1. Then for every ω ∈ �∗, there exists an m0(ω) such that for m ≥ m0(ω) and k ≥ 1,

{
t ∈ [0, T ] \ Uε(ω) | Xi(t) = Yk(t)

}⊆ {t ∈ [0, T ] \ Uε(ω) | X(N ′
m)

i (t) = Y
(N ′

m)

k (t)
}
.

Proof. Assume the converse. Then there exists a sequence (tj )j≥1 in [0, T ] ⊆ Uε(ω) and a sequence (mj )j≥1 such
that mj → ∞ and

Xi(tj ) = Yk(tj ), X
(N ′

mj
)

i (tj ) �= Y
(N ′

mj
)

k (tj ).

Therefore, the particle with name i in the system X
(N ′

mj
)

has rank other than k: either larger than k, in which case we
have:

X
(N ′

mj
)

i (tj ) ≥ Y
(N ′

mj
)

k+1 (tj ), (51)

or smaller than k, in which case

X
(N ′

mj
)

i (tj ) ≤ Y
(N ′

mj
)

k−1 (tj ). (52)

By the pigeonhole principle, at least one of these inequalities is true for infinitely many j . Without loss of generality,
we can assume that (51) holds for infinitely many j ≥ 1; the case when (52) holds for infinitely many j ≥ 1 is similar.
Again, without loss of generality we can assume (51) holds for all j ≥ 1. There exists a convergent subsequence of
(tj )j≥1, because [0, T ] is compact. Without loss of generality, we can assume tj → t0. We shall use the principle: if
fn → f0 uniformly on [0, T ] and sn → s0, then fn(sn) → f0(s0). Since

X
(N ′

mj
)

i (tj ) → Xi(t0) and Y
(N ′

mj
)

k+1 (tj ) → Yk+1(t0)
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uniformly on [0, T ], we have after letting j → ∞: Xi(t0) ≥ Yk+1(t0). But we can also let j → ∞ in Xi(tj ) = Yk(tj ).
We get: Xi(t0) = Yk(t0). Thus, Yk+1(t0) ≤ Yk(t0). The reverse inequality always holds true. Therefore, there is a tie at
the point t0. But the set [0, T ] \ Uε is closed; therefore, t0 ∈ [0, T ] \ Uε . This contradiction completes the proof. �

Lemma 6.6. For ω ∈ �∗, t ∈ [0, T ] \N (ω), and i ≥ 1, as m → ∞, we have:

βN ′
m,i(t) → βi(t) :=

∞∑
k=1

1
(
Yk(t) = Xi(t)

)
gk, and ρN ′

m,i(t) → ρi(t) :=
∞∑

k=1

1
(
Yk(t) = Xi(t)

)
σk.

Proof. Let us prove the first convergence statement; the second statement is proved similarly. By Lemma 6.5, we
have:

βN ′
m,i(t) = βi(t) and ρN ′

m,i(t) = ρi(t), t ∈ [0, T ] \ Uε,m > m0.

This proves that

βN ′
m,i(t) → βi(t) and ρN ′

m,i(t) → ρi(t) for t ∈ [0, T ] \ Uε as m → ∞.

Since the set mes(Uε) < ε and ε is arbitrarily small, this proves Lemma 6.6. �

Now, let us return to the proof of Theorem 3.3. Fix t ∈ [0, T ]. Apply [32, Lemma 7.1] to show that in L2(�,F,P),
we have:

∫ t

0
ρN ′

m,i(s)dWN ′
m,i(s) →

∫ t

0
ρi(s)dWi(s). (53)

Also, by Lebesgue dominated convergence theorem (because mes(N (ω)) = 0 for ω ∈ �∗),

∫ t

0
βN ′

m,i(s)ds →
∫ t

0
βi(s)ds a.s. for all t ∈ [0, T ]. (54)

Finally, we have a.s.

X
(N ′

m)

i (t) = xi +
∫ t

0
βN ′

m,i(s)ds +
∫ t

0
ρN ′

m,i(s)dWN ′
m,i(s) → Xi(t). (55)

From (55) and (54) we have that

∫ t

0
ρN ′

m,i(s)dWN ′
m,i(s) → Xi(t) − xi −

∫ t

0
βi(s)ds. (56)

But if a sequence of random variables converges to one limit in L2 and to another limit a.s., then there limits coincide
a.s. Comparing (53) and (56), we get:

Xi(t) = xi +
∫ t

0
βi(s)ds +

∫ t

0
ρi(s)dWi(s),

which is another way to write the SDE governing the infinite classical system. We have found a sequence (N ′
m)m≥1

which corresponds to convergence on [0, T ]. By taking a sequence Tj → ∞ and using the standard diagonal argument,
we can finish the proof.
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6.11. Proof of Lemma 4.2

Because of symmetry of π and π̃ , it suffices to show that π 	 π̃ . Next, it suffices to show that for every fixed M ≥ 1
we have:

[π]M 	 [π̃ ]M. (57)

Recall that we have the following weak convergence:

[
π(Ñj )

]
M

⇒ [π̃ ]M, j → ∞,

and the stochastic comparison is preserved under weak limits. Therefore, to show (57), it suffices to prove that

[π]M 	 [π(Ñj )
]
M

. (58)

Now, take J large enough so that NJ > Ñj . By [29, Corollary 3.14], we have:

[
π(Ñj )

]
M


 [π(NJ )
]
M

. (59)

By construction of π , we get:

[π]M 	 [π(NJ )
]
M

. (60)

From (59) and (60), we get (58).

6.12. Proof of Theorem 4.4

Using the notation of Theorem 3.7, we have:

Y
(Nj )

k → Yk, j → ∞,

for every k ≥ 1, uniformly on every [0, T ]. Now, let

Y
(Nj ) = (Y (Nj )

1 , . . . , Y
(Nj )

Nj

)′
be the ranked system of Nj competing Brownian particles, which has the same parameters and driving Brownian
motions as

Y (Nj ) = (Y (Nj )

1 , . . . , Y
(Nj )

Nj

)′
,

but starts from(
0, z

(Nj )

1 , z
(Nj )

1 + z
(Nj )

2 , . . . , z
(Nj )

1 + z
(Nj )

2 + · · · + z
(Nj )

Nj −1

)′
,

rather than (0, z1, z1 + z2, . . . , z1 + z2 + · · · + zNj −1)
′. In other words, the gap process Z

(Nj )
of the system Y

(Nj )
is

in its stationary regime: Z
(Nj )

(t) ∼ π(Nj ), t ≥ 0. Now, let us state an auxillary lemma; its proof is postponed until the
end of the proof of Theorem 4.4.

Lemma 6.7. Almost surely, as j → ∞, for all t ≥ 0 and k ≥ 1, we have:

Yk(t) = lim
j→∞Y

(Nj )

k (t). (61)



Infinite systems of competing Brownian particles 2309

Assuming that we have already shown Lemma 6.7, we can finish the proof. For every t ≥ 0 and k = 1,2, . . . , a.s.

Z
(Nj )

k (t) = Y
(Nj )

k+1 (t) − Y
(Nj )

k (t) → Zk(t) = Yk+1(t) − Yk(t), j → ∞.

Therefore, for every t ≥ 0 and M ≥ 1, a.s. we have:

(
Z

(Nj )

1 (t), . . . ,Z
(Nj )

M (t)
)′ → (

Z1(t), . . . ,ZM(t)
)′
, j → ∞.

But

Z
(Nj )

(t) = (Z(Nj )

1 (t), . . . ,Z
(Nj )

Nj −1(t)
)′ ∼ π(Nj )

for j ≥ 1 and t ≥ 0. Moreover, as j → ∞, we have the following weak convergence:[
π(Nj )

]
M

⇒ [π]M.

Therefore, for M ≥ 1, t ≥ 0, we get:(
Z1(t), . . . ,ZM(t)

)′ ∼ [π]M.

Thus, for Z(t) := (Z1(t),Z2(t), . . .), we have:

Z(t) ∼ π, t ≥ 0.

Proof of Lemma 6.7. First, since z1 ≤ z
(Nj )

1 , . . . , zNj −1 ≤ z
(Nj )

Nj −1, we have:

Y (Nj )(0) = (0, z1, z1 + z2, . . . , z1 + z2 + · · · + zNj −1)
′

≤ Y
(Nj )

(0) = (0, z
(Nj )

1 , z
(Nj )

1 + z
(Nj )

2 , . . . , z
(Nj )

1 + z
(Nj )

2 + · · · + z
(Nj )

Nj −1

)′
.

By [29, Corollary 3.11(i)],

Y
(Nj )

k (t) ≤ Y
(Nj )

k (t), t ≥ 0, j ≥ 1. (62)

As shown in the proof of Theorem 3.7,

Y
(Nj )

k (t) ≥ Yk(t), k = 1, . . . ,Nj , t ≥ 0. (63)

Combining (62) and (63), we get:

Yk(t) ≤ Y
(Nj )

k (t), k = 1, . . . ,Nj , t ≥ 0. (64)

On the other hand, fix ε > 0 and j ≥ 1. Then liml→∞ z
(Nl)
k = zk , for k = 1, . . . ,Nj − 1. There exists an l0(j, ε) such

that for l > l0(j, ε) and k = 1, . . . ,Nj − 1,

z
(Nl)
1 + · · · + z

(Nl)
k ≤ z1 + · · · + zk + ε. (65)

For such l, let Y̌ = (Y̌1, . . . , Y̌Nj
)′, be another system of Nj competing Brownian particles, with the same parameters

and driving Brownian motions, as Y (Nj ), but starting from (0, z
(Nl)
1 , z

(Nl)
1 + z

(Nl)
2 , . . . , z

(Nl)
1 + z

(Nl)
2 + · · · + z

(Nl)
Nj −1)

′.
By [29, Corollary 3.9],

Y̌k(t) ≥ Y
(Nl)

k (t), k = 1, . . . ,Nj , t ≥ 0, (66)
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since Y̌ is obtained from Y
(Nl) by removing the top Nl − Nj particles. However,

Y (Nj ) + ε1Nj
:= (Y (Nj )

1 + ε, . . . , Y
(Nj )

Nj
+ ε
)′
,

is also a system of Nj competing Brownian particles, with the same parameters and driving Brownian motions as
Y (Nj ), but starting from (ε, z1 + ε, . . . , z1 + · · · + zNj −1 + ε)′. Since Y (Nj )(0) + ε ≥ Y̌ (0), because of (65), by [29,
Corollary 3.11(i)], we have:

Y̌k(t) ≤ Y
(Nj )

k (t) + ε, k = 1, . . . ,Nj , t ≥ 0. (67)

Combining (66) and (67), we get: Y
(Nl)

k (t) ≤ Y
(Nj )

k (t) + ε, for k = 1, . . . ,Nj , and t ≥ 0. But for every fixed k =
1,2, . . . , limj→∞ Y

(Nj )

k (t) = Yk(t). Therefore, there exists j0(k) ≥ 2 such that Y
(Nj0(k))

k (t) ≤ Yk(t) + ε. Meanwhile,
for l > l0(j0(k), k) we get:

Y
(Nl)

k (t) ≤ Yk(t) + 2ε. (68)

We also have from (64) that

Y
(Nl)

k (t) ≥ Yk(t). (69)

Since ε > 0 is arbitrarily small, combining (68) and (69), we get (61). �

6.13. Proof of Lemma 4.5

(i) Define λ := supn≥1 λn and z′
k = λkλ

−1
zk ∼ Exp(λ). We have: z1 + · · · + zn ≥ z′

1 + · · · + z′
n. By the Law of Large

Numbers, z′
1 + · · · + z′

n = nλ
−1

(1 + o(1)) as n → ∞. Therefore, we can estimate the infinite series as

∞∑
n=1

e−α(z1+···+zn)2 ≤
∞∑

n=1

e−α(z′
1+···+z′

n)2 ≤
∞∑

n=1

e−αλ
−2

(1+o(1))n2
< ∞.

(ii) Recall that Var zn = λ−2
n . For Sn := z1 +· · ·+ zn,n ≥ 1, we have: ESn = �n. By [36, Theorem 1.4.1], we have:

Sn − �n is bounded. The rest is trivial.

6.14. Proof of Theorem 4.6

(i) It suffices to show that for every k = 1,2, . . . , the family of real-valued random variables

Zk = (Zk(t), t ≥ 0
)

is tight in R+. Find an Nj > k such that [R(Nj )]−1μ(Nj ) < 0. Consider a finite system of Nj competing Brownian
particles with parameters

(gn)1≤n≤Nj
,
(
σ 2

n

)
1≤n≤Nj

,
(
q±
n

)
1≤n≤Nj

.

Denote this system by Y (Nj ), as in the proof of Theorem 3.7. Let

Z(Nj ) = (Z(Nj )

1 , . . . ,Z
(Nj )

Nj −1

)′
be the corresponding gap process. By Proposition 2.1, the family of R

Nj −1
+ -valued random variables Z(Nj )(t), t ≥ 0,

is tight in R
Nj −1
+ . By [29, Corollary 3.9, Remark 9],

Z
(Nj )

k (t) ≥ Zk(t) ≥ 0, k = 1, . . . ,Nj − 1.
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Since the collection of real-valued random variables Z
(Nj )

k (t), t ≥ 0, is tight, then the collection Zk(t), t ≥ 0, is also
tight.

(ii) Fix M ≥ 2. It suffices to show that [ν]M 	 [π]M . Since [π(Nj )]M ⇒ [π]M , as j → ∞, it suffices to show that
for Nj > M , we have: [ν]M 	 [π(Nj )]M . Consider the system

Y (Nj ) = (Y (Nj )

1 , . . . , Y
(Nj )

Nj

)′
,

which is defined in Definition 7. Let Z(Nj ) be the corresponding gap process. Then

Z(Nj )(t) ⇒ π(Nj ), t → ∞.

But by [29, Corollary 3.9, Remark 9], Z
(Nj )

k (t) ≥ Zk(t), k = 1, . . . ,Nj − 1. Therefore, [Z(Nj )(t)]M ≥ [Z(t)]M , for
t ≥ 0. And [Z(tj )]M ⇒ [ν]M , as j → ∞. Thus, [π(Nj )]M 
 [ν]M .

(iii) Follows directly from (i).

6.15. Proof of Theorem 5.1

The proof resembles that of Lemma 3.9 and uses Lemma 3.8.
(i) Define the following events:

D = {∃t > 0 : ∃k < l : Yk(t) = Yk+1(t), Yl(t) = Yl+1(t)
};

Dk,l = {∃t > 0 : Yk(t) = Yk+1(t), Yl(t) = Yl+1(t)
}

for k < l.

Then it is easy to see that

D =
⋃
k<l

Dk,l .

Suppose ω ∈ Dk,l , and take the t = t (ω) > 0 such that Yk(t) = Yk+1(t), and Yl(t) = Yl+1(t). There exists an m > l

such that Yl(t) = Yl+1(t) = · · · = Ym(t) < Ym+1(t), because otherwise the system Y is not locally finite. Then there
exist rational q−, q+ such that

t ∈ [q−, q+], and Ym(s) < Ym+1(s) for s ∈ [q−, q+].
Therefore, L(m,m+1)(t) = const on [q−, q+], and, as in Lemma 3.9,

((
Y1(s + q−), . . . , Ym(s + q−)

)′
,0 ≤ s ≤ q+ − q−

)
is a ranked system of m competing Brownian particles with drift coefficients (gk)1≤k≤m, diffusion coefficients
(σ 2

k )1≤k≤m, and parameters of collision (q±
k )1≤k≤m. This system experiences a simultaneous collision at time

s = t − q− ∈ (0, q+ − q−). By [30, Theorem 1.1], this event has probability zero. Let us write this formally. Let

Dk,l,q−,q+,m = {∃t ∈ (q−, q+) : Yk(t) = Yk+1(t), Yl(t) = · · · = Ym(t) < Ym+1(t), and

Ym(s) < Ym+1(s) for s ∈ (q−, q+)
}
.

Then

D =
⋃
k<l

Dk,l ⊆ ∪Dk,l,q−,q+,m,

where the latter union is taken over all positive integers k < l < m and positive rational numbers q− < q+. This union
is countable, and by [30, Theorem 1.2], P(Dk,l,q−,q+,m) = 0, for each choice of k, l,m,q−, q+. Therefore, P(D) = 0,
which completes the proof of (i).
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(ii) Let B1,B2, . . . be the driving Brownian motions of the system Y . Consider the ranked system of three compet-
ing Brownian particles:

Y = (Y k−1, Y k, Y k+1)
′,

with drift coefficients gk−1, gk, gk+1, diffusion coefficients σ 2
k−1, σ

2
k , σ 2

k+1 and parameters of collision q±
k−1, q

±
k , q±

k+1,
with driving Brownian motions Bk−1,Bk,Bk+1, starting from(

Yk−1(0), Yk(0), Yk+1(0)
)′
.

Let (Zk−1,Zk)
′ be the corresponding gap process. Then by [29, Corollary 3.10, Remark 9], we get:

Zk−1(t) ≤ Zk−1(t), Zk(t) ≤ Zk(t), t ≥ 0.

But by [30, Theorem 2], with positive probability there exists t > 0 such that Y k−1(t) = Y k(t) = Y k+1(t). So
Zk−1(t) = Zk(t) = 0. Therefore, with positive probability there exists t > 0 such that Zk−1(t) = Zk(t) = 0, or, in
other words, Yk−1(t) = Yk(t) = Yk+1(t).

Appendix: Technical lemmata

Lemma A.1. Assume that (yn)n≥1 is a sequence of real numbers such that

yn → ∞ and
∞∑

n=1

e−αy2
n < ∞ for α > 0.

Then for every v ∈ R and β > 0 we have:

∞∑
n=1

�

(
yn + v

β

)
< ∞.

Proof. By [9, Chapter 7, Lemma 2], we have for v ≥ 1:

�(v) ≤ 1√
2πv

e−v2/2 ≤ 1√
2π

e−v2/2.

But yn → ∞ as n → ∞, and there exists n0 such that for n ≥ n0 we have: (yn + v)/β ≥ 1. Therefore, for n ≥ n0, we
have:

�

(
yn + v

β

)
≤ 1√

2π
exp

(
− 1

2β2
(yn + v)2

)
.

Using an elementary inequality (c + d)2 ≥ c2/2 − d2 for all c, d ∈R, we get:

1

2β2
(yn + v)2 ≥ 1

4β2
y2
n − 1

2β2
v2.

Thus,

∑
n>n0

�

(
yn + v

β

)
≤ 1√

2π

∑
n>n0

exp

(
− y2

n

4β2
+ v2

2β2

)

= 1√
2π

exp

(
v2

2β2

) ∑
n>n0

exp

(
− y2

n

4β2

)
< ∞.

�
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Lemma A.2. Take an Itô process

V (t) = v0 +
∫ t

0
β(s)ds +

∫ t

0
ρ(s)dW(s), t ≥ 0,

where v0 ∈ R, W = (W(t), t ≥ 0), is a standard Brownian motion, β = (β(t), t ≥ 0) and ρ = (ρ(t), t ≥ 0), are
adapted processes such that a.s. for all t ≥ 0 we have the following estimates: β(t) ≥ g, |ρ(t)| ≤ σ . If x ≤ v0 + gT ,
then we have the following estimate:

P
(

min
0≤t≤T

V (t) ≤ x
)

≤ 2�

(
v0 − x − (gT )−

σ
√

T

)
.

Proof. Let M(t) = ∫ t

0 ρ(s)dW(s), t ≥ 0. Then M = (M(t), t ≥ 0) is a continuous square-integrable martingale with
〈M〉t = ∫ t

0 ρ2(s)ds. There exists a standard Brownian motion B = (B(t), t ≥ 0) so that we can make a time-change:
M(t) ≡ B(〈M〉t ). Then{

min
0≤t≤T

V (t) ≤ x
}

⊆
{

min
0≤t≤T

M(t) − (gT )− + v0 ≤ x
}

⊆
{

min
0≤t≤T

B
(〈M〉t

)≤ x − v0 + (gT )−
}
.

Because 〈M〉t ≤ σ 2T for t ∈ [0, T ], we have:{
min

0≤t≤T
B
(〈M〉t

)≤ x − v0 + (gT )−
}

⊆
{

min
0≤t≤σ 2T

B(t) ≤ x − v0 + (gT )−
}
.

Finally,

P
(

min
0≤t≤σ 2T

B(t) ≤ x − v0 + (gT )−
)

= 2P
(
B
(
σ 2T

)≤ x − v0 + (gT )−
)

= 2�

(
v0 − x − (gT )−

σ
√

T

)
. �

Lemma A.3. Assume that in the setting of Lemma A.2, we have |β(t)| ≤ g and |ρ(t)| ≤ σ for t ≥ 0 a.s. If x ≥
|v0| + gT , then

P
(

max
0≤t≤T

∣∣V (t)
∣∣≤ x

)
≤ 4�

(
v0 − x − gT

σ
√

T

)
.

Proof. This follows from applying Lemma A.2 twice: once for the minimum and once for the maximum of the
process V . (We can adjust Lemma A.2 to work for maximum of V in an obvious way.) �

Lemma A.4. Take a sequence (Mn)n≥1 of continuous local martingales on [0, T ], such that Mn(0) = 0, and 〈Mn〉t
is differentiable for all n, and

sup
n≥1

sup
t∈[0,T ]

d〈Mn〉t
dt

= C < ∞.

Then the sequence (Mn)n≥1 is tight in C[0, T ].

Proof. Use [23, Chapter 2, Problem 4.11] (with obvious adjustments, because the statement in this problem is for R+
instead of [0, T ]). We need only to show that

sup
n≥1

E
(
Mn(t) − Mn(s)

)4 ≤ C0(t − s)2 (A.1)
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for all 0 ≤ s ≤ t ≤ T and for some constant C0, depending only on C and T . By the Burkholder–Davis–Gundy
inequality, see [23, Chapter 3, Theorem 3.28], for some absolute constant C4 > 0 we have:

E
(
Mn(t) − Mn(s)

)4 ≤ C4E
(〈Mn〉t − 〈Mn〉s

)2 ≤ C4
(
C2(t − s)

)2 = C4C
4(t − s)2. (A.2)

�
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