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REINFORCEMENT LEARNING FROM COMPARISONS: THREE
ALTERNATIVES ARE ENOUGH, TWO ARE NOT

BY BENOÎT LASLIER1 AND JEAN-FRANÇOIS LASLIER

Université Paris Diderot and CNRS, Paris School of Economics

This paper deals with two generalizations of the Polya urn model where,
instead of sampling one ball from the urn at each time, we sample two or
three balls. The processes are defined on the basis of the problem of find-
ing the best alternative using pairwise comparisons which are not necessarily
transitive: they can be thought of as evolutionary processes that tend to re-
inforce currently efficient alternatives. The two processes exhibit different
behaviors: with three balls sampled, we prove almost sure convergence to-
wards the unique optimal solution of the comparisons problem while, in some
cases, the process with two balls sampled has almost surely no limit. This is
an example of a natural reinforcement model with no exchangeability whose
asymptotic behavior can be precisely characterized.

1. Introduction. In a pairwise comparison problem, one is given a set of al-
ternatives, with data about how they compare to each other. In its purest form, on
which we focus in the present paper, we simply have, for any pair of distinct alter-
natives, the information of which one “beats” the other. Such a data set is called a
tournament. Basic results on this structure can be found in Moon [19].

If a chess player beats all the other players, he or she is clearly the best. If a can-
didate cannot be defeated under majority rule by any challenger, that “Condorcet”
candidate can claim to be the best according to majority rule. However, if no al-
ternative beats all the others, it is not clear how to define the best alternatives. The
problem of choosing from pairwise comparisons has thus attracted the attention of
scholars in various fields, most often from the axiomatic, normative, point of view
(David [6]; Fishburn [7]; Rubinstein [26]; Laslier [14]; Brandt et al. [1]).

In the present paper, we tackle the same problem from an evolutionary perspec-
tive instead of an axiomatic one. We study the two following processes, both of
which consist in playing the tournament among few random alternatives and re-
inforcing the winner. Consider an urn of infinite capacity, where balls have colors
corresponding to the alternatives.

Two-alternative reinforcement. Sample two balls from the urn. If they have dif-
ferent colors, one “beats” the other; then add an extra ball of the winning color. If
they have the same color, add an extra ball of this color.
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Three-alternative reinforcement. Sample three balls from the urn. If the three
balls have different colors that form a rock-paper-scissor like cycle, reinforce one
of these colors at random. Otherwise, reinforce the winning color.

We obtain two very different asymptotic behaviors for these two processes.

(i) In three-alternative reinforcement, the process is able to discover the op-
timal solution of the tournament, that is, the unique probability distribution p∗
which is, in expectation, defeated by no alternative. With probability one, the com-
position of the sampling urn, which defines the probability pτ of choosing the
various alternatives at time τ , tends to p∗ when τ tends to infinity.

(ii) In two-alternative reinforcement, the process is not able to discover the
optimal solution, unless the solution is degenerated, with one alternative defeating
all the others. With probability one, the composition of the sampling urn, which
gives the probability pτ of choosing the alternatives, concentrates on the support
of the optimal solution p∗. This means that all the alternatives which are played
with zero probability in the optimal solution are chosen with a probability going
to 0. However, the composition of the urn may have no limit, staying away from
the optimal solution. In some cases, we even prove that with probability one it has
no limit.

Notice that the problem of finding the optimal solution of a tournament game
is not difficult from the computational point of view. It can be done in polynomial
time with respect to its size (Brandt and Fisher [2]). We are not here interested in
computation but in decentralized learning through evolutionary processes.

The negative result (ii) seems original in the context of random urn models.
It echoes known results about the evolutionary instability of mixed equilibria in
evolutionary game theory, for instance cycling with probability one is proven by
Posch [24] in a reinforcement urn model for 2 × 2 games.

The positive result (i) seems more expected of an urn model. However, in the
context of evolutionary game theory, one typically does not have almost sure con-
vergence toward the optimal solution of a zero-sum game. For example in a study
of imitation processes in Matching Pennies games, Hofbauer and Schlag [12] ob-
serve that there is always cycling even though players end up closer to the equilib-
rium if they sample several individuals before imitating.

The techniques we use to derive these results are standard in the field of adaptive
processes with reinforcement (see Pemantle [23]). They belong to the family of
martingales techniques. The main ingredient of the proof is the definition of a well-
chosen function of the process whose values form a martingale [see equation (11)].
We use the convergence theorem for positive martingales to obtain some global
asymptotic information about the process. In the case of three alternatives, we get
fairly directly the convergence of the process while, for the case of two alternatives,
the convergence theorem has to be complemented with a variance analysis to prove
the nonconvergence. One should note that the processes are not exchangeable, so
that other standard techniques do not apply.
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The paper is organized as follows. Section 2 introduces the necessary notation
about tournaments (2.1), the Markov chain induced by the play of small-size tour-
naments at each date (2.2), the tournament game which allows to define and to
prove existence of the optimal solution (2.3), and some further preliminary mate-
rial (2.4, 2.5). Section 3 starts by the definition of urns and of the adaptive pro-
cesses (3.1). Then, in order to illustrate the argument in a simple way, a toy ex-
ample is introduced and treated according to its deterministic approximation (3.2).
The statement and proof of our main result on Three-alternative reinforcement is
found in (3.3) and Two-alternative reinforcement is treated in (3.4), before a short
conclusion (3.5).

2. Framework.

2.1. Tournaments. Let X be a finite set. A tournament T on X is a complete
and antisymmetric binary relation. For any x and y in X, one and only one of the
three possibilities occurs: x = y, xTy, or yT x. When xTy we often say that x

beats y. Define the sets

(1) T +(x) = {y ∈ X : xTy}, T −(x) = {y ∈ X : yT x}.
The binary relation T is fixed throughout this paper. It is sometimes easier to use
the notation

max{x, y} =
{
x, if xTy or x = y,

y, if yT x.

An alternative which beats all other alternatives is called a Condorcet winner.
A tournament can have a Condorcet winner or not, but cannot have two. The Top-
Cycle of the tournament T is the smallest (by inclusion) nonempty set Y ⊆ X such
that

∀x ∈ X \ Y, ∀y ∈ Y, yT x.

It is easily seen that such a set is unique and reduces to a singleton {c} if and only
if c is a Condorcet winner.2

2.2. A Markov chain. Let �(X) be the set of probability distributions on X

and let p ∈ �(X). The support of p is denoted by Supp(p). Given p, define a se-
quence (p[t])t∈N of probability distributions on X derived from p in the following
way:

p[0] = p,(2)

p[t+1](x) = p[t](x) · p(
T +(x) ∪ {x}) + p[t](T +(x)

) · p(x),(3)

for any t ≥ 0, for any x ∈ X.

2The literature on tournaments and formal political science has shown that the Top-Cycle is usually
a very large set (McKelvey [18]), and has proposed many refinements of this set (see [14] for a
survey).
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The interpretation is that p[t] is the distribution of a random variable ξ(t) ∈ X

such that ξ(0) is chosen at random according to p and then, given that ξ(t) = x,
ξ(t + 1) is the winner (according to T ) of the comparison between x and some
alternative y randomly chosen in X according to p. Therefore, ξ(t + 1) = x either
because ξ(t) was already equal to x and y was chosen in T +(x) ∪ {x} (first term
in the above formula), or because ξ(t) was in T +(x) and x was chosen according
to p (second term). We call p the “sampling” probability.

An equivalent description is a random walk on the graph with vertex set X and
that has an oriented edge from x to y whenever yT x or x = y. The edge from x

to y is given a weight p(y) and the process is then the usual random walk on a
directed weighted graph.

This process is usually considered with p uniform on X (Daniels [5], Ushakov
[29], Levchenkov [17], Slutzky and Volij [28], Chebotarev and Shamis [3, 4]).
We need the general version because, later in this paper, p will be endogenous.
Given p, the stationary distribution for this finite Markov chain exists and is
unique;3 we denote it by p[∞]. It is characterized by the fact that Supp(p[∞]) ⊆
Supp(p) and, for any x in Supp(p),

(4) p[∞](T +(x)
) · p(x) = p[∞](x) · p(

T −(x)
)
.

Notice that the inclusion Supp(p[∞]) ⊆ Supp(p) may be strict; indeed, p[∞](x) =
0 when p(T +(x)) = 0, that is when x beats no alternative in the support of p. More
exactly, Supp(p[∞]) is the Top-Cycle of the restriction of T to Supp(p): by con-
struction any state in the set is accessible from any other state. Thus, Supp(p[∞])
does not exactly really depends on p but only on Supp(p). If p has full support,
for instance in the usual case where p is uniform, Supp(p[∞]) = T C(T ).

2.3. The tournament game. The tournament game is the two-player, symmet-
ric, zero-sum game defined by the strategy set X and the payoff function g(x, y) =
+1 if xTy, g(x, y) = 0 if x = y, and g(x, y) = −1 if yT x. For p,q ∈ �(X) two
probability distributions on X, write

(5) g(p, q) = ∑
x,y∈X

g(x, y)p(x)q(y),

and for a Dirac distribution δx write g(x, q) for g(δx, q). From the definition, g is
clearly antisymmetric: g(q,p) = −g(p, q).

Remarkably, such a game has a unique equilibrium; Fisher and Ryan [10] prove
this using linear algebra and Laffond et al. [13] have a direct proof using a parity
argument.4 Here is the precise result that will be needed in the sequel.

3We state the results in this section without proofs. They are easily derived from elementary theory
of finite Markov chains and have already been noticed for p uniform in the mentioned references.

4The tournament game has been studied by graph theorists (Fisher and Ryan [8, 10, 11]) and
has more recently attracted attention of computer scientists (Rivest and Chen [25]). As a model of
majority voting and two-party electoral competition, it studied in Social Choice theory and formal
Political Science (Moulin [20], Myerson [21, 22], Laslier [15, 16]).
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PROPOSITION 1. There exists a unique p∗ ∈ �(X) such that g(p∗, q) ≥ 0 for
all q ∈ �(X). This p∗, called the optimal strategy, is also characterized by the
following: for all x ∈ X,

p∗(x) > 0 ⇐⇒ g
(
x,p∗) = 0,

p∗(x) = 0 ⇐⇒ g
(
x,p∗)

< 0.

The intuition here is that, due to the symmetry of the game, the value of the
game is zero, thus at equilibrium no alternative can have a strictly positive pay-
off and any alternative with a strictly negative payoff will not be played. The
support of the optimal strategy is called the Bipartisan Set of the tournament:
Supp(p∗) = BP(T ). This set is a subset of the Top Cycle (an alternative outside the
Top Cycle has payoff −1 against any alternative inside) and the inclusion is often
strict. For instance, in totally random tournaments, the Top Cycle typically con-
tains all the alternatives and the Bipartisan Set contains only half of them (Fisher
and Reeves [9]).

2.4. Two formulas. Before we go further and explain the relation between the
game optimal strategy and stationary probabilities, it is useful to state two technical
formulas. The following lemma describes, in term of the payoff function g, the
probabilities p[1] and p[2], obtained after sampling two or three alternatives with
the Markov chain defined in Section 2.2.

LEMMA 2. For any x ∈ X,

p[1](x) = p(x) · (
1 + g(x,p)

)
,

p[2](x) = p(x) ·
(

1 + 3

2
g(x,p) + 1

2
g(x,p)2 + 1

2

∑
y∈X

p(y)g(x, y)g(y,p)

)
.

PROOF. First, let us notice a useful equality. By definitions (1) and (5),

(6) g(x,p) = p
(
T +(x)

) − p
(
T −(x)

)
,

and, since p(T +(x)) + p(T −(x)) + p(x) = 1, we get:

(7) 1 + g(x,p) = 2p
(
T +(x)

) + p(x).

One thus obtains

p[1](x) = p(x) · (
2p

(
T +(x)

) + p(x)
)

= p(x) · (
1 + g(x,p)

)
.
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For the second formula,

p[2](x) = p(x) · (
1 + g(x,p)

) ·
(
p(x) + ∑

y∈T +(x)

p(y)

)

+ p(x)
∑

y∈T +(x)

p(y)
(
1 + g(y,p)

)
= p(x)2[

1 + g(x,p)
] + p(x)

∑
y∈T +(x)

p(y)
[(

2 + g(x,p)
) + g(y,p)

]

= p(x) ·
((

p(x) + 2
∑

y∈T +(x)

p(y)

)
+ g(x,p)

(
1

2
p(x) + ∑

y∈T +(x)

p(y)

)

+ 1

2
p(x)g(x,p) + ∑

y∈T +(x)

p(y)g(y,p)

)
one easily concludes from equation (7). �

2.5. Relation between optimal strategies and stationary probabilities. We first
observe that the game optimal strategy p∗ satisfies a nice fixed-point property if
we take p[0] = p∗ as the sampling probability to build the Markov chain, and that
only an optimal strategy can be such a fixed point.

PROPOSITION 3. Let p∗ be the optimal strategy for the tournament game,
then (p∗)[1] = (p∗)[∞] = p∗. Conversely, let p be such that p[1] = p, then p is the
optimal strategy for the tournament game restricted to the support of p.

PROOF. By Lemma 2, p∗[1](x) = p∗(x)(1 + g(x,p∗)) and, by Proposition 1,
either p∗(x) = 0 or g(x,p∗) = 0.

Conversely, if p[1](x) = p(x) = p(x)(1 + g(x,p)) then g(x,p) = 0 as soon as
p(x) > 0 and p is the optimal strategy on its support. �

3. Learning. With the previous background material in mind, we turn to the
main result of this paper. Instead of considering re-sampling at each date according
to a constant probability distribution, as is done in the previously described Markov
chains, we describe learning processes where winning alternatives are reinforced
at the level of the sampling probability. These processes can be implemented with
random urns.

3.1. Choice by reinforcement. An urn on X is a list n of strictly positive inte-
gers n(x), x ∈ X. The integer n(x) is the “number of balls of color x in the urn n.”
The set of such urns on X is denoted by N , formally

N = N
X+.
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To each, n ∈ N is associated the probability distribution ñ on X defined by

ñ(x) = n(x)∑
y∈X n(y)

.

When we write that the alternative x is picked in the urn n, we mean that x is
picked in X according to the probability ñ.

A random urn sequence is a sequence Uτ , τ ∈N of random variables on N such
that Uτ+1 is defined conditionally on Uτ . Here are three examples:

1. Two-alternative reinforcement. Given a realization nτ ∈N of Uτ , an alternative
x is picked in X according to the probability distribution ñ[1]

τ , and one ball of
color x is added to the urn: nτ+1(x) = nτ (x) + 1 and for all y �= x, nτ+1(y) =
nτ (y). This means that two alternatives, say a and b are picked independently
in the urn nτ , and are compared according to T . The result of the comparison is
x = max{a, b}, that is, x = a if a = b or if aT b and x = b if bT a. Alternative
x is reinforced.

2. Three-alternative reinforcement. Same thing as above, with the probability dis-
tribution ñ[2]

τ . This means that three alternatives, say a, b and c are picked
independently in X according to nτ ; a, b and c are compared according to T

in sequence and one ball of color x = max{max{a, b}, c} is added to the urn.
Note that there are only two cases: ranked alternatives where we reinforce the
top one or a cycle where we reinforce at random. Therefore, this description is
equivalent to the one in the Introduction.

3. Fast reinforcement. Same thing as above, with the probability distribution ñ[∞]
τ ,

the stationary distribution for T when sampling is done according to ñτ .

Note that the first two examples can be concretely implemented easily, as de-
scribed, but fast reinforcement cannot.

3.2. Two motivating differential systems. This section presents two determin-
istic differential systems inspired by Two- and Three-alternative reinforcement in
the simplest tournament: “rock-paper-scissors”, that is, a cycle of three alterna-
tives. With this example we will see that Two-alternative reinforcement should not
converge to the optimal probability, even for a simple tournament, while Three-
alternative reinforcement should. The actual proofs in the next section will follow
the same overall structure with technical changes for the general tournament, the
discrete time and the probabilistic evolution, in particular the same logarithmic
function will be used.

Consider a cycle of three alternatives A, B and C with ATB, BTC, CTA, and con-
sider the following deterministic systems of differential equations (which should
mimic the large time behavior of the urn). We write a(t), b(t) and c(t) the “num-
bers” of balls of each type [which will be such that a(t) + b(t) + c(t) = t] and
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ã(t) = a(t)/t , b̃(t) = b(t)/t and c̃(t) = c(t)/t the corresponding probabilities.
For Two-alternative reinforcement, we get

da

dt
= ã2 + 2ãb̃,

db

dt
= b̃2 + 2b̃c̃,(8)

dc

dt
= c̃2 + 2c̃ã

and we note that

d

dt
(ln ã + ln b̃ + ln c̃) = d

dt
(−3 ln t + lna + lnb + ln c)

= −3

t
+ ã + 2b̃

t
+ b̃ + 2c̃

t
+ c̃ + 2ã

t

= 0

so (ã, b̃, c̃) cannot converge to the optimal probability independently of the state
at finite time.

For Three-alternative reinforcement,

da

dt
= ã3 + 3ã2b̃ + 3ãb̃2 + 2ãb̃c̃,

db

dt
= b̃3 + 3b̃2c̃ + 3b̃c̃2 + 2ãb̃c̃,(9)

dc

dt
= c̃3 + 3c̃2ã + 3c̃ã2 + 2ãb̃c̃

and for the same quantity

d

dt
(ln ã + ln b̃ + ln c̃) = −3

t
+ ã2 + 3ãb̃ + 3b̃2 + 2b̃c̃

t
+ · · ·

= ã2 + b̃2 + c̃2 − (ãb̃ + b̃c̃ + c̃ã)

t
.

Simple calculus shows that this last term is positive except for ã = b̃ = c̃ = 1/3.
Then ln ã + ln b̃ + ln c̃ is an increasing negative function, so it converges. It is not
difficult to see, using the divergence of

∫
1/t dt , that this implies that ã2 + b̃2 + c̃2 −

(ãb̃ + b̃c̃ + c̃ã) converges to 0, and then that (ã, b̃, c̃) converges to (1/3,1/3,1/3)

(the details of the arguments will be given in the rigorous proof of the next section).

3.3. Three-alternative reinforcement and martingale technique. We will now
prove the result about Three-alternative reinforcement.
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THEOREM 4. For any initial urn n0 ∈ N , the random urn sequence obtained
by Three-alternative reinforcement is such that the realization nτ , τ ∈ N almost
surely verifies

lim
τ→∞ ñτ = p∗.

The same proof will actually also give the first part of the result about Two-
alternative reinforcement, which we thus state now:

THEOREM 5. For any initial urn n0 ∈ N , the random urn sequence obtained
by Two-alternative reinforcement is such that the realization nτ , τ ∈ N almost
surely verifies

∀x ∈ X, p∗(x) = 0 ⇒ lim
τ→∞ ñτ (x) = 0.

The proof relies mainly on the study of a well-chosen function of the state of the
urn. For integers 0 < a < b, let LD[a, b] denotes the following discrete approxi-
mation of log(a

b
):

(10) LD[a, b] = −
b−1∑
i=a

1

i
.

Recall that at time τ ∈ N, nτ (w) denotes the number of w-balls in the urn. Let
A denote the number of balls in the initial urn n0. The total number of balls is
increasing by 1 at each time, so

∑
w nτ (w) = A + τ . The probability of drawing a

w-ball is ñτ (w) = nτ (w)/(A + τ). Consider the quantity

(11) μτ = ∑
w∈X

LD
[
nτ (w),A + τ

] · p∗(w),

that is the expected value, according to the optimal probability p∗, of the discrete
logarithm at time τ .

PROPOSITION 6. For both Two-alternative and Three-alternative reinforce-
ment, the sequence μτ , τ ∈N is a negative submartingale. More precisely we have,
for Two-alternative reinforcement,

E[μτ+1 − μτ | nτ ] = g(p∗, ñτ )

A + τ
,

and for Three-alternative reinforcement,

E[μτ+1 − μτ | nτ ]

= 1

A + τ

(
g
(
p∗, ñ

) + 1

2

∑
w∈X

g(w, ñ)2p∗(w)

+ 1

2

∑
v

ñ(v)g
(
p∗, v

)(
1 + g(v, ñ)

))
.
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PROOF. We will write p for ñτ and let i denote either 1 or 2. From τ to τ + 1,
one and only one ball is added. This ball has type w with probability p[i](w). Thus,

E[μτ+1 − μτ | nτ ]

= − ∑
w∈X

p[i](w)

( ∑
v �=w

1

A + τ
· p∗(v) +

[
1

A + τ
− 1

nτ (w)

]
· p∗(w)

)

= −1

A + τ
+ ∑

w∈X

p[i](w)
1

nτ (w)
p∗(w)

= −1

A + τ
+ ∑

w∈X

p[i](w)

p(w)

p∗(w)

A + τ
,

where, in the last line, we used the definition p(w) = nτ (w)/(A + τ). Using the
formula for p[i] of Lemma 2, it comes, for Two-alternative,

E[μτ+1 − μτ | nτ ]

= −1

A + τ
+ ∑

w∈X

(
1 + g(w,p)

)p∗(w)

A + τ

= g(p∗,p)

A + τ
,

which is always nonnegative, thanks to the definition of p∗. Furthermore,
g(p∗,p) = 0 implies, by the first part of Proposition 1, that Supp(p) ⊆ Supp(p∗).

For Three-alternative, we have

E[μτ+1 − μτ | nτ ]
= −1

A + τ
+ ∑

w∈X

(
1 + 3

2
g(w,p) + 1

2
g(w,p)2

+ 1

2

∑
v

p(v)g(w,v)g(v,p)

)
p∗(w)

A + τ
.

One can rearrange

(A + τ)E[μτ+1 − μτ | nτ ]
= 3

2
g
(
p∗,p

) + 1

2

∑
w∈X

g(w,p)2p∗(w) + 1

2

∑
v

p(v)g
(
p∗, v

)
g(v,p)

= g
(
p∗,p

) + 1

2

∑
w∈X

g(w,p)2p∗(w) + 1

2

∑
v

p(v)g
(
p∗, v

)(
1 + g(v,p)

)
,

and all the terms in this sum are nonnegative. The sum can be 0 only if both
Supp(p) ⊆ Supp(p∗), and g(w,p) = 0 for all w in the support of p∗, which im-
plies p = p∗ by the uniqueness in Proposition 1. �
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We are now able to prove the two results of the beginning of the section.

PROOF OF THEOREMS 4 AND 5. We consider for this proof either Two- or
Three-alternative reinforcement. We have

E[μτ ] = E[μ0] +E

[
τ∑

t=1

E[μt − μt−1

∣∣∣ μt−1]
]
.(12)

By Proposition 6, μτ is a negative submartingale, so it converges almost surely
to an integrable random variable μ∞ (see Corollary VII.4.1 and VII.4.2 in [27]).
Furthermore, the left-hand side is an increasing negative sequence so it converges
to a finite value. In the right-hand side, the sum is an increasing sequence of posi-
tive random variables so by the monotonous convergence theorem (Theorem II.6.1
in [27]) we can take the limit inside the expectation. Hence, E[∑∞

t=1 E[μt −μt−1 |
μt−1]] = limE[μτ ] − E[μ0] is finite and so

∑∞
t=1 E[μt − μt−1 | μt−1] is almost

surely finite.
Let f [1](p) = g(p∗,p) and f [2](p) = g(p,p∗) + ∑

w∈X g(w,p)2p∗(x). The
simplex �(X) is embedded in R

X so we use the L∞ distance on it. With this dis-
tance, f [i] is continuous and d(ñτ , ñτ+1) ≤ 1

A+τ
almost surely. Denote by B(p,η)

the ball of center p and radius η.
Now consider a single realization of the urn process. Since X is a finite set,

�(X) is compact, so let ñ∞ be an accumulation point for ñτ . Looking for a con-
tradiction, suppose f [i](ñ∞) > 0.

Since f [i] is continuous, let ε, η > 0 be such that ∀p ∈ B(ñ∞, η), f [i](p) > ε.
Let (φ(k))k≥0 be a subsequence such that ∀k, ñφ(k) ∈ B(ñ∞, η/2) and φ(k + 1) >

(1 + η)φ(k), we have
∞∑
t=0

E[μt+1 − μt | nt ] ≥
∞∑
t=0

1

2(A + t)
f [i](ñt )(13)

≥
∞∑

k=0

1

2(A + φ(k))

�(1+η/2)φ(k)�∑
t=φ(k)

f [i](ñt )(14)

≥
∞∑

k=0

1

2(A + φ(k))

⌊
η

2
φ(k)

⌋
ε.(15)

The right-hand side of the last line is infinite. We already proved that the left-hand
side is almost surely finite. It follows that f [i](ñτ ) → 0 almost surely. We have
seen in the proof of Proposition 6 that this fact implies exactly the theorems. �

3.4. Two-alternative reinforcement and variance estimates. In this section, we
study in detail the Two-alternative reinforcement. The results are gathered in the
next theorem, whose first item was already stated (in Theorem 5). The main idea
is to study the variance of μ∞ conditionally on the state at a large time t .
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THEOREM 7. For any initial urn n0 ∈ N , the random urn sequence obtained
by Two-alternative reinforcement is such that:

1. almost surely, for all alternatives x such that p∗(x) = 0, ñτ (x) → 0 when
τ → ∞;

2. with positive probability, the realized sequence ñτ , τ ∈ N has no limit as
τ → ∞;

3. if T is such that ∀x,p∗(x) > 0 [in other words, BP(T ) = X] then, with proba-
bility one, ñτ , τ ∈N has no limit.

To simplify notation, in this section we let the process start at τ �= 0 so that
τ always denote the number of ball in the urn (i.e., A = 0). We will also only
consider Two-alternative reinforcement in this section. Recall the piece of notation
Supp(p∗) = BP(T ); for ease of notation, we will often drop the argument. Also
recall from the last section that μτ is a negative submartingale so it has an almost
sure limit μ∞. Let φ = ∑

x∈BP p∗(x) logp∗(x) and note that it is the value of μ∞
if ñτ converges to p∗.

The first point is the following variance estimate.

LEMMA 8. Let τ > 0 and let ετ (x) = p∗(x)/ñτ (x) − 1. We have

E
[
(μτ+1 − μτ )

2 | Fτ

] = 1

τ 2

∑
x∈BP

ñ[1](x)ετ (x)2.

PROOF. This is a straightforward computation:

E
[
(μτ+1 − μτ )

2 | Fτ

] = ∑
x

ñ[1]
τ (x)

(
−∑

y

p∗(y)
1

τ
+ p∗(x)

1

n(x)

)2

= ∑
x

ñ[1]
τ (x)

1

τ 2

(
−1 + p∗(x)

ñ(x)

)2

= 1

τ 2

∑
x

ñ[1](x)ετ (x)2. �

The key point is that the factor 1
τ 2 makes the sum finite (once some control on

ε is provided). Thus, the variance of μ∞ conditioned on Fτ will be of order ε2/τ

and, therefore, with hight probability μ∞ will be close to μτ . If μτ is far enough
from φ, then it follows that μ∞ �= φ.

We will first consider the case where BP �= X. In this case, we have E[μτ+1 −
μτ | Fτ ] = g(p∗,ñτ )

τ
≥ 1

τ
g0 · ñ(BPc) > 0 [where g0 = infy∈BPc g(p∗, y)] so we need

an estimate of ñ(BP).
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LEMMA 9. Suppose that there exists q ∈ (0,1) and τ0 such that, at each time
τ ≥ τ0, the probability of adding a ball in BPc is at most q · ñτ (BPc). Then we
have, for all τ ≥ τ0,

E
[
ñτ

(
BPc) | Fτ0

] ≤
(

τ∏
t=τ0+1

t + q − 1

t

)
ñτ0

(
BPc)

≤
(

τ0

τ

)1−q

ñτ0

(
BPc).

PROOF. The first line comes from a straightforward induction:

E
[
ñτ

(
BPc) | Fτ0

] = 1

τ
E

[
nτ−1

(
BPc) | Fτ0

] + 1

τ
E

[
nτ

(
BPc) − nτ−1

(
BPc) | Fτ0

]
≤ τ − 1

τ
E

[
ñτ−1

(
BPc) | Fτ0

] + 1

τ
E

[
qñτ−1

(
BPc) | Fτ0

]
≤ τ + q − 1

τ
E

[
ñτ−1

(
BPc) | Fτ0

]
.

For the second line, we have

log
τ∏

t=τ0+1

t + q − 1

t
=

τ∑
τ0+1

log
(

1 + q − 1

t

)

≤
τ∑

τ0+1

q − 1

t

≤ (q − 1) log
(

τ

τ0

)
. �

Now we are able to prove the second point of the theorem.

PROOF OF THEOREM 7, CASE BP(T ) �= X. Note that for δ > 0 small enough
and τ0 big enough, the set

S =
{
n ∈ N | n(X) ≥ τ0 and

∣∣∣∣φ − ∑
x

p∗(x)LD
(
n(x), n(X)

)∣∣∣∣ ≤ δ

}
verifies:

• ∀n ∈ S,∀x ∈ BP, |p∗(x)/ñ(x) − 1| ≤ 1,
• ∀n ∈ S,∀x ∈ BPc,1 + g(x, ñ) ≤ q

for some q ∈ (1 − infx∈BPc g(p∗, x),1).
Let us assume that ñτ0 ∈ S (which clearly happens with positive probability).

Let T be the first time after τ0 such that ñτ /∈ S; T is a stopping time so μτ∧T is
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still a submartingale, let us call it μ′
τ . Note that we have

E[μτ+1 − μτ | Fτ ] = g(p∗, ñτ )

τ

≤ ñτ (BPc)

τ
.

By definition of the set S, up to time T , we can apply Lemma 9 so

E
[
μ′

τ+1 − μ′
τ | Fτ0

] ≤ 1

τ
E

[
ñτ

(
BPc)1{τ<T } | Fτ0

]
≤ τ

1−q
0 τq−2ñτ0

(
BPc).

Now let μ′∞ denote the almost sure limit of μ′. Note that if |φ − μ′∞|(ω) < δ

then T (ω) = ∞, and thus μ∞(ω) = μ′∞(ω). It is therefore enough to show that
with positive probability φ − δ < μ′∞ < φ.

Note that μ′ is a bounded submartingale, so it also converges in L1 and L2

toward μ′∞, thus

E
[
μ′∞ − μ′

τ0
| Fτ0

] =
∞∑

t=τ0

E
[
μ′

t+1 − μ′
t | Fτ0

]

≤
∞∑

t=τ0

τ
1−q
0 tq−2ñτ0

(
BPc)

≤ Cñτ0

(
BPc),

and, putting together the variance formula of Lemma 8 and the bound ε ≤ 1 up to
time T ,

Var
(
μ′∞ | Fτ0

) ≤
∞∑

t=τ0

E
[(

μ′
t+1 − μ′

t

)2 | Fτ0

]

≤
∞∑

t=τ0

1

t2E

[ ∑
x∈BP

ñ[1](x)εt (x)21t<T | Fτ0

]

≤ C
1

τ0
.

Finally, consider a τ0 large enough so that 1
τ0

� δ. It is clear that with a positive
probability, ñτ0(BPc) � δ and |μτ0 − φ| is close to δ/2. On this event, we see that
|φ − μ′∞| is a random variable with expectation close to δ/2 and variance small
with respect to δ, so |μ′∞ −φ| has a positive probability to be in [δ/4,3δ/4], which
proves the theorem. �

Now we turn to the case where X = BP(T ). The idea will be similar, with
Lemma 8 being the core argument. The main simplification comes from the fact
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that, in this case, g(p∗,p) = 0 for all p, so μ is a martingale and Lemma 9 will
no longer be needed. However, in order to prove that μ∞ is almost surely different
from φ, we will need an almost sure lower bound on |φ − μτ | which will come
from a precise analysis of the difference between LD and the real logarithm. Fi-
nally, since the almost sure bound that we will get will be much worse than the one
we were able to have with positive probability, we will need to be more careful in
our use of Lemma 8.

First, recall the following well-known approximation result.

PROPOSITION 10. Let k > 0. There exists a constant γ (Euler’s constant)
such that

(16) log(k + 1) + γ − 1

2

∞∑
i=k+1

1

i2 ≤
k∑

i=1

1

i
≤ log(k + 1) + γ − 1

2

∞∑
i=k+2

1

i2 .

Furthermore, when k tends to infinity,

(17)
∞∑

i=k+1

1

i2 ∼ 1

k
.

This proposition implies the following corollary.

COROLLARY 11. Let T be a tournament on the set X such that BP(T ) = X.
There exists c > 0 such that, for any urn n ∈ N ,

(18)
∑
x

p∗(x)LD
(
n(x), n(X)

) ≤ φ − c

n(X)
.

Furthermore, writing ε(x) = p∗(x)/ñ(x) − 1, if we restrict ourselves to urns with
n(X) large enough (with ε staying bounded), the constant c can be taken as close
as we want to

(19)
|X| − 1 + ∑

x∈BP ε(x)

2
.

PROOF. This is a straightforward computation using the definition of LD and
Proposition 10. �

We also need a control of ε in term of μ.

LEMMA 12. Almost surely, for any time τ ,

(20)
∑

x∈BP

[
ñτ (x) + p∗(x)/2

]
ετ (x)2 ≤ φ − μτ .
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PROOF. We have, using Proposition 10 in the first line,

φ − μτ ≥ ∑
x∈BP

p∗(x)
[
logp∗(x) − log ñτ (x)

]
(21)

≥ ∑
x∈BP

p∗(x)
(
ετ (x) + ετ (x)2/2

)
(22)

≥ ∑
x∈BP

(
p∗(x)/2 + ñτ (x)

)
ετ (x)2(23)

by definition of ε. �

Together, Lemma 8 and Lemma 12 have the following consequence.

LEMMA 13. For any τ0 large enough, if |φ − μτ0 | ≥ 5
τ0−1 then

P

(
∀τ ≥ τ0, |φ − μτ | > 1

τ0

)
≥ 1

10
.

PROOF. Let d = |φ − μτ0 | and let

T = inf{τ > τ0 | φ − μτ ≥ 2d or φ − μτ ≤ d/5}.
T is a stopping time so μ′

τ = μτ∧T is still a submartingale; by definition, it is also
bounded so it converges almost surely and in all Lp . Let μ′∞ denote its limit. We
will show that P(μ′∞ ∈ (d/5,2d)) > 1/10. Note that, since μ makes vanishing
steps, we are only interested in the behavior of μ close to φ, so we can restrict
ourself to urns with a small ε.

As long as τ < T , by definition we have φ − μτ ≤ 2d and thus by Lemma 12,∑
x(p

∗(x)/2 + ñτ (x))ετ (x)2 ≤ 2d . Now note that for ε small, we have ñτ � p∗
and thus ñ[1]

τ � p∗[1] = p∗. In particular, for any x, p∗(x)/2 + ñτ (x) � 3
2 ñ[1]

τ (x).
Therefore, for ε small enough, we have p∗(x)/2 + ñτ (x) > ñ[1]

τ (x) and thus∑
x ñ[1]

τ (x)ετ (x)2 ≤ 2d .
We can then use Lemma 8 to get

(24) ∀τ > τ0, E
[(

μ′
t+1 − μ′

t

)2 | F] ≤ 2d

τ 2 .

Summing up to infinity (recall that μ′ has constant expectation):

Var
(
μ′∞ − μ′

τ0
| Fτ0

) =
∞∑

τ=τ0

E
[(

μ′
τ+1 − μ′

τ

)2 | Fτ0

]
(25)

≤
∞∑

τ=τ0

2d

τ 2(26)

≤ 2d
1

τ0 − 1
(27)
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≤ 2

5
d2,(28)

where we used the hypothesis d ≥ 5
τ0−1 in the last line.

Note that, since μT ∧τ is bounded, E[μ′∞] = d . Moreover, notice that any
random variable with expectation d and that never takes value in the inter-
val (d/2,2d) has at least variance d2/2. Since Var(μ′∞ | Fτ ) ≤ 2

5d2, we have
P(μ′ ∈ (d/2,2d)) ≥ 1/10 and on this event, T = ∞, so |φ − μ| has never reached
d/2 ≥ 1

τ0
. �

PROOF OF THEOREM 7, CASE BP(T ) = X. First, note that if ñτ converges, it
has to be toward a fixed point. By Proposition 3, the fixed points of the dynamics
are exactly the optimal strategies p∗

Y corresponding to all subtournaments Y ⊆ X.
(This, of course, includes p∗ = p∗

X itself.)
We start by excluding convergence to any optimal strategy different from p∗

X .
Let p∗

Y be such a probability measure, we claim that there exists some x ∈ BP such
that p∗

Y (x) = 0. Indeed by contradiction, if BP ⊂ Supp(p∗
Y ) then by the first part

of Proposition 1, ∀x ∈ BP, g(p∗
Y , x) = 0 and in particular g(p∗

Y ,p∗
X) = 0. By the

second part of Proposition 1, this implies Supp(p∗
Y ) = BP and, therefore, p∗

Y = p∗
X

by uniqueness of the optimal strategy on BP. Now note that existence of x ∈ BP
such that p∗

Y (x) = 0 implies that
∑

x p∗
X(x) logp∗

Y (x) = −∞. In particular, we see
that any realisation of the urn such that ñτ → p∗

Y has to satisfy μτ → −∞ but this
is an event of probability 0 by the Markov inequality.

Let us now rule out convergence to p∗
X . We first consider the case |X| ≥ 12.

Then by Corollary 11, for any τ large enough, μτ almost surely verifies the hy-
pothesis of Lemma 13. Fix any suitable τ0, by Lemma 13, P(ñτ → p∗) ≤ P(∃τ ≥
τ0 | |φ − μτ | ≤ 1/τ0) ≤ 9/10. On the event that |φ − μτ | does reach 1/τ0 at some
time τ1, we can use Lemma 13 at time τ1 to get P(ñτ → p∗) ≤ (9/10)2. By induc-
tion, we get P(ñτ → p∗) = 0 which proves the theorem.

For the case 3 ≤ |X| ≤ 11 (a nontrivial tournament has at least 3 elements),
consider any τ0 large enough. By Corollary 11, we have |φ − μτ0 | ≥ 1/τ0. Let

T = inf
{
τ > τ0 | |φ − μτ | ≤ 1

2τ0
or |φ − μτ | ≥ 5

τ0

}
.

The event {T = ∞ or |φ −μT | ≥ 5
τ0

} has probability at least 1/9 and if |φ −μT | ≥
5
τ0

we can apply Lemma 13 at time T so the conclusion of Lemma 13 is still true
with 1/τ0 replaced by 1/2τ0 and 1/10 replaced by 1/90. We can therefore use the
same induction as before to prove the theorem. �

3.5. Conclusion. We have found the behavior of learning process designed to
discover the “best” alternatives in a tournament. Learning is achieved through the
following idea. The alternative that is considered as “good” at some date is rein-
forced for the future in the sense that one (slightly, and less and less) increases the
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probability for this alternative to be considered: reinforcement updates the sam-
pling, or “prior” probability. The test according to which an alternative is consid-
ered as a good one at time t rests on comparing a few randomly chosen alternatives.

We found a very different behavior between the processes where reinforcement
occurs after sampling two or three alternatives. With three alternatives, the process
converges almost surely to a well-defined limit that has a nice interpretation in term
of the tournament game: it is the optimal strategy for this game. One can therefore
say that this form of learning is “successful”. With two alternatives, the picture is
more complicated. The learning process “succeeds” in finding the bipartisan set (a
set which has been argued to be more important in term of social choice than the
numerical values of the optimal probabilities [15]), but not the optimal probabil-
ities themselves. We conjecture that the almost sure nonconvergence happens for
all tournaments and not only when BP(T ) = X.

Acknowledgement. Thanks to Bastien Mallein for useful discussions in the
early stage of this study.

REFERENCES

[1] BRANDT, F., CHUDNOVSKY, M., KIM, I., LIU, G., NORIN, S., SCOTT, A., SEYMOUR, P.
and THOMASSÉ, S. (2013). A counterexample to a conjecture of Schwartz. Soc. Choice
Welf. 40 739–743. MR3018395

[2] BRANDT, F. and FISCHER, F. (2008). Computing the minimal covering set. Math. Social Sci.
56 254–268. MR2442206

[3] CHEBOTAREV, P. T. and SHAMIS, E. (1998). Characterizations of scoring methods for prefer-
ence aggregation. Ann. Oper. Res. 80 299–332.

[4] CHEBOTAREV, P. YU. and SHAMIS, E. (2006). Preference fusion when the number of alterna-
tives exeeds two: Indirect scoring procedures. Preprint. Available at arXiv:math/060217v3
[math.OC].

[5] DANIELS, H. E. (1969). Round-Robin tournament scores. Biometrika 56 295–299.
[6] DAVID, H. A. (1963). The Method of Paired Comparisons, Charles Griffin, London.
[7] FISHBURN, P. C. (1977). Condorcet social choice functions. SIAM J. Appl. Math. 33 469–489.

MR0449470
[8] FISHER, D. and RYAN, J. (1992). Optimal strategies for a generalized ‘scissors, paper and

stone’ game. Amer. Math. Monthly 99 935–942.
[9] FISHER, D. C. and REEVES, R. B. (1995). Optimal strategies for random tournament games.

Linear Algebra Appl. 217 83–85.
[10] FISHER, D. C. and RYAN, J. (1995). Tournament games and positive tournaments. J. Graph

Theory 19 217–236. MR1315439
[11] FISHER, D. C. and RYAN, J. (1995). Probabilities within optimal strategies for tournament

games. Discrete Appl. Math. 56 87–91. MR1311308
[12] HOFBAUER, J. and SCHLAG, K. (2000). Sophisticated imitation in cyclic games. J. Evol. Econ.

10 523–543.
[13] LAFFOND, G., LASLIER, J.-F. and LE BRETON, M. (1993). The bipartisan set of a tournament

game. Games Econom. Behav. 5 182–201.
[14] LASLIER, J.-F. (1997). Tournament Solutions and Majority Voting. Studies in Economic The-

ory 7. Springer, Berlin. MR1468987

http://www.ams.org/mathscinet-getitem?mr=3018395
http://www.ams.org/mathscinet-getitem?mr=2442206
http://arxiv.org/abs/arXiv:math/060217v3
http://www.ams.org/mathscinet-getitem?mr=0449470
http://www.ams.org/mathscinet-getitem?mr=1315439
http://www.ams.org/mathscinet-getitem?mr=1311308
http://www.ams.org/mathscinet-getitem?mr=1468987


REINFORCEMENT LEARNING FROM COMPARISONS 2925

[15] LASLIER, J.-F. (2000). Aggregation of preferences with a variable set of alternatives. Soc.
Choice Welf. 17 269–282. MR1746608

[16] LASLIER, J.-F. (2000). Interpretation of electoral mixed strategies. Soc. Choice Welf. 17 283–
292. MR1746609

[17] LEVCHENKOV, V. S. (1992). Social choice theory: A new insight. Discussion paper, Institute
of Systems Analysis, Moscow.

[18] MCKELVEY, R. (1979). General conditions for global intransitivities in a formal voting model.
Econometrica 47 1085–1112.

[19] MOON, J. W. (1968). Topics on Tournaments. Holt, Rinehart and Winston, New York.
MR0256919

[20] MOULIN, H. (1986). Choosing from a tournament. Soc. Choice Welf. 3 271–291.
[21] MYERSON, R. B. (1993). Incentives to cultivate favored minorities under alternative electoral

systems. Am. Polit. Sci. Rev. 87 856–869.
[22] MYERSON, R. B. (1995). Analysis of democratic institutions: Structure, conduct and perfor-

mance. J. Econ. Perspect. 9 77–89.
[23] PEMANTLE, R. (2007). A survey of random processes with reinforcement. Probab. Surv. 4

1–79.
[24] POSCH, M. (1997). Cycling in a stochastic learning algorithm for normal form games. J. Evol.

Econ. 7 193–207.
[25] RIVEST, R. L. and SHEN, E. (2010). An optimal single-winner preferential voting system

based on game theory. Available at http://people.csail.mit.edu/rivest/gt/latest_conf.pdf.
[26] RUBINSTEIN, A. (1996). Why are certain properties of binary relations relatively more com-

mon in natural language? Econometrica 64 343–355. MR1375737
[27] SHIRYAEV, A. N. (1995). Probability. Graduate Text in Mathematics, Springer, New York.

MR3467826
[28] SLUTZKI, G. and VOLIJ, O. (2006). Scoring of web pages and tournaments—axiomatizations.

Soc. Choice Welf. 26 75–92.
[29] USHAKOV, I. A. (1976). The problem of choosing the preferred element: An application

to sport games. In Management Science in Sports (R. E. Machol, S. P. Ladany and
D. G. Morrison, eds.) 153–161. North-Holland, Amsterdam.

UNIVERSITÉ PARIS DIDEROT

BÂTIMENT SOPHIE GERMAIN

AVENUE DE FRANCE

75013 PARIS

FRANCE

E-MAIL: laslier@math.univ-paris-diderot.fr

CNRS, PARIS SCHOOL OF ECONOMICS

ECOLE NORMALE SUPÉRIEURE

48 BD. JOURDAN

75014 PARIS

FRANCE

E-MAIL: Jean-Francois.Laslier@ens.fr

http://www.ams.org/mathscinet-getitem?mr=1746608
http://www.ams.org/mathscinet-getitem?mr=1746609
http://www.ams.org/mathscinet-getitem?mr=0256919
http://people.csail.mit.edu/rivest/gt/latest_conf.pdf
http://www.ams.org/mathscinet-getitem?mr=1375737
http://www.ams.org/mathscinet-getitem?mr=3467826
mailto:laslier@math.univ-paris-diderot.fr
mailto:Jean-Francois.Laslier@ens.fr

	Introduction
	Framework
	Tournaments
	A Markov chain
	The tournament game
	Two formulas
	Relation between optimal strategies and stationary probabilities

	Learning
	Choice by reinforcement
	Two motivating differential systems
	Three-alternative reinforcement and martingale technique
	Two-alternative reinforcement and variance estimates
	Conclusion

	Acknowledgement
	References
	Author's Addresses

