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Abstract. In this paper, we relate transport-entropy inequalities to the minimization of certain functionals defined on the space of
probability measures. This approach leads in particular to a new proof of a result by Otto and Villani (J. Funct. Anal. 173 (2000)
361–400) showing that the logarithmic Sobolev inequality implies Talagrand’s transport inequality.

Résumé. Dans cet article, nous proposons une approche des inégalités de transport-entropie fondée sur la minimisation de certaines
fonctionnelles définies sur l’espace des mesures de probabilité. Cette approche nous permet en particulier de donner une nouvelle
preuve d’un résultat d’Otto et Villani (J. Funct. Anal. 173 (2000) 361–400) montrant que l’inégalité de Sobolev logarithmique
entraîne l’inégalité de transport de Talagrand.
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1. Introduction

The aim of this paper is to develop a new variational method for the study of transport-entropy inequalities. This class
of inequalities has been introduced by Marton [37–39] and Talagrand [46] in their studies of concentration phenomena
for product probability measures. We refer the interested reader to [24,34,48] for a general exposition on these topics.

The most important transport inequality is certainly the inequality first introduced in [46] by Talagrand and clas-
sically referred to as “Talagrand’s inequality” or as T2 inequality in the specialized literature. The inequality T2

compares two very classical functionals on the space P(X ) of all probability measures on a given Polish space X :
the quadratic Kantorovich distance W2(·,μ) (often called Wasserstein distance) and the relative entropy H(·|μ), these
two quantities being understood with respect to some fixed reference probability measure μ on X . Let us recall the
definition of these objects: for all ν ∈P(X ),

W 2
2 (ν,μ) = inf

π

∫ ∫
d2(x, y)π(dx dy),
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where the infimum runs over the set of all couplings π between ν and μ, and

H(ν|μ) =
∫

log

(
dν

dμ

)
dν, (1.1)

when ν is absolutely continuous with respect to μ (otherwise, one sets H(ν|μ) = +∞). A probability measure μ is
said to satisfy the inequality T2(C) for some positive constant C if for any probability measure ν on X ,

W2(ν,μ) ≤ √
CH(ν|μ).

As shown by Talagrand [46], the standard Gaussian probability measure on R
d , d ≥ 1, equipped with the standard

Euclidean norm, satisfies T2(2).
The inequality T2, which already has a meaning in terms of comparison of different modes of convergence on

the space P(X ), is also intimately related to the Gaussian concentration of measure phenomenon. Namely, as proved
by Talagrand (following a general argument due to Marton) if a probability measure μ satisfies T2(C), then for any
positive integer n and for any 1-Lipschitz function f on X n (equipped with the �2 distance) it holds

μn(f > m + t) ≤ e−(t−to)
2/C, ∀t ≥ to = √

C log(2),

where m is a median of f . This uniform Gaussian control of the tails distributions of Lipschitz maps over product
spaces (with constants independent on the dimension) – the so-called dimension free concentration property – found
numerous applications in various domains (see [8,34] for a panorama). This link to concentration of measure is
strengthened by the fact that conversely if a probability measure μ satisfies the property above for some constants C

and to, then it satisfies T2(C) (see [21]).
A natural question is to relate the inequality T2 to other classical functional inequalities. An important breakthrough

was accomplished in this direction by Otto and Villani [43] who first established a clear hierarchy between Talagrand’s
inequality and the celebrated logarithmic Sobolev inequality. Let us recall the general definition of this well known
inequality introduced by Gross [29]: a probability measure μ on a metric space X satisfies the logarithmic Sobolev
inequality with a positive constant C – LSI(C) for short – if for any probability measure ν = f μ, it holds

H(ν|μ) ≤ C

∫ |∇+f |2
f

dμ,

where in this general context for any function g : X →R, and any x ∈X , the so-called local slope of g at x is defined
by

∣∣∇+g
∣∣(x) = lim sup

y→x

[g(y) − g(x)]+
d(y, x)

(1.2)

(when x is an isolated point in X , then one sets |∇+g|(x) = 0). In [43], Otto and Villani established that, when X is
a smooth connected and complete Riemannian manifold equipped with its geodesic distance, the logarithmic Sobolev
inequality is always stronger than Talagrand’s inequality. More precisely, the following holds

LSI(C) ⇒ T2(4C). (1.3)

Roughly speaking, Otto and Villani’s proof consists in interpolating ν and μ using a certain Fokker–Planck equation
(having μ as limit distribution) and comparing the derivatives of H and W2 along this interpolation. Soon after
them, Bobkov, Gentil and Ledoux [5] proposed another proof of the implication (1.3) based on a dual functional
formulation of the transport inequality (obtained by Bobkov and Götze in [6]) and another interpolation technique
along this time the solutions of an Hamilton–Jacobi equation. A third proof, based on the characterization of T2
in terms of concentration discussed above and the well known observation going back to Herbst that LSI implies
Gaussian dimension free concentration (see e.g. [34]), was proposed by the second author in [21]. It had the advantage
over the previous approaches of being immediately generalizable to an abstract metric space framework. It finally
turned out that the two other proofs could also be extended to a general metric space context. Namely, Gigli and
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Ledoux [18] have recently adapted the original proof by Otto and Villani to general metric spaces using the general
theory of gradient flows as developed in particular in [2]. The proof based on the Hamilton–Jacobi equations has also
been adapted to the metric space framework in [28] (improving upon [3,36] by removing some unneeded assumptions
on the metric measured space appearing in these papers). These three techniques of proof were then re-employed in
different settings and for different purposes [9,10,22,26,27,49,50].

Besides the case of dimension one, where a complete characterization of Talagrand’s type inequalities is known
(see [20,23], improving upon [9]), the problem of finding sufficient conditions to ensure that a given probability
satisfies T2 is still of great interest (see [10,22] for explicit sufficient conditions on R

d ). In this paper, we introduce
a new simple method to study transport inequalities and we illustrate it by giving yet another proof of Otto–Villani
theorem.

The general idea we develop in the paper is to reduce Talagrand’s inequality T2 (note that the method actually
applies to more general transport type inequalities) to the problem of minimizing the function

Fa(ν) = √
aH(ν|μ) − W2(ν,μ), (1.4)

defined for all ν ∈Pμ(X ) := {ν ∈ P(X );H(ν|μ) < ∞}.
With this notation in hand we have the following result.

Lemma 1.1. Let μ be a probability measure on X and for all a > 0, denote by Argmin(Fa) the (possibly empty) set
of points ν such that Fa(ν) = infν∈Pμ(X ) Fa(ν).

(1) The function Fa is bounded from below as soon as
∫∫

ed2(x,y)/aμ(dx)μ(dy) < ∞.
(2) The probability measure μ satisfies T2(a) if and only if μ ∈ Argmin(Fa).
(3) The probability measure μ satisfies T2(a) if and only if for all a′ > a, Argmin(Fa′) = {μ}.

The short proof of this result is postponed to the end of the Introduction. Note that the integrability condition given
in Item (1) above is not optimal. See Section 2.2 for a discussion and an optimal characterization of the range of
parameter a for which Fa is lower bounded in terms of (Gaussian) concentration of measure property.

The question is now to show existence and to characterize minimizers of the function Fa . The existence part is
delicate in general, but in the special case where the metric space (X , d) has a finite diameter, elementary semi-
continuity/compactness arguments yield to the conclusion that Argmin(Fa) �= ∅ (see Proposition 2.3 for the finite
diameter case and Proposition 2.4 and Theorem 2.1 for more general cases). In this Introduction, we will always
assume that Fa reaches its minimum at (at least) some point, referring to Sections 2 and 4 for conditions ensuring this
property and a thorough discussion of this matter.

In order to state a useful necessary condition satisfied by minimizers of Fa , we need to introduce the notion of
Kantorovich potentials. According to Kantorovich duality theorem, for all ν,

W 2
2 (ν,μ) = sup

{∫
ψ dν +

∫
ϕ dμ

}
,

where the supremum runs over the set of functions ψ ∈ L1(ν), ϕ ∈ L1(μ) such that ψ(x) + ϕ(y) ≤ d2(x, y) for all
(x, y) ∈ X 2 (see e.g. [48]). Under some mild conditions (for instance finite second moments) the supremum is realized
by some functions ψ,ϕ related by the following conjugation relations:

ψ(x) = inf
y

{
d2(x, y) − ϕ(y)

}
and ϕ(y) = inf

x

{
d2(x, y) − ψ(x)

}
.

The function ψ is usually called a Kantorovich potential for the transport of ν on μ.
Assuming existence of a minimizer of the function Fa and considering small variations around it, one can prove

that a necessary condition for a probability ν �= μ to be a minimizer of Fa is to satisfy the following equation

λ log

(
dν

dμ

)
= ψ + C, (1.5)
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where λ =
√

aW2(ν,μ)√
H(ν|μ)

, C is some renormalizing constant and ψ is a Kantorovich potential for the transport of ν on μ

(see Theorem 2.2 for a general statement).
According to Item (3) of Lemma 1.1, when a probability measure μ satisfies T2(a) then μ appears to be the unique

minimizer of the functions Fa′ for a′ > a. Therefore a natural sufficient condition to ensure that μ satisfies T2(a) for
some a is to prove that Equation (1.5) does not have solution. Indeed, if it is the case, then the only possible minimizer
of the function Fa is μ and so according to Lemma 1.1, μ satisfies T2(a).

Studying the non-linear Equation (1.5) appears as a very delicate task. Remarkably, showing that this equation does
not have solutions (different to μ) can be achieved easily using the logarithmic-Sobolev inequality. Let us sketch the
proof when X = R

d is equipped with its usual Euclidean norm. Suppose that ν �= μ is a solution of Equation (1.5)
and that μ is absolutely continuous with respect to Lebesgue measure. According to a celebrated result by Brenier
(see e.g. Villani [47]), there exists a transport map T sending ν to μ (i.e. the push forward of ν under the map T is μ)
such that∫ ∣∣x − T (x)

∣∣2
ν(dx) = W 2

2 (ν,μ).

Moreover, according to classical arguments in optimal transport theory, this map T is related to ψ as follows:

x − T (x) = 1

2
∇ψ(x), (1.6)

for Lebesgue almost every x. Therefore, reasoning at a formal level, differentiating Equation (1.5), squaring it and
integrating with respect to ν, yields to

λ2
∫ |∇f |2

f 2
dν = 4W 2

2 (ν,μ),

denoting by f the density of ν. By definition of λ, the latter identity amounts to

a

∫ |∇f |2
f

dμ = 4H(ν|μ).

Now, if μ satisfies LSI(C) and a > 4C, this is not possible and so Equation (1.5) does not admit solutions, proving
that μ satisfies T2(a). This argument is made rigorous in Section 3, in the general framework of metric spaces, thus
giving a new general proof of the implication LSI ⇒ T2.

In case Equation (1.5) admits a non-trivial solution dν = e−V dμ, then rewriting (1.6) taking into account (1.5)
one can conclude (at least at a formal level) that

dμ = (
Id + (λ/2)∇V

)
#

(
e−V dμ

)
, (1.7)

using the classical notation S#ν to denote the push forward of a measure ν under a map S. This equation is strongly
reminiscent of recent works about the so called moment measures [4,11,15,35,51]. According to a recent result by
Cordero-Erausquin and Klartag (see [11, Theorem 2]), for any probability measure μ on R

d having its barycenter at
0 which is not supported by a lower dimensional subspace of Rd , there exists a convex function V : Rd →R∪ {+∞}
essentially continuous (see [11] for a definition) such that

∫
e−V dx = 1 and

dμ = ∇V#
(
e−V dx

)
.

Moreover V is unique up to translation. We refer to [32,33] for applications of this notion to the study of logarith-
mically concave probability measures. Our Equation (1.7) thus appears as a twisted version of the moment-measure
equation above. Actually, the link between our paper and the topic of moment measures is more than formal, since dur-
ing the preparation of this work, we learned that very recently Santambrogio [44] recovered the result of [11] through
the minimization over the space P(X ) of a functional F very similar to ours. Some further details are provided in
Section 5.
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The rest of the paper is organized as follows. Section 2 is devoted to the study of a class of functionals generalizing
(1.4). These functionals are of the form Fa(ν) = α(aH(ν|μ)) − β(Tc(ν,μ)), ν ∈ Pμ(X ), where α and β are given
functions on [0,∞) and Tc is an optimal transport cost associated to some general cost function c on X . The question
of existence of a minimizer is discussed and an equation generalizing (1.5) is derived for those minimizers. Section 3
is dedicated to applications. We prove in particular different variants of the Otto–Villani Theorem in metric spaces.
In Section 4, we prove Theorem 2.1 (stated in Section 2) establishing the existence of a minimizer for functionals of
the form Fa(ν) = aH(ν|μ) − Tc(ν,μ), ν ∈ Pμ(X ), under a weak (and actually minimal) concentration of measure
assumption for μ. Finally Section 5 contains remarks about the links between our work and the main results of [11]
and [44].

Proof of Lemma 1.1. (1) This is a consequence of the general result proved in Proposition 2.1. (2) The probability
μ satisfies T2(a) if and only if Fa(ν) ≥ 0 for all ν ∈ P(X ). Since Fa(μ) = 0, this is equivalent to the condition
μ ∈ Argmin(Fa). (3) Suppose that μ satisfies T2(a) for some a > 0. Then, if a′ > a then μ also satisfies T2(a

′). If
ν ∈ Argmin(Fa′), it holds a′H(ν|μ) = W 2

2 (ν,μ) ≤ aH(ν|μ). Since a′ > a, the only possibility is that ν = μ. The
converse is immediate. �

2. Minimization of a class of functionals on the space P(X )

In this section we introduce a class of functionals involving the relative entropy and a optimal general transport cost.
Then we study the minimization problem of these functionals and we give a characterization of the optimizers.

We recall that in all the paper (X , d) is a Polish space and that P(X ) denotes the set of all Borel probability
measures on X .

2.1. Definitions

First let us recall the definition of optimal transport costs. Given a cost function

c :X ×X → R
+

that we will assume hereafter to be continuous, for all probability measures ν1, ν2 on X , one denotes by Tc(ν1, ν2) the
optimal transport cost between ν1 and ν2 defined by

Tc(ν1, ν2) = inf
∫ ∫

c(x, y)π(dx dy) ∈ [0,+∞],

where the infimum runs over the set of all couplings π ∈ P(X 2) having ν1 and ν2 as first and second marginal
distributions.

Given a probability measure μ on a X , one denotes by Pμ(X ) the set of probability measures ν such that
H(ν|μ) < ∞ (recall the definition (1.1) of the relative entropy functional). Then we consider the functional
Fa : Pμ(X ) → R∪ {−∞} where a > 0 defined by

Fa(ν) = α
(
aH(ν|μ)

) − β
(
Tc(ν,μ)

)
, ∀ν ∈Pμ(X ), (2.1)

where α,β : R+ → R
+ are two C1-functions on (0,+∞) and β is assumed to be non-decreasing. In all what follows

we will also assume that the functions α,β are such that for all b ≥ 0 the function

t �→ α(t) − β(t + b)

is bounded from below on (0,∞) and for all λ > 1,

α(λt) − α(t) → +∞, when t → +∞.

The functional considered in the Introduction corresponds to α(t) = β(t) = √
t and c(x, y) = d2(x, y). Other choices

will be considered in Section 3.
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Throughout the paper, we will often deal with a particular class of cost functions generalizing power cost functions
of the form c(x, y) = dp(x, y), x, y ∈X , p ≥ 1. This class of cost functions is introduced in the following lemma.

Lemma 2.1. Let c :X ×X → R
+ be a cost function of the form

c(x, y) = φ
(
d(x, y)

)
, x, y ∈X ,

where φ : R+ → R
+ is some convex function such that φ(0) = 0, φ(x) > 0 if x > 0 and supx>0 φ(2x)/φ(x) < ∞.

Define po = supx>0 xφ′(x)/φ(x), where φ′ denotes the right-derivative of φ. Then 1 ≤ po < ∞, and the function d̃

defined by

d̃(x, y) = c1/po(x, y), x, y ∈ X (2.2)

is a distance on X inducing the same topology as d .

In all what follows, a cost function as in Lemma 2.1 will be referred to as a power type cost function, and the
number po associated to it will be called its exponent.

Proof of Lemma 2.1. Define K = supx>0 φ(2x)/φ(x) < ∞. By convexity, φ(x)/x ≤ φ′(x) and so p0 ≥ 1. On the
other hand, φ(2x) ≥ φ(x) + φ′(x)x and so p0 ≤ K − 1 < ∞. Set ω(x) = φ1/po(x), x ≥ 0. Then

d

dx

{
ω(x)

x

}
= 1

x2

[
1

po

φ1/po(x)
xφ′(x)

φ(x)
− φ1/po(x)

]
≤ 0.

Therefore the function x �→ ω(x)/x is non-increasing. As a result, the function ω is sub-additive: ω(a + b) ≤ ω(a) +
ω(b), for all a, b ≥ 0. One concludes from this that the function d̃ = c1/po is a distance on X . The last assertion
follows from the fact that d and d̃ define the same set of converging sequences. �

2.2. Conditions for lower boundedness

Our general purpose being to study the minimization of Fa over Pμ(X ), let us begin with the following simple
observation showing that Fa is bounded from below when the cost c is exponentially integrable with respect to μ⊗μ.

Proposition 2.1. Let c :X 2 → R
+ be a continuous cost function and μ ∈P(X ) be such that

Iδ :=
∫ ∫

eδc(x,y)μ(dx)μ(dy) < ∞, (2.3)

for some δ > 0. Then, for all ν ∈ P(X )

∫ ∫
c(x, y)ν(dx)μ(dy) ≤ 1

δ
H(ν|μ) + e−1

δ
Iδ.

In particular, for all a ≥ 1/δ, the function Fa is bounded from below on Pμ(X ). Moreover, for all a > 1/δ, the level
sets {Fa ≤ r}, r ∈R, of the function Fa are precompact for the weak topology on P(X ).

Proof. Consider the functions θ(x) = x log(x), x > 0, and θ∗(y) = supx>0{xy − θ(x)}, y ∈ R. An easy calculation
shows that θ∗(y) = ey−1 for all y ∈ R. Assuming without loss of generality that ν ∈ Pμ(X ) and using the immediate
Young’s inequality

xy ≤ 1

δ
θ(x) + 1

δ
θ∗(δy), x > 0, y ∈ R, (2.4)
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yields to∫ ∫
c(x, y)ν(dx)μ(dy) =

∫ ∫
c(x, y)

dν

dμ
(x)μ(dx)μ(dy)

≤ 1

δ

∫ ∫
θ

(
dν

dμ
(x)

)
μ(dx)μ(dy) + 1

δ

∫ ∫
θ∗(δc(x, y)

)
μ(dx)μ(dy)

= 1

δ
H(ν|μ) + e−1

δ
Iδ.

Since Tc(ν,μ) ≤ ∫∫
c(x, y)ν(dx)μ(dy) and β is non-decreasing one concludes that

Fa(ν) = α
(
aH(ν|μ)

) − β
(
Tc(ν,μ)

) ≥ α
(
aH(ν|μ)

) − β
(
δ−1H(ν|μ) + b

)
,

with b = e−1Iδ/δ. Writing, for all h ≥ 0,

η(h) := α(ah) − β
(
δ−1h + b

) = α(ah) − α
(
δ−1h

) + α
(
δ−1h

) − β
(
δ−1h + b

)
,

one sees using the assumptions made on α and β that η(h) is bounded from below. This implies that Fa is bounded
from below on Pμ(X ). Moreover, if a > δ−1, then η(h) → ∞, as h → +∞. Therefore, for each r ∈ R, there exists
hr ≥ 0 such that{

ν ∈Pμ(X ) : Fa(ν) ≤ r
} ⊂ {

ν ∈ P(X ) : H(ν|μ) ≤ hr

}
. (2.5)

According to e.g. [13, Lemma 6.2.12], the level sets of ν → H(ν|μ) are compact for the weak topology of P(X ).
This completes the proof. �

Remark 2.1. The use of integrability conditions to prove transport inequalities is now very classical. Let us men-
tion in particular the seminal paper by Djellout–Guillin–Wu [14] establishing the equivalence between the transport
inequality T1 and a Gaussian integrability condition. This approach was then further developed by Bolley–Villani
[7] and the second named author [19]. A slightly different point of view was proposed by Milman in the paper [42],
where a quantitative equivalence is established between the concentration of measure properties of a measure and
transport inequalities involving the Kantorovich W1 distance. This point of view was then further developed in a pa-
per by Roberto, Samson and the second named author [25] in terms of non-tight transport inequalities involving the
W2 distance. This last result is recalled in Proposition 2.2 below.

According to Proposition 2.1 above, Fa is bounded from below on Pμ(X ) as soon as the integrability condition
(2.3) is fulfilled for δ = 1/a. It turns out that this integrability condition is not necessary to ensure that Fa is bounded
from below. Indeed, let X = R

d equipped with its usual Euclidean distance and let μ be the standard Gaussian
measure. On the one hand, it is easily seen that Iδ = ∫∫

eδd2(x,y)μ(dx)μ(dy) is finite only when δ < 1/4. Therefore,
according to Proposition 2.1, the functional Fa is bounded from below for all a > 4. But, on the other hand, since μ

satisfies Talagrand’s inequality T2(2) (see [46]), we see that Fa ≥ 0 on Pμ(X ) for all a ≥ 2. So for a ∈ [2,4], Fa is
bounded from below and I1/a = +∞.

Fortunately, for power type cost functions (as defined in Lemma 2.1) Proposition 2.1 can be improved. Indeed,
when c is a power type cost function (and α = β = Id) the range of parameters a for which the function Fa is bounded
from below can be completely determined in terms of a concentration of measure inequality for μ (with respect to the
metric d̃ introduced in Lemma 2.1).

Proposition 2.2. Let c : X ×X → R
+ be a power type cost function and po be its exponent. For all a > 0, consider

the function Fa defined by Fa(ν) = aH(ν|μ) − Tc(ν,μ), ν ∈ Pμ(X ).
The following propositions are equivalent:

(1) There exist a > 0, b ≥ 0 such that the function Fa ≥ −b on Pμ(X ).
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(2) There exist a′ > 0 and ro ≥ 0 such that the probability measure μ satisfies the following concentration of measure
property: for all A ⊂X such that μ(A) ≥ 1/2, it holds

μ(Ar) ≥ 1 − e−(r−ro)
po /a′

, ∀r ≥ ro, (2.6)

where Ar = {x ∈X : ∃y ∈ A, d̃(x, y) ≤ r} and d̃(x, y) = c1/po(x, y), x, y ∈ X .

More precisely,

• (1) ⇒ (2) with a′ = a, and ro = (a log(2))1/po + 2b1/po , and
• (2) ⇒ (1) for all a = ta′ with t > 1 and for some b depending on ro, a

′ and t .

Moreover, assuming (2), the level sets {Fa ≤ r}, a > a′, r ∈R are precompact for the weak topology on P(X ).

To summarize, for the functionals Fa considered in Proposition 2.2, it holds

inf{a > 0 : Fa is bounded below} = inf
{
a′ > 0 : (2.6) holds for some ro ≥ 0

}
. (2.7)

Proof of Proposition 2.2. The implication (1) ⇒ (2) follows a well known general argument due to Marton [37]
briefly sketched below. Using Lemma 2.1 and c(x, y) = d̃po(x, y), x, y ∈ X , one can represent Tc as a Wasserstein
distance: for all ν1, ν2 ∈P(X ),

Tc(ν1, ν2) = W̃
po
po

(ν1, ν2) := inf
(X,Y )

E
[
d̃po(X,Y )

]
,

where the infimum runs over the set of couples (X,Y ) of random variables such that X has law ν1 and Y has law ν2.
Let A ⊂ X be a Borel set such that μ(A) ≥ 1/2 and define B = X \ Ar , for some r ≥ 0, and consider the probability
measures dμA = 1A

μ(A)
dμ and dμB = 1B

μ(B)
dμ. Using the triangle inequality for Wp , we get

W̃po(μA,μB) ≤ W̃po(μA,μ) + W̃po(μ,μB)

≤ (
aH(μA|μ)

)1/po + (
aH(μB |μ)

)1/po + 2b1/po

≤ (
a log(2)

)1/po + b1/po + (
a log

(
1/μ(B)

))1/po ,

where the second line comes from the inequality W̃p(ν,μ) ≤ (aH(ν|μ))1/po + b1/po , which is easily deduced from
the assumption that Fa ≥ −b. Using that Wp(μA,μB) ≥ r (which follows at once from the definition of the set B)
one easily gets (2.6).

The implication (2) ⇒ (1) is adapted from [25, Corollary 2.20]. More precisely, one easily derives from (2.6) that
for all a′′ > a′, there is some Ma′′ ≥ 1 such that for all A ⊂X with μ(A) ≥ 1/2, it holds

μ(Ar) ≥ 1 − Ma′′e−rpo /a′′
, ∀r ≥ 0.

If po = 2 then Corollary 2.20 of [25] shows that for all a > a′′, there is some b depending on a′′,Ma′′ and t = a/a′′
such that

W̃ 2
2 (ν,μ) ≤ aH(ν|μ) + b, ∀ν ∈ Pμ(X ),

which in other words means that Fa ≥ −b on Pμ(X ). This proves the implication (2) ⇒ (1) in the case po = 2. Now
if po �= 2, it turns out that the proof of Corollary 2.20 can be very easily adapted (just replacing W2 by Wp , r2 by rp ,
etc.. . . ) yielding exactly as before to the conclusion that Fa is bounded from below on Pμ(X ) for all a > a′.

It remains to show that if (2.6) holds, then the level sets {Fa ≤ r}, r ∈ R are precompact for a > a′. Indeed, for all
ν ∈Pμ(X ), it holds

Fa(ν) = F(a+a′)/2(ν) + (a − a′)
2

H(ν|μ) ≥ m + (a − a′)
2

H(ν|μ),
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where m = infν∈Pμ(X ) F(a+a′)/2(ν) which is finite according to the implication (2) ⇒ (1). From this follows that
{Fa ≤ r} ⊂ {H(·|μ) ≤ 2(r − m)/(a − a′)}. Since the level sets of the relative entropy are compact for the weak
topology, the proof is complete. �

To conclude this section, let us give an elementary comparison between the integrability and concentration condi-
tions considered above.

Lemma 2.2. Let c :X ×X → R
+ be a power type cost function with exponent po and associated distance d̃ = c1/po .

(1) If Iδ := ∫∫
eδc(x,y)μ(dx)μ(dy) < ∞ for some δ > 0, then μ satisfies the concentration inequality (2.6) with

a′ = 1/δ and ro = (δ log(2Iδ))
1/po .

(2) If μ satisfies the concentration inequality (2.6) for some a′ > 0 and ro ≥ 0, then for all xo ∈X ,
∫

eδc(xo,y)μ(dy) <

∞ for all δ < 1/a′ and
∫∫

eδc(x,y)μ(dx)μ(dy) < ∞ for all δ < 1/(a′2po−1).

Proof. (1) Let A be such that μ(A) ≥ 1/2 and set B =X \ Ar ; then it holds

Iδ =
∫ ∫

eδc(x,y)μ(dx)μ(dy) ≥
∫

A

∫
B

eδc(x,y)μ(dx)μ(dy) ≥ eδrpo
μ(A)μ(B).

Writing that μ(A) ≥ 1/2, the announced inequality easily follows. (2) Let m denote the median of the function
x �→ d̃(x, xo) where xo is some arbitrary point in X . According to the classical formulation of concentration of
measure in terms of deviation inequalities for 1-Lipschitz functions (see e.g. [34]), it holds

μ
({

y ∈X : d̃(xo, y) > m + r
}) ≤ e−[r−ro]po+ /a′

, ∀r ≥ 0,

where [·]+ denotes the positive part function. By an integration by part∫
eδc(xo,y)μ(dy) =

∫
eδd̃po (xo,y)μ(dy)

= 1 + δ

∫ +∞

0
eδvμ

({
y : d̃(xo, y) > v1/po

})
dv

≤ 1 + δ

∫ +∞

0
eδve−[v1/po−ro−m]po+ /a′

dv

and this last integral is clearly finite if and only if δ < 1/a′. Now using the inequality

(u + v)po ≤ 2po−1upo + 2po−1vpo, u, v ≥ 0

and the triangle inequality for d̃ , one concludes that
∫∫

eδc(x,y)μ(dx)μ(dy) < ∞ as soon as 2po−1δ < 1/a′, which
completes the proof. �

Remark 2.2. For a given probability measure μ and a given power type cost function c, let us denote by

• ao the infimum of the a > 0 such that Fa = aH(·|μ) − Tc(·,μ) is bounded below on Pμ(X ),
• a′

o the infimum of the a′ > 0 such that μ satisfies the concentration inequality (2.6) for some ro ≥ 0,
• δo the supremum of the δ > 0 such that

∫∫
eδc(x,y)μ(dx)μ(dy) < ∞,

• δ′
o the supremum of the δ′ > 0 such that

∫
eδc(xo,y)μ(dy) < ∞ for all xo ∈ X .

We established in (2.7) that ao = a′
o. We can complete this result by the following inequalities immediately deduced

from Lemma 2.2:

1/
(
2po−1δo

) ≤ 1/δ′
o ≤ a′

o ≤ 1/δo.

The example of the standard Gaussian discussed above showed that ao can be strictly less than 1/δo. We do not know
if a′

o = 1/δ′
o.
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2.3. Attainment of the minimum

We begin with a simple result showing that, when the cost function is continuous and bounded, the function Fa attains
its minimal value. Note that in the case of a bounded cost function c, the definition of the function Fa makes sense
over the whole P(X ).

Proposition 2.3. Suppose that c : X × X → R
+ is a bounded and continuous function, then for any a > 0, the

function Fa defined in (2.1) is bounded from below and attains its infimum.

Proof. The cost being bounded, it is of course exponentially integrable. So according to Proposition 2.1, the func-
tion Fa is bounded below and its level sets are precompact for the weak topology. To show that Fa attains its
infimum, it is enough to prove that it is lower semicontinuous (l.s.c.) with respect to the usual weak topology
on P(X ). As it is well known, the function ν �→ H(ν|μ) is l.s.c., so it is enough to show that ν �→ Tc(ν,μ) is
continuous. To that end, we take a sequence of probability measures (νn)n∈N converging weakly to some ν, and
show that Tc(νn,μ) converges to Tc(ν,μ) as n → ∞. For all n ∈ N, there exists an optimal coupling πn such that
Tc(νn,μ) = ∫∫

c(x, y)πn(dx dy) (see e.g. [48, Theorem 4.1]). Since νn is a converging sequence, the sequence πn is
tight (see e.g. [48, Lemma 4.4]) and therefore, according to Prokhorov Theorem, one can extract a subsequence νn′
which converges to some coupling π between ν and μ. According to [48, Theorem 5.20], this coupling π is also op-
timal, namely Tc(ν,μ) = ∫∫

c(x, y)π(dx dy). Now, since c is bounded continuous, it follows from the very definition
of weak convergence, that

Tc(νn′ ,μ) =
∫ ∫

c(x, y)πn′(dx dy) →
∫ ∫

c(x, y)π(dx dy) = Tc(ν,μ),

as n′ → ∞. Since, by the same reasoning, any subsequence of νn has a subsequence πn′′ such that Tc(νn′′ ,μ) →
Tc(ν,μ), the proof is complete. �

Now let us see how to drop the boundedness assumption on the cost. When the cost function is of power type (as
in Lemma 2.1), one has the following first result.

Proposition 2.4. Suppose that c : X × X → R
+ is a power type cost function. If μ satisfies the following strong

integrability condition:∫ ∫
eδc(x,y)μ(dx)μ(dy) < ∞, ∀δ > 0, (2.8)

then for all a > 0, the function Fa is bounded from below on Pμ(X ) and attains its minimum.

Proof. According to Proposition 2.1, the function Fa is bounded below on Pμ(X ) and for all r ∈ R, {Fa ≤ r} is
precompact for the weak topology. To conclude we need to prove that Fa is l.s.c. on (say) E := {Fa ≤ infFa + 1}.
Since ν �→ H(ν|μ) is l.s.c. on P(X ), it is enough to show that ν �→ Tc(ν,μ) is continuous on E.

First case. First let us treat the particular case where c(x, y) = dp(x, y), x, y ∈ X , for some p ≥ 1 (in other words,
Tc is the Wasserstein distance W

p
p ). Let (νn)n≥1 be a sequence of elements of E converging to ν ∈ E. According to

[48], Tc(νn,μ) → Tc(ν,μ) if and only if

lim sup
r→∞

sup
n≥1

∫
dp(xo, x)1d(xo,x)≥rνn(dx) = 0,

for some (and thus all) xo ∈ X . To ensure this uniform integrability condition, it is sufficient (and in fact necessary
due to the de La Vallée Poussin Theorem) to prove that

sup
n≥1

∫
f

(
dp(xo, x)

)
νn(dx) < ∞, (2.9)
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for some f : R+ →R
+ such that f (t)/t → ∞. Consider the functions

�(s) = log
∫

esdp(xo,x)μ(dx), s ∈ R,

and

�∗(t) = sup
s∈R

{
st − �(s)

}
, t ∈R.

According to e.g. [13, Lemma 2.2.20], �∗(t)/t → +∞, as t → +∞ and, by [13, Lemma 5.1.14],∫
eu�∗(dp(xo,x))μ(dx) ≤ 2

1 − u
, ∀u ∈ (0,1).

According to (2.5), there exists h > 0 such that E ⊂ {ν ∈ P(X ) : H(ν|μ) ≤ h}. So, using Young’s inequality (2.4) as
in Proposition 2.1, one easily gets that for all u ∈ (0,1),

∫
�∗(dp(xo, x)

)
νn(dx) ≤ 1

u
H(νn|μ) + e−1

u

∫
eu�∗(dp(xo,x))μ(dx) ≤ h

u
+ e−1

u

2

1 − u
.

This shows (2.9) with f = �∗ and completes the proof of the first case.
Second case. Now we treat the general case. According to Lemma 2.1, the function d̃ = c1/po is a distance on X ,

where po denotes the exponent of c and is defined in the lemma. So we have c(x, y) = d̃p(x, y), for all x, y ∈ X
and we are back to the first case (since according to Lemma 2.1 (X , d̃) is still a Polish space). Details are left to the
reader. �

The strong integrability condition (2.8) is a bit too demanding for our purpose. For instance, in the particular case
of the functional

Fa(ν) = aH(ν|μ) − W 2
2 (ν,μ), ν ∈ Pμ(X ),

existence of a minimizer is granted by the previous result if
∫∫

eδd2(x,y)μ(dx)μ(dy) < ∞ for all δ > 0. This condition
is for instance not satisfied by the standard Gaussian probability measure when X =R

d , yet a minimizer (the standard
Gaussian probability measure itself) in that case exists, if a ≥ 2.

Fortunately, this integrability condition can be relaxed as shown by the following result.

Theorem 2.1. Let c : X × X → R
+ be a power type cost function and po be its exponent. Suppose moreover that

μ satisfies the concentration property (2.6) for some a′ > 0 and ro ≥ 0. Then, for all a > a′, the functional Fa =
aH(ν|μ) − Tc(ν,μ) admits at least one minimizer on Pμ(X ).

So, with the notations introduced in Remark 2.2, for all a > ao = a′
o the functional Fa is lower bounded and attains

its minimum. For all a < ao = a′
o the functional Fa is not bounded from below.

The proof of Theorem 2.1 is sensibly more sophisticated than those of Propositions 2.3 and 2.4 (and actually relies
on them). It is postponed to Section 4. Let us mention, that in order to stay at the most elementary level, we prefer to
use in the applications considered in Section 3 a simple truncation of the cost technique which will enable us to use
Proposition 2.3 instead of Theorem 2.1.

2.4. Characterization of the minimizers

According to e.g. [48, Theorem 5.10], we have the following Kantorovich duality formula

Tc(ν,μ) = sup

{∫
ψ dν +

∫
ϕ dμ

}
, (2.10)
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where the supremum runs over all functions ψ and ϕ such that ψ ∈ L1(ν), ϕ ∈ L1(μ) and

ψ(x) + ϕ(y) ≤ c(x, y), ∀(x, y) ∈ X 2.

Our first task is to show that there exists an optimal pair (ψ,ϕ) for any ν ∈Pμ(X ).

Proposition 2.5. Assume that μ satisfies the exponential integrability condition (2.3) for some δ > 0. Then for all
ν ∈Pμ(X ), there exist ψ ∈ L1(ν) and ϕ ∈ L1(μ) related together by the c-conjugation:

ψ(x) = inf
y∈X

{
c(x, y) − ϕ(y)

}
, x ∈ Xϕ(y) = inf

x∈X
{
c(x, y) − ψ(x)

}
, y ∈X . (2.11)

such that

Tc(ν,μ) =
∫

ψ(x)ν(dx) +
∫

ϕ(y)μ(dy).

We recall that a function ψ as in the proposition above, is called a Kantorovich potential for the transport of ν

on μ. (Note that ϕ is determined by ψ according to (2.11).)

Proof of Proposition 2.5. According to Proposition 2.1,
∫∫

c(x, y)ν(dx)μ(dy) is finite for any ν ∈ Pμ(X ). Accord-
ing to [1, Theorem 6.1.5 and Remark 6.1.6], this is enough to ensure the existence of the desired optimal pair. �

We are now ready to state our characterization of minimizers of Fa .

Theorem 2.2. Let μ be a probability measure on X satisfying the integrability condition (2.3) for some δ > 0. Assume
that for some value of a > 0, the function Fa is bounded from below and reaches its infimum at some point ν ∈Pμ(X )

not equal to μ. Then the density of ν with respect to μ satisfies the following equation ν-almost everywhere in X

λ log

(
dν

dμ

)
= ψ + C, with λ = aα′(aH(ν|μ))

β ′(Tc(ν|μ))
,

where C ∈R is a renormalizing constant and ψ is any Kantorovich potential for the transport of ν on μ.

First let us state two useful lemmas which follow ideas in [40] further developed in [45] (Cb(X ) denotes here the
set of bounded continuous functions on X ).

Lemma 2.3. Let ν be absolutely continuous with respect to μ and H(ν|μ) < ∞. Let f ∈ Cb(X ) be such that∫
f dν = 0 and define h(ε) = H(νε|μ) with νε = (1 + εf )ν. Then

h′(0) =
∫

log

(
dν

dμ

)
f dν.

Proof. The proof is left to the reader. �

Lemma 2.4. Let μ,ν ∈ P(X ) and suppose that ϕ ∈ L1(ν),ψ ∈ L1(μ) is a couple of functions such that ψ(x) +
ϕ(y) ≤ c(x, y) for all (x, y) ∈X 2 and

Tc(ν,μ) =
∫

ψ dν +
∫

ϕ dμ. (2.12)

Then, for all ν ∈ P(X ) such that ψ ∈ L1(ν), it holds

Tc(ν,μ) ≥ Tc(ν,μ) +
∫

ψd(ν − ν).
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Proof. By Kantorovich duality Tc(ν,μ) ≥ ∫
ψ dν + ∫

ϕ dμ, for all couple of integrable functions such that ψ(x) +
ϕ(y) ≤ c(x, y) for all x, y ∈ X . Therefore, taking the couple (ψ,ϕ), with ϕ(y) = infx{−ψ(x) + c(x, y)}, y ∈ X
immediately yields

Tc(ν,μ) ≥
∫

ψ(x)ν(dx) +
∫

ϕ(x)μ(dx) = Tc(ν,μ) +
∫

ψd(ν − ν).

�

Proof of Theorem 2.2. It holds, for all ν ∈P(X )

Fa(ν) − Fa(ν) = α
(
aH(ν|μ)

) − α
(
aH(ν|μ)

) − β
(
Tc(ν,μ)

) + β
(
Tc(ν,μ)

)
.

Since μ satisfies the integrability condition (2.3) for some δ > 0 and ν ∈ Pμ(X ), Proposition 2.5 shows that there
exists an optimal pair (ψ,ϕ) for the transport of ν on μ. Since β is non-decreasing, using Lemma 2.4 we get

−β
(
Tc(ν,μ)

) ≤ −β

(
Tc(ν,μ) +

∫
ψd(ν − ν)

)
.

Therefore, taking ν = νε = (1 + εf )ν for functions f ∈ Cb(X ) such that
∫

f dν = 0 and letting ε → 0 yields, accord-
ing to Lemma 2.3,

lim sup
ε→0+

Fa(νε) − Fa(ν)

ε
≤ lim

ε→0+
α(aH(νε|μ)) − α(aH(ν|μ))

ε

+ lim
ε→0+

β(Tc(ν,μ)) − β(Tc(ν,μ) + ε
∫

ψf dν)

ε

= aα′(aH(ν|μ)
)∫

log

(
dν

dμ

)
f dν − β ′(Tc(ν,μ)

)∫
ψf dν.

Now, since Fa reaches its infimum at ν, the left hand side is non-negative, and so∫ (
aα′(aH(ν|μ)

)
log

(
dν

dμ

)
− β ′(Tc(ν,μ)

)
ψ

)
f dν ≥ 0,

for all f ∈ Cb(X ) such that
∫

f dν = 0. Changing f into −f , one concludes that there is in fact equality. We conclude
applying the lemma below. �

Lemma 2.5. Let ν ∈ P(X ) and suppose that g ∈ L1(ν) is such that
∫

fg dν = 0 for all f ∈ Cb(X ) such that∫
f dν = 0. Then g is constant ν-almost surely.

Proof. First observe that
∫
(g−∫

g dν)f dν = ∫
(g−∫

g dν)(f −∫
f dν)dν = 0 for all f ∈ Cb(X ), hence the signed

Borel measure (g − ∫
g dν) · dν is null. In particular, for every t > 0 it holds that∫ (

g −
∫

g dν

)
1A dν = 0

for A = {g − ∫
g dμ > t} and A = {g − ∫

g dμ < −t} which yields g = ∫
g dν, ν-almost surely. �

Now we consider the special case where X =R
d and c(x, y) = |x −y|2, x, y ∈R

d , where | · | denotes the standard
Euclidean norm. In this situation, minimizers of Fa are solutions of a certain Monge–Ampère equation, as shown in
the following result.

Corollary 2.1. Let μ be a probability measure on R
d absolutely continuous with respect to Lebesgue measure and

satisfying the integrability condition (2.3) for some δ > 0. Assume that for some value of a > 0, the function Fa
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is bounded from below and reaches its infimum at some point ν ∈ Pμ(X ) not equal to μ. Then ν admits a density
with respect to μ of the form ν(dx) = e−V (x)μ(dx) with V such that x �→ V (x) + |x|2/λ is convex on R

d and

λ = aα′(aH(ν|μ))

β ′(Tc(ν|μ))
. As such, V is differentiable and admits a Hessian in the sense of Aleksandrov, Lebesgue almost

everywhere. Moreover denoting by T the Brenier map sending ν to μ, then for ν-almost all x, it holds

λ∇V (x) = 2
(
T (x) − x

)
. (2.13)

Finally, V is a solution to the following Monge-Ampère type equation: for ν-almost all x ∈R
d ,

h

(
x + λ

2
∇V (x)

)
det

(
Id + λ

2
∇2V (x)

)
= e−V (x)h(x), (2.14)

where h is the density of μ with respect to Lebesgue measure and Id is the identity matrix in R
d .

Proof. According to Theorem 2.2, it holds for ν-almost every x ∈ R
d , λ log(

dν

dμ
)(x) = ψ(x) + C, for some C ∈ R,

where ψ is a Kantorovich potential for the transport of ν on μ. Modifying the density of ν on a negligible set,
one can assume that this equality holds everywhere. Setting V (x) = −(ψ(x) + C)/λ, the equation reads ν(dx) =
e−V (x)μ(dx). According to Proposition 2.5, there is an adjoint function ϕ such that

ψ(x) = inf
y∈Rd

{−ϕ(y) + |x − y|2} = |x|2 − sup
y∈Rd

{
ϕ(y) − |y|2 + 2x · y}

.

Being a supremum of linear functions, the last function is convex, which shows that x �→ V (x) + |x|2/λ is convex
on R

d . According to Aleksandrov Theorem (see e.g. Evans–Gariepy [16]), it follows that for all x ∈ R
d outside a set

of Lebegue measure 0, the function V is differentiable at x and there is a symmetric matrix denoted ∇2V (x) such that

V (x + h) = V (x) + ∇V (x) · h + 1

2
∇2V (x)h · h + o

(|h|2),
as h → 0. According to [17, Theorem 1.2], the Brenier map T transporting ν on μ is related to ψ by 2(x − T (x)) =
∇ψ(x) for ν-almost all x ∈ R

d , which gives (2.13). According to the change of variable formula (see [41, Theorem 4.4
and Remark 4.5]), for ν-almost all x ∈ R

d ,

h
(
T (x)

)
det

(
DT (x)

) = e−V (x), (2.15)

where DT , the differential of T , is expressed at every point where it is well defined, by DT (x) = Id + λ
2 ∇2V (x).

This completes the proof. �

3. Applications

In this section, we use our characterization of minimizers to recover different known implications between classical
functional inequalities.

Recall that if ν is absolutely continuous with respect to μ, the Fisher information I (ν|μ) of ν with respect to μ is
by definition

I (ν|μ) =
∫ ∣∣∣∣∇+ log

(
dν

dμ

)∣∣∣∣2

dν.

(Recall the definition of the local slope |∇+g| for a function g : X → R given in (1.2).)
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3.1. A new proof of Otto–Villani theorem

The following result is due to Otto and Villani [43].

Theorem 3.1. Suppose that μ satisfies the logarithmic Sobolev inequality

H(ν|μ) ≤ DI (ν|μ), ∀ν ∈P(X ),

then μ satisfies T2(4D).

Proof. First case. First we treat the case where the distance d is bounded on X 2. Let us consider

Fa(ν) = √
aH(ν|μ) − W2(ν,μ), (3.1)

for a > 4D, which is well defined on P(X ). According to Proposition 2.3, the function Fa reaches its infimum at
some point ν ∈ P(X ). Our goal is to prove that ν = μ. Let us assume, by contradiction, that ν �= μ. According to
Theorem 2.2,

√
ah(x)√

H(ν|μ)
= ψ(x)

W2(ν,μ)
+ C,

for ν-almost every x ∈ X , where h(x) = log(
dν

dμ
)(x). Modifying dν

dμ
on a set of ν-null measure, we can assume that

the preceding equality holds true for all x in X . In particular, taking the local slope, it holds

∣∣∇+h
∣∣(x) =

√
H(ν|μ)√

aW2(ν,μ)

∣∣∇+ψ
∣∣(x), ∀x ∈X .

Therefore, we have∫ ∣∣∇+h
∣∣2

(x)ν(dx) = H(ν|μ)

aW 2
2 (ν,μ)

∫ ∣∣∇+ψ
∣∣2

(x)ν(dx).

Applying the following lemma (whose proof is given below),

Lemma 3.1. Let ν,μ ∈P(X ) have finite second moments and ψ be a Kantorovich potential for the transport of ν on
μ (with respect to the cost c(x, y) = d2(x, y)). Then,∫ ∣∣∇+ψ

∣∣2
(x)ν(dx) ≤ 4W 2

2 (ν,μ).

it follows that

I (ν|μ) =
∫ ∣∣∇+h

∣∣2
(x)ν(dx) ≤ 4H(ν|μ)

a
.

Now since μ satisfies the logarithmic Sobolev inequality

H(ν|μ) ≤ DI (ν|μ)

one concludes that 1 ≤ (4D)/a, which is impossible. Hence ν = μ. Therefore Fa(ν) ≥ Fa(μ) = 0 for all ν which
proves that μ satisfies T2(a) for all a > 4D. Letting a go to 4D, this ends the proof of the first case.

Second case. Now we treat the case where the distance d is unbounded on X 2. For all positive integer n, let us
consider the distance dn defined by

dn(x, y) = d(x, y) ∧ n, ∀(x, y) ∈ X 2.
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Observe that, for any function f : X →R, it holds

lim sup
y→x

[f (y) − f (x)]+
dn(x, y)

= lim sup
y→x

[f (y) − f (x)]+
d(x, y)

.

Therefore, one immediately concludes that μ satisfies the logarithmic Sobolev inequality with constant D on the
metric space (X , dn). Applying the first case, we conclude that μ satisfies the inequality

W 2
2,n(ν,μ) ≤ 4DH(ν|μ), ∀ν ∈P(X),

where W 2
2,n(ν,μ) = infπ

∫∫
d2
n(x, y)π(dx dy), the infimum running over all couplings between ν and μ. To complete

the proof, it suffices to show that

W 2
2 (ν,μ) ≤ lim inf

n→∞ W 2
2,n(ν,μ). (3.2)

For all n ≥ 1, consider an optimal coupling πn of ν and μ for the cost d2
n . The sequence πn is tight, and so some

henceforth equally denoted subsequence converges weakly to some coupling π of ν and μ. Fix m ≥ 1, then for all
n ≥ m, it holds∫ ∫

d2
m(x, y)πn(dx dy) ≤

∫ ∫
d2
n(x, y)πn(dx dy).

Therefore taking the lim inf when n → ∞ and using the weak convergence of the sequence πn, one gets∫ ∫
d2
m(x, y)π(dx dy) ≤ lim inf

n→∞ W 2
2,n(ν,μ).

Using monotone convergence theorem as m goes to ∞, one then concludes that

W 2
2 (ν,μ) ≤

∫ ∫
d2(x, y)π(dx dy) ≤ lim inf

n→∞ W 2
2,n(ν,μ),

which completes the proof of the second case. �

Proof of Lemma 3.1. Let ψ be a Kantorovich potential between ν and μ (whose existence is given by e.g. [48,
Theorem 5.10]); by definition

ψ(x) = inf
y∈X

{
d2(x, y) − ϕ(y)

}
(3.3)

with ϕ(y) = infx∈X {−ψ(x) + d2(x, y)}, y ∈ X (in the terminology of optimal transport, the function ψ is said d2-
concave).

Recall that the d2-subdifferential of ψ at a point x ∈ X is the (possibly empty) set denoted by ∂d2ψ(x) of points ȳ

realizing the infimum in (3.3). If ȳ ∈ ∂cψ(x), we get

ψ(z) − ψ(x) ≤ d2(z, ȳ) − d2(x, ȳ), ∀z ∈ X .

(Note that this inequality is an equivalent definition of ȳ ∈ ∂cψ(x).) Hence, for all y in ∂d2ψ(x) (when non-empty),
we have

ψ(z) − ψ(x) ≤ (
d(z, y) − d(x, y)

)(
d(z, y) + d(x, y)

)
≤ d(z, x)

(
d(z, y) + d(x, y)

)
.

Therefore, for all x ∈X ,∣∣∇+ψ
∣∣(x) ≤ 2 inf

y∈∂
d2ψ(x)

d(x, y)
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(with the convention inf∅ = +∞) and thus∫ ∣∣∇+ψ
∣∣2

(x)ν(dx) ≤ 4
∫

inf
y∈∂

d2ψ(x)
d2(x, y)ν(dx).

Let us denote by

∂cψ = {
(x, ȳ) : x ∈X , ȳ ∈ ∂cψ(x)

} ⊂X 2.

Let π be an optimal coupling between ν and μ (whose existence is given by e.g. [48, Theorem 4.1]), then π(∂d2ψ) = 1
(which implies in particular that ∂cψ(x) �= ∅ for ν-almost all x). Let us briefly justify this well known property. By
optimality of π and of (ψ,ϕ), it holds

0 =
∫ ∫

X 2
d2(x, y) − (

ψ(x) + ϕ(y)
)
π(dx dy),

which, since the integrand is non-negative, implies that ψ(x) = −ϕ(y) + d2(x, y) for π -almost all (x, y) ∈ X 2,
meaning exactly that π(∂d2ψ) = 1. Using this fact, it thus holds that

W 2
2 (ν,μ) =

∫ ∫
d2(x, y)π(dx dy) ≥

∫
inf

y∈∂
d2ψ(x)

d2(x, y)ν(dx)

which ends the proof. �

3.2. A variant involving a restricted logarithmic Sobolev inequality

The following theorem is a variant of a result obtained by the second author in a paper with Roberto and Samson (see
[26] for the case of the Euclidean case and [27,28] for the metric space case).

For λo > 0, let Fλo(X ) denote the class of λd2-concave functions with λ ∈ (0, λo), i.e. the set of functions f :
X → R for which there exists g :X → R and λ ∈ (0, λo) such that

f (x) = inf
y∈X

{−g(y) + λd2(x, y)
}
, x ∈ X .

Let us remark that if X = R
d is equipped with the usual Euclidean norm | · |, then a function f belongs to Fλo(R

d)

if and only if the function x �→ f (x) − λ|x|2, x ∈ R
d , is concave, which translates into the following semi-concavity

property

f
(
(1 − t)x + ty

) ≥ (1 − t)f (x) + tf (y) − λt(1 − t)|x − y|2, ∀x, y ∈R
d ,∀t ∈ [0,1]. (3.4)

Theorem 3.2. Suppose that for some constants λo,D > 0, μ satisfies the following restricted version of the logarith-
mic Sobolev inequality

H(ν|μ) ≤ DI (ν|μ),

for all ν of the form ν(dx) = ef (x)μ(dx) with f belonging to the class Fλo(X ) defined above. Then μ satisfies
T2(max(4D,1/λo)).

In comparison, it was shown in [26] that a probability measure μ on a Euclidean space which satisfies the logarith-
mic Sobolev inequality H(ν|μ) ≤ DI (ν|μ), for all ν(dx) = e−f (x)μ(dx) with f ∈ Fλo(X ) also satisfies T2(C), for
some C depending on D and λo. Moreover, the converse is also true: if μ satisfies T2(C) it also satisfies this restricted
logarithmic Sobolev inequality for some D and λo. See [27,28] for extensions to general geodesic spaces. We do not
know if there is also equivalence in Theorem 3.2.
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Proof of Theorem 3.2. First case. Assume that the distance d is bounded. Take a > max(4D;λo) and consider again
the function Fa defined by (3.1). Suppose that Fa reaches its minimum at some point ν �= μ. Reasoning as in the proof
of Theorem 3.1, one concludes that the density ρ of ν satisfies (possibly after a modification on a set of ν measure 0)

logρ(x) = λψ(x), ∀x ∈X ,

where ψ ∈ F1(X ) and λ =
√

H(ν|μ)√
aW2(ν,μ)

. Since ν �= μ, Fa(ν) ≤ Fa(μ) = 0 and so
√

aH(ν|μ) ≤ W2(ν,μ). Therefore,

λ ≤ 1/a < λo and so logρ ∈ Fλo(X ). Since μ satisfies the logarithmic Sobolev inequality for such densities, reasoning
as in the proof of Theorem 3.1, we conclude exactly as before that ν can not be distinct from μ. Therefore μ satisfies
T2(a). Letting a go to max(4D;λo) completes the proof of the first case.

Second case. Now we assume that d is unbounded and we use the same truncation trick as in the proof of Theo-
rem 3.1. In order to reason exactly as before, all what we need to check is that if f,g are functions such that

f (x) = inf
y∈X

{−g(y) + λ
(
d(x, y) ∧ M

)2}
, x ∈X

for fixed M > 0 then f belongs to Fλ(X ). Define h(y) = − inf{−f (x) + λ(d(x, y) ∧ M)2}, y ∈ X . Then it is easily
checked that f (x) = infy∈X {−h(y) + λ(d(x, y) ∧ M)2}, x ∈X .

Let us show that the function h is bounded and satisfies

h(y) − h(x) ≤ λM2, ∀x, y ∈ X . (3.5)

By definition of h, for all x ∈ X , h(x) ≥ inf(−f ) = − supf , and so infh ≥ − supf . On the other hand, f (y) ≤
inf(−h)+ λM2 = − sup(h)+ λM2, and so supf ≤ − suph+ λM2. We conclude from this that suph ≤ infh+ λM2,
which amounts to (3.5).

Now, let us define f̃ (x) = infy∈X {−h(y) + d2(x, y)}, x ∈ X and let us show that f̃ = f . Fix a point x ∈ X and
first observe that f (x) ≤ −h(x) and f̃ (x) ≤ −h(x). On the other hand, if d(x, y) ≥ M , then it follows from (3.5) that
−h(y) + λd(x, y)2 ≥ −h(x). Therefore,

f̃ (x) = inf
y s.t. d(x,y)<M

{−h(y) + λd2(x, y)
} = inf

y s.t. d(x,y)<M

{−h(y) + λ
(
d(x, y) ∧ M

)2}
.

Similarly, f (x) = infy s.t. d(x,y)<M {−h(y) + λ(d(x, y) ∧ M)2} and so f (x) = f̃ (x). �

3.3. A variant involving a transport-information inequality

In the following result we show that the transport-information inequality W2I introduced by Guillin, Léonard, Wu
and Yao [31] implies T2 (see also [30] for a proof using the Hamilton–Jacobi method).

Proposition 3.1. Suppose that μ satisfies the inequality

W 2
2 (ν,μ) ≤ DI (ν|μ),

for all ν, where I (ν|μ) = ∫ |∇+ log( dν
dμ

)|2 dν denotes the Fisher information. Then μ satisfies T2(2
√

D).

Proof. Here, we will only consider the case where the metric d is bounded. The case of unbounded metrics is treated
exactly as in the proof of Theorem 3.1. Take a > 2

√
D and consider the functional Fa defined by

Fa(ν) = aH(ν|μ) − W 2
2 (ν,μ), ∀ν ∈P(X ).

Since, the metric is bounded, the function Fa is bounded from below and so according to Proposition 2.3 and Theo-
rem 2.2, it reaches its infimum at some point ν whose density ρ with respect to μ satisfies the following equality

a logρ = ψ + C,
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where ψ is a Kantorovich potential between ν and μ and C some constant. Taking the local slope and reasoning as in
the proof of Theorem 3.1, one concludes that

4W 2
2 (ν,μ) = a2I (ν|μ).

By assumption, I (ν|μ) ≥ 1
D

W 2
2 (ν|μ). Since a2

D
> 4, one concludes that ν = μ. It follows that Fa(ν) ≥ Fa(μ) = 0 for

all ν and so μ satisfies T2(a). Letting a → 2
√

D completes the proof. �

3.4. Comparison between optimal constants

For a given probability measure μ on (X , d), we denote by CLSI(μ) ∈ [0,∞], CT2(μ) and CW2I (μ) the best constants
(i.e. the smallest) in the logarithmic Sobolev, in Talagrand and in the W2I inequalities for μ. Otto–Villani theorem
can be simply restated as the inequality

CT2(μ) ≤ 4CLSI(μ).

Combining LSI and T2, one easily sees that

CW2I (μ) ≤ 4C2
LSI(μ),

and according to Proposition 3.1,

CT2(μ) ≤ 2
√

CW2I (μ).

Therefore, one has the inequalities

CT2(μ) ≤ 2
√

CW2I (μ) ≤ 4CLSI(μ).

Now let us assume that X = R
d equipped with its usual Euclidean norm and that μ is absolutely continuous with

respect to Lebesgue measure with a density denoted by h : Rd → [0,∞). We also assume, for simplicity, that μ is

compactly supported. Let us also denote by Va , the class of functions V : Rd → R∪{+∞} such that x �→ V (x)+ |x|2
a

is convex. Consider again the functional

Fa(ν) = aH(ν|μ) − W 2
2 (ν,μ), ν ∈ Pμ(X ),

used in Proposition 3.1. According to Proposition 2.3 (which applies since the support of μ is compact), for all a > 0,
Argmin(Fa) �= ∅. Moreover, according to Theorem 2.2 and Corollary 2.1, if ν ∈ Argmin(Fa), then it is of the form
ν(dx) = e−V (x)μ(dx) for some function V ∈ Va (note that in this case λ = a does not depend on ν) satisfying the
equation

h

(
x + a

2
∇V (x)

)
det

(
Id + a

2
∇2

xV (x)

)
= e−V (x)h(x), (3.6)

for μ-almost every x ∈ dom(V ) = {x ∈ R
d : V (x) < ∞}. Observe that V = 0 (corresponding to ν = μ) is always

solution of (3.6). Let us set

A(μ) = inf

{
a ≥ 0 : V = 0 is the only V ∈ Va s.t.

∫
e−V (x) dμ = 1 and (3.6) holds μ a.s.

}
.

Clearly,

CT2(μ) ≤ A(μ).

Moreover, the proof of Proposition 3.1 actually shows that

A(μ) ≤ 2
√

CW2I (μ).
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Finally, according to [43], if in addition μ is assumed to be log-concave, then

1

4
CLSI(μ) ≤ CT2(μ).

Summarizing the discussion, we get the following result.

Proposition 3.2. Let μ be a compactly supported probability measure on R
d absolutely continuous with respect to

Lebesgue measure. Then,

CT2(μ) ≤ A(μ) ≤ 2
√

CW2I (μ) ≤ 4CLSI(μ).

If in addition, μ is log-concave, then

1

4
CLSI(μ) ≤ CT2(μ) ≤ A(μ) ≤ 2

√
CW2I (μ) ≤ 4CLSI(μ).

Note that the assumption that the support of μ is compact can be removed (using Theorem 2.1 instead of Proposi-
tion 2.3 in the proof of Proposition 3.1 and in the discussion above). Details are left to the reader.

The interesting conclusion of the result above is that at least in the log-concave case the constant A(μ) is equal up to
universal factors to the best constants in the Talagrand and in the logarithmic Sobolev inequalities. These constants can
thus be interpreted in terms of a uniqueness property of a certain Monge–Ampère equation. An interesting question,
that will perhaps be discussed elsewhere, would be to try to estimate directly A(μ) in this framework.

4. Attainment of the minimum under a weak integrability condition

In this section, we study the existence of a minimizer of the specific functional Fa given by

Fa(ν) = aH(ν|μ) − Tc(ν,μ), ∀ν ∈ Pμ(X ), (4.1)

(corresponding to α(x) = β(x) = x) where c : X 2 → [0,∞) is a power type cost function (as defined in Lemma 2.1)
satisfying the concentration of measure inequality (2.6) for some a′ > 0 and ro ≥ 0 that we restate for the reader’s
convenience: for all A ⊂X such that μ(A) ≥ 1/2, it holds

μ(Ar) ≥ 1 − e−(r−ro)
po /a′

, ∀r ≥ ro, (4.2)

where po is the exponent of c defined in Lemma 2.1, Ar = {x ∈ X : ∃y ∈ A, d̃(x, y) ≤ r} and d̃(x, y) = c1/po(x, y),
x, y ∈ X .

Our goal is to prove Theorem 2.1. Our strategy will be based on truncating the cost function, by considering for all
positive integer n,

Tc,n(ν1, ν2) = inf
π

∫ ∫
cn(x, y)π(dx dy), ν1, ν2 ∈ P(X ),

where the infimum runs over all couplings between ν1 and ν2 and

cn(x, y) = c(x, y) ∧ n, x, y ∈ X .

Then, introducing (for a > a′)

Fa,n(ν) = aH(ν|μ) − Tc,n(ν,μ), ν ∈Pμ(X ),

we obtain from Proposition 2.3 that Fa,n reaches its minimum at some point νn. The rest of the proof consists in
showing that νn admits a subsequence converging to some minimizer of Fa . Let us begin with a simple lemma
gathering some properties of the νn.
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Lemma 4.1. Under the assumptions of Theorem 2.1, let a > a′.

(1) The sequence (Fa,n(νn))n≥1 converges to m := infν∈Pμ(Rd ) Fa(ν). Moreover, the sequence (νn)n≥1 is precompact
for the weak topology.

(2) For all n ≥ 1, there exists a couple of continuous functions (ψn,ϕn) which are cn-conjugate in the sense that
ψn(x) = infy∈X {−ϕn(y) + cn(x, y)}, x ∈ X and ϕn(x) = infx∈X {−ψn(x) + cn(x, y)}, y ∈ X , such that

dνn

dμ
(x) = exp

(
1

a
ψn(x)

)

and

Fa,n(νn) = −
∫

ϕndμ − a log

(∫
e

1
a
ψn dμ

)
.

(3) If there exists two bounded sequences of points (xn)n≥1 and (yn)n≥1 in X such that for all n ≥ 1

ϕn(z) ≤ ϕn(yn) + cn(xn, z) − cn(xn, yn), ∀z ∈ X , (4.3)

then (νn)n≥1 admits a subsequence converging to a minimizer of Fa .

Proof. (1) First let us show that

Tc,n(ν,μ) → Tc(ν,μ), as n → ∞. (4.4)

By definition Tc,n(ν,μ) ≤ Tc(ν,μ), which shows that lim supn→∞ Tc,n(ν,μ) ≤ Tc(ν,μ). On the other hand, gener-
alizing the argument yielding to (3.2) in the proof of Theorem 3.1, one gets lim infn→∞ Tc,n(ν,μ) ≥ Tc(ν,μ), which
gives the desired convergence (4.4). Now, for all ν ∈Pμ(X ),

m ≤ Fa(νn) ≤ Fa,n(νn) ≤ Fa,n(ν).

Therefore, letting n → ∞ and using (4.4), one gets

m ≤ lim inf
n→∞ Fa,n(νn) ≤ lim sup

n→∞
Fa,n(νn) ≤ lim

n→∞Fa,n(ν) = Fa(ν).

Optimizing over ν ∈Pμ(X ) completes the proof of the first claim. Now since Fa ≤ Fa,n and Fa,n(νn) is bounded one
sees that there exists some r > 0, such that νn ∈ {Fa ≤ r} for all n ≥ 1. According to Proposition 2.2, the set {Fa ≤ r}
is therefore precompact for the weak topology. This implies that the sequence (νn)n≥1 is itself precompact.

(2) According to Theorem 2.2, there exists a Kantorovich potential ψn for the transport of νn on μ (for the cost
Tc,n) such that the density of νn satisfies

dνn

dμ
= 1

Zn

exp

(
1

a
ψn

)
,

with Zn = ∫
e

1
a
ψn dμ. Letting ϕn(y) = infx∈X {−ψn(x)+ cn(x, y)}, it holds ψn(x) = infy∈X {−ϕn(y)+ cn(x, y)}. By

definition of Kantorovich potentials, it further holds that

Tc,n(νn,μ) =
∫

ψn dνn +
∫

ϕn dμ.

On the other hand,

aH(νn|μ) =
∫

ψn dνn − a log

(∫
e

1
a
ψn dμ

)
.



1740 J. Fontbona, N. Gozlan and J.-F. Jabir

Thus,

Fa,n(νn) = −
∫

ϕn dμ − a log

(∫
e

1
a
ψn dμ

)
. (4.5)

(3) Let ε > 0 and xo ∈ X be an arbitrary point. Using (4.5) at the second line, the inequality ψn(x) ≤ −ϕn(yn) +
c(x, yn) at the third and (4.3) at the last line, one gets

∫
eεc(x,xo)νn(dx) =

∫
eεc(x,xo)+ 1

a
ψn(x)μ(dx)e− log(

∫
e

ψn
a dμ)

=
∫

eεc(x,xo)+ 1
a
ψn(x)μ(dx) exp

(
1

a
Fa,n(νn) + 1

a

∫
ϕn dμ

)

≤
∫

eεc(x,xo)+ 1
a
cn(x,yn)μ(dx) exp

(
1

a
Fa,n(νn) + 1

a

∫
ϕn(z) − ϕn(yn)μ(dz)

)

≤
∫

eεc(x,xo)+ 1
a
c(x,yn)μ(dx) exp

(
1

a
Fa,n(νn) + 1

a

∫
cn(xn, z) − cn(xn, yn)μ(dz)

)
.

Let us check that the last expression above is bounded uniformly in n, if ε is chosen small enough. Indeed, according
to Lemma 2.1, c = d̃po for some metric d̃ and po ≥ 1. Thus, using the triangle inequality for d̃ and the convexity of
t �→ tpo , we have for all t ∈ (0,1)

c(x, yn) = d̃po(x, yn)

≤ (
d̃(x, xo) + d̃(xo, yn)

)po

=
(

(1 − t)
d̃(x, xo)

1 − t
+ t

d̃(xo, yn)

t

)po

≤ d̃po(x, xo)

(1 − t)po−1
+ d̃po(xo, yn)

tpo−1
.

According to Item (2) of Lemma 2.2, the concentration inequality (4.2) implies that∫
eδc(x,xo)μ(dx) < ∞,

for all δ < 1/a′. Thus, if ε and t are chosen so that ε + 1
a(1−t)po−1 < 1/a′, we have

sup
n≥1

∫
eεc(x,xo)+ 1

a
c(x,yn)μ(dx) < +∞.

Similarly,
∫

cn(xn, z)μ(dz) ≤ ∫
c(xn, z)μ(dz) ≤ 2po−1

∫
c(xo, z)μ(dz) + 2po−1c(xn, xo). Since xn, yn are bounded,

Fa,n(νn) converges and cn ≥ 0, we conclude that

sup
n≥1

exp

(
1

a
Fa,n(νn) + 1

a

∫
cn(xn, z) − cn(xn, yn)μ(dz)

)
< +∞.

In conclusion, if ε is small enough, one has

sup
n≥1

∫
eεc(x,xo)νn(dx) < +∞. (4.6)
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According to Item (1), the sequence νn is precompact, and so it admits a subsequence (also denoted by νn for sim-
plicity) converging weakly to some ν ∈ P(X ). Moreover, it is easy to see from (4.6) that

lim
k→∞ sup

n≥1

∫
c(x, xo)1c(x,xo)≥kνn(dx) = 0.

By [48, Theorem 6.9], the convergence

W̃po(νn, ν) → 0, as n → ∞.

also holds true for W̃po the Wasserstein distance associated with the metric d̃ . Therefore, it also holds

Tc(νn,μ) = W
po
po

(νn,μ) → W
po
po

(ν,μ) = Tc(ν,μ),

as n → ∞. Together with the lower semicontinuity of H(·|μ), this immediately implies that

Fa(ν) ≤ lim inf
n→∞ Fa(νn).

Since Fa(νn) ≤ Fa,n(νn) and, according to Item (1), Fa,n(νn) → m = infν∈Pμ(X ) Fa(ν), as n → ∞, we conclude that
Fa(ν) ≤ m, and so Fa(ν) = m, which completes the proof. �

Remark 4.1. The reader familiar with the notion of �-convergence will have noticed that some steps in the preceding
proof could be derived from general principles available for instance in the classical text book [12]. Let us emphasize
some simplifications that can be performed using tools from [12]. First of all, as shown in Point (1), the sequence of
functions Fa,n converges pointwise to Fa . Since this sequence is non-increasing, it follows from [12, Proposition 5.7]
that Fa,n converges to sc−(Fa) in the sense of �-convergence. Here, by sc−(Fa), we denote the lower semicontinuous
envelop of Fa , that is to say the greatest lower semicontinuous function below Fa (see e.g. [12, Chapter 3]). On the
other hand, as shown again in Point (1), the sequence νn is precompact. Therefore, it follows from [12, Theorem 7.4],
that the function sc−(Fa) attains its minimum (which also follows from the fact that, as shows Proposition 2.2, Fa has
precompact sublevel sets – is coercive in the terminology of [12] – and from [12, Point (b) of Theorem 3.8]) and

Fa,n(νn) → min sc−(Fa).

Now, according to [12, Point (c) of Theorem 3.8], min sc−(Fa) = infFa . According to [12, Corollary 7.20], it also
follows that if ν is any cluster point of νn, then ν is a minimizer of sc−(Fa). Therefore, it holds infFa = sc−Fa(ν) ≤
Fa(ν). So if one can show that νn admits a cluster point ν which satisfies sc−(Fa)(ν) = Fa(ν), then ν will be a
minimizer of Fa . This is what we prove in Point (3) of Lemma 4.1 and in the rest of the proof of Theorem 2.1 below.

Now, the question is to prove the existence of bounded sequences xn, yn as in Item (3) of Lemma 4.1. We begin
by stating a classical lemma showing that the weak convergence of a sequence of probability measures implies the
convergence of their supports in the sense of Kuratowski.

Lemma 4.2. Let (γn)n≥1 be a sequence of probability measures defined on some Polish space (E,d) converging
weakly to some probability measure γ . Then for all point z in the support of γ , there exists a sequence (zn)n≥1 such
that for all n ≥ 1 zn belongs to the support of γn and zn converges to z as n tends to ∞.

This result is proved in e.g. [1, Proposition 5.1.8].
Now we are ready to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Here we use the notations introduced in Lemma 4.1. Let (νn)n≥1 be a sequence of minimizers
of Fa,n, for some a > a′. According to Item (1) of Lemma 4.1, the sequence (νn)n≥1 is precompact for the weak
topology. Therefore, one can assume without loss of generality that νn converges to some ν ∈ Pμ(X ). For all n ≥ 1,
let πn be an optimal coupling between νn and μ for the cost Tc,n. Since the marginals of πn are converging, a classical
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argument shows that πn is a tight sequence (see e.g. [48, Theorem 4.4]), and so according to Prokhorov Theorem, it
admits at least one converging subsequence, still denoted by πn in the sequel. Take an arbitrary point z̄ = (x̄, ȳ) in the
support of π ; according to Lemma 4.2 above, there exists a sequence of points zn = (xn, yn) such that zn belongs to
the support of πn and zn → z as n → ∞. For all n ≥ 1, since πn and ψn,ϕn are optimal, it holds∫

cn(x, y) − (
ψn(x) + ϕn(y)

)
πn(dx dy) = 0.

By definition, ψn(x) = infy∈X {−ϕn(y)+ d̃(x, y)po ∧n}, x ∈ X , where d̃ and po have been introduced in Lemma 2.1.
It is not difficult to check that for any y ∈ X , the function x �→ d̃(x, y)po ∧ n is pon

(po−1)/po -Lipschitz with respect
to d̃ . As an infimum of Lipschitz functions, ψn is also pon

(po−1)/po -Lipschitz with respect to d̃ , from which one
deduces easily that ψn is continuous on X . The same argument applies to ϕn, so the integrand in the integral above
is continuous and non-negative, and thus ψn(x) + ϕn(y) = cn(x, y) for all (x, y) belonging to the support of πn. In
particular, ψn(xn) + ϕn(yn) = cn(xn, yn) and since ψn(xn) = infz∈X {−ϕn(z) + cn(x, z)} one concludes that

ϕn(z) ≤ ϕn(yn) + cn(xn, z) − cn(xn, yn),

for all z ∈ X . Using Item (3) of Lemma 4.1, one concludes that Fa admits a minimizer. �

5. Links with the characterization of moment measures

As mentioned in the Introduction, Equation (1.7) and the minimization problem of the functional Fa given in (4.1)
in the case c = d2 feature close connections with the recent work [11] by Cordero-Erausquin and Klartag on the
characterization of moment measures. Let us recall that a Borel measure μ on R

d is said to be a moment measure
for a (convex) function φ : Rd → R ∪ {+∞} such that 0 <

∫
e−φ dx < +∞ if ∇φ pushes forward the measure

νφ(dx) = e−φ(x)∫
e−φ(x) dx

dx towards μ; or equivalently ∇φ#νφ = μ. This notion of moment measures finds applications

in differential geometry, partial differential equations (in particular Monge–Ampère equation) and the study of log-
concave measures (we refer the interested reader to [11] and references therein for more details).

In [11], the authors obtain a new characterization of moment measures, showing that any Borel measure μ with
positive finite total mass on R

d , such that its support has dimension d and with 0 as barycenter can be represented as a
moment measure for some (unique up to translations) essentially continuous convex function φ. This characterization
was obtained though the study of the well posedness of maximizers of the functional

Iμ(φ) = log

(∫
e−φ∗

dx

)
−

∫
φ dμ

on the space of (proper) convex functions φ such that 0 <
∫

e−φ∗(x) dx < +∞, where

φ∗(x) = sup
x∈Rd

{
x · y − φ(y)

}
, x ∈R

d

is the Legendre–Fenchel transform of φ. Under the assumptions on μ recalled above, the authors show that the
maximum value of Iμ is attained on a μ-integrable convex function φ (unique up to translations) such that μ = ∇φ#νφ .
The arguments for existence, uniqueness and characterization of the maximizer of Iμ rely mostly on convex analysis
and functional inequalities.

More recently, Santambrogio [44] provides a dual counter-part of the results obtained in [11], considering the
minimization, over the space P1(R

d) (of probability measures admitting a finite first moment), of

Jμ(ν) = H(ν|Leb) + sup
π∈�(μ,ν)

∫
x · yπ(dx dy),

where H(ν|Leb) is minus the Shannon entropy of ν:

H(ν|Leb) =
{∫

log( dν
dx

)ν(dx) whenever the density dν
dx

exists,
+∞ otherwise.
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The minimization problem related to Iμ is dual to the optimization problem in [11] in the sense that, as shown in
Section 6 of [44],

sup
φ

Iμ(φ) = − inf
ν∈P1(R

d )
Jμ(ν). (5.1)

Assuming that μ still satisfies the hypotheses of [11], existence and uniqueness of a minimizer ν in P1(R
d) of Jμ rely

on optimal transport theory and coupling techniques and, using the sub-differential calculus on P(Rd) (in a similar
way as we did in Theorem 2.2), ν is characterized by the property that

log

(
dν

dx

)
= −φ,

where φ is a convex function whose gradient is the T2-optimal map pushing forward ν to μ. This provides an alterna-
tive (and in some sense more direct) characterization of μ as a moment measure. Note that the sub-differential calculus
mentioned above is understood in its usual sense, and is not in the Wasserstein sense of Ambrosio–Gigli–Savaré [1,2]
(see also [45]).

The minimization problem of Fa given by (4.1) with c(x, y) = 1
2 |x − y|2 and a = 1 can be related to the minimiza-

tion problem of Jμ since, if μ ∈P2,

Fa(ν) = Jμ(ν) −
∫

log

(
dμ

dγ

)
(x)ν(dx) −

∫ |x|2
2

μ(dx), (5.2)

where γ denotes a centered Gaussian distribution on R
d with covariance matrix Id. In particular, both problems

coincide in the case μ = γ .
In the same spirit as (5.1), we can give a dual formulation of our minimization problems:

Proposition 5.1. Let μ be a probability measure on X and consider the functional Fa(ν) = aH(ν|μ) − Tc(ν,μ),
ν ∈ Pμ(X ), where c : X 2 → R

+ is some continuous cost function such that
∫∫

eδc(x,y)μ(dx)μ(dy) < ∞ for some
δ ≥ 1/a. Then,

inf
ν∈Pμ(X )

Fa(ν) = inf
(ψ,ϕ)∈F

{
−

∫
ϕ dμ − a log

∫
eψ/a dμ

}
,

where F denotes the set of couples of bounded continuous functions (ψ,ϕ) such that ψ(x) + ϕ(y) ≤ c(x, y), for all
x, y ∈X .

This result is essentially a rewriting of Bobkov–Götze dual formulation of transport-entropy inequalities [6] (see
[24, Section 3] for general statements).

Proof of Proposition 5.1. According to Kantorovich’s duality, it holds

Tc(ν,μ) = sup
(ψ,ϕ)∈F

{∫
ψ(x)ν(dx) +

∫
ϕ(y)μ(dy)

}
,

so that

inf
ν∈Pμ(X )

Fa(ν) = inf
ν∈Pμ(X )

inf
(ψ,ϕ)∈F

{
aH(ν|μ) −

∫
ψ dν −

∫
ϕ dμ

}

= inf
(ψ,ϕ)∈F

{
−

∫
ϕ dμ + inf

ν∈Pμ(X )

{
aH(ν|μ) −

∫
ψ dμ

}}
.
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According to a well known duality formula for the relative entropy,

sup
ν∈Pμ(X )

{∫
f dν − H(ν|μ)

}
= log

∫
ef dμ.

Therefore,

inf
ν∈Pμ(X )

Fa(ν) = inf
(ψ,ϕ)∈F

{
−

∫
ϕ dμ − a log

∫
eψ/a dμ

}
.

�

In particular, if c(x, y) = 1
2 |x − y|2, x, y ∈R

d , then (ψ,ϕ) ∈ F if and only if f (x) = −ψ(x) + |x|2/2 and g(y) =
−ϕ(y) + |y|2/2 satisfy f (x) + g(y) ≥ x · y, for all x, y ∈R

d . From this it is not difficult to see that

inf
ν∈Pμ(X )

F (ν) = − sup
φ

{
a log

(∫
e−φ/ae

|x|2
2a dμ

)
−

∫
φ∗μ(dx)

}
−

∫ |x|2
2

μ(dx),

where the supremum applies over all convex L1(μ)-function and where φ∗ is the Legendre–Fenchel transform of φ.
Details are left to the reader.

Hence, at first sight, the minimization of the functional (4.1) might be considered using the general techniques used
in [44] or [11]. Yet, to obtain existence of a minimizer, a direct adaption of the proofs in those works would require
stronger assumptions on μ than ours, in order to ensure that the minimum of Fa is attained (for instance, the uniform
integrability of the second moments of the sequence of minimizers of Fa used in [44] would require μ to have some
exponential moments of order strictly larger that 2). Therefore, the truncation technique used to construct a minimizer
to (4.1) provides an approach alternative to [11] and [44], which furthermore can be extended to more general settings.
This will be the subject of future works.

Let us close this section with a remark on the problem of uniqueness of a minimizer of (4.1) and another distinction
between our problem and the problem in [44] and [11]. Uniqueness of a minimizer to infJμ follows directly from the
(strict) displacement convexity of Jμ with respect to W2-geodesics (see e.g. [1] and [48]), while the uniqueness of a
maximizer to sup Iμ is obtained from Prékopa’s inequality (these two ‘convexity’ properties being dual of each other).
In our setting, using similar ingredients, one can easily prove that the functional Fa associated to a quadratic cost is
strictly geodesically convex, when the reference probability measure μ is uniformly log-concave. More precisely one
has the following.

Proposition 5.2. Suppose that μ(dx) = e−V (x) dx with V : Rd → R a function of class C2 such that HessV ≥ KId,
for some K > 0. Then for all a > 2/K , the functional Fa of (4.1) with c(x, y) = |x − y|2, x, y ∈ R

d is strictly
geodesically convex.

Proof. According to [1, Theorem 7.3.2], if ν0, ν1 ∈ P2(R
d) (the space of probability measures having finite second

moments), it holds, for all t ∈ [0,1]
W 2

2 (νt ,μ) ≥ (1 − t)W 2
2 (ν0,μ) + tW 2

2 (ν1,μ) − t (1 − t)W 2
2 (ν0, ν1),

for all constant speed geodesic (νt )t∈[0,1] (for the W2 metric) joining ν0 to ν1. On the other hand, according to e.g.
[48, Theorem 17.15], the relative entropy functional satisfies, for all ν0, ν1 ∈Pμ(Rd), and all constant speed geodesic
νt joining ν0 to ν1,

H(νt |μ) ≤ (1 − t)H(ν0|μ) + tH(ν1|μ) − K

2
t (1 − t)W 2

2 (ν0, ν1). (5.3)

So it follows immediately, that for a > 2/K , Fa satisfies

Fa(νt ) < (1 − t)Fa(ν0) + tFa(ν1), ∀ν0 �= ν1 ∈ Pμ

(
R

d
)
,∀t ∈ (0,1),

which completes the proof. �
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Of course, strict convexity ensures uniqueness of the minimizer. But the assumption of uniform convexity of the
potential V is too strong to be really interesting for our purpose. Indeed under this assumption, (5.3) immediately
implies that μ satisfies T2(2/K). Let us recall this well known argument. Taking ν0 = μ and using that H(νt |μ) ≥ 0,
one immediately gets from (5.3) that tH(ν1|μ) − K

2 t (1 − t)W 2
2 (ν1,μ) ≥ 0. Dividing by t and then letting t → 1

proves the claim. Nevertheless, studying the uniqueness of a minimizer to Fa is an interesting question which needs
to be handled by suitable techniques and which will be deepened in future works.
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