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DISCRETE BECKNER INEQUALITIES VIA THE
BOCHNER–BAKRY–EMERY APPROACH FOR MARKOV CHAINS1

BY ANSGAR JÜNGEL AND WEN YUE

Vienna University of Technology

Discrete convex Sobolev inequalities and Beckner inequalities are de-
rived for time-continuous Markov chains on finite state spaces. Beckner
inequalities interpolate between the modified logarithmic Sobolev inequal-
ity and the Poincaré inequality. Their proof is based on the Bakry–Emery
approach and on discrete Bochner-type inequalities established by Caputo,
Dai Pra and Posta and recently extended by Fathi and Maas for logarith-
mic entropies. The abstract result for convex entropies is applied to sev-
eral Markov chains, including birth-death processes, zero-range processes,
Bernoulli–Laplace models, and random transposition models, and to a finite-
volume discretization of a one-dimensional Fokker–Planck equation, apply-
ing results by Mielke.

1. Introduction. Convex Sobolev inequalities such as Poincaré and logarith-
mic Sobolev inequalities play an important role in the analysis of the convergence
to stationarity for Markov processes. Besides implying exponential decay of the
entropy, it is known that these functional inequalities give useful concentration
bounds [6] and hypercontractivity of the corresponding semigroup [18], and they
are a natural tool to estimate mixing times [29]. There exists an extensive literature
on the derivation of Poincaré inequalities (or spectral gap estimates) and logarith-
mic Sobolev (or shorter: log-Sobolev) inequalities in the discrete and continuous
setting; see, for example, the reviews [18, 23, 29] and the books [1, 4, 31]. An
algorithm for the computation of the spectral gap is presented in [13], while cor-
responding estimates can be found in [9, 10, 14]. For log-Sobolev inequalities, we
refer to [7, 11, 24].

There are much less results on Beckner inequalities for Markov chains, which
interpolate between the Poincaré inequality and log-Sobolev inequality [5]. Such
inequalities are of interest, for instance, in the large-time analysis of Markov chains
using general entropies or in numerical analysis, proving the exponential decay of
solutions to discretized partial differential equations [12]. We are only aware of the
paper by Bobkov and Tetali [6], where estimates on the constant of the Beckner
inequality were derived for Bernoulli–Laplace and random transposition models.
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In this paper, we establish new bounds for discrete convex Sobolev and Beckner
inequalities for stochastic processes not studied in [6].

The technique of proof is the Bochner–Bakry–Emery method of Caputo et al.
[11], which was recently extended by Fathi and Maas in [19] in the context of Ricci
curvature bounds. The idea of the Bakry–Emery approach is to relate the second
time derivative of the entropy to its entropy production. This relation is achieved by
employing a discrete Bochner-type equation which replaces the Bochner identity
in the continuous case.

In order to make these ideas precise, consider a time-homogeneous Markov
process (Xt)t≥0 with values in a finite state space S, having an invariant measure π .
We assume that the semigroup (Tt )t≥0, defined on L2(π) by Ttf (x) = E[f (Xt) :
X0 = x], is strongly right continuous, so that the infinitesimal generator L exists,
Tt = etL. Given a probability measure μ on S, we denote by μTt the distribution
of Xt assuming that X0 is distributed according to μ. The rate of convergence of
μTt to the invariant measure π is a major topic in probability theory. It can be
achieved by estimating the time derivative of the relative entropy.

Before explaining the entropy decay, we introduce some notation. The relative
entropy hφ(μ|π) of μ with respect to π is defined by

hφ(μ|π) = π

[
φ

(
dμ

dπ

)]
= ∑

η∈S

π(η)φ

(
dμ

dπ

)
(η),

where φ : R+ → R+ is a smooth convex function such that φ(1) = 0 and 1/φ′′ is
concave, R+ = [0,∞), and hφ(μ|π) is meant to be infinite whenever μ �� π or
φ(dμ/dπ) /∈ L1(π). The entropy can be defined on the set of probability densities
f such that φ(f ) ∈ L1(π) by

Entφπ(f ) = π
[
φ(f )

]
,

so that hφ(μ|π) = Entφπ(dμ/dπ). When φ1(s) = s(log s − 1) + 1, we obtain the
logarithmic entropy and if φ2(s) = s2 − 2s + 1, Entφπ(f ) equals the variance of f ,
Varπ(f ) = π [f 2] − π[f ]2. Another example is φα(s) = (sα − s)/(α − 1) − s + 1
for 1 < α ≤ 2, which interpolates between φ1 and φ2 in the sense that φα(s) →
φ1(s) pointwise as α → 1 and φα(s) = φ2 if α = 2.

Let ρt = d(μTt)/dπ be the probability density of the Markov chain at time
t ≥ 0. We assume in the following that the Markov chain is reversible, that is,
the generator is self-adjoint in L2(π). Then ρt solves the Kolmogorov equation
∂tρt = Lρt , t > 0. The idea of Bakry and Emery [3] is to differentiate the entropy
twice with respect to time. A formal computation gives

(1)

d

dt
Entφπ(ρt ) = −E

(
φ′(ρt ), ρt

)
,

d2

dt2 Entφπ(ρt ) = π
[
Lφ′(ρt )Lρt + φ′′(ρt )(Lρt )

2]
,
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where E(f, g) := −π [fLg] is the Dirichlet form of L. Now suppose that the fol-
lowing inequality holds for some λ > 0:

(2) π
[
Lφ′(ρ)Lρ + φ′′(ρ)(Lρ)2] ≥ λE

(
φ′(ρ), ρ

)
, t > 0.

This is equivalent to ∂2
t Entφπ(ρ)+ λ∂t Entφπ(ρ) ≥ 0, and by Gronwall’s lemma, we

conclude that ∂t Entφπ(ρt ) converges to zero with exponential rate. Furthermore,
integration over (t,∞) leads to

(3)
d

dt
Entφπ(ρ) + λEntφπ(ρ) ≤ 0, t > 0,

if we know that Entφπ(ρt ) → 0 as t → ∞. On the one hand, this implies exponential
convergence of the relative entropy to zero, that is, Entφπ(ρt ) ≤ Entφπ(ρ0)e

−λt . On
the other hand, (3) is equivalent to the convex Sobolev inequality:

(4) λEntφπ(f ) ≤ E
(
φ′(f ), f

)
,

valid for all probability densities f .
It is well known that if the so-called curvature-dimension condition CD(λ,∞)

is satisfied, then the convex Sobolev inequality (4) is valid [4], Section 1.16. For
instance, if L is the generator of the Ornstein–Uhlenbeck process, CD(λ,∞) holds
with λ = 1 under the conditions that φ is convex and 1/φ′′ is concave [2]. In the
discrete case, the validity of (4) is not known except in the logarithmic case φ = φ1.
In this paper, we derive general conditions on φ that guarantee the validity of (4).

For the special cases φ1(s) = s(log s−1)+1 and φ2(s) = s2 −2s+1, we obtain
the modified log-Sobolev inequality and Poincaré inequality, respectively,

(5) λM Entφ1
π (f ) ≤ E(logf,f ), λP Varπ(f ) ≤ E(f, f ).

Note that if L is the generator of a reversible diffusion process, we may
write E(logf,f ) = 4E(f 1/2, f 1/2), so the log-Sobolev inequality λL Entφ1

π (f ) ≤
E(f 1/2, f 1/2) and the first inequality in (5) coincide with λM = 4λL. This is gen-
erally not true for Markov processes with jumps [7], but for reversible processes,
the relations 4λL ≤ λM ≤ 2λP hold [6, 18].

The aim of this paper is to determine conditions under which there exists a
constant λ > 0 such that the (discrete) convex Sobolev inequality (4) and the ex-
ponential entropy decay

(6) Entφπ(ρt ) ≤ e−λt Entφπ(ρ0), t > 0,

hold. Furthermore, we derive explicit constants λB(α) > 0 such that the (discrete)
Beckner inequality holds:

(7) λB(α)Entφα
π (ρ) ≤ α

α − 1
E

(
ρα−1, ρ

)
, 1 < α ≤ 2.

The Beckner inequality is related to the modified log-Sobolev and Poincaré
inequalities. Indeed, if α → 1, (7) becomes the modified log-Sobolev inequality
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with limα→1 λB(α) = λM and if α = 2, (7) equals the Poincaré inequality with
λB(2) = 2λP . For 1 < α < 2, applying (7) to functions of the form 1 + εf , per-
forming a Taylor expansion, and letting ε → 0 shows that λB(α) ≤ 2λP .

According to the above discussion, inequalities (5)–(7) are achieved by proving
(2), and the proof of this inequality is based on a discrete Bochner-type identity.
The idea to employ such an identity was first presented in [9], elaborated later in
[11, 19], and goes back to [8]. The identity is obtained by identifying the Radon–
Nikodym derivative of a measure involving the jump rates of the Markov chain
[9], Section 2. This allows one to relate terms with different orders of “discrete
derivatives” occurring in L. For details, we refer to Section 2. Our technique of
proving (7) is completely different from the work [6], where an iteration method
was used to derive discrete Beckner inequalities.

Fathi and Maas [19] extended the results of Caputo et al. [11]. The key idea of
[19] (and, by the way, of [28]) is the use of the logarithmic mean

ρ∗(η, ξ) = ρ(η) − ρ(ξ)

logρ(η) − logρ(ξ)

in the analysis. The logarithmic mean allows for the discrete chain rule
ρ∗∇ logρ = ∇ρ, where ∇ρ(η, ξ) = ρ(η) − ρ(ξ), which naturally holds in the
continuous case. This chain rule is needed to treat the logarithmic entropy. In the
case of general convex entropies, it is natural to replace the logarithmic mean by

(8) ρ̂(η, ξ) = ρ(η) − ρ(ξ)

φ′(ρ(η)) − φ′(ρ(ξ))
, φ convex,

which satisfies the discrete chain rule ρ̂∇φ′(ρ) = ∇ρ since ρ̂ “approximates”
1/φ′′(ρ). When φ = φα , we obtain the power mean

ρ̂(η, ξ) = α − 1

α

ρ(η) − ρ(ξ)

ρ(η)α−1 − ρ(ξ)α−1 , 1 < α < 2.

We remark that the idea to enforce a discrete chain rule is well known in the de-
sign of structure-preserving numerical schemes and was used, for example, in the
construction of entropy-conservative finite-volume fluxes [20] and in the discrete
variational derivative method [21].

The novelty of this paper is the identification of the conditions on φ that are
needed to apply the technique of [11, 19]. It turns out that, besides convexity of φ

and the concavity of 1/φ′′, the concavity of

(9) θ(s, t) = s − t

φ′(s) − φ′(t)
, s �= t, θ(s, s) = 1

φ′′(s)
,

is needed. This is not surprising since θ(s, t) is a discrete approximation of 1/φ′′,
and the concavity of 1/φ′′ is assumed in the continuous case. Conditions on φ that
guarantee the concavity of θ are stated in Lemma 15. Both the logarithmic mean
and the power mean satisfy these conditions; see Lemma 16. The general theory
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can be applied to birth-death processes, thus yielding new discrete convex Sobolev
inequalities. For other stochastic processes considered in this paper (zero-range
processes, Bernoulli–Laplace models, random transposition models), a homogene-
ity property of θ is needed, which restricts the class of admissible functions φ. It
turns out that the logarithmic mean and the power mean satisfy this property; see
Lemma 16. For the mentioned processes, new discrete Beckner inequalities are
derived.

The paper is organized as follows. We detail the Bochner–Bakry–Emery method
in Section 2. The validity of the discrete Beckner inequality (7) is reduced to the
validity of a modification of (2). In Section 3, we apply the general technique to
four stochastic processes (as in [19]): birth-death processes, zero-range processes,
Bernoulli–Laplace models, and random transposition models. Furthermore, the re-
sults for birth-death processes are applied to a finite-volume discretization of a
one-dimensional Fokker–Planck equation, yielding exponential decay of the dis-
crete entropy. The proof consists of a combination of the convex Sobolev inequal-
ity for birth-death processes and the results of Mielke [28], who proved exponential
decay for the logarithmic entropy.

Our main conclusion is that the Bochner–Bakry–Emery approach is sufficiently
flexible to be applicable to power functions and, in certain cases, to general convex
functions.

2. The Bochner method. Let an irreducible and reversible Markov chain on
a finite state space S be given and let π be the invariant measure. We write the
generator L in the form

Lf (η) = ∑
γ∈G

c(η, γ )∇γ f (η),

where G is the set of allowed moves (represented by functions γ : S → S), the
mapping c : S × G → [0,∞) represents the jump rates, and ∇γ f (η) = f (γ η) −
f (η). We observe that the generator of every finite Markov chain can be written
in this form. We assume the following two properties: For any γ ∈ G, there exists
γ −1 ∈ G satisfying γ −1γ η = η for all η ∈ S with c(η, γ ) > 0. Furthermore, the
reversibility condition

π

[ ∑
γ∈G

c(η, γ )F (η, γ )

]
= π

[ ∑
γ∈G

c(η, γ )F
(
γ η, γ −1)]

holds for all F : S ×G →R. Under reversibility, the Dirichlet form can be written
as

(10) E(f, g) = 1

2
π

[ ∑
γ∈G

c(η, γ )∇γ f (η)∇γ g(η)

]
.

For the discrete Bochner-type identity, we suppose as in [11] the following.
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ASSUMPTION 1. There exists a function R : S × G × G →R such that:

(i) R(η, γ, δ) = R(η, δ, γ ) for all η ∈ S, γ , δ ∈ G;
(ii) for all bounded functions ψ : S × G × G →R,

π

[ ∑
γ,δ∈G

R(η, γ, δ)ψ(η, γ, δ)

]
= π

[ ∑
γ,δ∈G

R(η, γ, δ)ψ
(
γ η, γ −1, δ

)]
.

(iii) γ δη = δγ η for all η ∈ S, γ , δ ∈ G with R(η, γ, δ) > 0.

The following lemma, which extends Lemma 2.3 in [11], was proven in [19],
Lemma 3.3. It expresses a discrete Bochner-type identity.

LEMMA 1. Let χ , ψ : S →R and let β : S × S →R be symmetric. Then

π

[ ∑
γ,δ∈G

R(η, γ, δ)β(η, δη)∇δχ(η)∇γ ψ(η)

]

= 1

4
π

[ ∑
γ,δ∈G

R(η, γ, δ)∇γ

(
β(η, δη)∇δχ(η)

)∇δ∇γ ψ(η)

]
.

The key estimate is contained in the following proposition that is an extension
of Theorem 3.5 in [19] from the logarithmic case to the case of general convex
functions.

PROPOSITION 2. Let φ ∈ C4((0,∞); (0,∞)) be convex such that φ(1) =
0, 1/φ′′ is concave on (0,∞), and let θ , defined in (9), be concave. Assume
that there exists a function R satisfying Assumption 1 and define �(η, γ, δ) =
c(η, γ )c(η, δ) − R(η, γ, δ) for η ∈ S and γ , δ ∈ G. Then, for any positive proba-
bility density ρ,

π
[
Lφ′(ρ)Lρ + φ′′(ρ)(Lρ)2]

(11) ≥ π

[ ∑
γ,δ∈G

�(η, γ, δ)
(∇γ φ′(ρ(η)

)∇δρ(η) + φ′′(ρ(η)
)∇γ ρ(η)∇δρ(η)

)]
.

REMARK 3. In Lemma 15 (see the Appendix), conditions on φ are stated
guaranteeing the concavity of θ . We introduce the following notation:

ρ̂(η, δη) = θ
(
ρ(η), ρ(δη)

) = ρ(δη) − ρ(η)

φ′(ρ(δη)) − φ′(ρ(η))
= ∇δρ(η)

∇δφ′(ρ(η))
,(12)

ρ̂1(η, δη) = ∂1θ
(
ρ(η), ρ(δη)

) = − 1

∇δφ′(ρ(η))
+ ∇δρ(η)φ′′(ρ(η))

(∇δφ′(ρ(η)))2 ,(13)

ρ̂2(η, δη) = ∂2θ
(
ρ(η), ρ(δη)

) = ρ̂1(δη, η),(14)

where ∂1θ and ∂2θ are the partial derivatives of θ with respect to the first and
second variable, respectively.
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PROOF OF PROPOSITION 2. The first term on the left-hand side of (11) can
be written as follows, using the definitions of L, ρ̂, and �:

π
[
Lφ′(ρ)Lρ

] = π

[ ∑
γ,δ∈G

c(η, γ )c(η, δ)∇γ φ′(ρ)∇δρ(η)

]

= π

[ ∑
γ,δ∈G

c(η, γ )c(η, δ)ρ̂(η, δη)∇γ φ′(ρ(η)
)∇δφ

′(ρ(η)
)]

= π

[ ∑
γ,δ∈G

R(η, γ, δ)ρ̂(η, δη)∇γ φ′(ρ(η)
)∇δφ

′(ρ(η)
)]

+ π

[ ∑
γ,δ∈G

�(η, γ, δ)ρ̂(η, δη)∇γ φ′(ρ(η)
)∇δφ

′(ρ(η)
)]

.

By Lemma 1 with β(η, δη) = ρ̂(η, δη), the first term on the right-hand side of the
previous equation can be rewritten, leading to π [Lφ′(ρ)Lρ] = A1 + A2, where

A1 = 1

4
π

[ ∑
γ,δ∈G

R(η, γ, δ)∇γ

(
ρ̂(η, δη)∇δφ

′(ρ(η)
))∇δ∇γ φ′(ρ(η)

)]
,

A2 = π

[ ∑
γ,δ∈G

�(η, γ, δ)ρ̂(η, δη)∇γ φ′(ρ(η)
)∇δφ

′(ρ(η)
)]

.

Next, we reformulate the second term on the left-hand side of (11), using the
definitions of L, ρ̂1, and �:

π
[
φ′′(ρ)(Lρ)2] = π

[ ∑
γ,δ∈G

c(η, γ )c(η, δ)∇γ ρ(η)∇δρ(η)φ′′(ρ(η)
)]

= π

[ ∑
γ,δ∈G

c(η, γ )c(η, δ)∇γ ρ(η)ρ̂1(η, δη)
(∇δφ

′(ρ(η)
))2

]

+ π

[ ∑
γ,δ∈G

c(η, γ )c(η, δ)∇γ ρ(η)∇δφ
′(ρ(η)

)]

= π

[ ∑
γ,δ∈G

R(η, γ, δ)∇γ ρ(η)ρ̂1(η, δη)
(∇δφ

′(ρ(η)
))2

]

+ π

[ ∑
γ,δ∈G

�(η, γ, δ)∇γ ρ(η)ρ̂1(η, δη)
(∇δφ

′(ρ(η)
))2

]

+ π

[ ∑
γ,δ∈G

c(η, γ )c(η, δ)∇γ ρ(η)∇δφ
′(ρ(η)

)]
=:B1 + B2 + (A1 + A2).
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Then the left-hand side of (11) is given by

π
[
Lφ′(ρ)Lρ + φ′′(ρ)(Lρ)2] = (B1 + 2A1) + (B2 + 2A2),

and we will estimate B1 + 2A1 and B2 + 2A2 separately.
First, we treat B2 +2A2. Inserting the definition of ρ̂(η, δη) and rearranging the

terms, we find that

B2 + 2A2 = π

[ ∑
γ,δ∈G

�(η, γ, δ)ρ̂1(η, δη)∇γ ρ(η)
(∇δφ

′(ρ(η)
))2

]

+ 2π

[ ∑
γ,δ∈G

�(η, γ, δ)ρ̂(η, δη)∇γ φ′(ρ(η)
)∇δφ

′(ρ(η)
)]

= π

[ ∑
γ,δ∈G

�(η, γ, δ)∇γ φ′(ρ(η)
)∇δρ(η)

]

+ π

[ ∑
γ,δ∈G

�(η, γ, δ)∇γ ρ(η)∇δρ(η)φ′′(ρ(η)
)]

,

which is exactly the right-hand side of (11). Thus, it remains to prove that B1 +
2A1 ≥ 0.

To this end, we reformulate B1, employing Assumption 1(i)–(ii) and identity
(14):

B1 = π

[ ∑
γ,δ∈G

R(η, γ, δ)ρ̂1(η, δη)∇γ ρ(η)
(∇δφ

′(ρ(η)
))2

]
(15)

= π

[ ∑
γ,δ∈G

R(η, γ, δ)ρ̂1(δη, η)∇γ ρ(δη)
(∇δ−1φ

′(ρ(δη)
))2

]

= π

[ ∑
γ,δ∈G

R(η, γ, δ)ρ̂2(η, δη)∇γ ρ(δη)
(∇δφ

′(ρ(η)
))2

]
,(16)

since ∇δ−1φ′(ρ(δη)) = −∇δφ
′(ρ(η)). Averaging (15) and (16) gives

B1 = 1

2
π

[ ∑
γ,δ∈G

R(η, γ, δ)
(
ρ̂1(η, δη)∇γ ρ(η) + ρ̂2(η, δη)∇γ ρ(δη)

)
× (∇δφ

′(ρ(η)
))2

]
.

By (41) from Lemma 15 (see the Appendix) with u = ρ(γ η), v = ρ(γ δη), s =
ρ(η), and t = ρ(δη), it follows that

ρ̂1(η, δη)∇γ ρ(η) + ρ̂2(η, δη)∇γ ρ(δη) ≥ ∇γ ρ̂(η, δη),
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and we infer from the definition of A1 that

B1 + 2A1 ≥ 1

2
π

[ ∑
γ,δ∈G

R(η, γ, δ)
{∇γ ρ̂(η, δη)

(∇δφ
′(ρ(η)

))2

(17)

+ ∇γ

(
ρ̂(η, δη)∇δφ

′(ρ(η)
))∇δ∇γ φ′(ρ(η)

)}]
.

The following identity has been used in the proof of Theorem 3.5 in [19]:

∇γ ρ̂(η, δη)
(∇δψ(η)

)2 + ∇γ

(
ρ̂(η, δη)∇δψ(η)

)∇δ∇γ ψ(η)

= ρ̂(γ η, γ δη)
(∇γ ∇δψ(η)

)2 − ρ̂(η, δη)∇δψ(γ η)∇δψ(η)(18)

+ ρ̂(γ η, δγ η)∇δψ(γ η)∇δψ(η).

It can be verified by elementary computations. Taking ψ(η) = φ′(ρ(η)), the left-
hand side of (18) equals the expression in the curly brackets of (17), and we con-
clude that

B1 + 2A1 ≥ 1

2
π

[ ∑
γ,δ∈G

R(η, γ, δ)ρ̂(γ η, γ δη)
(∇γ ∇δφ

′(ρ(η)
))2

]

− 1

2
π

[ ∑
γ,δ∈G

R(η, γ, δ)ρ̂(η, δη)∇δφ
′(ρ(γ η)

)∇δφ
′(ρ(η)

)]

+ 1

2
π

[ ∑
γ,δ∈G

R(η, γ, δ)ρ̂(γ η, δγ η)∇δφ
′(ρ(γ η)

)∇δφ
′(ρ(η)

)]
.

It follows from Assumption 1(ii)–(iii) that the second and third term on the right-
hand side cancel. The first term being nonnegative, we infer that B1 + 2A1 ≥ 0,
which completes the proof. �

The following corollary is a consequence of Proposition 2.

COROLLARY 4. Let φ ∈ C4((0,∞); (0,∞)) be convex such that φ(1) = 0,
1/φ′′ is concave on (0,∞), and let θ , defined in (9), be concave. Suppose that
there exists a constant λ > 0 such that for all positive probability densities ρ,

π

[ ∑
γ,δ∈G

�(η, γ, δ)
(∇γ φ′(ρ(η)

)∇δρ(η) + φ′′(ρ(η)
)∇γ ρ(η)∇δρ(η)

)]
(19)

≥ λ

2
π

[ ∑
γ∈G

c(η, γ )∇γ φ′(ρ(η)
)∇γ ρ(η)

]
.

Then the convex Sobolev inequality (4), the decay of the Dirichlet form

(20) E
(
φ′(etLρ

)
, etLρ

) ≤ e−λtE
(
φ′(ρ), ρ

)
, t > 0,

and the decay of the entropy (6) hold for all positive probability densities ρ.
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PROOF. By Proposition 2 and representation (10) of the Dirichlet form, it fol-
lows from (19) that

π
[
Lφ′(ρ)Lρ

] + π
[
(Lρ)2φ′′(ρ)

] ≥ λE
(
φ′(ρ), ρ

)
.

Taking into account (1), this inequality is equivalent to

(21)
d2

dt2 Entφπ(ρt ) ≥ −λ
d

dt
Entφπ(ρt ).

Using Gronwall’s lemma, we infer that 0 = limt→∞(−∂t Entφπ(ρt )). Furthermore,
as π is an invariant measure, ρt → 1 and Entπ(ρt ) → 0 as t → ∞. Therefore,
integrating (21) over (0,∞), we conclude that

−E
(
φ′(ρ0), ρ0

) = d

dt
Entφπ(ρ0) ≤ −λEntφπ(ρ0),

and this is exactly the convex Sobolev inequality (4). �

3. Examples. In this section, we consider some stochastic processes analyzed
in [11, 19] but for logarithmic entropies only. For birth-death processes, we are able
to allow for general convex entropies, while for the remaining cases (zero-range
processes, Bernoulli–Laplace models, Random transposition models), only power
entropies with φ = φα can be considered. The reason is that we need additional
features of φ that seem to be satisfied only under certain homogeneity properties.
These features are summarized in Lemma 16. Our notation follows that of [11].

3.1. Birth-death processes. We investigate birth-death processes on N =
{0,1,2, . . .} with generator

Lf (n) = a(n)∇+f (n) + b(n)∇−f (n), n ∈ N,

where a and b are nonnegative functions on N satisfying b(0) = 0. The function a

represents the rate of birth, the function b the rate of death. The set of allowed
moves is given by G = {+,−}, where +(n) = n + 1 for n ∈ N and −(n) = n − 1
for n ≥ 1, −(0) = 0. In particular, ∇±f (n) = f (n ± 1) − f (n). According to the
notation of Section 2, c(n,+) = a(n) and c(n,−) = b(n).

Since we considered in the previous section finite state spaces, we need to as-
sume that the transition rates a(n) and b(n) vanish for sufficiently large values of
n, say n∗, in order to fit into this framework. Another possibility is to consider
finitely supported test functions. According to [26], this case may be covered by
using the results of Daneri and Savaré [16]. We expect that the result below still
holds for countable Markov chains, but we leave the proof for future works; also
see [19], Remark 4.2.

We suppose that this Markov chain is irreducible and reversible, that is, there
exists a probability measure π on N satisfying the detailed-balance condition:

(22) a(n)π(n) = b(n + 1)π(n + 1), n ∈ N.
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The following theorem is a consequence of Corollary 4, applied to birth-death
processes.

THEOREM 5. Let λ > 0 and let φ satisfy the assumptions stated in Propo-
sition 2. Assume that a is nonincreasing and b is nondecreasing on {0, . . . , n∗},
and

a(n) − a(n + 1) + b(n + 1) − b(n)
(23)

+ �
(
a(n) − a(n + 1), b(n + 1) − b(n)

) ≥ λ

for all n ∈ N, where

�(A,B) := inf
s,t>0

θ(s, t)
(
Aφ′′(s) + Bφ′′(t)

)
, A,B ≥ 0,

and θ(s, t) = (s − t)/(φ′(s)−φ′(t)) for s �= t . Then the convex Sobolev inequality
(5) and the decay estimates (6) and (20) hold with constant λ.

The mapping � generalizes the function in [19], Section 4.1. For the special
case φ(s) = φα(s) = (sα − s)/(α − 1) − s + 1, Lemma 18 in the Appendix shows
that �(A,B) ≥ (α − 1)(A + B). Moreover, �(A,B) = A + B if α = 2. Figure 1
illustrates the “sharpness” of the inequality �(A,B) ≥ (α −1)(A+B) for α close
to one.

REMARK 6. Estimates for Poincaré inequalities for Markov chains are given
in, for example, [14, 15, 27]. The same criterion as in (23) was obtained in
[28], Theorem 5.1 and [19], Theorem 4.1 for the logarithmic entropy (α → 1).
From Lemma 18, we conclude that the Beckner constant can be estimated by
λ ≥ α(a(n) − a(n + 1) + b(n − 1) − b(n)). There exist sufficient and necessary
conditions on π and a(n) such that an interpolation between the Poincaré and
log-Sobolev inequality holds, but without estimates on the constant [31], Theo-
rem 6.2.4.

FIG. 1. Illustration of �(A,B), defined in (9), for α = 1.01 (left) and α = 1.8 (right).
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PROOF. We define as in [11], Section 3:

R(n,+,+) = a(n)a(n + 1), R(n,−,−) = b(n)b(n − 1),

R(n,+,−) = R(n,−,+) = a(n)b(n).

This function satisfies Assumption 1. In particular, (ii) follows from the detailed-
balance condition (22). As before, we set �(n, γ, δ) = c(n, γ )c(n, δ) − R(n, γ, δ)

for γ , δ ∈ G. According to Corollary 4, we only need to verify (19). The left-hand
side equals

π

[ ∑
γ,δ∈G

�(n, γ, δ)
(∇γ φ′(ρ(n)

)∇δρ(n) + ∇γ ρ(n)∇δρ(n)φ′′(ρ(n)
))]

= π
[
a(n)

(
a(n) − a(n + 1)

)(∇+φ′(ρ(n)
)∇+ρ(n) + (∇+ρ(n)

)2
φ′′(ρ(n)

))]
+ π

[
b(n)

(
b(n) − b(n − 1)

)
× (∇−φ′(ρ(n)

)∇−ρ(n) + (∇−ρ(n)
)2

φ′′(ρ(n)
))]

,

since the sum over all γ , δ ∈ G consists of four terms (+,+), (−,−), (+,−),
and (−,+), and because of �(n,+,−) = �(n,−,+) = 0, only two terms do not
vanish. Now, we perform the change n �→ n + 1 in the second term and replace
π(n + 1)b(n + 1) by π(n)a(n), according to the detailed-balance condition (22).
Observing that b(0) = 0 and ∇−ρ(n + 1) = −∇+ρ(n), this leads to

π

[ ∑
γ,δ∈G

�(n, γ, δ)
(∇γ φ′(ρ(n)

)∇δρ(n) + ∇γ ρ(n)∇δρ(n)φ′′(ρ(n)
))]

= π
[
a(n)

(
a(n) − a(n + 1)

)(∇+φ′(ρ(n)
)∇+ρ(n) + (∇+ρ(n)

)2
φ′′(ρ(n)

))]
+ π

[
a(n)

(
b(n + 1) − b(n)

)
× (∇+φ′(ρ(n)

)∇+ρ(n) + (∇+ρ(n)
)2

φ′′(ρ(n + 1)
))]

= π
[
a(n)

(
a(n) − a(n + 1) + b(n + 1) − b(n)

)∇+φ′(ρ(n)
)∇+ρ(n)

]
+ π

[
a(n)

((
a(n) − a(n + 1)

)
φ′′(ρ(n)

) + (
b(n + 1) − b(n)

)
φ′′(ρ(n + 1)

))
× ρ̂(n, n + 1)∇+φ′(ρ(n)

)∇+ρ(n)
]

≥ λπ
[
a(n)∇+φ′(ρ(n)

)∇+ρ(n)
]
,

where in the last step we employed (23). Using again the detailed-balance con-
dition (22) and the identity ∇−ρ(n) = −∇+ρ(n − 1), the right-hand side of (19)
becomes

λ

2
π

[ ∑
γ∈G

c(n, γ )∇γ φ′(ρ(n)
)∇γ ρ(n)

]

= λ

2
π

[
a(n)∇+φ′(ρ(n)

)∇+ρ(n)
] + λ

2
π

[
b(n)∇−φ′(ρ(n)

)∇−ρ(n)
]
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= λ

2
π

[
a(n)∇+φ′(ρ(n)

)∇+ρ(n)
] + λ

2
π

[
a(n)∇+φ′(ρ(n)

)∇+ρ(n)
]

= λπ
[
a(n)∇+φ′(ρ(n)

)∇+ρ(n)
]
.

Combining the above computations, inequality (19) follows. �

3.2. Zero-range processes. A zero-range process describes a stochastically in-
teracting particle system that may exhibit phase separation; see, for example, [17].
The system consists of finitely many particles moving in a finite number of sites
{1,2, . . . ,L}. We adopt the notation of [11]. Let ηx ∈ N denote the number of par-
ticles at x ∈ {1,2, . . . ,L}. Then the state space is S = N

L. The configuration is
changed by moving a particle from an (occupied) site x to another site y. Corre-
spondingly, the set G of allowed moves is given by self-mappings of S which are
of the form η �→ ηxy , where x, y ∈ {1,2, . . . ,L}, x �= y, and

ηxy
z =

⎧⎪⎪⎨⎪⎪⎩
ηz if z /∈ {x, y} or ηx = 0,

ηz − 1 for z = x and ηx > 0,

ηz + 1 for z = y and ηx > 0.

We denote by xy the mapping η �→ ηxy [such that xy(η) = ηxy ] and set ∇xyf (η) =
f (ηxy) − f (η) for η ∈ S.

The jump rates are functions cx : N → R+ for x ∈ {1,2, . . . ,L} satisfying
cx(0) = 0 and cx(n) > 0 for n > 0. They describe the rate at which a particle is
moved from site x to site y, with randomly chosen y, with uniform probability on
{1,2, . . . ,L}. Then the rate c(η, xy) for moving a particle from x to y is cx(ηx)/L,
and the generator of the Markov chain becomes

Lf (η) = 1

L

∑
x,y

cx(ηx)∇xyf (η),

where the sum extends to all x, y ∈ {1,2, . . . ,L}. The number of particles N =∑
1≤x≤L ηx is conserved. We define the probability measure πN on configurations

with N particles by

πN(η) = 1

ZN

L∏
x=1

ηx∏
k=1

1

cx(k)
,

where ZN > 0 the (finite) normalization constant. Since

(24) π
[
cx(ηx)g(η)

] = π
[
cy(ηy)g

(
ηyx)]

holds for all functions g : S → R, the Markov chain is reversible with respect to
πN . In the following, we fix the number of particles N and omit the subscript N .
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THEOREM 7. Let φ(s) = (sα − s)/(α − 1) − s + 1 and 1 < α < 2. Assume
that there exist constants 0 ≤ δ < 22−αc such that

(25) c ≤ cx(n + 1) − cx(n) ≤ c + δ for x ∈ {1,2, . . . ,G}, n ≥ 0.

Then the Beckner inequality (7) and the decay estimates (6) and (20) hold with
λ = αc − (3 + 2α−2 − α)δ.

REMARK 8. In the case of constant rates, the spectral gap is of the order of
L2/(L2 + N2) [30]. Note that our bound λ = 2(c − δ) for α = 2 does not depend
on either L or N . It was shown in [9] that the lower bound in (25) is sufficient
to derive the spectral-gap estimate λ ≥ c. In the homogeneous case δ = 0, we
have even λ = 2c. As pointed out in [11], a condition on the growth of the rates is
necessary for the modified logarithmic Sobolev inequality. Our bound λ = c−5δ/2
for α → 1 is the same as in [19], Theorem 4.3.

PROOF. We define as in [11], Section 4, the function

R(η, xy,uv) = 1

L2

{
cx(ηx)cu(ηu) for x �= u,

cx(ηx)cu(ηu − 1) for x = u,

which satisfies Assumption 1. It follows that �(η, xy,uv) = 0 if x �= u and

�(η, xy,uv) = L−2cx(ηx)
(
cx(ηx) − cx(ηx − 1)

)
if x = u,

and the left-hand side of (19) can be written as

π

[ ∑
γ,δ∈G

�(η, γ, δ)
(∇γ ρα−1(η)∇δρ(η) + (α − 1)∇γ ρ(η)∇δρ(η)ρα−2(η)

)]

= 1

L2 π

[ ∑
x,y,v

cx(ηx)
(
cx(ηx) − cx(ηx − 1)

)∇xvρ
α−1(η)∇xyρ(η)

]

+ α − 1

L2 π

[ ∑
x,y,v

cx(ηx)
(
cx(ηx) − cx(ηx − 1)

)∇xyρ(η)∇xvρ(η)ρα−2(η)

]
= C1 + C2.

For future reference, we denote the right-hand side of (19) (without the constant λ)
by

A = 1

2L
π

[∑
x,y

cx(ηx)∇xyρ
α−1(η)∇xyρ(η)

]
.

The estimate of the term C1 is similar to B̃1(ρ,ψ) in the proof of Theo-
rem 4.3 in [19] [take ψ(η) = ρα−1(η)]. First, we interchange y and v and then
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use ∇xvρ
α−1(η) = ∇xyρ

α−1(η) + ∇yvρ
α−1(ηxy) as well as the lower bound

cx(ηx) − cx(ηx − 1) ≥ c:

C1 = 1

L2 π

[ ∑
x,y,v

cx(ηx)
(
cx(ηx) − cx(ηx − 1)

)
× (∇xyρ

α−1(η) + ∇yvρ
α−1(

ηxy))∇xyρ(η)

]
(26)

≥ 2cA + 1

L2 π

[ ∑
x,y,v

cx(ηx)
(
cx(ηx) − cx(ηx − 1)

)∇yvρ
α−1(

ηxy)∇xyρ(η)

]
.

Note that the term involving ∇xyρ
α−1(η) does not depend on v, so the sum over x,

y, v equals L times the sum over x, y. Employing the reversibility condition (24)
and exchanging x and y in the second term yields

C1 ≥ 2cA

+ 1

L2 π

[ ∑
x,y,v

cy(ηy)
(
cx

(
ηyx

x

) − cx

(
ηyx

x − 1
))∇yvρ

α−1(η)∇xyρ
(
ηyx)]

(27)

= 2cA − 1

L2 π

[ ∑
x,y,v

cx(ηx)
(
cy(ηy + 1) − cy(ηy)

)∇xvρ
α−1(η)∇xyρ(η)

]
.

We average (26) and (27) and employ again the identity ∇xyρ
α−1(η) +

∇yvρ
α−1(ηxy) = ∇xvρ

α−1(η):

C1 ≥ cA + 1

2L2 π

[ ∑
x,y,v

cx(ηx)
((

cx(ηx) − cx(ηx − 1)
) − (

cy(ηy + 1) − cy(ηy)
))

× ∇xvρ
α−1(η)∇xyρ(η)

]
.

Setting C0 := (cx(ηx) − cx(ηx − 1)) − (cy(ηy + 1) − cy(ηy)), the bounds (25)
imply that |C0| ≤ δ. Hence, by Young’s inequality,

C0∇xvρ
α−1(η)∇xyρ(η)

= C0ρ̂
(
η,ηxy)∇xvρ

α−1(η)∇xyρ
α−1(η)

≥ −1

2
|C0|ρ̂(

η,ηxy)((∇xyρ
α−1(η)

)2 + (∇xvρ
α−1(η)

)2)
≥ −δ

2

(∇xyρ(η)∇xyρ
α−1(η) + (∇xvρ

α−1(η)
)2

ρ̂
(
η,ηxy))

.

This yields

(28) C1 ≥
(
c − δ

2

)
A − δ

4L2 π

[ ∑
x,y,v

cx(ηx)
(∇xvρ

α−1(η)
)2

ρ̂
(
η,ηxy)]

.



DISCRETE BECKNER INEQUALITIES 2253

Next, we rewrite B = (C2 −C1)/2. By definition (13) of ρ̂1 and the reversibility
condition (24),

B = 1

2L2 π

[ ∑
x,y,v

cx(ηx)
(
cx(ηx) − cx(ηx − 1)

)
× (∇xyρ

α−1(η)
)2

ρ̂1
(
η,ηxy)∇xvρ(η)

]
= 1

2L2 π

[ ∑
x,y,v

cy(ηy)
(
cx(ηx + 1) − cx(ηx)

)
× (∇xyρ

α−1(
ηyx))2

ρ̂1
(
ηyx, η

)∇xvρ
(
ηyx)]

= 1

2L2 π

[ ∑
x,y,v

cx(ηx)
(
cy(ηy + 1) − cy(ηy)

)
× (∇xyρ

α−1(η)
)2

ρ̂2
(
η,ηxy)(

ρ
(
ηxv) − ρ

(
ηxy))]

.

In the last step, we interchanged x and y and used the identity ρ̂1(η
xy, η) =

ρ̂2(η, ηxy). Averaging the expressions for B involving ρ̂1 and ρ̂2 gives

B = 1

4L2 π

[ ∑
x,y,v

cx(ηx)
(∇xyρ

α−1(η)
)2

ρ
(
ηxv)

× ((
cx(ηx) − cx(ηx − 1)

)
ρ̂1

(
η,ηxy) + (

cy(ηy + 1) − cy(ηy)
)
ρ̂2

(
η,ηxy))]

− 1

4L2 π

[ ∑
x,y,v

cx(ηx)
(∇xyρ

α−1(η)
)2

× ((
cx(ηx) − cx(ηx − 1)

)
ρ̂1

(
η,ηxy)

ρ(η)

+ (
cy(ηy + 1) − cy(ηy)

)
ρ̂2

(
η,ηxy)

ρ
(
ηxy))]

= B1 + B2.

The term B1 is estimated by using condition (25) (note that ρ̂1, ρ̂2 ≥ 0 since θ is
nondecreasing in both variables) and then employing the assumption c ≥ 2α−2δ

and interchanging y and v:

B1 ≥ c

4L2 π

[ ∑
x,y,v

cx(ηx)
(∇xyρ

α−1(η)
)2

ρ
(
ηxv)(

ρ̂1
(
η,ηxy) + ρ̂2

(
η,ηxy))]

≥ 2α−2δ

4L2 π

[ ∑
x,y,v

cx(ηx)
(∇xvρ

α−1(η)
)2

ρ
(
ηxy)(

ρ̂1
(
η,ηxv) + ρ̂2

(
η,ηxv))]

= B3.
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We employ condition (25) once more and Lemma 17(i) (see the Appendix) to
estimate B2:

B2 ≥ −c + δ

4L2 π

[ ∑
x,y,v

cx(ηx)
(∇xyρ

α−1(η)
)2(

ρ̂1
(
η,ηxy)

ρ(η) + ρ̂2
(
η,ηxy)

ρ
(
ηxy))]

= −c + δ

4L2 (2 − α)π

[ ∑
x,y,v

cx(ηx)
(∇xyρ

α−1(η)
)2

ρ̂
(
η,ηxy)]

= −1

2
(2 − α)(c + δ)A.

Consequently,

(29) B ≥ −1

2
(2 − α)(c + δ)A + B3.

We add (28) and (29):

C1 + B ≥
(
c − δ

2
− 1

2
(2 − α)(c + δ)

)
A + B4,

(30)

where B4 = B3 − δ

4L2 π

[ ∑
x,y,v

cx(ηx)
(∇xvρ

α−1(η)
)2

ρ̂
(
η,ηxy)]

.

We wish to estimate B4 from below by a multiple of A. To this end, we employ
the reversibility and interchange x and v in the second term in B4:

π

[ ∑
x,y,v

cx(ηx)
(∇xvρ

α−1(η)
)2

ρ̂
(
η,ηxy)]

= π

[ ∑
x,y,v

cv(ηv)
(∇xvρ

α−1(
ηvx))2

ρ̂
(
ηvx, ηvy)]

= π

[ ∑
x,y,v

cx(ηx)
(∇xvρ

α−1(η)
)2

ρ̂
(
ηxv, ηxy)]

.

Then, averaging those two expressions for B4 that involve ρ̂(η, ηxy) and ρ̂(ηxv,

ηxy),

B4 = δ

8L2 π

[ ∑
x,y,v

cx(ηx)
(∇xvρ

α−1(η)
)2(

2α−1ρ
(
ηxy))(

ρ̂1
(
η,ηxv) + ρ̂2

(
η,ηxv))]

− δ

8L2 π

[ ∑
x,y,v

cx(ηx)
(∇xvρ

α−1(η)
)2(

ρ̂
(
η,ηxy) + ρ̂

(
ηxv, ηxy))]

.

We employ Lemma 17(ii) in the form

2α−1ρ
(
ηxy)

)
(
ρ̂1

(
η,ηxv) + ρ̂2

(
η,ηxv)) − (

ρ̂
(
η,ηxy) + ρ̂

(
ηxv, ηxy))

≥ −2α−1ρ̂
(
η,ηxv)

,
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which leads to

B4 ≥ −2α−1δ

8L2 π

[ ∑
x,y,v

cx(ηx)
(∇xvρ

α−1(η)
)2

ρ̂
(
η,ηxv)] = −2α−1δ

4
A.

Hence, we infer from (30) that

C1 + B ≥
(
c − δ

2
− 1

2
(2 − α)(c + δ) − δ

4
2α−1

)
A.

Finally, by definition of B ,

C1 + C2 = 2(C1 + B) ≥ (
2c − δ − (2 − α)(c + δ) − 2α−2δ

)
A = λA.

This shows (19), and an application of Corollary 4 completes the proof. �

3.3. Bernoulli–Laplace models. We consider again a system of particles mov-
ing in a finite set of sizes {1,2, . . . ,L} but in contrast to the previous subsection,
we assume that at most one particle per site is allowed, that is, S = {0,1}L. The set
of allowed moves is G = {xy : x, y ∈ {1,2, . . . ,L}, x �= y}, and the moves are of
the form xy : η �→ ηxy for η ∈ S, where ηxy = η if ηx(1 − ηy) = 0 and otherwise,

ηxy
z =

⎧⎪⎪⎨⎪⎪⎩
ηz if z /∈ {x, y},
0 for z = x,

1 for z = y.

We associate to each site x a Poisson clock of constant intensity λx > 0. When
the clock of site x rings, we choose randomly a site y. If ηx = 1 and ηy = 0
[i.e., if ηx(1 − ηy) = 1], the particle at x moves to y; otherwise [i.e., if ηx(1 −
ηy) = 0], nothing happens. Therefore, the transition rates are given by c(η, xy) =
(λx/L)ηx(1 − ηy), and the generator reads as

Lf (η) = 1

L

∑
xy∈G

λxηx(1 − ηy)∇xyf (η),

where, as in the previous subsection, ∇xyf (η) = f (ηxy) − f (η).
Let N ≤ L be the number of particles in the system. There exists a unique

stationary distribution πN , which is given by [11], Section 5

πN(η) = 1

ZL,N

L∏
x=1

(
1

1 + λx

)ηx
(

λx

1 + λx

)1−ηx

,

where ZL,N > 0 is a normalization constant. In the following, we write π instead
of πN , as the number of particles is fixed. Reversibility holds for π , and it reads as

(31) π

[ ∑
xy∈G

c(η, xy)F (η, xy)

]
= π

[ ∑
xy∈G

c(η, xy)F
(
ηxy, yx

)]
for arbitrary functions F : S × G →R.
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THEOREM 9. Let φ(s) = (sα − s)/(α − 1) − s + 1 and 1 < α < 2. Assume
that there exist constants 0 ≤ δ ≤ 22−αc such that

(32) c ≤ λx ≤ c + δ for x ∈ {1,2, . . . ,L}.
Then the Beckner inequality (7) and the decay estimates (6) and (20) hold with
λ = αc − (5

2 + 2α−3 − α)δ.

REMARK 10. For the modified log-Sobolev inequality, the bound in [11] reads
as λ = c − δ, and the bound in [19] equals λ = c − 7δ/4 (for δ < 4c/7). Our result
coincides with that in [19] for α → 1. In [22], the bound 1 ≤ λ ≤ 2 was proved in
case c = 1, δ = 0. Further bounds, depending on L and N , were collected in [6],
Examples 3.11.

Concerning the Beckner inequality, Bobkov and Tetali [6], Section 4, derived
for the homogeneous case c = L/(N(L − N)) and δ = 0 the constant λ ≥ α(L +
2)/(2N(L − N)). Our constant λ = (αL − 2α + 4)/(N(L − N)) (see the proof
below) is larger for L > 2 and all 1 < α ≤ 2.

PROOF. We need to verify the condition in Corollary 4. As in [11], we choose

R(η, xy,uv) = L−2λxλuηx(1 − ηy)ηu(1 − ηv) for
∣∣{x, y,u, v}∣∣ = 4

and R(η, xy,uv) = 0 otherwise. The notation |{x, y,u, v}| = 4 means that the four
variables are pairwise different. Then �(η, xy,uv) = 0 if |{x, y,u, v}| = 4 and

�(η, xy,uv) = L−2λxλuηx(1 − ηy)ηu(1 − ηv)

otherwise. The sum of �(η, γ, δ) over γ , δ ∈ G in the left-hand side of (19) van-
ishes if (x, y,u, v) are pairwise different. Therefore, the sum consists of three
terms: (γ, δ) = (xy, xy), (γ, δ) = (xy,uy), and (γ, δ) = (xy, xv), and it follows
that

π

[ ∑
γ,δ∈G

�(η, γ, δ)
(∇γ ρα−1(η)∇δρ(η) + (α − 1)∇γ ρ(η)∇δρ(η)ρα−2(η)

)]

= 1

L2 π

[∑
x,y

λ2
x∇xyρ

α−1(η)∇xyρ(η) + ∑
|{x,y,u}|=3

λxλu∇xyρ
α−1(η)∇uyρ(η)

+ ∑
|{x,y,v}|=3

λ2
x∇xyρ

α−1(η)∇xvρ(η)

]

+ α − 1

L2 π

[∑
x,y

λ2
x∇xyρ(η)∇xyρ(η)ρα−2(η)

+ ∑
|{x,y,u}|=3

λxλu∇xyρ(η)∇uyρ(η)ρα−2(η)
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+ ∑
|{x,y,v}|=3

λ2
x∇xyρ(η)∇xvρ(η)ρα−2(η)

]
= C1 + C2.

Observe that the right-hand side of (19) (without the constant λ) reads as

A = 1

2
π

[ ∑
γ∈G

c(η, γ )∇γ ρα−1(η)∇γ ρ(η)

]
(33)

= 1

2L
π

[ ∑
xy∈G

λx∇xyρ
α−1(η)∇xyρ(η)

]
,

since ∇xyρ(η) = 0 whenever ηx(1 − ηy) = 0, so the factor ηx(1 − ηy) can be
omitted.

As in the previous subsection, we estimate B = (C2 − C1)/2, recalling defini-
tion (13) of ρ̂1:

B = 1

2L2 π

[∑
x,y

λ2
x

(∇xyρ
α−1(η)

)2
ρ̂1

(
η,ηxy)∇xyρ(η)

]

+ 1

2L2 π

[ ∑
|{x,y,u}|=3

λxλu

(∇xyρ
α−1(η)

)2
ρ̂1

(
η,ηxy)∇uyρ(η)

]
(34)

+ 1

2L2 π

[ ∑
|{x,y,v}|=3

λ2
x

(∇xyρ
α−1(η)

)2
ρ̂1

(
η,ηxy)∇xvρ(η)

]
= B1 + B2 + B3.

The estimations of B1, B2, and B3 are the same as in the proof of Theorem 4.6
in [19] after taking ψ(η) = ρα−1(η) in B̃2(ρ,ψ). The key point is the use of
Lemma 17(iii). In contrast to [19], the factor 2 − α appears. Therefore, follow-
ing [19] and taking into account (33), we conclude that

B1 ≥ − δ

2L
(2 − α)A,

B2 ≥ − 1

2L
(N − 1)(c + δ)(2 − α)A,

(35)

B3 ≥ c

4L2 π

[ ∑
|{x,y,v}|=3

λxηx(1 − ηy)(1 − ηv)
(∇xyρ

α−1(η)
)2

ρ
(
ηxv)

× (
ρ̂1

(
η,ηxy) + ρ̂2

(
η,ηxy))] − 1

2L
(L − N − 1)(c + δ)(2 − α)A.

Since we assumed that δ ≤ 22−αc, we can estimate the factor in the first term of
B3 by c/(4L2) ≥ 2α−4δ/L2.
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Next, we estimate C1. This expression consists of three terms. We interchange
x and u in the second term and y and v in the third term. Then C1 = B4 +B5 +B6,
where

B4 = 1

L2 π

[∑
x,y

λ2
x∇xyρ(η)∇xyρ

α−1(η)

]
,

B5 = 1

L2 π

[ ∑
|{x,y,u}|=3

λxλu∇xyρ(η)∇uyρ
α−1(η)

]
,

B6 = 1

L2 π

[ ∑
|{x,y,v}|=3

λ2
x∇xyρ(η)∇xvρ

α−1(η)

]
.

By condition (32), B4 ≥ (2c/L)A. The term B6 is estimated by employing the
reversibility (31), averaging, and using (32), similar to the estimate of J6 in the
proof of Theorem 4.6 in [19]. The result is

B6 ≥ 1

2L
(L − N − 1)(2c − δ)A − B7,

(36)

where B7 = δ

4L2 π

[ ∑
|{x,y,v}|=3

λxηx(1 − ηy)(1 − ηv)
(∇xvρ

α−1(η)
)2

ρ̂
(
η,ηxy)]

.

Similarly, replacing ψ(η) by ρα−1(η) in J5 in the proof of Theorem 4.6 in [19],
we have B5 ≥ (c/L)(N − 1)A.

It remains to rewrite B7. For this, we employ the reversibility, average the orig-
inal and the resulting expressions, and interchange y and v. This yields (see the
computation of J7 in [19])

B7 = δ

8L2 π

[ ∑
|{x,y,v}|=3

λxηx(1 − ηy)(1 − ηv)

× (∇xyρ
α−1(η)

)2(
ρ̂

(
ηxv, ηxy) + ρ̂

(
η,ηxv))]

.

Combining estimate (35) for B3 and (36), together with the above estimate for B7
and applying Lemma 17(ii), we infer that

B3 + B6

≥ 1

2L
(L − N − 1)

(
αc − (3 − α)δ

)
A

+ δ

8L2 π

[ ∑
|{x,y,v}|=3

λxηx(1 − ηy)(1 − ηv)
(∇xyρ

α−1(η)
)2

× (
2α−1ρ

(
ηxv)(

ρ̂1
(
η,ηxy) + ρ̂2

(
η,ηxy)) − (

ρ̂
(
ηxv, ηxy) + ρ̂

(
ηxv, η

)))]
≥ 1

4L
(L − N − 1)

(
2αc − 2(3 − α)δ − 2α−1δ

)
A.
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It remains to summarize the estimates:

C1 + C2 = 2B + 2C1 = 2(B1 + B2) + 2(B4 + B5) + 2(B3 + B6)

≥ −(2 − α)

L

(
δ + (N − 1)(c + δ)

)
A + 2

L

(
2c + (N − 1)c

)
A

+ 1

2L
(L − N − 1)

(
2αc − 2(3 − α)δ − 2α−1δ

)
A

= 1

L

(
(αL + 4 − 2α)c

+ ((
α − 2α−2 − 3

)
L + (

1 + 2α−2)
N + (

3 + 2α−2 − α
))

δ
)
A.

Arguing as in [19], we may suppose that N ≥ L/2. Because of 4 − 2α ≥ 0, (1 +
2α−2)N/L ≥ (1 + 2α−2)/2, and 3 + 2α−2 − α ≥ 0, we infer that

C1 + C2 ≥
(

1

L
(αL + 4 − 2α)c +

(
α − 5

2
− 2α−3

)
δ

)
A

≥
(
αc −

(
5

2
+ 2α−3 − α

)
δ

)
A

which completes the proof. �

3.4. Random transposition model. The random transposition model is a ran-
dom walk on the group of permutations. Let Sn be the set of permutations on
{1,2, . . . , n} and Tn the set of all transpositions in Sn. Given 1 ≤ i, j ≤ n, we de-
note by τij ∈ Tn the transposition that interchanges i and j , that is, τij (i) = j ,
τij (j) = i, and τij (k) = k for k �= i, j . The composition of two permutations σ1,
σ2 ∈ Sn is denoted by σ1σ2.

We define a graph structure on the group Sn by saying that two permutations are
neighbors if they differ by precisely one transposition. Thus every vertex σ ∈ Sn

has
(n
2

) = n(n − 1)/2 neighbors given by {τij σ }1≤i,j≤n, and the set of edges is
En = {{σ, τijσ } : 1 ≤ i, j ≤ n, σ ∈ Sn}. We write σ ↔ τσ if {σ, τσ } ∈ En. The
random walk on (Sn,En) is then defined by the transition rates c(σ, τ ) = 2/(n(n−
1)) if σ ↔ τσ and c(σ, τ ) = 0 otherwise. The generator of the Markov chain reads
as

Lf (σ) = 2

n(n − 1)

∑
τ∈Tn

∇τ f (σ ),

where ∇τ f (σ ) = f (τ ◦ σ) − f (σ). The uniform measure π(σ) = 1/n! for all
σ ∈ Sn is reversible for the above transition rates c(σ, τ ). To simplify the notation,
we write ∇ij = ∇τ if τ = τij , σij = τij ◦ σ and σijk = τij ◦ τjk ◦ σ .

THEOREM 11. Let φ(s) = (sα − s)/(α −1)− s +1 and 1 < α < 2. For n ≥ 2,
the Beckner inequality (7) and the decay estimates (6) and (20) hold with constant
λ = 8/(n(n − 1)).
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REMARK 12. Diaconis and Saloff-Coste [18], Section 4.3, report that the
logarithmic Sobolev constant satisfies the bounds 1/(3n logn) ≤ λ ≤ 1/(n − 1);
also see [22], Theorem 1. Our bound is worse by a factor of 1/n. The bound
λ ≥ α(n + 2)/(n(n − 1)) was derived in [6], Section 4. It is usually better than our
bound λ = 8/(n(n− 1)); for very small numbers of n [namely n < (8/α)− 2], our
result is superior.

PROOF. The right-hand side of (19) (except the factor λ) can be written as

A = 1

n(n − 1)
π

[ ∑
τ∈Tn

∇τ ρ
α−1(σ )∇τ ρ(σ )

]
(37)

= 1

2n(n − 1)
π

[∑
i �=j

∇ij ρ
α−1(σ )∇ij ρ(σ )

]
,

where the factor 1/2 takes into account that every transposition (i, j) is counted
twice. As in [19], Section 4.4, we define R(σ, (i, j), (k, �)) = 4/(n2(n − 1)2) if
|{i, j, k, �}| = 4 and R(σ, (i, j), (k, �)) = 0, otherwise. Then �(σ, (i, j), (k, �)) =
0 if |{i, j, k, �}| = 4 and

�
(
σ, (i, j), (k, �)

) = 4

n2(n − 1)2

otherwise. The left-hand side of (19) then becomes

π

[∑
γ,δ

�(σ, γ, δ)(∇γ ρα−1(σ )∇δρ(σ ) + (α − 1)∇γ ρ(σ )∇δρ(σ )ρα−2(σ )

]

= 2

n2(n − 1)2 π

[∑
i �=j

∇ij ρ
α−1(σ )∇ij ρ(σ )

+ 2
∑

|{i,j,k}|=3

∇ij ρ(σ )∇ikρ
α−1(σ )

]

+ 2(α − 1)

n2(n − 1)2 π

[∑
i �=j

∇ij ρ(σ )∇ij ρ(σ )ρα−2(σ )

+ 2
∑

|{i,j,k}|=3

∇ij ρ(σ )∇ikρ(σ )ρα−2(σ )

]
= C1 + C2.

The expression C1 can be estimated exactly as in the proof of Theorem 4.8 in [19]
using the reversibility and averaging [see the estimate for B̃1(ρ,ψ) for ψ = ρα−1]:

C1 ≥ 2

n − 1
A − 1

n2(n − 1)2 π

[ ∑
|{i,j,k}|=3

(
ρα−1(σij ) − ρα−1(σ )

)2
ρ̂(σik, σijk)

]
.
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We estimate now B = (C2 − C1)/2:

B = 1

n2(n − 1)2 π

[∑
i �=j

(∇ij ρ
α−1(σ )

)2∇ij ρ(σ )ρ̂1(σ, σij )

+ 2
∑

|{i,j,k}|=3

(∇ikρ
α−1(σ )

)2∇ij ρ(σ )ρ̂1(σ, σik)

]
.

Arguing as for B̃2(ρ,ψ) with ψ = ρα−1 in the proof of Theorem 4.8 in [19], it
follows that

B = 1

n2(n − 1)2 π

×
[ ∑
|{i,j,k}|=3

(∇ij ρ
α−1(σ )

)2(
ρ(σik)ρ̂1(σ, σij ) + ρ(σijk)ρ̂2(σ, σij )

)]

− 1

n2(n − 1)2 π

×
[ ∑
|{i,j,k}|=3

(∇ij ρ
α−1(σ )

)2(
ρ(σ)ρ̂1(σ, σij ) + ρ(σij )ρ̂2(σ, σij )

)]

+ 1

2n2(n − 1)2 π

[∑
i �=j

(∇ij ρ
α−1(σ )

)2∇ij ρ(σ )
(
ρ̂1(σ, σij ) − ρ̂2(σ, σij )

)]
= B1 + B2 + B3.

Property (iii) of Lemma 17 (applied with λ1 = λ2 = 1) implies that B3 ≥ 0. Com-
bining B1 and B2, we can apply Lemma 15 with s = ρ(σ), t = ρ(σij ), u = ρ(σik),
and v = ρ(σijk), leading to

B ≥ B1 + B2 ≥ 1

n2(n − 1)2 π

[ ∑
|{i,j,k}|=3

(∇ij ρ
α−1(σ )

)2(
ρ̂(σik, σijk) − ρ̂(σ, σij )

)]

= 1

n2(n − 1)2 π

[ ∑
|{i,j,k}|=3

(∇ij ρ
α−1(σ )

)2
ρ̂(σik, σijk)

]
− 2(n − 2)

n(n − 1)
A.

Adding the estimations for C1 and B , one term cancels and we end up with

C1 + C2 = 2(C1 + B) ≥ 2
(

2

n − 1
− 2(n − 2)

n(n − 1)

)
A = 8

n(n − 1)
A.

This completes the proof. �

4. Application: Finite-volume discretization of a Fokker–Planck equation.
The Bakry–Emery method has been originally applied to Markov diffusion op-
erators or associated Fokker–Planck equations, and the exponential decay for the



2262 A. JÜNGEL AND W. YUE

probability densities with an explicit decay rate was shown. In numerical anal-
ysis, the aim is to prove this equilibration property for numerical discretizations
of Fokker–Planck equations. As these discretizations can, at least in some cases,
be interpreted as a Markov chain, one may apply Markov chain theory to achieve
this goal. This was done by Mielke [28], Section 5.3, to prove exponential decay
of the logarithmic entropy for a finite-volume approximation of a Fokker–Planck
equation. The proof is based on diagonal dominance properties of the matrices
appearing in (2). Our aim is to extend the exponential decay to power-type en-
tropies by combining Mielkes results and the estimate for birth-death processes
from Theorem 5. As a by-product, this provides an alternative proof for the case
α → 1 without using matrix algebra.

More specifically, we consider a finite-volume approximation of the one-
dimensional Fokker–Planck equation:

(38) ∂tu = ∂x(∂xu + u∂xV ), t > 0, u(·,0) = u0 in R,

where u(x, t) describes some probability density and V (x) is a given potential
satisfying e−V ∈ L1(R). It holds that

∫
R

u(x, t) dx = ∫
R

u0(x) dx for t > 0, that
is, mass is conserved. We introduce the uniform grid xn = n/N , n ∈ Z, where
N ∈ N. The quantity h = 1/N is the grid size. The Fokker–Planck equation has
the unique steady state π(x) = Ze−V (x), where Z > 0 is a normalization constant.
The symmetric form of (38),

∂tu = ∂x

(
π∂x

(
u

π

))
,

motivates the following numerical scheme. We integrate this equation over
[xn−1, xn]:

d

dt

1

h

∫ xn

xn−1

u(x, t) dx = 1

h

[
π∂x

(
u(·, t)

π

)]xn

xn−1

.

We choose un to approximate
∫ xn
xn−1

u(·, x) dx/h, πn = ∫ xn
xn−1

π(x)dx/h, and the

numerical flux qn to approximate h−1[π∂x(u/π)](xn). We choose as in [28]

qn = κn

h2

(
un+1

πn+1
− un

πn

)
, κn = (πnπn+1)

1/2.

Setting ρn = un/πn, the numerical scheme reads as

∂tρn = 1

πn

(qn − qn−1) = κn

h2πn

(ρn+1 − ρn) + κn−1

h2πn

(ρn−1 − ρn)

= a(n)∇+ρn + b(n)∇−ρn,

where we employed the notation of Section 3.1 and a(n) = κn/(h
2πn), b(n) =

κn−1/(h
2πn). The right-hand side can be interpreted as the generator of a birth-

death process on Z. The initial datum is given by ρn(0) = un(0)/πn, where
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un(0) = ∫ xn
xn−1

u(x,0) dx/h. According to [11], Section 3.5, the results of Theo-
rem 5 still hold in that case, and the assumption b(0) = 0 is clearly not needed.
The entropy is given by

Entφα
π (ρ) = ∑

n∈Z
πn

(
ρα

n − ρn

α − 1
− ρn + 1

)

= 1

α − 1

∑
n∈Z

πn

(
ρα

n − 1
)
,

where ρ = (ρn)n∈Z, 1 < α ≤ 2, since conservation of mass implies that
∑

n πnρn =∑
n πn.

THEOREM 13. Let V ∈ C2([0,1]) and V ′′(x) ≥ λ > 0 for x ∈ [0,1]. Then

Entφα
π

(
ρ(t)

) ≤ Entφα
π

(
ρ(0)

)
e−2αλht , n ∈ N,

where λh = 2h−2�(h2λ/8) and

�
(
s2) = 3erf(s) − erf(3s)

2erf(s)
with erf(s) = 2√

p

∫ s

0
e−t2

dt

and p = 3.14159 . . . is the number pi (to avoid confusion with the invariant mea-
sure π ). Moreover, the following discrete Beckner inequality holds:

2λh

∑
n∈Z

πn

(
ρα

n − ρn

α − 1
− ρn + 1

)

≤ 1

α − 1

∑
n∈Z

√
πn+1πn

h2

(
ρα−1

n+1 − ρα−1
n

)
(ρn+1 − ρn).

REMARK 14. We remark that λh ↗ λ as h → 0 [28], Corollary 5.5. Thus, the
decay rate is asymptotically sharp. A modified log-Sobolev inequality with con-
stant λ for a finite-difference approximation was proved in [25] for λ-log-concave
potentials by translating the Bakry–Emery condition to the discrete case.

PROOF. Note that a(n) and b(n) satisfy the detailed-balance condition (22).
The proof is a consequence of Theorem 5 and the results of Mielke [28], Section 5.
In particular, he has shown that (1 − λh)πn ≥ √

πn−1πn+1. Consequently,

a(n) − a(n + 1) =
√

πn+1

πn

−
√

πn+2

πn+1
≥ λh

√
πn+1

πn

,

b(n + 1) − b(n) =
√

πn

πn+1
−

√
πn−1

πn

≥ λh

√
πn

πn+1
.
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Using Lemma 18 and the relation between the arithmetic and geometric mean, it
follows that

a(n) − a(n + 1) + b(n + 1) − b(n) + �
(
a(n) − a(n + 1), b(n + 1) − b(n)

)
≥ α

(
a(n) − a(n + 1) + b(n + 1) − b(n)

)
≥ 2α

√(
a(n) − a(n + 1)

)(
b(n + 1) − b(n)

) ≥ 2αλh.

Applying Theorem 5 completes the proof. �

APPENDIX: PROPERTIES OF THE MEAN FUNCTION

We show some properties for

(39) θ(s, t) = s − t

φ′(s) − φ′(t)
, 0 < s, t < ∞, s �= t,

with θ(s, s) = 1/φ′′(s). This function is symmetric and, if φ is convex, positive.
For the following lemma, we introduce for 0 < s, t < ∞,

Y(s, t) = (
φ′)−1(

(1 − m)φ′(s) + mφ′(t)
)
, 0 ≤ m ≤ 1.

We set Y1 = ∂Y/∂s, Y2 = ∂Y/∂t , Y11 = ∂2Y/∂s2, etc.

LEMMA 15 (Concavity of θ ). Let φ ∈ C4((0,∞); (0,∞)) be convex such that
φ(1) = 0, and 1/φ′′ is concave on (0,∞). If φ(3)(s) ≤ 0 for s > 0, the function θ ,
defined in (39), is nondecreasing in s and in t . Furthermore, if additionally

(40) Y11 ≤ 0, Y22 ≤ 0, Y11Y22 ≥ Y 2
12 in (0,∞)2,m ∈ (0,1),

then θ is concave. In this situation, it holds that for all u, v, s, t > 0,

(41) θ(u, v) − θ(s, t) ≤ ∂1θ(s, t)(u − s) + ∂2θ(s, t)(v − t).

PROOF. The function θ is nondecreasing in s if and only if ∂1θ(s, t) ≥ 0. Since

∂1θ(s, t) = φ′(s) − φ′(t) − (s − t)φ′′(s)
(φ′(s) − φ′(t))2 ,

it is sufficient to prove the nonnegativity of G(s, t) = φ′(s)−φ′(t)− (s − t)φ′′(s).
By assumption, the derivative ∂1G(s, t) = −(s − t)φ(3)(s) is nonpositive for s ∈
(0, t) and nonnegative otherwise. Then G(s, t) ≥ G(t, t) = 0, and the conclusion
follows. The monotonicity in the second variable is shown analogously.

For the proof of the concavity of θ , we observe that

θ(s, t) =
∫ 1

0

((
φ′)−1)′(

(1 − m)φ′(s) + mφ′(t)
)
dm.
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Thus, the concavity of θ is equivalent to that one of

F(s, t) = ((
φ′)−1)′(

(1 − m)φ′(s) + mφ′(t)
) = 1

φ′′(Y (s, t))

for any m ∈ (0,1). Let 0 < s, t < ∞ and 0 < m < 1. We claim that if φ(3) ≤ 0
and (40) holds, then F is concave. For this, it is sufficient to prove that F11 =
∂2F/∂s2 ≤ 0, F22 = ∂2F/∂t2 ≤ 0, and the determinant of the Hessian of F is
nonnegative. Because of (40) and φ′′(Y ) ≥ 0, φ(3)(Y ) ≤ 0, and (1/φ′′)′′(Y ) ≤ 0,
we obtain

F11 = −φ(4)(Y )

φ′′(Y )2 Y 2
1 + 2

φ(3)(Y )2

φ′′(Y )3 Y 2
1 − φ(3)(Y )

φ′′(Y )2 Y11

=
(

1

φ′′
)′′

(Y )Y 2
1 − φ(3)(Y )

φ′′(Y )2 Y11 ≤ 0,

F22 =
(

1

φ′′
)′′

(Y )Y 2
2 − φ(3)(Y )

φ′′(Y )2 Y22 ≤ 0.

Then, using the assumptions and

F12 = F21 = −φ(4)(Y )

φ′′(Y )2 Y1Y2 + 2
φ(3)(Y )2

φ′′(Y )3 Y1Y2 − φ(3)(Y )

φ′′(Y )2 Y12

=
(

1

φ′′
)′′

(Y )Y1Y2 − φ(3)(Y )

φ′′(Y )2 Y12,

Y1 = (1 − m)
φ′′(s)
φ′′(Y )

≥ 0, Y2 = m
φ′′(t)
φ′′(Y )

≥ 0,

Y12 = −m(1 − m)
φ′′(s)φ′′(t)φ(3)(Y )

φ′′(Y )3 ≥ 0,

it follows that

F11F22 − F 2
12 =

(
φ(3)(Y )

φ′′(Y )2

)2(
Y11Y22 − Y 2

12
)

+ φ(3)(Y )

φ′′(Y )2

(
1

φ′′
)′′

(Y )
(
2Y1Y2Y12 − Y 2

1 Y22 − Y 2
2 Y11

) ≥ 0.

Finally, inequality (41) follows after Taylor expansion and taking into account the
concavity of θ . �

We claim that the assumptions of Lemma 15 are satisfied for the power mean

θα(s, t) = α − 1

α

s − t

sα−1 − tα−1 , 1 < α < 2.
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LEMMA 16. Let 1 < α < 2. The function θα is C∞, symmetric, positive, in-
creasing and concave on (0,∞)2. Furthermore, θα and its first partial deriva-
tives are positive homogenous, that is, θα(λs, λt) = λ2−αθα(s, t), ∂1θα(λs, λt) =
λ1−α∂1θα(s, t), and ∂2θα(λs, λt) = λ1−α∂2θα(s, t) for all s, t > 0 and λ > 0.

PROOF. The regularity, symmetry, and positivity of θα follow from elementary
computations. The monotonicity follows from φ

(3)
α (s) = α(α − 2)sα−3 < 0 for

s > 0. To show that θα is concave, we verify the conditions of Lemma 15. We
compute

Y(s, t) = (
(1 − m)sα−1 + mtα−1)1/(α−1)

,

Y11(s, t) = −m(1 − m)(2 − α)(st)α−3Y(s, t)3−2αt2,

Y22(s, t) = −m(1 − m)(2 − α)(st)α−3Y(s, t)3−2αs2,

Y12(s, t) = m(1 − m)(2 − α)(st)α−3Y(s, t)3−2αst,

and it follows that Y11 ≤ 0, Y22 ≤ 0, and Y11Y22 − Y 2
12 = 0. �

We prove more properties of θα , needed in Sections 3.2–3.4.

LEMMA 17 (Properties of θα). Let 1 < α < 2. The function θα satisfies for all
r , s, t > 0 and λ1, λ2 > 0:

(i) s∂1θα(s, t) + t∂2θα(s, t) = (2 − α)θα(s, t);
(ii) 2α−1r(∂1θα(s, t) + ∂2θα(s, t)) − (θα(r, s) + θα(r, t)) ≥ −2α−1θα(s, t);

(iii) λ1∂1θα(s, t)(s − t) − λ2∂2θα(s, t)(s − t) ≤ (2 − α)|λ1 − λ2|θα(s, t).

PROOF. Identity (i) can be obtained by an elementary computation. The proof
of (ii) is similar to the proof of Lemma A.2 in [19]. Indeed, setting u = s/r and
v = t/r and using the homogeneity properties of θα and its first partial derivatives,
inequality (ii) is equivalent to

2α−1(
∂1θα(u, v) + ∂2θα(u, v)

) − (
θα(1, u) + θα(1, v)

) ≥ −2α−1θα(u, v).

This inequality follows from the concavity and the (2 − α)-homogeneity property
of θα and from (i):

θα(1, u) + θα(1, v) ≤ 2θα

(
u + 1

2
,
v + 1

2

)
= 2α−1θα(u + 1, v + 1)

≤ 2α−1(
θα(u, v) + ∂1θα(u, v) + ∂2θα(u, v)

)
.
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Finally, by property (i),

λ1∂1θα(s, t)(s − t) − λ2∂2θα(s, t)(s − t)

≤ max{λ1, λ2}(s∂1θα(s, t) + t∂2θα(s, t)
)

− min{λ1, λ2}(t∂1θα(s, t) + s∂2θα(s, t)
)

= max{λ1, λ2}(2 − α)θα(s, t) − min{λ1, λ2}(t∂1θα(s, t) + s∂2θα(s, t)
)
.

Choosing u = t and v = s in (41) gives ∂1θα(s, t)(s − t) + ∂2θα(s, t)(t − s) ≤ 0,
and combining this inequality with property (i) yields

−(
t∂1θα(s, t) + s∂2θα(s, t)

)
= ∂1θα(s, t)(s − t) + ∂2θα(s, t)(t − s) − (

s∂1θα(s, t) + t∂2θα(s, t)
)

≤ −(2 − α)θα(s, t),

such that

λ1∂1θα(s, t)(s − t) − λ2∂2θα(s, t)(s − t)

≤ (
max{λ1, λ2} − min{λ1, λ2})(2 − α)θα(s, t)

= |λ1 − λ2|(2 − α)θα(s, t).

This completes the proof. �

LEMMA 18. Let φα(s) = (sα − s)/(α − 1)− s + 1 and 1 < α < 2. It holds for
all A, B ≥ 0,

�(A,B) := inf
s,t>0

θα(s, t)
(
Aφ′′

α(s) + Bφ′′
α(t)

) ≥ (α − 1)(A + B).

PROOF. Since

θα(s, t) = α − 1

α

s − t

sα−1 − tα−1 = 1

α

∫ 1

0

(
(1 − m)sα−1 + mtα−1)(2−α)/(α−1)

dm,

it follows that

θα(s, t)
(
Aφ′′

α(s) + Bφ′′
α(t)

)
= A

∫ 1

0

(
(1 − m) + m

(
t

s

)α−1)(2−α)/(α−1)

dm

+ B

∫ 1

0

(
(1 − m)

(
s

t

)α−1
+ m

)(2−α)/(α−1)

dm

≥ A

∫ 1

0
(1 − m)(2−α)/(α−1) dm + B

∫ 1

0
m(2−α)/(α−1) dm

= (α − 1)(A + B),

which completes the proof. �



2268 A. JÜNGEL AND W. YUE

REFERENCES

[1] ANÉ, C., BLACHÈRE, S., CHAFAÏ, D., FOUGÈRES, P., GENTIL, I., MALRIEU, F.,
ROBERTO, C. and SCHEFFER, G. (2000). Sur les inégalités de Sobolev logarithmiques.
Panoramas et Synthèses [Panoramas and Syntheses] 10. Société Mathématique de France,
Paris. MR1845806

[2] ARNOLD, A., MARKOWICH, P., TOSCANI, G. and UNTERREITER, A. (2001). On convex
Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type
equations. Comm. Partial Differential Equations 26 43–100. MR1842428

[3] BAKRY, D. and ÉMERY, M. (1985). Diffusions hypercontractives. In Séminaire de Probabil-
ités, XIX, 1983/84. Lecture Notes in Math. 1123 177–206. Springer, Berlin. MR0889476

[4] BAKRY, D., GENTIL, I. and LEDOUX, M. (2014). Analysis and Geometry of Markov Diffusion
Operators. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences] 348. Springer, Cham. MR3155209

[5] BECKNER, W. (1989). A generalized Poincaré inequality for Gaussian measures. Proc. Amer.
Math. Soc. 105 397–400. MR0954373

[6] BOBKOV, S. and TETALI, P. (2006). Modified logarithmic Sobolev inequalities in discrete
settings. J. Theoret. Probab. 19 289–336. MR2283379

[7] BOBKOV, S. G. and LEDOUX, M. (1998). On modified logarithmic Sobolev inequalities for
Bernoulli and Poisson measures. J. Funct. Anal. 156 347–365. MR1636948

[8] BOCHNER, S. (1946). Vector fields and Ricci curvature. Bull. Amer. Math. Soc. 52 776–797.
[9] BOUDOU, A.-S., CAPUTO, P., DAI PRA, P. and POSTA, G. (2006). Spectral gap estimates

for interacting particle systems via a Bochner-type identity. J. Funct. Anal. 232 222–258.
MR2200172

[10] BURDZY, K. and KENDALL, W. (2000). Efficient Markovian couplings: Examples and coun-
terexamples. Ann. Appl. Probab. 10 362–409.

[11] CAPUTO, P., DAI PRA, P. and POSTA, G. (2009). Convex entropy decay via the
Bochner–Bakry–Emery approach. Ann. Inst. Henri Poincaré Probab. Stat. 45 734–753.
MR2548501

[12] CHAINAIS-HILLAIRET, C., JÜNGEL, A. and SCHUCHNIGG, S. (2016). Entropy-dissipative
discretization of nonlinear diffusion equations and discrete Beckner inequalities. Math.
Model. Numer. Anal. 50 135–162.

[13] CHEN, G.-Y. and SALOFF-COSTE, L. (2014). Spectral computations for birth and death
chains. Stochastic Process. Appl. 124 848–882. MR3131316

[14] CHEN, M. (1996). Estimation of spectral gap for Markov chains. Acta Math. Sinica (N.S.) 12
337–360. MR1457859

[15] CHEN, M. F. (2003). Variational formulas of Poincaré-type inequalities for birth-death pro-
cesses. Acta Math. Sin. (Engl. Ser.) 19 625–644. MR2023358

[16] DANERI, S. and SAVARÉ, G. (2008). Eulerian calculus for the displacement convexity in the
Wasserstein distance. SIAM J. Math. Anal. 40 1104–1122. MR2452882

[17] DEL MOLINO, L., CHLEBOUN, P. and GROSSKINSKY, S. (2012). Condensation in randomly
perturbed zero-range processes. J. Phys. A: Math. Theor. 45 205001.

[18] DIACONIS, P. and SALOFF-COSTE, L. (1996). Logarithmic Sobolev inequalities for finite
Markov chains. Ann. Appl. Probab. 6 695–750.

[19] FATHI, M. and MAAS, J. (2016). Entropic Ricci curvature bounds for discrete interacting sys-
tems. Ann. Appl. Probab. 26 1774–1806. MR3513606

[20] FJORDHOLM, U. S., MISHRA, S. and TADMOR, E. (2012). Arbitrarily high-order accurate
entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM
J. Numer. Anal. 50 544–573. MR2914275

[21] FURIHATA, D. and MATSUO, T. (2011). The Discrete Variational Method. A Structure-
Preserving Numerical Method for Partial Differential Equations. Chapman & Hall/CRC,
Boca Raton, FL.

http://www.ams.org/mathscinet-getitem?mr=1845806
http://www.ams.org/mathscinet-getitem?mr=1842428
http://www.ams.org/mathscinet-getitem?mr=0889476
http://www.ams.org/mathscinet-getitem?mr=3155209
http://www.ams.org/mathscinet-getitem?mr=0954373
http://www.ams.org/mathscinet-getitem?mr=2283379
http://www.ams.org/mathscinet-getitem?mr=1636948
http://www.ams.org/mathscinet-getitem?mr=2200172
http://www.ams.org/mathscinet-getitem?mr=2548501
http://www.ams.org/mathscinet-getitem?mr=3131316
http://www.ams.org/mathscinet-getitem?mr=1457859
http://www.ams.org/mathscinet-getitem?mr=2023358
http://www.ams.org/mathscinet-getitem?mr=2452882
http://www.ams.org/mathscinet-getitem?mr=3513606
http://www.ams.org/mathscinet-getitem?mr=2914275


DISCRETE BECKNER INEQUALITIES 2269

[22] GAO, F. and QUASTEL, J. (2003). Exponential decay of entropy in the random transposition
and Bernoulli–Laplace models. Ann. Appl. Probab. 13 1591–1600. MR2023890

[23] GUIONNET, A. and ZEGARLINSKI, B. (2003). Lectures on logarithmic Sobolev inequalities.
In Séminaire de Probabilités 36 (J. Azéma et al., eds.). Lect. Notes Math. 1801 1–134.
Springer, Berlin.

[24] JERRUM, M., SON, J.-B., TETALI, P. and VIGODA, E. (2004). Elementary bounds on Poincaré
and log-Sobolev constants for decomposable Markov chains. Ann. Appl. Probab. 14
1741–1765.

[25] JOHNSON, O. (2016). A discrete log-Sobolev inequality under a Bakry–Emery type condition.
Ann. Inst. Henri Poincaré Probab. Stat. To appear. Available at arXiv:1507.06268.

[26] MAAS, J. (2016). Personal communication.
[27] MICLO, L. (1999). An example of application of discrete Hardy’s inequalities. Markov Process.

Related Fields 5 319–330. MR1710983
[28] MIELKE, A. (2013). Geodesic convexity of the relative entropy in reversible Markov chains.

Calc. Var. Part. Diff. Eqs. 48 1–31.
[29] MONTENEGRO, R. and TETALI, P. (2006). Mathematical aspects of mixing times in Markov

chains. Found. Trends Theor. Comput. Sci. 1 x+121. MR2341319
[30] MORRIS, B. (2006). Spectral gap for the zero range process with constant rate. Ann. Probab.

34 1645–1664. MR2271475
[31] WANG, F.-Y. (2005). Functional Inequalities, Markov Semigroups and Spectral Theory. Sci-

ence Press, Beijing.

INSTITUTE FOR ANALYSIS AND SCIENTIFIC COMPUTING

VIENNA UNIVERSITY OF TECHNOLOGY

WIEDNER HAUPTSTRASSE 8–10
1040 WIEN

AUSTRIA

E-MAIL: juengel@tuwien.ac.at
wen.yue@tuwien.ac.at

http://www.ams.org/mathscinet-getitem?mr=2023890
http://arxiv.org/abs/arXiv:1507.06268
http://www.ams.org/mathscinet-getitem?mr=1710983
http://www.ams.org/mathscinet-getitem?mr=2341319
http://www.ams.org/mathscinet-getitem?mr=2271475
mailto:juengel@tuwien.ac.at
mailto:wen.yue@tuwien.ac.at

	Introduction
	The Bochner method
	Examples
	Birth-death processes
	Zero-range processes
	Bernoulli-Laplace models
	Random transposition model

	Application: Finite-volume discretization of a Fokker-Planck equation
	Appendix: Properties of the mean function
	References
	Author's Addresses

