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Abstract. The purpose of the present paper consists in proposing and discussing a doubly probabilistic representation for a stochas-
tic porous media equation in the whole space R1 perturbed by a multiplicative colored noise. For almost all random realizations ω,
one associates a stochastic differential equation in law with random coefficients, driven by an independent Brownian motion.

Résumé. Cet article propose et discute une représentation doublement probabiliste pour une équation des milieux poreux stocha-
tique dans l’espace tout entier R1, perturbée par un bruit multiplicatif coloré. Pour presque toute réalisation ω de l’aléa, on associe
une équation différentielle stochastique en loi avec coefficients aléatoires, dirigée par un mouvement brownien indépendant.
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1. Introduction

We consider a function ψ : R → R and real functions e0, . . . , eN on R, for some strictly positive integer N . In the
whole paper, the following assumption will be in force.

Assumption 1.1.

• |ψ(u)| ≤ const |u|, u ≥ 0. In particular, ψ(0) = 0.
• ψ : R → R is a continuous function such that its restriction to R+ is monotone increasing. Moreover we also

suppose that limu→0
ψ(u)

u
exists.

• Let ei ∈ C2
b(R),0 ≤ i ≤ N .

Let T > 0 and (�,F,P ), be a fixed probability space. A generic element of � will be denoted by ω. (Ft , t ∈ [0, T ])
will stand for a filtration, fulfilling the usual conditions and we suppose F = FT . Let μ(t, ξ), t ∈ [0, T ], ξ ∈ R, be a
random field of the type

μ(t, ξ) =
N∑

i=1

ei(ξ)Wi
t + e0(ξ)t, t ∈ [0, T ], ξ ∈ R,
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where Wi,1 ≤ i ≤ N , are independent continuous (Ft )-Brownian motions on (�,F,P ), which are fixed from now
on until the end of the paper.

For technical reasons we will sometimes set W 0
t ≡ t . We focus on a stochastic partial differential equation of the

following type:{
∂tX(t, ξ) = 1

2∂2
ξξ

(
ψ(X(t, ξ))

)+ X(t, ξ)∂tμ(t, ξ),

X(0,dξ) = x0(dξ),
(1.1)

which holds in the sense of Definition 2.9, where x0 is a given probability measure on R. The stochastic multiplication
above is of Itô type. We look for a solution of (1.1) with time evolution in L1(R). Since ψ restricted to R+ is non-
negative, Assumption 1.1 implies ψ(u) = �2(u)u,u ≥ 0, � : R+ → R being a non-negative continuous function
which is bounded on R+.

Remark 1.2.

1. In the sequel we will consider, without further comments extensions of ψ (and �) to the real line which fulfill the
first two items of Assumption 1.1 for u ∈ R instead of u ≥ 0.

2. The restriction on u �→ �(u) introduced in Assumption 1.1 to be continuous is not always necessary, but here we
assume this for simplicity.

When ψ(u) = |u|m−1u, m > 1, (1.1) and μ ≡ 0, (1.1) is nothing else but the classical porous media equation. When
ψ is a general increasing function (and μ ≡ 0), there are several contributions to the analytical study of (1.1), starting
from [12] for existence, [15] for uniqueness in the case of bounded solutions and [13] for continuous dependence on
the coefficients. Those are the classical references when the space variable varies on the real line. For equations in a
bounded domain and Dirichlet boundary conditions, for simplicity, we only refer to monographs, e.g. [1,2,26,28].

As far as the stochastic porous media is concerned, most of the work for existence and uniqueness concerned the
case of bounded domain, see for instance [3–5]. In the infinite volume case, i.e. when the underlying domain is R

d ,
well-posedness was fully analyzed in [22], when ψ is polynomially bounded (including the fast diffusion case) when
the space dimension is d ≥ 3. [8] established existence and uniqueness for any dimension d ≥ 1 and the authors
obtained estimates for finite time extinction. To the best of our knowledge, except for [22] and [8], this seems to be
the only work concerning a stochastic porous type equation in infinite volume.

We provide a probabilistic representation of solutions to (1.1) extending the results of [6,14] which treated the
deterministic case μ ≡ 0. In the deterministic case, it seems that the first author who considered a probabilistic rep-
resentation (of the type studied in this paper) for the solutions of a non-linear deterministic PDE was McKean [19],
particularly in relation with the so called propagation of chaos. In his case, however, the coefficients were smooth.
From then on the literature steadily grew and nowadays there is a vast amount of contributions to the subject, see
the reference list of [6,14]. A probabilistic representation when ψ(u) = |u|um−1,m > 1, was provided for instance in
[11], in the case of the classical porous media equation. When m < 1, i.e. in the case of the fast diffusion equation, [9]
provides a probabilistic representation of the so called Barenblatt solution, i.e. the solution whose initial condition is
concentrated at zero.

[6,14] discussed the probabilistic representation when μ = 0 in the so called non-degenerate and degenerate case
respectively (see Definition 6.1), where ψ also may have jumps.

In the case μ = 0, the equation (1.1) models a non-linear phenomenon macroscopically. Let us denote by u :
[0, T ] ×R → R the solution of that equation. The idea of the probabilistic representation is to find a process (Yt , t ∈
[0, T ]) whose law at time t has u(t, ·) for its density. In this case the equation (1.1) is conservative, in the sense that
the integral (mass) of the solution is conserved along the time.

The process Y turns out to be the weak solution of the non-linear stochastic differential equation{
Yt = Y0 + ∫ t

0 �(u(s,Ys)) dBs,

Law(Yt ) = u(t, ·), t ≥ 0,
(1.2)

where B is a classical Brownian motion. The behavior of Y is the microscopic counterpart of the phenomenon de-
scribed by (1.1), describing the evolution of a single particle, whose law behaves according to (1.1).
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The idea of this paper is to consider the case when μ �= 0. This includes the case when μ is not vanishing but it
is deterministic; it happens when only e0 is non-zero, and ei ≡ 0,1 ≤ i ≤ n. In this case our technique gives a sort
of forward Feynman–Kac formula for a non-linear PDE. One of the main interests of this paper is that it provides a
(forward) probabilistic representation for non conservative (random) PDE.

We introduce a doubly stochastic representation on which one can represent the solution of (1.1) as the weighted-
law with respect to the random field μ (or simply the μ-weighted law) of a solution to a non-linear SDE.

Intuitively, it describes the microscopic aspect of the SPDE (1.1) for almost all quenched ω. The terminology
strongly refers to the case where the probability space (�,F,P ) on which the SPDE is defined, remains fixed.

We represent a solution X to (1.1) making use of another independent source of randomness described by another
probability space based on some set �1.

The analog of the process Y , obtained when μ is zero in [6,14], is a doubly stochastic process, still denoted by
Y defined on (�1 × �,Q), for which, X constitutes the so-called family of μ-marginal weighted laws of Y , see
Definition 2.4. Y is the solution of a doubly stochastic non-linear diffusion problem, see Definition 3.1. It will be a
(doubly) stochastic process (ω1,ω) �→ Y(ω1,ω) solution of

Yt = Y0 +
∫ t

0
�
(
X(s,Ys,ω)

)
dBs, (1.3)

and B(·,ω) is a Brownian motion on �1 for almost any fixed ω ∈ �. The solution of (1.3) is in the following sense:
fixing a realization ω ∈ �, Y(·,ω) is a weak solution to the first line of (1.2) with u(t, ξ) = X(t, ξ,ω). Moreover
X(t, ξ,ω) is the μ-marginal weighted law of Yt (·,ω).

The paper includes the following main achievements.

1. If we replace in (1.3) a(s, ξ,ω) = �(X(s, ξ,ω)) and a is bounded and non-degenerate, we show existence and
uniqueness of the solution, strongly in ω, weakly in ω1 ∈ �1, see Proposition 4.1. We also show the existence of
law densities, for P -almost all quenched ω, see Proposition 4.4.

2. Theorem 3.3 states that the μ-marginal weighted laws X of a solution Y of a doubly stochastic non-linear diffusion
problem constitute a solution of the stochastic porous media equation (1.1).

3. Conversely, given a solution X of (1.1), under suitable conditions, there is a solution Y of the doubly stochastic
non-linear diffusion. This is discussed in Theorem 6.3 and in Theorem 7.1, distinguishing respectively the cases
when ψ is non-degenerate and degenerate, see Definition 6.1.

4. When ψ is non-degenerate, then the doubly stochastic non-linear diffusion problem also admits uniqueness, see
Theorem 6.3.

5. Section 3.2 illustrates a filtering interpretation for a solution of SPDE (1.1). Indeed, the μ-marginal weighted laws
X of a solution Y of a doubly stochastic non-linear diffusion problem (1.3) can be seen as conditional densities of
Yt , t ∈ [0, T ] with respect to some probability measure.

6. Uniqueness of the stochastic Fokker–Planck equation obtained replacing �2 by a function a(t,ω, ξ) in (1.1), see
Theorem 5.1.

7. Existence of a density to the solution of (1.3), see Proposition 4.4.

2. Preliminaries

2.1. Basic notations

First we introduce some basic recurrent notations. M(R) denotes the space of finite real measures.
We recall that S(R) is the space of the Schwartz fast decreasing test functions. S ′(R) is its dual, i.e. the space of

Schwartz tempered distributions. On S ′(R), the map (I − �)
s
2 , s ∈ R, is well-defined. For s ∈ R, Hs(R) denotes the

classical Sobolev space consisting of all functions f ∈ S ′(R) such that (I − �)
s
2 f ∈ L2(R). We introduce the norm

‖f ‖Hs := ∥∥(I − �)
s
2 f

∥∥
L2 ,

where ‖ ·‖Lp is the classical Lp(R)-norm for 1 ≤ p ≤ ∞. In the sequel, we will often simply denote H−1(R), by H−1

and L2(R) by L2. Furthermore, Wr,p denote the classical Sobolev space of order r ∈ N in Lp(R) for 1 ≤ p ≤ ∞.
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Definition 2.1. Given a function e belonging to L1
loc(R) ∩ S ′(R), we say that it is an H−1-multiplier, if the map

ϕ �→ ϕe is continuous from S(R) to H−1 with respect to the H−1-topology on both spaces.

In the following lines we give some other sufficient conditions on a function e to be an H−1-multiplier.

Lemma 2.2. Let e : R → R. If e ∈ W 1,∞ (for instance if e ∈ W 2,1), then e is a H−1(R)-multiplier. In particular the
functions ei,0 ≤ i ≤ N of Definition 1.1 are H−1(R)-multipliers.

Proof. By duality arguments, we observe that it is enough to show the existence of a constant C(e) such that

‖eg‖H 1 ≤ C(e)‖g‖H 1, ∀g ∈ S(R). (2.1)

(2.1) follows by product derivation rules, with for instance C(e) = √
2(‖e‖2∞ + ‖e′‖2∞)

1
2 . �

With respect to the random field μ, we introduce a notation for the Itô type stochastic integral below.
Let Z = (Z(s, ξ), s ∈ [0, T ], ξ ∈ R) be a random field on (�,F, (Ft ),P ) such that

∫ T

0 (
∫
R

|Z(s, ξ)|dξ)2 ds < ∞
a.s. and it is an L1(R)-valued (Fs)-progressively measurable process. Then, the stochastic integral

∫
[0,t]×R

Z(s, ξ)μ(ds, ξ) dξ :=
N∑

i=0

∫ t

0

(∫
R

Z(s, ξ)ei(ξ)dξ

)
dWi

s ,

is well-defined.
More generally, if s �→ Z(s, ·) is a measurable map [0, T ]×� �→ M(R), where M(R) is the space of signed finite

measures, such that
∫ T

0 ‖Z(s, ·)‖2
var ds < ∞, then the stochastic integral

∫
[0,t]×R

Z(s, ξ)μ(ds, ξ) dξ :=
N∑

i=0

∫ t

0

(∫
R

Z(s,dξ)

)
ei(ξ)dWi

s ,

is well-defined.
We specify now better the filtration (Ft )t∈[0,T ] of the Introduction. We will consider a fixed filtered proba-

bility space (�,F,P , (Ft )t∈[0,T ]), where (Ft )t∈[0,T ] is the canonical filtration of a standard Brownian motion
(W 1, . . . ,WN) enlarged with the σ -field generated by x0. We also suppose that F0 contains the P -null sets and
F =FT .

Let (�1,H) be a measurable space. In the sequel, we will also consider another filtered probability space
(�0,G,Q, (Gt )t∈[0,T ]), where �0 = �1 × �, G =H⊗F .

Clearly any random element Z on (�,F) will be implicitly extended to (�0,G) setting Z(ω1,ω) = Z(ω). In
particular Wi, i = 1, . . . ,N will be extended in that way.

Here we fix some conventions concerning measurability. Any topological space E is naturally equipped with its
Borel σ -algebra B(E). For instance B(R) (resp. B([0, T ])) denotes the Borel σ -algebra of R (resp. [0, T ]).

Given any probability space (�̃, F̃, P̃ ), the σ -field F will always be omitted. When we will say that a map T :
� × E → R is measurable, we will implicitly suppose that the corresponding σ -algebras are F ⊗B(E) and B(R).

All the processes on any generic measurable space (�2,F2) will be considered to be measurable with respect to
both variables (t,ω). In particular any processes on �1 × � is supposed to be measurable with respect to ([0, T ] ×
�1 × �,B([0, T ]) ⊗H⊗F).

A function (A,ω) �→ Q(A,ω) from H × � → R+ is called random kernel (resp. random probability kernel)
if for each ω ∈ �, Q(·,ω) is a finite positive (resp. probability) measure and for each A ∈ H, ω �→ Q(A,ω) is
F -measurable. The finite measure Q(·,ω) will also be denoted by Qω. To that random kernel we can associate
a specific finite measure (resp. probability) denoted by Q on (�0,G) setting Q(A × F) = ∫

F
Q(A,ω)P (dω) =∫

F
Qω(A)P (dω), for A ∈ H,F ∈ F . The probability Q from above will be supposed here and below to be asso-

ciated with a random probability kernel.
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Definition 2.3. If there is a measurable space (�1,H) and a random kernel Q as before, then the probability space
(�0,G,Q) will be called suitable enlarged probability space (of (�,F,P )).

As said above, any random variable on (�,F) will be considered as a random variable on �0 = �1 × �. Then,
obviously, W 1, . . . ,WN are independent Brownian motions also (�0,G,Q).

Given a local martingale M on any filtered probability space, the process Z := E(M) denotes its Doléans expo-
nential, which is a local martingale. In particular it is the unique solution of dZt = Zt− dMt,Z0 = 1. When M is

continuous we have Zt = eMt− 1
2 〈M〉t .

2.2. The concept of marginal weighted laws

Let us consider a suitably enlarged probability space as in Definition 2.3.

Definition 2.4. Let Y : �1 ×�×[0, T ] → R be a measurable process, progressively measurable on (�0,G,Q, (Gt )),
where (Gt ) is some filtration on (�0,G,Q) such that W 1, . . . ,WN are (Gt )-Brownian motions on (�0,G,Q). We will
make use of the stochastic integral notation∫ t

0
μ(ds,Ys) =

N∑
i=0

∫ t

0
ei(Ys) dWi

s , t ∈ [0, T ]. (2.2)

As we shall see below in Proposition 2.6, for every t ∈ [0, T ]

EQ
(
Et

(∫ ·

0
μ(ds, Ys)

))
< ∞. (2.3)

To Y , we will associate its family of μ-marginal weighted laws (or simply family of μ-weighted laws), i.e. the family
of random kernels (t ∈ [0, T ]),

�t = (
�Y

t (A,ω),A ∈ B(R),ω ∈ �
)

defined by

ϕ �→ EQω

(
ϕ
(
Yt (·,ω)

)
Et

(∫ ·

0
μ(ds, Ys)(·,ω)

))
=

∫
R

ϕ(r)�Y
t (dr,ω), (2.4)

where ϕ is a generic bounded real Borel function. We will also say that for fixed t ∈ [0, T ],�t is the μ-marginal
weighted law of Yt .

Remark 2.5.

(i) If � is a singleton {ω0}, ei = 0,1 ≤ i ≤ N , the μ-marginal weighted laws coincide with the weighted laws

ϕ �→ EQ
(

ϕ(Yt ) exp

(∫ t

0
e0(Ys)ds

))
,

with Q = Qω0 . In particular if μ ≡ 0 then the μ-marginal weighted laws are the classical laws.
(ii) By (2.3), for any t ∈ [0, T ], for P almost all ω ∈ �,

EQω

(
Et

(∫ ·

0
μ(ds, Ys)(·,ω)

))
< ∞.

(iii) The function (t,ω) �→ �t(A,ω) is measurable, for any A ∈ B(R), because Y is a measurable process.
(iv) In the case e0 = 0, the situation is the following. For each fixed ω ∈ �, (2.4) is a (random) non-negative measure

which is not a probability. However the expectation of its total mass is indeed 1.
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Proposition 2.6. Consider the situation of Definition 2.4. Then we have the following.

(i) The process Mt := Et (
∑N

i=1

∫ ·
0 ei(Ys)dWi

s ) is a martingale. We emphasize that the sum starts indeed at i = 1.
(ii) The quantity (2.3) is bounded by exp(T ‖e0‖∞).

(iii) EQ(M2
t ) ≤ exp(3T

∑N
i=1 ‖ei‖2∞), t ∈ [0, T ]. Consequently M is a uniformly integrable martingale.

(iv) For P -a.e. ω ∈ �, sup0≤t≤T ‖�t(·,ω)‖var < ∞, where we remind that ‖ · ‖var stands for the total variation.

Remark 2.7. Proposition 2.6(ii) yields in particular that Y always admits μ-marginal weighted laws.

Proof of Proposition 2.6.

(i) The result follows since the Novikov condition EQ(exp( 1
2

∑N
i=1

∫ t

s
ei(Ys)

2 ds)) < ∞ is verified, because the
functions ei, i = 1, . . . ,N , are bounded.

(ii) This follows because EQ(Mt) = 1,∀t ∈ [0, T ].
(iii) M2

t is equal to Nt exp(3
∑N

i=1

∫ t

0 (ei)2(Ys)ds), where N is a positive martingale with N0 = 1.
(iv) For t ∈ [0, T ],

sup
t≤T

∥∥�t(·,ω)
∥∥

var = sup
t≤T

EQω

(
Mt exp

(∫ t

0
e0(Ys)ds

))
≤ exp

(
T
∥∥e0

∥∥∞
)

sup
t≤T

EQω

(Mt).

Taking the expectation with respect to P it implies

EP
(

sup
t≤T

∥∥�Y
t (·,ω)

∥∥
var

)
≤ exp

(
T
∥∥e0

∥∥∞
)
EP

(
sup
t≤T

EQω

(Mt)
)

≤ exp
(
T
∥∥e0

∥∥∞
)
EP

(
EQω

(
sup
t≤T

Mt

))
.

By the Burkholder–Davis–Gundy (BDG) inequality this is bounded by

3 exp
(
T
∥∥e0

∥∥∞
)
EQ(〈M〉

1
2
T

) ≤ 3 exp
(
T
∥∥e0

∥∥∞
)
EQ

([∫ T

0
ds

N∑
i=1

M2
s ei(Ys)

2

] 1
2
)

≤ C(e,N,T )

{
EQ

(∫ T

0
dsM2

s

)} 1
2

,

where the last inequality is due to Jensen’s inequality; C(e,N,T ) is a constant depending on N,T and ei, i =
0, . . . ,N . By Fubini’s theorem and item (iii), we have

EQ
(∫ T

0
dsM2

s

)
≤ T exp

(
3T

N∑
i=1

∥∥ei
∥∥∞

)
.

�

The lemma below gives a characterization of the μ-weighted laws of a process Y living on an enlarged probability
space.

Lemma 2.8. Let Y (resp. Ỹ ) be a process on a suitable enlarged probability space (�0,G,Q) (resp. (�̃0, G̃, Q̃)). Set
W = (W 1, . . . ,WN). Suppose that the law of (Y,W) under Q and the law of (Ỹ ,W) under Q̃ are the same. Then, the
μ-marginal weighted laws of Y under Q coincide a.s. with the μ-marginal weighted laws of Ỹ under Q̃.
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Proof. Let 0 ≤ t ≤ T . Using the assumption, we deduce that for any bounded continuous function f : R → R, and
every F ∈Ft , we have

EQ

(
1F f (Yt )Et

(
N∑

i=0

∫ ·

0
ei(Ys) dWi

s

))
= EQ̃

(
1F f (Ỹt )Et

(
N∑

i=0

∫ ·

0
ei(Ỹs) dWi

s

))
. (2.5)

To show this, using classical regularization properties of Itô integral, see e.g. Theorem 2 in [25], and uniform integra-
bility arguments, we first observe that

Et

(
N∑

i=0

∫ ·

0
ei(Ys) dWi

s

)

is the limit in L2(�0,Q) of

Et

(
N∑

i=0

∫ ·

0
ei(Ys)

Wi
s+ε − Wi

s

ε
ds

)
.

A similar approximation property arises replacing Y with Ỹ and Q with Q̃. Then (2.5) easily follows.
To conclude, it will be enough to show the existence of a countable family (fj )j∈N of bounded continuous real

functions for which, for P almost all ω ∈ �, for any j ∈N, we have Rj = R̃j where

Rj(ω) = EQω

(
fj

(
Yt (·,ω)

)
Et

(
N∑

i=0

∫ ·

0
ei
(
Ys(·,ω)

)
dWi

s

))
,

R̃j (ω) = EQ̃ω

(
fj

(
Ỹt (·,ω)

)
Et

(
N∑

i=0

∫ ·

0
ei
(
Ỹs(·,ω)

)
dWi

s

))
.

This will follow, since applying (2.5), for any F ∈Ft , we have EP (1F Rj ) = EP (1F R̃j ). �

2.3. SPDE, weak-strong existence of SDEs

In this section we introduce the basic concepts related to the stochastic porous media equation and the related non-
linear diffusion.

Definition 2.9. A random field X = (X(t, ξ,ω), t ∈ [0, T ], ξ ∈R,ω ∈ �) is said to be a solution to (1.1) if P a.s. we
have the following.

1. X ∈ C([0, T ];S ′(R)) ∩ L2([0, T ];L1
loc(R)).

2. X is an S ′(R)-valued (Ft )-progressively measurable process.
3. For any test function ϕ ∈ S(R) with compact support, t ∈ ]0, T ] a.s. we have∫

R

X(t, ξ)ϕ(ξ)dξ =
∫
R

x0(dξ)ϕ(ξ) + 1

2

∫ t

0
ds

∫
R

ψ
(
X(s, ξ, ·))ϕ′′(ξ)dξ

+
∫

[0,t]×R

X(s, ξ)ϕ(ξ)μ(ds, ξ)dξ.

At Definition 3.1, we will present the concept of double stochastic non-linear diffusion which is a McKean type
equation with a supplementary source of randomness. Before this, as a first step, we will introduce a particular the
case of simple double stochastic differential equation (DSDE). Let γ : [0, T ] ×R× � →R be an (Ft )-progressively
measurable random fields and x0 be a probability on B(R).
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Definition 2.10.

(a) We say that (DSDE)(γ, x0) admits weak-strong existence if there is a suitable extended probability space
(�0,G,Q), i.e. a measurable space (�1,H), a probability kernel (Q(·,ω),ω ∈ �) on H× �, two Q-a.s. contin-
uous processes Y,B on (�0,G) where �0 = �1 × �,G =H⊗F such that the following holds.
(1) For almost all ω, Y(·,ω) is a (weak) solution to{

Yt (·,ω) = Y0 + ∫ t

0 γ (s,Ys(·,ω),ω)dBs(·,ω),

Law(Y0) = x0,
(2.6)

with respect to Qω , where B(·,ω) is a Qω-Brownian motion for almost all ω.
(2) We denote (Yt ) the canonical filtration associated with (Ys,0 ≤ s ≤ t) and Gt = Yt ∨ ({∅,�1} ⊗ Ft ).

W 1, . . . ,WN is a (Gt )-martingale under Q.
(3) For every 0 ≤ s ≤ T , for every bounded continuous A : C([0, s]) → R, the r.v. ω �→ EQω

(A(Yr(·,ω), r ∈
[0, s])) is Fs -measurable.

(b) We say that (DSDE)(γ, x0) admits weak-strong uniqueness if the following holds. Consider a measurable space
(�1,H) (resp. (�̃1, H̃)), a probability kernel (Q(·,ω),ω ∈ �) (resp. (Q̃(·,ω),ω ∈ �)), with processes (Y,B)

(resp. (Ỹ , B̃)) such that (2.6) holds (resp. (2.6) holds with (�0,G,Q) replaced with (�̃0, G̃0, Q̃), Q̃ being associ-
ated with (Q̃(·,ω))). Moreover we suppose that item (2) is verified for Y and Ỹ .

Then (Y,W 1, . . . ,WN) and (Ỹ ,W 1, . . . ,WN) have the same law.
(c) A process Y fulfilling items (1) and (2) under (a) will be called weak-strong solution of (DSDE)(γ, x0).

Remark 2.11. Let Y be a weak-strong solution of (DSDE)(γ, x0) with corresponding B .

(a) Since for almost all ω ∈ �, B(·,ω) is a Brownian motion under Qω, it is clear that B is a Brownian motion under
Q, which is independent of FT , i.e. independent of W 1, . . . ,WN .

Indeed let A : C([0, T ]) → R be a continuous bounded functional, and denote by W the Wiener measure on
C([0, T ])N . Let F be a bounded FT -measurable r.v. Since for each ω, B(·,ω) is a Wiener process with respect to
Qω , we get

EQ(
FA(B)

) =
∫

�

FEQω(A(
B(·,ω)

))
dP(ω)

=
∫

�

F(ω)dP(ω)

∫
�1

A(ω1) dW(ω1)

=
∫

�0

F(ω)dQ(ω0)

∫
�0

A(ω1)dQ(ω0).

This shows that (W 1, . . . ,WN) and B are independent. Taking F = 1� in previous expression, the equality
between the left-hand side and the third term, shows that B is a Brownian motion under Q.

(b) Since for any 1 ≤ i, j ≤ N ,[
Wi,Wj

]
t
= δij t,

[
Wi,B

] = 0, [B,B]t = t,

Lévy’s characterization theorem, implies that (W 1, . . . ,WN,B) is a Q-Brownian motion.
(c) An equivalent formulation to (1) in item (a) of Definition 2.10 is the following. For P a.e., ω ∈ �, Y(·,ω) solves

the Qω-martingale problem with respect to the (random) PDE operator

Lω
t f (ξ) = 1

2
γ 2(t, ξ,ω)f ′′(ξ),

and initial distribution x0. Indeed, we remark that the construction can be performed on the canonical space
�1 = C([0, T ];R).
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Proposition 2.12. Let Y be a process as in Definition 2.10(a). We have the following.

1. Y is a (Gt )-martingale on the product space (�0,G,Q).
2. [Y,Wi] = 0,∀1 ≤ i ≤ N .

Proof. Let 0 ≤ s < t ≤ T , Fs ∈ Fs and G : C([0, s]) → R be continuous and bounded. We will prove below that, for
1 ≤ i ≤ N + 1, setting WN+1

t = 1, for all t ≥ 0,

EQ(YtW
i
t G(Yr , r ≤ s)1Fs

) = EQ(
YsW

i
s 1Fs G(Yr , r ≤ s)

)
. (2.7)

Then (2.7) with i = N + 1 shows item 1. Considering (2.7) with 1 ≤ i ≤ N , shows that YWi is a (Gt )-martingale,
which shows item 2. Therefore, it remains to show (2.7).

The left-hand side of that equality gives∫
�

dP(ω)Wi
t (ω)1Fs (ω)EQω(

Yt (·,ω)G
(
Yr(·,ω), r ≤ s

))
=

∫
�

dP(ω)1Fs (ω)Wi
t (ω)EQω(

Ys(·,ω)G
(
Yr(·,ω), r ≤ s

))
,

because Y(·,ω) is a Qω-martingale for P -almost all ω. To obtain the right-hand side of (2.7) it is enough to remember
that Wi are (Gt )-martingales and that item (a)(3) in Definition 2.10 holds. This concludes the proof of Proposi-
tion 2.12. �

Remark 2.13. Lemma 2.8 shows that, whenever weak-strong uniqueness holds, then the μ-weighted marginal laws
of any weak solution Y are uniquely determined.

3. The concept of doubly probabilistic representation

3.1. The doubly stochastic non-linear diffusion

We come back to the notations and conventions of the Introduction and of Section 2. Let x0 be a probability on R. The
doubly probabilistic representation is based on the following idea. Let Y : �0 × [0, T ] → R be a measurable process
where �0 = �1 × � is the usual enlarged probability space as introduced in Definition 2.3. Let Q be a probability
inherited from a random kernel Qω as before Definition 2.3. Let (Gt ), where (Gt ) is some filtration on (�0,G) such
that W 1, . . . ,WN are (Gt )-Brownian motions on (�0,G,Q).

Suppose that⎧⎪⎨⎪⎩
Yt = Y0 + ∫ t

0 �(X(s,Ys)) dBs,

μ-Weighted Law(Yt ) = X(t, ξ)dξ, t ∈ ]0, T ],
μ-Weighted Law(Y0) = x0(dξ),

(3.1)

where B is a Q-standard Brownian motion with respect to (Gt ). Then X solves the SPDE (1.1). This will be the object
of Theorem 3.3. Vice versa, if X is a solution of (1.1) then there is a process Y solving (3.1), see Theorem 7.1.

Definition 3.1.

(1) We say that the doubly stochastic non-linear diffusion (DSNLD) driven by � (on the space (�,F,P )) with
initial condition x0, related to the random field μ (shortly (DSNLD)(�,μ,x0)) admits weak existence if there is
a measurable random field X : [0, T ] ×R× � → R with the following properties.
(a) The problem (DSDE)(γ, x0) with γ (t, ξ,ω) = �(X(t, ξ,ω)) admits weak-strong existence.
(b) X = X(t, ξ, ·)dξ, t ∈ ]0, T ], is the family of μ-marginal weighted laws of Y , where Y is the solution of (2.6)

in Definition 2.10. In other words X constitutes the densities of those μ-marginal weighted laws.
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(2) A couple (Y,X), such that Y is a (weak-strong) solution to the (DSDE)(γ, x0), is called weak solution to the
(DSNLD)(�,μ,x0). Y is also called doubly stochastic representation of the random field X.

(3) Suppose that, given two measurable random fields Xi : [0, T ] × R × � → R, i = 1,2 on (�,F,P , (Ft )),
and Y i , on extended probability space (�i

0,Qi ), i = 1,2, such that (Y i,Xi) is a weak-strong solution of
(DSDE)(�(Xi), x0), i = 1,2, where we always have that (Y 1,W 1, . . . ,WN) and (Y 2,W 1, . . . ,WN) have the
same law. Then we say that the (DSNLD)(�,μ,x0) admits weak uniqueness.

Remark 3.2. If (DSNLD)(�,μ,x0) admits weak uniqueness then the μ-marginal weighted laws of Y are uniquely
determined, P -a.s., see Lemma 2.8.

Theorem 3.3. Let (Y,X) be a solution of (DSNLD)(�,μ,x0). Then X is a solution to the SPDE (1.1).

Remark 3.4.

1. Let t ∈ [0, T ]. Let ϕ :R→ R be Borel and bounded. Then∫
R

ϕ(ξ)X(t, ξ,ω)dξ = EQω

(
ϕ
(
Yt (ω)

)
Et

(∫ ·

0
μ
(
ds,Ys(ω)

)))
.

So∫
R

X(t, ξ,ω)dξ = EQω

(
Et

(∫ ·

0
μ
(
ds,Ys(ω)

)))
.

Even though for a.e. ω ∈ �, the previous expression is not necessarily a probability measure, of course,

νω : ϕ �→
∫
R

ϕ(ξ)X(t, ξ,ω)dξ∫
R

X(t, ξ,ω)dξ

is one. It can be expressed as

νω(A) = EQω
(1A(Yt )Et (M(·,ω)))

EQωEt (M(·,ω))
,

where Mt(·,ω) = ∫ t

0 μ(ds,Ys(·,ω)), t ∈ [0, T ], is defined in (2.2).
2. Consider the particular case e0 = 0, e1 = c, c being some constant. In this case, the μ-marginal laws are given by

A �→ EQω(
1A(Yt )cEt (W)

) = cEt (W)EQω(
1A(Yt )

) = cEt (W)νω(t,A)

and νω(t, ·) is the law of Yt (·,ω) under Qω.

Proof of Theorem 3.3. Let B denote the Brownian motion associated to Y as a solution to (DSDE)(γ, x0), mentioned
in item (a)(1) of Definition 3.1. For t ∈ [0, T ], we set

Zt = Et

(∫ ·

0
μ(ds, Ys)

)
, Mt = Zt exp

(
−
∫ t

0
e0(Ys)ds

)
, t ∈ [0, T ].

1. Proof of Definition 2.9 1. By Proposition 2.6, (Mt , t ∈ [0, T ]) is a uniformly integrable martingale. Consequently
t �→ Zt is continuous in L1(�0,Q). On the other hand the process Y is continuous. This implies that P a.e. ω ∈ �,
X ∈ C([0, T ];M(R)), where M(R) is equipped with the weak topology. This implies that X ∈ C([0, T ];S ′(R)).
Furthermore, for P a.e. ω ∈ �, and t ∈ ]0, T ], X(t, ·,ω) ∈ L1(R) and

∫
R

X(t, ξ,ω)dξ = ‖�(t, ·,ω)‖var. By Propo-
sition 2.6(iv), it follows that P -a.s. X(·, ·,ω) ∈ L∞([0, T ];L1(R)) ⊂ L2([0, T ];L1

loc(R)).
2. Definition 2.9 2. follows from Remark 3.4 1. and Definition 2.10(a)(3).
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3. Proof of Definition 2.9 3. Let ϕ ∈ S(R) with compact support. Taking into account Proposition 2.12, we apply Itô’s
formula to get

ϕ(Yt )Zt = ϕ(Y0) +
∫ t

0
ϕ′(Ys)Zs dYs +

∫ t

0
ϕ(Ys)Zs

(
μ(ds, Ys) − 1

2

N∑
i=1

(
ei(Ys)

)2
ds

)

+ 1

2

∫ t

0
ϕ′′(Ys)�

2(X(s,Ys)
)
Zs ds + 1

2

∫ t

0
ϕ(Ys)Zs

(
N∑

i=1

(
ei(Ys)

)2

)
ds.

Indeed we remark that
∫ t

0 ϕ′(Ys)d[Z,Y ]s = 0, because [Z,Y ]t = ∑N
i=1

∫ t

0 ei(Ys)Zs d[Wi,Y ]s = 0; in fact
[Wi,Y ] = 0 by Proposition 2.12. So

ϕ(Yt )Zt = ϕ(Y0) +
∫ t

0
ϕ′(Ys)Zs�

(
X(s,Ys)

)
dBs

+
∫ t

0
ϕ(Ys)Zsμ(ds, Ys) + 1

2

∫ t

0
ϕ′′(Ys)�

2(X(s,Ys)
)
Zs ds.

Taking the expectation with respect to Qω we get dP -a.s.,

∫
R

dξϕ(ξ)X(t, ξ) =
∫
R

ϕ(ξ)x0(dξ) +
N∑

i=0

∫ t

0
dWi

s

(∫
R

dξϕ(ξ)ei(ξ)X(s, ξ)

)

+ 1

2

∫ t

0
ds

∫
R

dξϕ′′(ξ)�2(X(s, ξ)
)
X(s, ξ),

which implies the result. Indeed, in the previous equality, we have used Lemma 3.5 below. �

Lemma 3.5. Let 1 ≤ i ≤ N . For P a.e. ω ∈ �, we have

EQω

(∫ t

0
ϕ(Ys)Zse

i(Ys)dWi
s

)
(·,ω) =

∫ t

0
dWi

s (ω)

∫
R

ϕ(ξ)ei(ξ)X(s, ξ,ω)dξ.

Proof. Since the Brownian motions Wi are not random for Qω , it is possible to justify the permutation of the stochas-
tic integral with respect to Wi and EQω

by a Fubini argument approximating the stochastic integrals via Lebesgue
integral, see e.g. Theorem 2 of [25]. A complete proof is given in [7]. �

3.2. Filtering interpretation

Item 1. of Remark 3.4 has an interpretation in the framework of filtering theory, see e.g. [20] for a comprehensive
introduction on that subject.

Suppose e0 = 0. Let Q̂ be a probability on some probability space (�0,GT ), and consider the non-linear diffu-
sion problem (1.2) as a basic dynamical phenomenon. We suppose now that there are N observations Y 1, . . . , YN

related to the process Y generating a filtration (Ft ). We suppose in particular that dY i
t = dWi

t + ei(Yt )dt,1 ≤ i ≤ N ,
and W 1, . . . ,WN be (Ft )-Brownian motions. Consider the following dynamical system of non-linear diffusion
type: ⎧⎪⎨⎪⎩

Yt = Y0 + ∫ t

0 �(X(s,Ys)) dBs,

dY i
t = dWi

t + ei(Yt )dt, 1 ≤ i ≤ N,

X(t, ·) : conditional law of Yt under Ft .

(3.2)
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The third equality of (3.2) means, under Q̂, that we have,∫
R

ϕ(ξ)X(t, ξ)dξ = E
(
ϕ(Yt )|Ft

)
. (3.3)

We remark that, under the new probability Q defined by dQ = dQ̂E(
∫ T

0 μ(ds, Ys)), Y 1, . . . , YN are standard (Ft )-
independent Brownian motions. Then (3.3) becomes∫

R

ϕ(ξ)X(t, ξ)dξ = EQ̂(
ϕ(Yt )|Ft

) = EQ(ϕ(Yt )Et (
∫ ·

0 μ(ds,Ys)|Ft ))

EQ(Et (
∫ ·

0 μ(ds,Ys)|Ft ))
.

Consequently, by Theorem 3.3, X will be the solution of the SPDE (1.1), with x0 being the law of Y0; so (1.1)
constitutes the Zakai type equation associated with our filtering problem.

4. The densities of the μ-marginal weighted laws

This section constitutes an important step towards the doubly probabilistic representation of a solution to (1.1), when
ψ is non-degenerate. Let x0 be a fixed probability on R. We recall that a process Y (on a suitable enlarged probability
space (�0,G,Q)), which is a weak solution to the (DSNLD)(�,μ,x0), is in particular a weak-strong solution of a
(DSDE)(γ, x0) where γ : [0, T ]×R×� → R is some suitable progressively measurable random field on (�,F,P ).
The aim of this section is twofold.

(A) To show that whenever γ is a.s. bounded and non-degenerate, (DSDE)(γ, x0) admit weak-strong existence and
uniqueness.

(B) The marginal μ-laws of the solution to (DSDE)(γ, x0) admit a density for Pω a.s.

(A) We start discussing well-posedness.

Proposition 4.1. We suppose the existence of random variables A1,A2 such that

0 < A1(ω) ≤ γ (t, ξ,ω) ≤ A2(ω), ∀(t, ξ) ∈ [0, T ] ×R, dP -a.s.

Then (DSDE)(γ, x0) admits weak-strong existence and uniqueness.

Proof. Uniqueness. This is the easy part. Let Y and Ỹ be two solutions. Then for ω outside a P -null set N0, Y (·,ω)

and Ỹ (·,ω) are solutions to the same one-dimensional classical SDE with measurable bounded and non-degenerate
(i.e. greater than a strictly positive constant) coefficients. Then, by Exercise 7.3.3 of [27] the law of Y(·,ω) equals the
law of Ỹ (·,ω). Then obviously the law of Y equals the law of Ỹ .

Existence. This point is more delicate. In fact one needs to solve the random SDE for P almost all ω but in such a
way that the solution produces bimeasurable processes Y and B .

First we regularize the coefficient γ . Let φ be a mollifier with compact support; we set φn(x) = nφ(nx), x ∈ R,

n ∈ N. We consider the random fields γn : [0, T ] ×R× � →R by γn(t, x,ω) := ∫
R

γ (t, x − y,ω)φn(y)dy.
Let (�̃1, H̃1, P̃ ) be a probability space where we can construct a random variable Y0 distributed according to x0

and an independent Brownian motion B .
In this way on (�̃1 ×�, H̃1 ⊗F, P̃ ⊗P) we dispose of a random variable Y0 and a Brownian motion independent

of {∅, �̃1} ⊗ F . By usual fixed point techniques, it is possible to exhibit a (strong) solution of (DSDE)(γn, x0) on
the over mentioned product probability space. We can show that there is a unique solution Y = Yn of Yt = Y0 +∫ t

0 γn(s, Ys, ·)dBs . In fact, the maps �n : Z �→ ∫ ·
0 γn(s,Zs,ω)dBs + Y0, where �n : L2(�̃1 × �; P̃ ⊗ P) → L2(�̃1 ×

�, P̃ ⊗ P) are Lipschitz; by usual Picard fixed point arguments one can show the existence of a unique solution
Z = Zn in L2(�̃1 × �; P̃ ⊗ P). We observe that, by usual regularization arguments for Itô integral as in Lemma 3.5,
for ω-a.s., Y(·,ω) solves for P a.e. ω ∈ �, equation

Yt (·,ω) = Y0 +
∫ t

0
γn

(
s, Ys(·,ω),ω

)
dBs, (4.1)
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on (�̃1, H̃1, P̃ ). We consider now the measurable space �0 = �1 × �, where �1 = C([0, T ],R), equipped with
product σ -field G = B(�1) ⊗ F . On that measurable space, we introduce the probability measures Qn where
Qn(dω1,ω) = Qn(dω1,ω)P (dω) and Qn(·,ω) being the law of Yn(·,ω) for almost all fixed ω.

We set Yt (ω1,ω) = ω1(t), where ω1 ∈ C([0, T ];R). We denote by (Yt , t ∈ [0, T ]) (resp. (Y1
t )) the canonical

filtration associated with Y on �0 (resp. �1). The next step will be the following.

Lemma 4.2. For almost all ωdP a.s. Qn(ω, ·) converges weakly to Q(ω, ·), where under Q(·,ω),Y (·,ω) solves the
SDE

Yt (·,ω) = Y0 +
∫ t

0
γ
(
s, Ys(·,ω),ω

)
dBs(·,ω),

where B(·,ω) is an (Y1
t )-Brownian motion on �1.

Proof. It follows directly from Proposition A.1 of the Appendix. �

This shows the validity of (1) if Definition 2.10(a).

Remark 4.3.

(1) Since Qn(·,ω) converges weakly to Q(·,ω), ωdP a.s., then the limit (up to an obvious modification) is a mea-
surable random kernel.

(2) This also implies that Yn(·,ω) converges stably to Q(·,ω). For details about the stable convergence the reader can
consult [17, section VIII 5.c] and the recent monograph [16].

The considerations above allow to complete the proof of Proposition 4.1. By Lemma 4.2, Qω = Q(·,ω) is a random
kernel, being a limit of random kernels. Let us consider the associated probability measure on the suitable enlarged
probability space (�0,G,Q). We observe that Y on (�0,G) is obviously measurable, because it is the canonical
process Y(ω1,ω) = ω1. Setting

Bt(·,ω) =
∫ t

0

dYs(·,ω)

γ (s, Ys(·,ω),ω)
,

we get [B]t (·,ω) = t under Q(·,ω), so, by Lévy characterization theorem, it is a Brownian motion. Moreover B is
bimeasurable.

Let G = A(Yr(·,ω), r ∈ [0, s]), where A is a bounded functional C([0, s]) → R. We first observe that the r.v.
ω �→ EQω

(G) is Fs -measurable. This happens because Y is, under Qω, a martingale with quadratic variation
(
∫ t

0 γ 2(s, Ys(·,ω),ω)ds,0 ≤ t ≤ T ), i.e. with (random) coefficient which is (Ft )-progressively measurable. This
shows item (3) of Definition 2.10(a).

The last point to check is that W 1, . . . ,WN are (Gt )-martingales, where Gt = Yt ∨ ({∅,�1} ⊗Ft ),0 ≤ t ≤ T , i.e.
item (2) of Definition 2.10.

Indeed, we justify this immediately. Consider 0 ≤ s ≤ t ≤ T . Taking into account monotone class arguments, given
F ∈Fs , G ∈ Y1

s , 1 ≤ i ≤ N , it is enough to prove that

EQ(FGWi
t

) = EQ(FGWi
s

)
. (4.2)

Using the fact that Wi is an (Ft )-martingale and that EQω
(G) is Fs -measurable by item (a)(3) of Definition 2.10

(established above), the left-hand side of (4.2) gives

EP
(
FWi

t E
Qω

(G)
) = EP

(
FWi

s E
Qω

(G)
)
,

which constitutes the right-hand side of (4.2). This concludes the proof of the proposition. �

We go on now with step (B) of the beginning of Section 4.
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Proposition 4.4. We suppose the existence of r.v. A1,A2 such that

0 < A1(ω) ≤ γ (t, ξ,ω) ≤ A2(ω), ∀(t, ξ) ∈ [0, T ] ×R, a.s.

Let Y be a weak-strong solution to (DSDE)(γ, x0) and we denote by (νt (dy, ·), t ∈ [0, T ]), the μ-marginal weighted
laws of process Y .

1. There is a measurable function q : [0, T ] × R × � → R+ such that dt dP a.e., νt (dy, ·) = qt (y, ·)dy. In other
words the μ-marginal weighted laws admit densities.

2.
∫
[0,T ]×R

q2
t (y, ·)dt dy < ∞ dP -a.s.

3. q is an L2(R)-valued progressively measurable process.

Proof. By (3) of Definition 2.10, the μ-marginal laws constitute an S ′(R)-valued progressively measurable process.
Consequently 3. holds if 1. and 2. hold.

Let

Bt(·,ω) :=
∫ t

0

dYs(·,ω)

γ (s, Ys(·,ω),ω)
.

We denote again Qω := Q(·,ω) according to Definition 2.10, ω ∈ �.
Let ω ∈ � be fixed. Let ϕ : [0, T ] ×R→ R be a continuous function with compact support. We need to evaluate

EQω

(∫ T

0
ϕ(s,Ys)Zs ds

)
, (4.3)

where Zs = Ms exp(
∫ s

0 e0(Yr)dr) where Ms = Es(
∑N

i=1

∫ ·
0 ei(Yr )dWi

r ).

Ms is smaller or equal than exp(
∑N

j=1

∫ s

0 ej (Yr)dW
j
r ) which equals

exp

(
N∑

j=1

{
W

j
s ej (Ys) −

∫ s

0
W

j
r

(
ej
)′
(Yr)dYr

}
− 1

2

∫ s

0

{
N∑

j=1

W
j
r

(
ej
)′′

(Yr)γ
2(r, Yr , ·)

}
dr

)
, (4.4)

taking into account the fact that [Y,Wj ] = 0 for any 1 ≤ j ≤ n, by Proposition 2.12. Denoting ‖g‖∞ :=
supt∈[0,T ] |g(t)|, for a function g : [0, T ] → R, (4.4) is smaller or equal than

exp

(
N∑

j=1

∥∥Wj
∥∥∞

(∥∥ej
∥∥∞ + T

2

∥∥(ej
)′′∥∥∞A2

2

))
exp

(
−
∫ s

0

[
N∑

j=1

W
j
r

(
ej
)′
(Yr)γ (r, Yr , ·)

]
dBr

)
.

So (4.3) is bounded by

�(ω)EQω

(∫ T

0
|ϕ|(s, Ys(·,ω)

)
Rs(·,ω)ds

)
, (4.5)

where

�(ω) = exp

(
T ‖e0‖∞ +

N∑
i=1

∥∥Wi
∥∥∞

∥∥ei
∥∥∞

+ T
A2

2(ω)

2

N∑
i=1

(∥∥Wi
∥∥2

∞
∥∥(ei

)′∥∥2
∞ + ∥∥Wi

∥∥∞
∥∥(ei

)′′∥∥∞
))

and R is the Qω-exponential martingale

Rt(·,ω) = exp

(
−
∫ t

0
δ(r, ·,ω)dBr − 1

2

∫ t

0
δ2(r, ·,ω)dr

)
,
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where δ(r, ·,ω) = ∑N
j=1 W

j
r (ej )′(Yr(·,ω))γ (r, Yr (·,ω),ω). So there is a random (depending on ω ∈ �) constant

�1(ω) := const
(
T ,Wj ,

∥∥ej
∥∥∞,

∥∥(ej
)′∥∥∞,

∥∥(ej
)′′∥∥∞,1 ≤ j ≤ N,A2(ω)

)
, (4.6)

so that (4.5) is smaller than

�1(ω)EQω

(∫ T

0

∣∣ϕ(s, Ys(·,ω)
)∣∣dsRT (·,ω)

)
, (4.7)

where we remind that R(·,ω) is a Qω-martingale. By Girsanov theorem, B̃t (·,ω) = Bt(·,ω) + ∫ t

0 δ(r, ·,ω)dr is a
Q̃ω-Brownian motion with dQ̃ω = RT (·,ω)dQω . At this point, the expectation in (4.7) gives

EQ̃ω

(∫ T

0
|ϕ|(s, Ys(·,ω)

)
ds

)
, (4.8)

where

Yt (·,ω) = Y0 +
∫ t

0
γ
(
s, Ys(·,ω),ω

)
dB̃s −

∫ t

0
γ
(
s, Ys(·,ω),ω

)
δ(s, ·,ω)ds.

For fixed ω ∈ �, δ is bounded by a random constant �2(ω) of the type (4.6). Moreover we keep in mind assumption
(4.1) on γ . By Exercise 7.3.3 of [27], (4.8) is bounded by �3(ω)‖ϕ‖L2([0,T ]×R), where �3(ω) again depends on

the same quantities as in (4.6) and �. So for ω dP -a.s., the map ϕ �→ EQω
(
∫ T

0 ϕ(s,Ys(·,ω))Zs(·,ω)ds) prolongs
to L2([0, T ] × R). Using Riesz’ theorem it is not difficult to show the existence of an L2([0, T ] × R) function
(s, y) �→ qs(y,ω) which constitutes indeed the density of the family of the μ-marginal weighted laws. �

5. On the uniqueness of a Fokker–Planck type SPDE

The next result is an extension of Theorem 3.8 of [14] to the stochastic case. It has an independent interest since it is
a Fokker–Planck SPDE with possibly degenerate measurable coefficients.

Theorem 5.1. Let z0 be a distribution in S ′(R). Let z1, z2 be two measurable random fields belonging ω a.s. to
C([0, T ],S ′(R)) such that z1, z2 : ]0, T ] × � → M(R). Let a : [0, T ] × R × � → R+ be a bounded measurable
random field such that, for any t ∈ [0, T ], a(t, ·) is B([0, t]) ⊗ B(R) ⊗ Ft -measurable. We suppose moreover the
following.

(i) z1 − z2 ∈ L2([0, T ] ×R) a.s.
(ii) t �→ (z1 − z2)(t, ·) is an (Ft )-progressively measurable S ′(R)-valued process.

(iii)
∫ T

0 ‖zi(s, ·)‖2
var ds < ∞ a.s.

(iv) z1, z2 are solutions to{
∂t z(t, ξ) = ∂2

ξξ ((az)(t, ξ)) + z(t, ξ)μ(dt, ξ),

z(0, ·) = z0.
(5.1)

Then z1 ≡ z2.

Remark 5.2. By solution of equation (5.1) we intend, as expected, the following: for every ϕ ∈ S(R),∀t ∈ [0, T ],∫
R

ϕ(ξ)z(t,dξ) = 〈z0, ϕ〉 +
∫ t

0
ds

∫
R

a(s, ξ)ϕ′′(ξ)z(s,dξ) +
N∑

j=0

∫ t

0
dW

j
s

∫
R

ϕ(ξ)ej (ξ)z(s, dξ).

Proof of Theorem 5.1. The proof makes use of the similar arguments as in Theorem 3.8 of [14] or Theorem 3.1 in
[10], in a randomized form. The full proof is given in Theorem 3.1 of [24], see also Theorem 5.1 of [7]. �
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6. The non-degenerate case

We are now able to discuss the doubly probabilistic representation of a solution to (1.1) when ψ is non-degenerate
provided that its solution fulfills some properties.

Definition 6.1.

• We will say that equation (1.1) (or ψ ) is non-degenerate if on each compact, there is a constant c0 > 0 such that
� ≥ c0.

• We will say that equation (1.1) or ψ is degenerate if limu→0+ �(u) = 0.

One of the typical examples of degenerate ψ is the case of ψ being strictly increasing after some zero. This notion
was introduced in [6] and it means the following. There is 0 ≤ uc such that ψ[0,uc] ≡ 0 and ψ is strictly increasing on
]uc,+∞[.

Remark 6.2.

1. ψ is non-degenerate if and only if = limu→0+ �(u) > 0.
2. Of course, if ψ is strictly increasing after some zero, with uc > 0 then ψ is degenerate.
3. If ψ is degenerate, then ψκ(u) = (�2(u) + κ)u, for every κ > 0, is non-degenerate.

As announced the theorem below also holds when ψ is multi-valued.

Theorem 6.3. We suppose the following assumptions.

1. x0 is a real probability measure.
2. ψ is non-degenerate.
3. There is only one random field X : [0, T ] ×R× � → R solution of (1.1) (see Definition 2.9) such that∫

[0,T ]×R

X2(s, ξ)ds dξ < ∞ a.s. (6.1)

Then there is a unique weak solution to the (DSNLD)(�,μ,x0).

Remark 6.4.

1. An easy adaptation of Theorem 3.4 of [8] (taking into account e0), when ψ is Lipschitz and e0, . . . , eN belong to
H 1 allows to show that there is a solution to (1.1) such that E(

∫
[0,T ]×R

X2(s, ξ)ds dξ) < ∞. This holds even if

x0 belongs to H−1(R). According to Theorem B.1, that solution is unique. In particular item 3. in Theorem 6.3
statement holds.

2. Theorem 6.3 constitutes the converse of Theorem 3.3 when ψ is non-degenerate.
3. The theorem also holds if ψ is multi-valued. For implementing this, we need to adapt the techniques of [14].
4. As side-effect of the proof of the weak-strong existence Proposition 4.1, the space (�0,G,Q) can be chosen as

�0 = �1 × �,�1 = C([0, T ];R) ×R,G = B(�1) ×F,Q(H × F) = ∫
�1×�

dP(ω)1F (ω)Q(dω1,ω).

Proof of Theorem 6.3.

(1) We set γ (t, ξ,ω) = �(X(t, ξ,ω)). According to Proposition 4.1 there is a weak-strong solution Y to
(DSDE)(γ, x0). By Proposition 4.4 ω a.s. the μ-marginal weighted laws of Y admit densities (qt (ξ,ω), t ∈
]0, T ], ξ ∈R,ω ∈ �) such that dP -a.s.

∫
[0,T ]×R

ds dξq2
s (ξ, ·) < ∞ a.s.

(2) Setting

νt (ξ,ω) =
{

qt (ξ,ω)dξ, t ∈ ]0, T ],
x0, t = 0,
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ν is a solution to (5.1) with ν0 = x0, a(t, ξ,ω) = �2(X(t, ξ,ω)). This can be shown applying Itô’s formula
similarly as in the proof of Theorem 3.3.

(3) On the other hand X is obviously also a solution of (5.1), which in particular verifies (6.1). Consequently z1 =
ν, z2 = X verify items (i), (ii), (iii) of Theorem 5.1. So Theorem 5.1 implies that ν ≡ X; this shows that Y provides
a solution to (DSNLD)(�,μ,x0).

(4) Concerning uniqueness, let Y 1, Y 2 be two solutions to the (DSNLD) related to (�,μ,x). The corresponding
random fields X1,X2 constitute the μ-marginal laws of Y 1, Y 2 respectively.

Now Y i, i = 1,2, is a weak-strong solution of (DSDE)(γi, x) with γi(t, ξ,ω) = �(Xi(t, ξ,ω)), so by Proposition 4.4
Xi, i = 1,2 fulfills (6.1). By Theorem 3.3, X1 and X2 are solutions to (1.1). By assumption 3. of the statement,
X1 = X2. The conclusion follows by Proposition 4.1, which guarantees the uniqueness of the weak-strong solution of
(DSDE)(γ, x0) with γ = γ1 = γ2. �

Remark 6.5. One side-effect of Theorem 6.3 is the following. Suppose ψ to be non-degenerate. Let X : [0, T ]×R×
� → R be a solution such that dP -a.s.

∫
[0,T ]×R

X2(s, ξ)ds dξ < ∞ a.s. We have the following for ω dP -a.s.

(i) X(t, ·,ω) ≥ 0 a.e. ∀t ∈ [0, T ].
(ii) E(

∫
R

X(t, ξ)dξ) = 1,∀t ∈ [0, T ] if e0 = 0.

Remark 6.6. If (1.1) has a solution, not necessarily unique, then (DSNLD) with respect to (�,μ,x0) still admits
existence.

7. The degenerate case

The idea consists in proceeding similarly to [6], which treated the case μ = 0 and the case when x0 is absolutely con-
tinuous with bounded density. ψ will be assumed to be strictly increasing after some zero uc ≥ 0, see Definition 6.1.
We recall that if ψ is degenerate, then necessarily �(0) := limx→0 �(x) = 0.

The theorem below concerns existence, we do not know any uniqueness result in the degenerate case.

Theorem 7.1. We suppose the following.

1. The functions ei,1 ≤ i ≤ N belong to H 1(R).
2. We suppose that ψ :R→ R is non-decreasing, Lipschitz and strictly increasing after some zero.
3. x0 belongs to L1(R) ∩ L2(R).

Then there is a weak solution to the (DSNLD)(�,μ,x0).

Remark 7.2. If uc > 0 then ψ is necessarily degenerate and also � restricted to [0, uc] vanishes.

Proof of Theorem 7.1.

(1) We proceed by approximation rendering � non-degenerate. Let κ > 0. We define �κ : R → R+ by �κ(u) =√
�2(u) + κ,ψκ(u) = �2

κ (u) ·u. Let Xκ be the solution so (1.1) with ψκ instead of ψ . According to Theorem 6.3
and Remark 6.4 4., setting

�̃1 = C
([0, T ],R)×R, Y (ω1,ω) = ω1, (7.1)

H the Borel σ -algebra of �̃1, there are families of probability kernels Qκ on H × �, and measurable processes
Bκ on �̃0 = �̃1 × � such that

(i) Bκ(·,ω) is a Qκ(·,ω)-Brownian motion;
(ii) Y is a (weak) solution, on (�̃1,Q

κ(·,ω)), of Yt = Y0 + ∫ t

0 �κ(Xκ(s,Ys,ω))dBκ
s (·,ω), t ∈ [0, T ];

(iii) Y0 is distributed according to x0 = Xκ(0, ·);
(iv) The μ-marginal weighted laws of Y under Qκ are (Xκ(t, ·)).
In agreement with Definition 3.1 and Definition 2.10, we need to show the existence of a suitable measurable
space (�1,H), a probability kernel Q on H× �, a process B on �0 := �1 × � such that the following holds.
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(i) B(·,ω) is a Q(·,ω)-Brownian motion.
(ii) Y is a (weak) solution on (�1,Q(·,ω)) of Yt = Y0 + ∫ t

0 �(X(s,Ys,ω))dBs(·,ω), t ∈ [0, T ], i.e. item (1) of
Definition 2.10. Moreover items (2), (3) of the same Definition are fulfilled.

(iii) Y0 is distributed according to x0.
(iv) For every t ∈ ]0, T ], ϕ ∈ Cb(R), if we denote Qω = Q(·,ω), we have∫

R

X(t, ξ)ϕ(ξ)dξ = EQω

(
ϕ(Yt )Et

(∫ ·

0
μ(ds, Ys)X(s,Ys)

))
.

(2) We show now that Xκ approaches X in some sense when κ → 0, where X is the solution to (1.1). This is given
in the Lemma 7.3 below.

Lemma 7.3. Under the assumptions of Theorem 7.1, according to Remark B.2, let X (resp. Xκ ) be a solution of (1.1)
verifying (B.2) with ψ(u) = u�2(u) (resp. ψκ(u) = u(�2(u) + κ)), for u > 0. We have the following.

(a) limκ→0 supt∈[0,T ] E(‖Xκ(t, ·) − X(t, ·)‖2
H−1) = 0;

(b) limκ→0 E(
∫ T

0 dt‖ψ(Xκ(t, ·)) − ψ(X(t, ·))‖2
L2) = 0;

(c) limκ→0 κE(
∫
[0,T ]×R

dt dξ(Xκ(t, ξ) − X(t, ξ))2) = 0.

Remark 7.4.

(1) (a) implies of course limκ→0 E(
∫ T

0 dt‖Xκ(t, ·) − X(t, ·)‖2
H−1) = 0.

(2) In particular Lemma 7.3(b) implies that for each sequence (κn) → 0 there is a subsequence, still denoted by the
same notation, that

∫
[0,T ]×R

(ψ(Xκn(t, ξ)) − ψ(X(t, ξ)))2 dt dξ →n→∞ 0 a.s.
(3) For every t ∈ [0, T ] X(t, ·) ≥ 0 dξ ⊗ dP a.e. Indeed, for this it will be enough to show that a.s.∫

R

dξϕ(ξ)X(t, ξ) ≥ 0 for every ϕ ∈ S(R), (7.2)

for every t ∈ [0, T ]. Since X ∈ C([0, T ];S ′(R)) it will be enough to show (7.2) for almost all t ∈ [0, T ]. This
holds true since item (1) in this Remark 7.4, implies the existence of a sequence (κn) such that

∫ t

0 dt‖Xκn(t, ·) −
X(t, ·)‖2

H−1 →n→∞ 0, a.s.
(4) Since ψ is strictly increasing after uc, then, for P almost all ω, for almost all (t, ξ) ∈ [0, T ] × R, there is a

sequence (κn) such that (Xκn(t, ξ) − X(t, ξ))1{X(t,ξ)>uc} →n→∞ 0. This follows from item (2) of Remark 7.4.
Since �2(u) = 0 for 0 ≤ u ≤ uc and X is a.e. non-negative, this implies that dt dξ dP a.e. we have

�2(X(t, ξ)
)(

Xκn(t, ξ) − X(t, ξ)
) →

n→∞ 0. (7.3)

Proof of Lemma 7.3. By Remark B.2(3) we can write dP -a.s. the following H−1(R)-valued equality.

(
Xκ − X

)
(t, ·) =

∫ t

0
ds

(
ψκ

(
Xκ(s, ·))− ψ

(
X(s, ·)))′′ + N∑

i=0

∫ t

0

(
Xκ(s, ·) − X(s, ·))ei dWi

s .

So

(I − �)−1(Xκ − X
)
(t, ·) = −

∫ t

0
ds

(
ψκ

(
Xκ(s, ·))− ψ

(
X(s, ·)))

+
∫ t

0
ds(I − �)−1(ψκ

(
Xκ(s, ·))− ψ

(
X(s, ·)))

+
N∑

i=0

∫ t

0
(I − �)−1(ei

(
Xκ(s, ·) − X(s, ·)))dWi

s .
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After regularization and application of Itô calculus with values in H−1, we will be able to estimate gκ(t) = ‖(Xκ −
X)(t, ·)‖2

H−1 . Taking advantage of the form of ψκ − ψ , we obtain

gκ(t) =
N∑

i=1

∫ t

0

∥∥ei
(
Xκ − X

)
(s, ·)∥∥2

H−1 ds

− 2
∫ t

0

〈(
Xκ − X

)
(s, ·),ψκ

(
Xκ(s, ·))− ψ

(
X(s, ·))〉

L2

+ 2
∫ t

0
ds

〈(
Xκ − X

)
(s, ·), (I − �)−1(ψκ

(
Xκ(s, ·))− ψ

(
X(s, ·)))〉

L2

+ 2
∫ t

0
ds

〈(
Xκ − X

)
(s, ·), (I − �)−1e0(Xκ − X

)
(s, ·)〉

L2 + Mκ
t , (7.4)

where Mκ is the local martingale

Mκ
t = 2

N∑
i=1

∫ t

0

〈
(I − �)−1(Xκ − X

)
(s, ·), (Xκ − X

)
(s, ·)ei

〉
L2 dWi

s .

Indeed, Mκ is a well-defined local martingale because, taking into account (B.1) and Remark B.2, using classical
arguments, we can prove that

N∑
i=1

∫ t

0

∣∣〈(Xκ − X
)
(s, ·), (I − �)−1(Xκ − X

)
(s, ·)ei

〉
L2

∣∣2 ds < ∞ a.s.

(7.4) gives

gκ(t) + 2
∫ t

0

〈(
Xκ − X

)
(s, ·),ψ(

Xκ(s, ·))− ψ
(
X(s, ·))〉

L2 ds

+ 2κ

∫ t

0

〈(
Xκ − X

)
(s, ·), (Xκ − X

)
(s, ·)〉

L2 ds

≤ −2κ

∫ t

0
ds

〈(
Xκ − X

)
(s, ·),X(s, ·)〉

L2 ds +
N∑

i=1

∫ t

0

∥∥ei
(
Xκ − X

)
(s, ·)∥∥2

H−1 ds

+ 2
∫ t

0
ds

〈
(I − �)−1(Xκ − X

)
(s, ·),ψ(

Xκ(s, ·))− ψ
(
X(s, ·))〉

L2

+ 2κ

∫ t

0
ds

〈
(I − �)−1(Xκ − X

)
(s, ·), (Xκ − X

)
(s, ·)〉

L2

+ 2κ

∫ t

0
ds

〈
(I − �)−1(Xκ − X

)
(s, ·),X(s, ·)〉

L2

+ 2
∫ t

0
ds

〈
(I − �)−1(Xκ − X

)
(s, ·), (e0(Xκ − X

)
(s, ·))〉

L2 + Mκ
t .

We use Cauchy–Schwarz and the inequality 2
√

κb
√

κc ≤ κb2 + κc2, with first b = ‖Xκ(s, ·) − X(s, ·)‖L2 , c =
‖X(s, ·)‖L2 and then b = ‖Xκ(s, ·) − X(s, ·)‖H−2 , c = ‖X(s, ·)‖L2 . We also take into account the property of H−1-
multiplier for ei,0 ≤ i ≤ N . Consequently there is a constant C(e) depending on (ei,0 ≤ i ≤ N) such that

gκ(t) + 2
∫ t

0

〈(
Xκ − X

)
(s, ·),ψ(

Xκ(s, ·))− ψ
(
X(s, ·))〉

L2 ds
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+ 2κ

∫ t

0

∥∥Xκ(s, ·) − X(s, ·)∥∥2
L2 ds

≤ κ

∫ t

0

∥∥(Xκ − X
)
(s, ·)∥∥2

L2 ds + κ

∫ t

0
ds

∥∥X(s, ·)∥∥2
L2

+ C(e)

∫ t

0
ds

∥∥Xκ(s, ·) − X(s, ·)∥∥2
H−1

+ 2
∫ t

0

∥∥(Xκ − X
)
(s, ·)∥∥

H−2

∥∥ψ(
Xκ(s, ·))− ψ

(
X(s, ·))∥∥

L2

+ 2κ

∫ t

0
dsgκ(s) + κ

∫ t

0
ds

∥∥(Xκ − X
)
(s, ·)∥∥2

H−2 + κ

∫ t

0
ds

∥∥X(s, ·)∥∥2
L2 + Mκ

t . (7.5)

Since ψ is Lipschitz, it follows (ψ(r) − ψ(r1))(r − r1) ≥ α(ψ(r) − ψ(r1))
2, for any r, r1 ≥ 0, for some α > 0.

Consequently, the inequality 2bc ≤ b2α + c2

α
, with b, c ∈R and the fact that ‖ · ‖H−2 ≤ ‖ · ‖H−1 give

2
∫ t

0
ds

∥∥(Xκ − X
)
(s, ·)∥∥

H−2

∥∥ψ(
Xκ(s, ·))− ψ

(
X(s, ·))∥∥

L2

≤
∫ t

0
dsαgκ(s, ·) +

∫ t

0
ds

〈
ψ
(
Xκ(s, ·))− ψ

(
X(s, ·)),Xκ(s, ·) − X(s, ·)〉

L2 .

So (7.5) yields

gκ(t) +
∫ t

0

〈
Xκ(s, ·) − X(s, ·),ψ(

Xκ(s, ·))− ψ
(
X(s, ·))〉

L2 ds

+ κ

∫ t

0
ds

∥∥Xκ(s, ·) − X(s, ·)∥∥2
L2 ds

≤ 2κ

∫ t

0
ds

∥∥X(s, ·)∥∥2
L2 + Mκ

t + (
C(e) + α + 3κ

)∫ t

0
gκ(s)ds. (7.6)

Taking the expectation we get

E
(
gκ(t)

) ≤ (
C(e) + α + 3κ

) ∫ t

0
E
(
gκ(s)

)
ds + 2κ

∫ t

0
E
(∥∥X(s, ·)∥∥2

L2

)
ds,

for every t ∈ [0, T ]. By Gronwall lemma we get

E
(
gκ(t)

) ≤ 2κE

{∫ t

0
ds

∥∥X(s, ·)∥∥2
L2

}
e(C(e)+α+3κ)T , ∀t ∈ [0, T ]. (7.7)

Taking the supremum and letting κ → 0, item (a) of Lemma 7.3 is now established.
We go on with item (b). Since ψ is Lipschitz, (7.6) implies that, for t ∈ [0, T ],∫ t

0
ds

∥∥ψ(
Xκ(s, ·))− ψ

(
X(s, ·))∥∥2

L2

≤ 1

α
ds

〈
ψ
(
Xκ(s, ·))− ψ

(
X(s, ·)),X(κ)(s, ·) − X(s, ·)〉

L2

≤ κ

2α

∫ t

0
ds

∥∥X(s, ·)∥∥2
L2 + C(e,α)

∫ t

0
gκ(s)ds + Mκ

t ,
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where C(e,α) is a constant depending on ei,0 ≤ i ≤ N and α. Taking the expectation for t = T , we get

E

(∫ t

0
ds

∥∥ψ
(
Xκ(s, ·))− ψ

(
X(s, ·))∥∥2

L2

)
≤ κ

2α
E

(∫ t

0
ds

∥∥X(s, ·)∥∥2
L2

)
+ C(e,α)

∫ T

0
E
(
gκ(s)

)
ds.

Taking κ → 0, (B.2) and (7.7) provide the conclusion of item (b) of Lemma 7.3.

(c) Coming back to (7.6), and t = T , we have

κ

∫ t

0
ds

∥∥Xκ(s, ·) − X(s, ·)∥∥2
L2 ≤ 2κ

∫ t

0
ds

∥∥X(s, ·)∥∥2
L2 + Mκ

T + (
C(e) + α + 3κ

) ∫ t

0
dsgκ(s).

Taking the expectation we have

κE

(∫ t

0
ds

∥∥Xκ(s, ·) − X(s, ·)∥∥2
L2

)
≤ 2κE

(∫ t

0
ds

∥∥X(s, ·)∥∥2
L2

)
+ (

C(e) + α + 3κ
)
E

(∫ T

0
gκ(s)ds

)
.

Using item (a) and the fact that E(
∫
[0,T ]×R

X2(s, ξ)ds dξ) < ∞, the result follows. Lemma 7.3 is finally com-
pletely established. �

We need now another intermediate lemma concerning the paths of a solution to (1.1).

Lemma 7.5. For almost all ω ∈ �, almost all t ∈ [0, T ],
(1) ξ �→ ψ(X(t, ξ,ω)) ∈ H 1(R),
(2) ξ �→ �(X(t, ξ,ω)) is continuous.

Proof. Item (1) is established in [8], see Definition 3.2 and Theorem 3.4. (1) implies that ξ �→ ψ(X(t, ξ,ω))

is continuous. See also Remark B.2 1. By the same arguments as in Proposition 4.22 in [6], we can deduce
item (2). �

(3) We go on with the proof of Theorem 7.1. We keep in mind (i), (ii), (iii), (iv) at the beginning of item (1) of the
proof. Since � is bounded, for P -almost all ω, using Burkholder–Davis–Gundy inequality one obtains

EQκ(·,ω)(Yt − Ys)
4 ≤ const(t − s)2, (7.8)

where const does not depend on ω. On the other hand, for all Qκ(·,ω),Y0 is distributed according to x0.
At this point, we need a version of Kolmogorov–Centsov theorem for the stable convergence. Let �̃0 = �̃1 ×�

as at the beginning of the proof of Theorem 7.1. We recall that �̃1 = C([0, T ]) × R, Y(ω1,ω) = ω1, H is the
Borel σ -field on �̃1.

Lemma 7.6. Let be a sequence Qκ(·,ω) of random kernel on H × �. Let us denote by Qκ the sequence of
marginal laws of the probabilities on (�̃0,H⊗F) given by Qκ(·,ω)P (dω). Suppose the following.

• The sequences of marginal laws of the probabilities Qκ at zero are tight.
• There are α,β > 0 such that

EQκ(·,ω)|Yt − Ys |α ≤ C(ω)(t − s)1+β, 0 ≤ s ≤ T ,

for some positive P -integrable random constant C.

Then there is a random kernel Q∞ on H × � and a subsequence (κn) such that for every bounded continuous
functional G : �̃1 → R, for every bounded F -measurable r.v. F : � →R, we have∫

�

F(ω)dP(ω)

∫
�̃1

G
(
Y(ω1)

)
Qκn(dω1,ω)

→
n→∞

∫
�

F(ω)dP(ω)

∫
�̃1

G
(
Y(ω1)

)
Q∞(dω1,ω). (7.9)
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Proof. Taking the expectation with respect to P we obtain

EQκ

(Yt − Ys)
α ≤ C0(t − s)1+β, 0 ≤ s ≤ T ,

where C0 is the expectation of C. First, by usual arguments as Chebyshev inequality, one can show the following:

lim
λ→∞ sup

κ
Qκ

{
(ω1,ω)|∣∣(W 1, . . . ,WN

)
(ω)(0)

∣∣ > λ; ∣∣ω1(0)
∣∣ > λ

} = 0,

lim
δ→0

sup
κ

Qκ
{
(ω1,ω)|m((

W 1, . . . ,WN,ω1
); δ) > ε

} = 0, ∀ε > 0,

where m denotes the modulus of continuity. By Theorem 4.10 of [18], the sequences of probabilities Qκ , κ > 0,
on �̃1 × � are tight. Let Qκn be a sequence converging weakly to a probability Q∞ on H ⊗ F . Since F is
separable and C([0, T ])N , which is space value of process W , is a Polish space equipped with its Borel σ -
algebra, according to [23], it is possible to desintegrate Q∞, i.e. there is random kernel Q∞(·,ω) such that for
every bounded continuous functional G : �̃1 → R, for every bounded continuous F̃ : C([0, T ])N → R such that
(7.9) holds for every F = F̃ (W), where W = (W 1, . . . ,WN). Since continuous bounded functionals F̃ are dense
in L2(C([0, T ])N ) equipped with Wiener measure, (7.9) holds also for any F bounded F -measurable r.v. with
Q∞(dω1,dω) = Q∞(dω1,ω)P (dω). �

By (7.8), we apply Lemma 7.6 with α = 2, β = 1 and we consider the corresponding Qκn(·,ω) and the limit
random kernel Q(·,ω) := Q∞(·,ω). We define also the probability Q := Q∞ on �̃0 = �̃1 × � according to the
conventions introduced before Definition 2.3. In the sequel we denote again by dQκ(ω1,ω) := dP(ω)Qκ(dω1,ω)

and also Qω,κ := Qκ(·,ω), Qω := Q(·,ω).
From Lemma 7.6 derives the following.

Corollary 7.7. For any bounded random element F : �̃1 × � → R such that for almost all ω ∈ �, F(·,ω) ∈
C(�̃1). Then

∫
�

dP(ω)
∫
�̃1

(dQω,κn(ω1) − dQω(ω1))F (Y,ω) converges to zero.

Proof. See Appendix A. �

We need here a technical lemma.

Lemma 7.8. Let t ∈ [0, T ], p ∈R.

1. There is C(p) > 0 such that

EQκ

(
Et

(∫ ·

0
μ(ds, Ys)

)p)
≤ C(p), ∀κ > 0.

2. For almost all ω ∈ �, and every p ∈R there is a random constant C(p,ω) such that the random variables

EQω,κ

(
Et

(∫ ·

0
μ(ds, Ys)

)p)
≤ C(p,ω), ∀κ > 0. (7.10)

Proof. Without restriction of generality we can of course suppose e0 = 0.

1. We can write

Et

(∫ ·

0
μ(ds, Ys)

)p

= Et

(
p

∫ ·

0
μ(ds, Ys)

)
exp

(
p2 − p

2

N∑
i=1

(∫ t

0
ei(Ys)

2 ds

))

≤ Et

(
p

∫ ·

0
μ(ds, Ys)

)
exp

(
T

p2 − p

2

N∑
i=1

∥∥ei
∥∥2

∞

)
.

Since p
∫ t

0 μ(ds, Ys) is a (Gt )-Qκ -martingale, the result follows.
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2. Let ω ∈ � excepted on a P -null set. The integrand of the expectation in (7.10) equals exp(J1(n) + J2(n)), where

J1(n) := p

N∑
i=1

(
Wi

t e
i(Yt ) − 1

2

∫ t

0
ei(Ys)

2 ds − 1

2

∫ t

0
Wi

s

(
ei
)′′

(Ys)�
2(X(s,Ys,ω)

)
ds

)

and J2(n) = −p
∑N

i=1

∫ t

0 Wi
s (e

i)′(Ys)dYs . For each ω, exp(J1(n)) is bounded, so it remains to prove the existence
of a random constant C(p,ω) such that for every 0 ≤ i ≤ N

EQω,κ

(
exp

(
−p

∫ t

0
Wi

s

(
ei
)′
(Ys)dYs

))
≤ C(p,ω). (7.11)

Since −p
∫ t

0 Wi
s (e

i)′(Ys)dYs is a Qω,κ -martingale,

Eκ
t := exp

(
−p

∫ t

0
Wi

s

(
ei
)′
(Ys)dYs − p2

2

∫ t

0

(
Wi

)2
s

(
ei
)′2

(Ys)�
2
κ

(
Xκ(s,Ys,ω)

)
ds

)
is an (exponential) martingale, with respect to Qω,κ . Consequently the left-hand side of (7.11) is bounded by

EQω,κ

(
Eκ

t exp

(
p2

2

∫ t

0

(
Wi

)2
s

((
ei
)′)2

(Ys)�
2
κ

(
Xκ(s,Ys,ω)

)
ds

))

≤ C(p, ·) := exp

(
p2

2

∥∥(ei
)′∥∥2

∞
(‖�‖2∞ + 1

)∫ T

0

(
Wi

s

)2 ds

)
.

This concludes the proof of Lemma 7.8. �

Lemma 7.9. We fix ω ∈ � excepted on some P -null set. Let ϕ : [0, T ] × R → R continuous with compact support.
The random variables

EQω,κ

(∫ T

0

∣∣�κ

(
Xκ(r,Yr ,ω)

)− �
(
X(r,Yr ,ω)

)∣∣ϕ(r,Yr )dr

)
converge to zero a.s. and in Lp(�,P ) for every p ≥ 1, when κ → 0.

Proof. Let ω ∈ �. Since ϕ has compact support, by Cauchy–Schwarz with respect to the measure ϕ(r,Y (r))dr on
[0, T ], it is enough to prove that

EQω,κ

(∫ T

0

(
�κ

(
Xκ(r,Yr ,ω)

)− �
(
X(r,Yr ,ω)

))2
ϕ(r,Yr)dr

)
(7.12)

converges to zero. Since � is bounded it is enough to prove the convergence to zero for almost all ω ∈ �. In order not
to overcharge the notation, in this proof we will omit the argument of ω of Y . By Fubini’s theorem the left-hand side
of (7.12) equals∫ T

0
drEQω,κ ((

�κ

(
Xκ(r,Yr ,ω)

)− �
(
X(r,Yr ,ω)

))2
ϕ(r,Yr )

)
.

Using also Lebesgue dominated convergence theorem, given a sequence (κn), when n → ∞, it is enough to find a
subsequence (κn�

) such that for all r ∈ [0, T ] outside a possible Lebesgue null set

EQ
ω,κn�

{(
�κn�

(
Xκn� (r, Yr ,ω)

)− �
(
X(r,Yr ,ω)

))2
ϕ(r,Yr )

} →
�→∞ 0.

We set Zr(ω1,ω) = Er (
∫ ·

0 μ(ω)(ds, Ys(ω1))). We will substitute from now on (n�) with n.
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Taking into account Lemma 7.8 and Cauchy–Schwarz with respect to the finite measure Zr(ω1,ω)Qω,κn(dω1), it
is enough to prove that for r a.e.

EQω,κn {(
�κn

(
Xκn(r, Yr ,ω)

)− �
(
X(r,Yr ,ω)

))2
ϕ(r,Yr)Zr(·,ω)

}
converges to zero when n goes to infinity.

Since Xκ constitutes the family of μ-marginal weighted laws of Y under Qω,κ , previous expression gives∫
R

|ϕ|(r, y)
(
�κn

(
Xκn(r, y,ω)

)− �
(
X(r, y,ω)

))2
Xκn(r, y,ω)dy

≤ I11(κn, r) + I12(κn, r) + I13(κn, r) + I14(κn, r), (7.13)

where we have developed the square in the first line of (7.13) using the definition of ψ and �κ . Indeed we get

I11(κ, r) =
∫
R

dy|ϕ|(r, y)|∣∣ψ(
Xκ(r, y,ω)

)− ψ
(
X(r, y,ω)

)∣∣,
I12(κ, r) =

∫
R

dy|ϕ|(r, y)|�2(Xκ(r, y,ω)
)∣∣(X − Xκ

)
(r, y,ω)

∣∣,
I13(κ, r) =

∫
R

dy
∣∣ϕ(r, y)

∣∣κ∣∣Xκn − X
∣∣(r, y,ω),

I14(κ, r) =
∫ t

0
dr

∫
R

dyκ
∣∣X(r, y,ω)

∣∣∣∣ϕ(r, y)
∣∣.

We denote I1j (κ) := ∫ T

0 I1j (κ, r)dr , j = 1,2,3,4. It is of course enough to prove that, up to a subsequence I1j (κn) →
0, j = 1,2,3,4, where n → ∞. By Cauchy–Schwarz, I 2

11(κ) is bounded by

‖ϕ‖2
L2([0,T ]×R)

∫ t

0
dr

∫
R

(
ψ
(
Xκ(r, y,ω)

)− ψ
(
X(r, y,ω)

))2 dy.

This converges to zero according to Remark 7.4(2), after extracting a subsequence (κn) (not depending on ω). The
square of the expectation of I12(κ) is bounded by

‖ϕ‖2
L2([0,T ]×R)

∫
[0,T ]×R

dr dy�4(X(r, y,ω)
)∣∣Xκ − X

∣∣2(r, y,ω).

The expectation of previous expression is indeed uniformly bounded in κ because of (7.6) and (7.7). So the
family of r.v. �2(Xκn(r, y,ω))|(X − Xκ)(r, y,ω)| is uniformly integrable with respect to the finite measure
dP(ω)|ϕ|(t, y)dt dy. Consequently I12(κ) goes to zero because of (7.3) in Remark 7.4(4).

I 2
13(κ) is bounded by κ‖ϕ‖2

L2([0,T ]×R)
κ
∫
[0,T ]×R

dr dy|Xκ − X|2(r, y,ω). After extracting a subsequence κn, pre-
vious expression converges to zero because of Lemma 7.3(c). Finally I14(κ) →n→∞ 0 by Cauchy–Schwarz and the
fact that

∫
[0,T ]×R

dr dyX2(r, y,ω) < ∞ dP -a.s. This establishes the proof of Lemma 7.9. �

Let (κn) be the sequence introduced by the statement of Lemma 7.6. Previous Corollary 7.7 and Lemma 7.9 have
the following consequences. Let Q(dω1,ω) be the random kernel introduced in Lemma 7.5 and the related probability
Q(dω1,dω) = dP(ω)Q(dω1,ω).

Corollary 7.10. Let R : � → R be a bounded measurable r.v. Let ϕ : [0, T ] × R → R be a function with compact
support. The sequence∫

�

R(ω)dP(ω)

∫
�̃1

dQω,κn(ω1)

∫ T

0
ϕ(r,Yr)�

2
κn

(
Xκn(r, Yr ,ω)

)
dr (7.14)
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converges, when n → ∞, to∫
�

R(ω)dP(ω)

∫
�̃1

dQ(ω1,ω)

∫ T

0
ϕ(r,Yr)�

2(X(r,Yr ,ω)
)

dr. (7.15)

Proof. We split the difference between (7.14) and (7.15) which gives I1(n) + I2(n) where

I1(n) =
∫

�

R(ω)dP(ω)

∫
�̃1

dQω,κn(ω1)

∫ T

0
ϕ(r,Yr)

(
�2

κn

(
Xκn(r, Yr ,ω)

)
dr − �2(X(r,Yr ,ω)

)
dr

)
,

and

I2(n) =
∫

�

R(ω)dP(ω)

∫
�̃1

(
Qω,κn(dω1) − Q(dω1,ω)

)(∫ T

0
ϕ(r,Yr)�

2(X(r,Yr ,ω)
)

dr

)
.

We have∣∣I1(n)
∣∣ ≤ 2‖�‖∞‖R‖∞

×
∫

�

dP(ω)

∫
�̃1

dQω,κn(ω1)

(∫ T

0

∣∣ϕ(r,Yr)
∣∣∣∣�κn

(
Xκn(r, Yr ,ω)

)
dr − �

(
X(r,Yr ,ω)

)∣∣dr

)
.

I1(n) converges to zero by Lemma 7.9. Concerning I2(n), by Fubini’s theorem, we first observe that

I2(n) =
∫ T

0
dr

∫
�

dP(ω)

(∫
�̃1

(
Qω,κn(dω1) − Q(dω1,ω)

)
ϕ(r,Yr)�

2(X(r,Yr ,ω)
)
R(ω)

)
.

We apply now Corollary 7.7, setting for fixed r , F(ω1,ω) = R(ω)ϕ(r,ω1(r))�
2(X(r,ω1(r),ω)) and the result fol-

lows. �

(4) We go on with the proof of Theorem 7.1.
We want now to prove that Y(·,ω) is a (weak) solution of

Yt = Y0 +
∫ t

0
�
(
X(s,Ys, ·)

)
dβω

s ,

for some Brownian motion βω. This is related to item (1) of Definition 2.10 with γ (t, ξ,ω) = �(X(t, ξ,ω)).
According to Remark 2.11(c), for this it is enough to show that for dP -a.s. ω Y(·,ω) is a solution of the following
(local) martingale problem. For every f ∈ C1,2([0, T ] ×R) with compact support, the process

Z
f
t := f (t, Yt ) − f (0, Y0) − 1

2

∫ t

0
∂2
xxf (r,Yr)�

2(X(r,Y,ω)
)

dr −
∫ t

0
∂rf (r,Yr) dr,

is a (local) martingale under Qω.

This will be a consequence of the lemma below.

Lemma 7.11. Let F be a bounded Fs -measurable, let A : C([0, s]) → R bounded continuous functional. Let G =
A(Yr , r ≤ s). Then, for 0 ≤ s ≤ t ≤ T we have

E
(
FEQω(

GZ
f
t

)) = E
(
FEQω(

GZ
f
s

))
. (7.16)

Proof. We set

Z
κ,f
t = f (t, Yt ) − f (0, Y0) − 1

2

∫ t

0
∂2
xxf (r, Yr )�

2
κ

(
Xκ(r,Y,ω)

)
dr −

∫ t

0
∂rf (r, Yr )dr.
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Let (κn) be the sequence introduced by Lemma 7.6. The difference of the right and left-hand side of (7.16) is the sum
(I1 + I2 + I3)(κn) where

I1(κ) = E
(
F
(
EQω(

GZ
f
t

)− EQω,κ (
GZ

κ,f
t

)))
,

I2(κ) = E
(
FEQω,κ (

G
(
Z

κ,f
t − Z

κ,f
s

)))
,

I3(κ) = E
(
F
(
EQω,κ (

GZ
κ,f
s

)− EQω(
GZ

f
s

)))
.

I1(κn) + I3(κn) converges to zero by Lemma 7.6, Corollary 7.10 and Lemma 7.9. I2(κn) = 0 since Zκ,f is a Qκ,ω-
martingale. �

(5) After previous intermediary steps we need to show that Y defined in (7.1) is a weak-strong solution of
DSDE(γ, x0) with γ (s, ξ,ω) = �(X(s, ξ,ω)) and X is a solution of (1.1). We recall that the kernel Q(·,ω)

has been introduced through Lemma 7.6 on (�̃1 × �,H⊗F). So, according to step (5), under Qω := Q(·,ω), Y

is a martingale with [Y ]t = ∫ t

0 �2(X(s,Ys,ω))ds. To conclude the proof of item (1) in Definition 2.10, it remains
to construct the suitable required process B . For this, we need to enlarge the probability space �̃1 as follows. We
set �1 = �̃1 ×C([0, T ];R); the second component allows to define a Brownian motion. By an abuse of notation,
we set again Yt (ω1,ω) = ω0

1(t), this time with ω1 = (ω0
1,ω

1
1). In spite of adding the component ω1

1, in step (5) we
have already shown Qω := Q(·,ω), is by construction the law of Y(·,ω). We need to construct a process B on
�×�1, such that for almost all ω, B(·,ω) is a Qω-Brownian motion and (2.6) holds for γ (t, ·,ω) = �(X(t, ·,ω)).

On �1 we set βt (ω1) = ω1
1(t). We equip C([0, T ];R) in �1 with the Wiener measure W so that β is a

standard Brownian motion on �1. β can also be considered to be a Brownian motion on �0 = �1 × � which
is Qω-independent of Y for P -almost all ω ∈ �. Of course β is also independent of Y on the probability space
(�1 × �,B(�1) ×F,dQ(ω1,ω) := Qω(dω1)dP(ω)). β is also independent of (Ft ).

We set now

Bt(·,ω) =
∫ t

0
dYs(·,ω)1{γ (s,ξ,ω) �=0}

1

γ (s, ξ,ω)
+

∫ t

0
1{γ (s,ξ,ω)=0} dβs.

Now for Qω-a.s. the quadratic variation of the Qω-martingale B(·,ω) is t , so that, by Lévy characterization
theorem, B(·,ω) is a Brownian motion under Qω .

It remains to show items (2) and (3) of the definition of weak-strong solution. Let (Yt ) be the canonical filtration
of the process Y(·,ω). Item (3) follows because of item (1) and because γ (t, ·,ω) = �(X(t, ·,ω)) is progressively
measurable. Concerning item (2) we see that under Q defined by P and the kernel Q(·,ω), W 1, . . . ,WN are Q-
martingales with (Gt ) as defined in Definition 2.10. Indeed let F be a bounded Fs -measurable random variable
and G be a bounded Ys -measurable r.v. Let 1 ≤ i ≤ N . By item (3) EQω

(G) is Fs -measurable, so

EQ((
Wi

t − Wi
s

)
FG

) = E
((

Wi
t − Wi

s

)
FEQω

(G)
) = 0,

since Wi is an Fs -martingale.
(6) The final step consists in proving that X is the family of μ-marginal weighted laws of Y . We need to show that

for almost all ω, for every t ∈ [0, T ], ϕ ∈ S(R), that∫
R

dξϕ(ξ)X(t, ξ,ω) = EQω

(
ϕ(Yt )Et

(∫ ·

0
μ(ds, Ys)

))
.

Since both sides of previous equality are Ft -measurable, given a bounded Ft -measurable random variable R it
will be enough to show that∫

�

dP(ω)R(ω)

∫
R

dξϕ(ξ)X(t, ξ,ω) =
∫

�

dP(ω)R(ω)EQω

(
ϕ(Yt )Et

(∫ ·

0
μ(ds, Ys)

))
. (7.17)

Let ω ∈ � outside some P -null set.
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By step (1) of the proof of this Theorem 7.1, we know that Xκ fulfills, for almost all ω,∫
R

dξXκ(t, ξ)ϕ(ξ) = EQκ(·,ω)

(
ϕ(Yt )Et

(∫ ·

0
μ(ds, Ys)

))
,

for all ϕ ∈ S(R). Consequently if (κn) is the sequence obtained via Lemma 7.5, we have∫
�

dP(ω)R(ω)

∫
R

dξXκn(t, ξ)ϕ(ξ) =
∫

�

dP(ω)R(ω)EQω,κn

(
ϕ(Yt )Et

(∫ ·

0
μ(ds, Y )

))
, (7.18)

for every ϕ ∈ S(R).
Since t �→ X(t, ·) is continuous from [0, T ] to S ′(R) and the right-hand side of (7.17) is continuous on [0, T ]

for fixed ϕ ∈ S(R), it is enough to show (7.17) for almost all t ∈ [0, T ].
Now for almost all t , the left-hand side of (7.17) is approached by the left-hand side of (7.18). Let us fix

t ∈ [0, T ]. It remains to show that the right-hand side of (7.17) is the limit of the right-hand side of (7.18). We fix
ω ∈ � outside a null set. We set Et := Et (

∫ ·
0 μ(ds, Ys)), t ∈ [0, T ]. By Theorem 2 of [25] and uniform integrability

arguments, similarly as after (2.5), we have

Et = exp
(
ψω(Y )

)
,

where ψω : �̃1 → R is a continuous modification of

ω �→
(

η �→
∫ t

0
ei(ηs)dWi

s − 1

2

∫ t

0
ei(ηs)

2 ds

)
.

Indeed, previous random field, indexed by η ∈ �̃1, admits a continuous modification; to prove this we make use
of Kolmogorov–Centsov theorem and Doob’s inequality, which says that for any 0 ≤ i ≤ N , there is a constant
const = const((ei)′) with

E

(∣∣∣∣∫ t

0

(
ei
(
η1

s

)− ei
(
η2

s

))
dWi

s

∣∣∣∣4) ≤ const sup
s∈[0,T ]

∣∣η1 − η2
∣∣2(s), η1, η2 ∈ �̃1.

At this point we fix M > 0. We decompose the difference of the right-hand sides of (7.18) and (7.17) as

J1(n,M) + J2(n,M) + J3(n,M), (7.19)

where

J1(n,M) =
∫

�

dP(ω)R(ω)EQω,κn (
ϕ(Yt )Et − ϕ(Yt )(Et ∧ M)

)
,

J2(n,M) =
∫

�

dP(ω)R(ω)
(
EQω,κn − EQω)(

ϕ(Yt )(Et ∧ M)
)
,

J3(n,M) =
∫

�

dP(ω)R(ω)EQω(
ϕ(Yt )(Et ∧ M) − ϕ(Yt )Et

)
.

Setting Qκn(dω,dω1) = dP(ω)Qω,κn(dω1), by Cauchy–Schwarz and Chebyshev inequalities, for every p > 1,
we have

∣∣J1(n,M)
∣∣ =

∣∣∣∣∫
�1×�

dQκnϕ(Yt )Et1{Et>M}
∣∣∣∣ ≤ ‖ϕ‖∞

EQκn
(Ep

t )

Mp−1
.

By Lemma 7.8, we get supn |J1(n,M)| → 0 if M → ∞. By a similar reasoning, replacing Qκn(dω,dω1)

with Q(dω,dω1) = dP(ω)Qω(dω1), we can prove that supn |J3(n,M)| → 0. Let ε > 0. Let M such that



2070 V. Barbu, M. Röckner and F. Russo

supn |J1(n,M) + J3(n,M)| ≤ ε. On the other hand we have

J2(n,M) =
∫

�

dP(ω)R(ω)
(
EQω,κn − EQω)(

ϕ(Yt )
(
ψω(Y ) ∧ M

))
.

Since for almost all ω, F(η,ω) := R(ω)ϕ(η(t))ψω(η) is bounded and continuous, Corollary 7.7 implies that
J2(n,M) goes to zero when n → ∞.

Taking the limsup in (7.19) we get

lim sup
n→∞

∣∣J1(n,M) + J2(n,M) + J3(n,M)
∣∣ ≤ ε.

Since ε is arbitrarily small, we get limn→∞ |J1(n,M) + J2(n,M) + J3(n,M)| = 0 and the result follows. �

Appendix A: Technicalities

Proposition A.1. Let Y0 be distributed according to x0. Let a : [0, T ] × R → R be a Borel function such there are
0 < c < C with c ≤ a(s, ξ) ≤ C,∀(s, ξ) ∈ [0, T ] ×R. We fix 0 ≤ r ≤ t ≤ T . We set an(t, x) = ∫

R
ρn(x − y)a(t, y)dy

where (ρn) is the usual sequence of mollifiers converging to the Dirac delta. The unique solutions Sn to Sn
t = Y0 +∫ t

r
an(s, S

n
s )dBs , B being a classical Wiener process, converges in law to the (weak unique solution) of St = Y0 +∫ t

r
a(s, Ss)dBs .

Proof. The proof follows by standard arguments, see Stroock–Varadhan ([27], Problem 7.3.3), tightness and
Kolmogorov–Centsov type arguments. For a detailed proof, the reader may consult [7]. �

Proof of Corollary 7.7. By (7.8), the family (Qκ�, � ∈ N,ω ∈ �) is tight. So, for every positive integer n there exists
a compact subset Kn of �̃1 such that

Qκ�
(
Kc

n,ω
)
<

1

n
, ∀� ∈ N,ω ∈ �. (A.1)

Since each C(Kn) := C(Kn;R) is separable with respect to the sup-norm ‖ · ‖∞ then C(Kn),‖ · ‖∞ is a sepa-
rable Banach space. So we apply Appendix 1, Lemma A.1.4 in [21], to the map � � ω �→ F(·|Kn,ω) ∈ C(Kn),
where F(·|Kn,ω) denotes the map Kn � η �→ F(η,ω). Therefore we can find a sequence F̃n,k : � → C(Kn),
ω �→ F̃n,k(·,ω) ∈ Kn such that for ‖F‖∞ := supη∈�̃1,ω∈� |F(η,ω)|, we have

‖F̃n,k‖∞ ≤ 1 + ‖F‖∞, F̃n,k(�) ⊂ {
g̃

(1)
n,k, . . . , g̃

(Nn,k)

n,k

} ⊂ C(Kn),

where g̃
(i)
n,k �= g̃

(j)
n,k if i �= j , and for all ω ∈ �

sup
η∈Kn

∣∣F(η,ω) − Fn,k(η,ω)
∣∣ → 0, (A.2)

as k → ∞. Clearly, for all ω ∈ �, F̃n,k(·,ω) = ∑Nn,k

j=1 g̃
(j)
n,k1{g̃(j)

n,k}
◦ F̃n,k(·,ω). By Tietze’s extension theorem there

exist extensions g
(1)
n,k, . . . , g

(Nn,k)

n,k ∈ C(�̃1) of g̃
(1)
n,k, . . . , g̃

(Nn,k)

n,k such that for all 1 ≤ j ≤ Nn,k , supη∈�̃1
|g(j)

n,k(η)| ≤
sup

η∈K̃n
|g̃(j)

n,k(η)|. Now we define Fn,k : � → C(�̃1), ω �→ Fn,k(·,ω) by

Fn,k(·,ω) =
Nn,k∑
j=1

g
(j)
n,k1{g̃(j)

n,k}
◦ F̃n,k(·,ω).
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Clearly, still

‖Fn,k‖∞ ≤ 1 + ‖F‖∞. (A.3)

Note that for all η ∈ �̃1

F̃n,k(η,ω) =
Nn,k∑
j=1

g
(j)
n,k(η)1(η){g̃(j)

n,k}
◦ F̃n,k(η,ω),

hence of the form that Lemma 7.6 applies. Therefore using the standard notation μ(f ) := ∫
f dμ, for a measure μ

and a function f , we can argue as follows. Fix n ∈N. Then for all �, k ∈ N∣∣∣∣∫ Qκ�
(
F(·,ω),ω

)
P(dω) −

∫
Q
(
F(·,ω),ω

)
P(dω)

∣∣∣∣
≤

∣∣∣∣∫ Qκ�
(
F(·,ω)1Kn,ω

)
P(dω) −

∫
Q
(
F(·,ω)1Kn,ω

)
P(dω)

∣∣∣∣+ 2

n
‖F‖∞

≤
∫

Qκ�
(∣∣F(·,ω) − Fn,k(·,ω)

∣∣1Kn,ω
)︸ ︷︷ ︸

≤supη∈Kn
|F(η,ω)−Fn,k(η,ω)|

P(dω)

+
∣∣∣∣∫ Qκ�

(
Fn,k(·,ω),ω

)
P(dω) −

∫
Q
(
Fn,k(·,ω),ω

)
P(dω)

∣∣∣∣
+ 2

n

(
1 + ‖F‖∞

)+
∫

Q
(∣∣F(·,ω) − Fn,k(·,ω)

∣∣,ω)1KnP (dω) + 2

n
‖F‖∞.

The first inequality is a consequence of (A.1), the second one of (A.1) and (A.3). Now, letting first � → ∞ (using
Lemma 7.6), then k → ∞ (using (A.2)) and finally n → ∞, the assertion follows. �

Appendix B: Uniqueness for the porous media equation with noise

We state here a general uniqueness lemma which only holds under even weaker hypotheses than Assumption 1.1 i.e.
ψ : R→R is Lipschitz and that the functions belong to W 1,∞.

Theorem B.1. Let x0 ∈ S ′(R) and suppose ψ : R → R to be Lipschitz. Then equation (1.1) admits at most one
solution among the random fields X : ]0, T ] ×R× � →R such that∫

[0,T ]×R

X2(s, ξ)ds dξ < ∞ a.s. (B.1)

Remark B.2.

1. Suppose moreover that ei,0 ≤ i ≤ N,belong to H 1. If x0 ∈ L2 or ψ is non-degenerate then Theorem 3.4 of [8]
provides an existence theorem for (1.1). It states the existence of a random field X such that

E

(∫
[0,T ]×R

X2(s, ξ)ds dξ

)
< ∞,

such that t �→ X(t, ·) belongs to C([0, T ];H−1(R)) and t �→ ∫ t

0 ψ(X(s, ·))ds ∈ C([0, T ];H 1(R)) a.s.
2. So, under the assumption of item 1., the solution X is unique among those fulfilling (B.1).
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3. X of point (ii) fulfills the equation, for almost all ω, in H−1

X(t, ·) = x0 +
∫ t

0
�
(
ψ
(
X(s, ·)))ds +

∫ t

0
μ(ds, ·)X(s, ·), t ∈ [0, T ]. (B.2)

The proof of Theorem B.1 is a consequence of the result stated in Theorem 4.2 of [24], see also Theorem B.1 in
[7].
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