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EXACT SIMULATION OF THE WRIGHT–FISHER DIFFUSION

BY PAUL A. JENKINS1 AND DARIO SPANÒ

University of Warwick

The Wright–Fisher family of diffusion processes is a widely used class
of evolutionary models. However, simulation is difficult because there is no
known closed-form formula for its transition function. In this article, we
demonstrate that it is in fact possible to simulate exactly from a broad class
of Wright–Fisher diffusion processes and their bridges. For those diffusions
corresponding to reversible, neutral evolution, our key idea is to exploit an
eigenfunction expansion of the transition function; this approach even ap-
plies to its infinite-dimensional analogue, the Fleming–Viot process. We then
develop an exact rejection algorithm for processes with more general drift
functions, including those modelling natural selection, using ideas from ret-
rospective simulation. Our approach also yields methods for exact simulation
of the moment dual of the Wright–Fisher diffusion, the ancestral process of
an infinite-leaf Kingman coalescent tree. We believe our new perspective on
diffusion simulation holds promise for other models admitting a transition
eigenfunction expansion.

1. Introduction. Monte Carlo simulation of diffusion processes is of great
interest, as it underlies methods of statistical inference from discrete observations
in a variety of applications [e.g., Bladt, Finch and Sørensen (2016), Bladt and
Sørensen (2014), Chib, Pitt and Shephard (2010), Golightly and Wilkinson (2006,
2008)]. Our interest in this paper is in the Wright–Fisher diffusion. This process
is widely used for inference, especially in genetics, where it serves as a model for
the evolution of the frequency Xt ∈ [0,1] of a genetic variant, or allele, in a large
randomly mating population. If there are two alternative alleles, then the diffusion
obeys a one-dimensional stochastic differential equation (SDE):

(1) dXt = γ (Xt) dt +√
Xt(1 − Xt) dBt , X0 = x0, t ∈ [0, T ].

The drift coefficient, γ : [0,1] → R, can encompass a variety of evolutionary
forces. For example, γ = β where

(2) β(x) = 1

2

[
θ1(1 − x) − θ2x

]+ σx(1 − x)
[
x + h(1 − 2x)

]
,
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describes a process with recurrent mutation between the two alleles, governed by
parameters θ1 and θ2, and with (diploid) natural selection causing fitness differ-
ences between individuals with different numbers of copies of the allele, governed
by parameters σ and h. There is much interest among geneticists in inference from
this and related diffusions [e.g., Bollback, York and Nielsen (2008), Gutenkunst
et al. (2009), Malaspinas et al. (2012), Williamson et al. (2005)], and in the charac-
teristics of the trajectories themselves [Schraiber, Griffiths and Evans (2013), Zhao
et al. (2013)], as discretely observed data are becoming more and more available
(e.g., as genetic time series data for ancient human DNA and for viral evolution
within hosts). Beyond genetics, Wright–Fisher diffusions have been considered for
applications in several other fields. For example, in finance they have been used as
models for time-evolving regime probability, discount coefficients or state price
[e.g., Delbaen and Shirakawa (2002), Gourieroux and Jasiak (2006)]; they have
been proposed in biophysics as a model for ion channel dynamics [Dangerfield,
Kay and Burrage (2010), Dangerfield et al. (2012)]; they have been studied as
hidden Markov signals in filtering problems [Chaleyat-Maurel and Genon-Catalot
(2009), Papaspiliopoulos and Ruggiero (2014), Papaspiliopoulos, Ruggiero and
Spanò (2014)]; and in Bayesian statistics they have been proposed as models for
time-evolving priors [Favaro, Ruggiero and Walker (2009), Griffiths and Spanò
(2013), Mena and Ruggiero (2016), Walker, Hatjispyros and Nicoleris (2007)].

Simulation from equation (1) is highly nontrivial because there is no known
closed-form expression for the transition function of the diffusion, even in the
simple case γ (x) ≡ 0. In the absence of a method of exact simulation, it is nec-
essary to turn to approximate alternatives such as an Euler–Maruyama scheme.
Standard Euler-type methods fail here because simulated paths can easily leave
the state space [0,1], and moreover standard assumptions for weak and strong
convergence typically require that the diffusion coefficient be Lipschitz contin-
uous [see Kloeden and Platen (1999)]. Consequently, a number of specialized
time-discretization methods have been developed for the Wright–Fisher diffusion
with various drifts; when the drift is of the form of β(x), see Schurz (1996) for
θ1 = θ2 = σ = 0, Dangerfield et al. (2012) for σ = 0, θ1, θ2 > 0, Schraiber, Grif-
fiths and Evans (2013) for θ1 = θ2 = 0, h = 1/2 and Neuenkirch and Szpruch
(2014) for σ = 0, θ1, θ2 ≥ 1. Other approaches include truncating a spectral ex-
pansion of the transition function [Lukić, Hey and Chen (2011), Song and Stein-
rücken (2012), Steinrücken, Wang and Song (2013)] or numerical solutions of
the Kolmogorov equations [Bollback, York and Nielsen (2008), Gutenkunst et al.
(2009), Williamson et al. (2005)]. The error introduced by these methods can be
difficult to quantify and must often be tested empirically.

In this paper, we develop a novel and exact method for simulating the Wright–
Fisher diffusion with general drift, as well as the corresponding bridges. By “ex-
act” we mean that samples from the finite-dimensional distributions of the target
diffusion can be recovered (up to the precision of a computer) without any approx-
imation error. We build up our algorithm in stages, addressing how to simulate
exactly from each of the following:
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1. The neutral Wright–Fisher diffusion; that is, with drift

(3) α(x) = 1

2

[
θ1(1 − x) − θ2x

]
,

where θ1, θ2 > 0 (Section 2).
2. The neutral Wright–Fisher bridge (Section 3); informally, this is the process

(Xt)t∈[0,T ] | XT = y.

3. The Wright–Fisher diffusion and its bridges with a very general class of
drift functions (defined later), including drift β(x) of the form (2) when θ1, θ2 > 0
(Section 5).

To achieve step 1, the key approach is to exploit an eigenfunction expansion rep-
resentation of the transition function [see Griffiths and Spanó (2010), for review].
The expansion admits a probabilistic interpretation and, therefore, lends itself to
simulation techniques, but these techniques are not straightforward to implement
because the distributions involved are known only in infinite series form. Despite
this hurdle, here we show that is possible to perform such simulation without er-
ror. The technique is very general and so we develop this section not just for the
Wright–Fisher diffusion but for the Fleming–Viot process, its infinite-dimensional
generalization.

To achieve step 2, we obtain a new probabilistic description of the transition
function of a neutral Wright–Fisher bridge. This is again complicated by the ap-
pearance of distributions known only in infinite series form, but from which (we
show) realizations can still be obtained by evaluating only a finite number of terms
in the series.

Finally, we generalize these techniques to nonneutral processes in step 3. The
eigenfunction expansion for a nonneutral process [Barbour, Ethier and Griffiths
(2000)] is probabilistically intractable, so we take a different approach: we use
the simulated neutral processes as candidates in a rejection algorithm. This uses
a retrospective approach similar to that of the “exact algorithms” of Beskos and
Roberts (2005), Beskos, Papaspiliopoulos and Roberts (2006, 2008) and Pollock,
Johansen and Roberts (2016), which can return exact samples from a class of dif-
fusions using Brownian motion as the candidate for rejection. We defer a detailed
description to Section 5.1, but for now we note that a direct application of these
techniques would require that the target diffusion satisfy a number of regularity
conditions, the most stringent perhaps that its law be absolutely continuous with
respect to Brownian motion. The Wright–Fisher diffusion (1) fails in this regard,
first because of its nonunit diffusion coefficient, and second because of its finite
boundaries. Although the first problem is easily solved via a Lamperti transfor-
mation [also known as Fisher’s transformation when applied to (1)], it is not clear
how to deal with the second. Beskos, Papaspiliopoulos and Roberts (2008) point
out that their exact algorithm can be adopted to the case of two finite entrance
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boundaries, but this approach requires a further technical condition [(A3) below]
which does not always hold here. When it does hold, this approach becomes arbi-
trarily inefficient when the diffusion is proximate to the boundary [Jenkins (2013)];
in any case, the boundaries of the Wright–Fisher diffusion can be exit, regular re-
flecting, or entrance, depending on the parameters of β(x). But now we are armed
with the ability to simulate the neutral Wright–Fisher process, which serves as
a far more promising candidate than Brownian motion in a rejection algorithm;
specifically, it is known that the law of a nonneutral process is absolutely con-
tinuous with respect to its neutral counterpart [Dawson (1978), Ethier and Kurtz
(1993)]. We develop these ideas in full in Section 5. We also remark that a related
approach is taken by Schraiber, Griffiths and Evans (2013), who were interested
in simulating nonneutral Wright–Fisher bridges in the absence of mutation. In this
context, one can condition each sample path to remain in (0,1) (otherwise the path
could be absorbed at 0 or 1 and could not terminate at a prespecified point), ren-
dering the boundaries inaccessible. They show that the appropriate candidate in
this case is a Bessel process of dimension 4, whose boundary at 0 is also of en-
trance type. However, their method is not exact in the sense given above, since the
rejection probabilities are approximated via numerical integration. Furthermore,
the Radon–Nikodým derivative of the Wright–Fisher process with respect to the
Bessel(4) process is not bounded [another approach developed in Jenkins (2013)
for a single entrance boundary suffers a similar limitation]. In any case, a direct
comparison with our method is not possible since here we tackle θ1, θ2 > 0 rather
than θ1 = θ2 = 0.

The remainder of the paper is structured as follows. In Section 4, we discuss
practical considerations of the algorithm; Section 6 fills in one last gap by showing
how to construct a nonneutral Wright–Fisher bridge; Section 7 discusses exten-
sions of the algorithm and Section 8 contains the proofs of our results.

2. Simulating the neutral Wright–Fisher process. In this section, we
demonstrate how exact simulation from the neutral Wright–Fisher diffusion can
be achieved. To aid the exposition, we first focus on a one-dimensional process,
and then later extend this idea to the Fleming–Viot process.

2.1. A transition density expansion in one dimension. Consider the diffusion
satisfying (1) with drift (3). Denote its law by WFα,x and its transition density
f (x, · ; t). Throughout this paper, we assume θ1, θ2 > 0; then f (x, · ; t) is a prob-
ability density. We will exploit the following probabilistic representation of the
transition function’s eigenfunction expansion [Ethier and Griffiths (1993), Griffiths
(1979), Griffiths and Spanó (2010), Tavaré (1984)]:

(4) f (x, y; t) =
∞∑

m=0

qθ
m(t)

m∑
l=0

Bm,x(l)Dθ1+l,θ2+m−l(y),
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Algorithm 1: Simulating from the transition density f (x, · ; t) of the neutral
Wright–Fisher diffusion with mutation

1 Simulate Aθ∞(t)

2 Given Aθ∞(t) = m, simulate L ∼ Binomial(m,x)

3 Given L = l, simulate Y ∼ Beta(θ1 + l, θ2 + m − l)

4 return Y

where

Bm,x(l) =
(
m

l

)
xl(1 − x)m−l , l = 0,1, . . . ,m,

is the probability mass function (PMF) of a binomial random variable,

Dθ1,θ2(y) = 1

B(θ1, θ2)
yθ1−1(1 − y)θ2−1,

is the probability density function (PDF) of a beta random variable, θ = θ1 + θ2,
and {qθ

m(t) : m = 0,1, . . .} are the transition functions of a certain death process
Aθ∞(t) with an entrance boundary at ∞. More precisely, let {Aθ

n(t) : t ≥ 0} be
a pure death process on N such that Aθ

n(0) = n almost surely and whose only
transitions are m �→ m− 1 at rate m(m + θ − 1)/2, for each m = 1,2, . . . , n. Then
qθ
m(t) = limn→∞P(Aθ

n(t) = m).
The representation (4) has a natural interpretation in terms of Kingman’s coa-

lescent, which is the moment dual to the Wright–Fisher diffusion. The ancestral
process A∞(t) represents the number of lineages surviving a time t back in an
infinite-leaf coalescent tree, when lineages are lost both by coalescence and by
mutation. For our purposes, the mixture expression (4) also provides an immediate
method for simulating from f (x, · ; t). We summarize this idea in Algorithm 1,
which first appeared in Griffiths and Li (1983).

Steps 2 and 3 of Algorithm 1 are straightforward, but step 1 requires the PMF
{qθ

m(t) : m = 0,1, . . .}, which is not available in closed form. Griffiths and Li
(1983) used a numerical approximation, but in the following subsection we show
it is in fact possible to simulate from this distribution without error.

2.2. Simulating the ancestral process of Kingman’s coalescent. Our goal in
this subsection is to obtain exact samples from the discrete random variable with
PMF {qθ

m(t) : m = 0,1, . . .}. Were each qθ
m(t) available in closed form, then stan-

dard inversion sampling would return exact samples from this distribution [see,
e.g., Devroye (1986), Chapter 2]: for U ∼ Uniform[0,1],

inf

{
M ∈N :

M∑
m=0

qθ
m(t) > U

}
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is distributed according to {qθ
m(t) : m = 0,1, . . .}. However, qθ

m(t) is known only
as an infinite series [Griffiths (1980), Tavaré (1984)]:

qθ
m(t) =

∞∑
k=m

(−1)k−maθ
kme−k(k+θ−1)t/2,

(5)

where aθ
km = (θ + 2k − 1)(θ + m)(k−1)

m!(k − m)! .

Here, we have used the notation a(x) := �(a + x)/�(a) for a > 0 and x ≥ −1.
Despite the apparently infinite amount of computation needed to evaluate (5),

we now show that it is nonetheless possible to return exact samples from this distri-
bution by a variant of the alternating series method [Devroye (1986), Chapter 4],
which we summarize for a discrete random variable X on N as follows. Suppose
X has PMF {pm : m = 0,1, . . .} of the form

pm =
∞∑

k=0

(−1)kbk(m),

such that

(6) bk(m) ↓ 0 as k → ∞, for each m.

Then for each M,K ∈ N,

T −
K (M) :=

M∑
m=0

2K+1∑
k=0

(−1)kbk(m) ≤
M∑

m=0

pm ≤
M∑

m=0

2K∑
k=0

(−1)kbk(m) =: T +
K (M).

Furthermore, T −
K (M) ↑ P(X ≤ M) and T +

K (M) ↓ P(X ≤ M) as K → ∞. Hence,
for U ∼ Uniform[0,1] and

K0(M) := inf
{
K ∈ N : T −

K (M) > U or T +
K (M) < U

}
,

the quantity inf{M ∈ N : T −
K0(M)(M) > U} can be computed from finitely many

terms and is exactly distributed according to {pm : m = 0,1, . . .}.
This approach can be applied—with some modification—to {qθ

m(t) : m =
0,1, . . .} by the following proposition, which says that the required condition (6)
holds with the possible exception of the first few terms in m. For those exceptional
terms, (6) still holds beyond the first few terms in k, and there is an easy way to
check when this condition has been reached.

PROPOSITION 1. Let b
(t,θ)
k (m) = aθ

kme−k(k+θ−1)t/2, the relevant coefficient
in (5), and let

(7) C(t,θ)
m := inf

{
i ≥ 0 : b(t,θ)

i+m+1(m) < b
(t,θ)
i+m(m)

}
.
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Then:

(i) C
(t,θ)
m < ∞, for all m;

(ii) b
(t,θ)
k (m) ↓ 0 as k → ∞ for all k ≥ m + C

(t,θ)
m ; and

(iii) C
(t,θ)
m = 0 for all m > D

(t,θ)
0 , where for ε ∈ [0,1),

(8) D(t,θ)
ε := inf

{
k ≥

(
1

t
− θ + 1

2

)
∨ 0 : (θ + 2k + 1)e− (2k+θ)t

2 < 1 − ε

}
.

(The parameter ε is introduced for later use.) As a result of Proposition 1, we
need only to make the following adjustment to the alternating series method: If
m ≤ D

(t,θ)
0 , then precompute terms in qθ

m(t) until the first time that the coefficients
in (5) begin to decay; we know by Proposition 1(ii) that this decay then continues
indefinitely. To allow for the number of computed coefficients to depend on m, we
introduce k = (k0, k1, . . . , kM) and

(9) S−
k (M) :=

M∑
m=0

2km+1∑
i=0

(−1)ib
(t,θ)
m+i (m), S+

k (M) :=
M∑

m=0

2km∑
i=0

(−1)ib
(t,θ)
m+i (m).

We summarize this procedure in Algorithm 2.
Of course, the false condition in line 15 of Algorithm 2 is never met, but Propo-

sition 1 guarantees that the algorithm still halts in finite time. Further performance

Algorithm 2: Simulating from the ancestral process A∞(t) of Kingman’s co-
alescent with mutation

1 Set m ←− 0, k0 ←− 0, k ←− (k0)

2 Simulate U ∼ Uniform[0,1]
3 repeat
4 Set km ←− �C(t,θ)

m /2� [eq. (7)]
5 while S−

k (m) < U < S+
k (m) do

6 Set k ←− k + (1,1, . . . ,1)

7 end
8 ;
9 if S−

k (m) > U then
10 return m

11 else if S+
k (m) < U then

12 Set k ←− (k0, k1, . . . , km,0)

13 Set m ←− m + 1
14 end
15 until false;
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considerations of this algorithm are discussed in Section 4. Also note that com-
puted coefficients aθ

km in (5) can also be stored for future calls to this algorithm.

2.3. A transition density expansion in higher dimensions. It is worth point-
ing out that an interesting by-product of Proposition 1 (and of Algorithm 2) is
the possibility of simulating exactly from the transition function of the (parent-
independent) neutral Wright–Fisher diffusion in any dimension, even in in-
finite dimensions. Wright–Fisher diffusions in d dimensions can be seen as
d-dimensional projections of a so-called neutral (parent-independent) Fleming–
Viot measure-valued diffusion μ = (μt : t ≥ 0) with state space M1(E), the set
of all the probability measures on a given (Polish) type space E, equipped with
the Borel sigma-algebra induced by the weak convergence topology. Given a total
mutation parameter θ and a mutation distribution P0 ∈ M1(E), the process μ is
reversible with stationary distribution given by the Dirichlet process with parame-
ter (θ,P0), here denoted with 	θ,P0 , characterized by Dirichlet finite-dimensional
distributions:

	θ,P0

(
d⋂

i=1

{
μ(Ai) ∈ dxi

}) ∝
[

d∏
i=1

x
θP0(Ai)−1
i dxi

]
I
(d−1)

(x1, . . . , xd)

for any d and every measurable partition A1, . . . ,Ad of E, where 
(d−1) =
{(x1, . . . , xd) ∈ [0,1]d : ∑d

1 xi = 1}.
The transition function describing the evolution of μ admits a probabilistic se-

ries expansion as mixture of (posterior) Dirichlet processes:

p(μ,dν; t) =
∞∑

m=0

qθ
m(t)

∫
Em

μ⊗m(dξ1, . . . , dξm)	θ+m, m
θ+m

ηm+ θ
θ+m

P0
(dν),

(10)
t ≥ 0,μ, ν ∈ M1(E),

where μ⊗n denotes the n-fold μ-product measure and ηm := m−1 ∑m
i=1 δξi

[see
Ethier and Griffiths (1993)]. The coefficients of the series expansion are given by
i.i.d. samples (the ξ -random variables) from the starting measure, μ, of random
size given by the coalescent lines-of-descent counting process Aθ∞(t) with distri-
bution qθ

m(t). An algorithm for simulating from the transition function (10) is thus
the following modification of Algorithm 1.

Notice that step 3 requires sampling a (potentially infinite-dimensional) ran-
dom measure distributed according to a Dirichlet process. Techniques for ex-
act sampling from a Dirichlet process have been available in the literature [e.g.,
Papaspiliopoulos and Roberts (2008) and Walker (2007)] for quite some time.
Hence, Algorithm 2 provides a way of filling the only missing gap (step 1 of Al-
gorithm 3) to make the transition function (10) viable for exact simulation. When
E consists of d points (d ∈ N), the process reduces to the (d − 1)-dimensional
Wright–Fisher diffusion, thus Algorithm 1 is viable for exact simulation of neutral
(d − 1)-dimensional extensions of the Wright–Fisher diffusion (1) with drift (3).
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Algorithm 3: Simulating from the transition density p(μ, · ; t) of the neutral
Fleming–Viot process with parent-independent mutation

1 Simulate Aθ∞(t)

2 Given Aθ∞(t) = m, simulate ξ1, . . . , ξm
iid∼ μ

3 Given m−1 ∑m
i=1 δξi

= ηm, simulate ν ∼ 	θ+m, m
θ+m

ηn+ θ
θ+m

P0

4 return ν

3. Simulating a neutral Wright–Fisher bridge. In this section, we demon-
strate how exact simulation from the neutral Wright–Fisher diffusion bridges can
be achieved, via a new probabilistic description of its transition density. For the
remainder of the paper, we return to processes of dimension one.

3.1. A transition density expansion. Section 2 provides a method for returning
exact samples from f (x, · ; t) for any fixed x ∈ [0,1] and t > 0. The density of a
point y ∈ (0,1) at time s in a Wright–Fisher bridge from x at time 0 to z at time
t is given by Fitzsimmons, Pitman and Yor (1993), Schraiber, Griffiths and Evans
(2013):

(11) fz,t (x, y; s) = f (x, y; s)f (y, z; t − s)

f (x, z; t) , 0 < s < t,

with f (· , · ; · ) as in (4). Motivated by (4), our goal is to facilitate easy simulation
from fz,t (x, y; s) by putting it into mixture form. For the rest of this section, we
assume 0 < x,y, z < 1.

PROPOSITION 2. The transition density of a Wright–Fisher bridge has expan-
sion

(12) fz,t (x, y; s) =
∞∑

m=0

∞∑
k=0

m∑
l=0

k∑
j=0

p
(x,z,s,t,θ)
m,k,l,j Dθ1+l+j,θ2+m+k−l−j (y),

where

(13) p
(x,z,s,t,θ)
m,k,l,j = Bm,x(l)Dθ1+j,θ2+k−j (z)DMθ1+l,θ2+m−l;k(j)

qθ
m(s)qθ

k (t − s)

f (x, z; t) ,

for 0 ≤ l ≤ m and 0 ≤ j ≤ k, and p
(x,z,s,t,θ)
m,k,l,j = 0 otherwise, where

DMa,b;k(j) =
(
k

j

)
B(a + j, b + k − j)

B(a, b)

is the PMF of a beta-binomial random variable on {0,1, . . . , k}.



SIMULATING THE WRIGHT–FISHER DIFFUSION 1487

Algorithm 4: Simulating from the transition density fz,t (x, y; s) of a bridge
of the neutral Wright–Fisher diffusion with mutation

1 Simulate (M,K,L,J ) ∼ {p(x,z,s,t,θ)
m,k,l,j : m,k, l, j ∈ N} [eq. (13)]

2 Given (M,K,L,J ) = (m, k, l, j), simulate
Y ∼ Beta(θ1 + l + j, θ2 + m + k − l − j)

3 return Y

By Proposition 2, we recognize equation (12) as a mixture of beta-distributed
random variables, with mixture weights defining a PMF {p(x,z,s,t,θ)

m,k,l,j : m,k, l, j ∈
N} on N4. Thus, the following algorithm returns exact samples from fz,t (x, y; s).

Again, while step 2 of Algorithm 4 is straightforward, step 1 is complicated
by the appearance of qθ

m(s)qθ
k (t − s)/f (x, z; t) in (13); each term in this ratio is

known only as an infinite series, as we have seen. We address this in the following
subsection.

3.2. Simulating from the discrete random variable on N4 with PMF {p(x,z,s,t,θ)
m,k,l,j :

m,k, l, j ∈ N}. We will apply the alternating series approach of Section 2.2 sepa-
rately to each of qθ

m(s), qθ
k (t − s), and f (x, z; t), and then combine these to obtain

monotonically converging upper and lower bounds on (13). The first two terms
have been dealt with already in Section 2.2, so it remains to take a similar approach
for f (x, z; t). Note that this problem—the pointwise evaluation of f (x, z; t)—is
separate from (and in this case, harder than) actually simulating from f (x, · ; t).

To employ the alternating series approach, use (4) and (5) to write

f (x, z; t) =
∞∑

m=0

∞∑
k=m

(−1)k−mc
(x,z,t,θ)
k,m

(14)
where c

(x,z,t,θ)
k,m = aθ

kme−k(k+θ−1)t/2E
[
Dθ1+Lm,θ2+m−Lm(z)

]
,

and Lm ∼ Binomial(m,x). Our strategy is to group the triangular array of coeffi-
cients (c

(x,z,t,θ)
k,m )k≥m in such a way that, with the exception of the first few terms,

they exhibit a property analogous to (6). We will compare terms in the sequence
(di)i=0,1,... of antidiagonals, defined by

(15) d2m =
m∑

j=0

c
(x,z,t,θ)
m+j,m−j , d2m+1 =

m∑
j=0

c
(x,z,t,θ)
m+1+j,m−j , m = 0,1, . . .

(see Figure 2), and dropping the superscript for convenience. Notice that the co-
efficients within each entry of this sequence are all multiplied by the same sign
in (14), so that f (x, z; t) = d0 − d1 + d2 − d3 + · · · will be our alternating se-
quence. The main complication in this approach is to find explicitly the first i for
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which the coefficients (di) begin to decrease in magnitude. To this end, we define

(16) E(t,θ) := inf
{
m ≥ 0 : 2j ≥ C

(t,θ)
m−j for all j = 0, . . . ,m

}
,

which simply provides the first entry in (d2m) for which every member of the
corresponding antidiagonal is decaying as a function of its first index. We now
need the following lemma.

LEMMA 1. Let Lm ∼ Binomial(m,x) and

(17) K(x,z) := x

z
+ 1 − x

1 − z
.

Then for all m ∈ N,

(18) E
[
Dθ1+Lm+1,θ2+m+1−Lm+1(z)

]
< K(x,z)E

[
Dθ1+Lm,θ2+m−Lm(z)

]
.

Using Lemma 1, we are in a position to obtain the required analogue of prop-
erty (6).

PROPOSITION 3. Let D
(t,θ)
ε , (di)i=0,1,..., E(t,θ), and K(x,z) be defined as in

(8), (15), (16) and (17), respectively, and ε ∈ (0,1). Then

d2m+2 < d2m+1 < d2m

for all m ≥ E(t,θ) ∨ D
(t,θ)
ε ∨ 2K(x,z)/ε.

We can now combine Propositions 1 and 3 in order to construct a sequence
amenable to simulation from {p(x,z,s,t,θ)

m,k,l,j : m,k, l, j ∈ N} [equation (13)], via the
alternating series method.

PROPOSITION 4. Define

(19) F
(s,t,θ,x,z)
m,k,l,j := C(s,θ)

m ∨ C
(t−s,θ)
k ∨ E(t,θ) ∨ D(t,θ)

ε ∨ 2K(x,z)/ε

and

em,k,l,j (v) := Bm,x(l)Dθ1+j,θ2+k−j (z)DMθ1+l,θ2+m−l;k(j)

×
[

v∑
i=0

(−1)ib
(s,θ)
m+i (m)

][
v∑

i=0

(−1)ib
(t−s,θ)
k+i (k)

]/v+1∑
i=0

(−1)idi .

Then for 2v ≥ F
(s,t,θ,x,z)
m,k,l,j ,

em,k,l,j (2v + 1) < em,k,l,j (2v + 3) < p
(x,z,s,t,θ)
m,k,l,j < em,k,l,j (2v + 2) < em,k,l,j (2v).
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Algorithm 5: Simulating from the discrete random variable on N4 with PMF
{p(x,z,s,t,θ)

m,k,l,j : m,k, l, j ∈ N}
1 Set n ←− 0, v0 ←− 0, v ←− (v0)

2 Simulate U ∼ Uniform[0,1]
3 repeat
4 Set vn ←− �F�(n)/2� [eq. (19)]
5 while V −

v (n) < U < V +
v (n) do

6 Set v ←− v + (1,1, . . . ,1)

7 end
8 ;
9 if V −

v (n) > U then
10 return �(n)

11 else if V +
v (n) < U then

12 Set v ←− (v0, v1, . . . , vn,0)

13 Set n ←− n + 1
14 end
15 until false;

In other words, for sufficiently large v the odd and even terms in the sequence
(em,k,l,j (v))∞v=0 provide monotonically converging lower and upper bounds on

p
(x,z,s,t,θ)
m,k,l,j , respectively, and “sufficiently large” can be verified explicitly.

The above results are summarized in Algorithm 5. To explore N4, we intro-
duce for convenience a bijective pairing function � : N → N4, such that �(n) =
(m, k, l, j). As in Algorithm 2, we also introduce v = (v0, v1, . . . , vN) and

V −
v (N) :=

N∑
n=0

e�(n)(2vn + 1), V +
v (N) :=

N∑
n=0

e�(n)(2vn).

4. Performance of algorithms for neutral processes. There are several easy
improvements to the underlying Algorithm 2. For example, we are free to vary
the order of inspection of each m by any finite permutation of N, and we found
a dramatic improvement by radiating outwards from (an approximation of) the
mode of {qθ

m(t) : m = 0,1, . . .} than to start at m = 0 and work upwards. Our
approximation used μ(t,θ) in Theorem 1 below. It may also be possible to improve
on Algorithm 2 by allowing different qθ

m(t) to be refined at different rates, that is,
by using a vector other than (1,1, . . . ,1) in step 6; we do not explore that here.

A crucial quantity governing the efficiency of our algorithms is the number of
coefficients b

(t,θ)
k (m) we must compute in Algorithm 2; these in turn depend on
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the quantities D
(t,θ)
0 and C

(t,θ)
m (recall Proposition 1). These quantities are in gen-

eral manageably small, suggesting that the number of coefficients that need to be
computed in Algorithms 2 and 5 (line 4 in each) should not be excessive. One
exception to this observation is when t is very small, for which the number of rele-
vant coefficients grows quickly. The following result makes precise the complexity
of Algorithm 2.

PROPOSITION 5. As t → 0:

(i) C
(t,θ)
m = O(t−1);

(ii) maxm C
(t,θ)
m = O(t−1 log(t−1));

(iii) D
(t,θ)
0 = o(t−(1+κ)), for any κ > 0.

Let N(t,θ) denote the total number of coefficients that must be computed in an
implementation of Algorithm 2. Then E[N(t,θ)] < ∞, and in particular:

(iv) E[N(t,θ)] = o(t−(1+κ)), for any κ > 0.

The growth in Algorithm 2 as t → 0 is closely related to the well-known nu-
merical instability of (5) as t → 0 [Griffiths (1984)], which afflicts any method
based on the expansion (4) [or an expansion using a basis of orthogonal polyno-
mials, which is equivalent to (5); Griffiths and Spanó (2010)]. In any practical
implementation of our algorithm, we are obliged to use an approximation should
the separation between two points be very small, and we found Algorithm 2 to
fail for t < 0.05 or so. One option is to revert to the Euler–Maruyama approxima-
tion for small t . Alternatively, there has been much previous work in coalescent
theory on approximating the distribution (5) [e.g., Griffiths (1984, 2006), Jewett
and Rosenberg (2014)]; by inserting those approximations into Algorithm 2 they
readily define new algorithms for approximate simulation of the dual diffusion. We
consider the following result, due to Griffiths (1984), Theorem 4.

THEOREM 1 (Griffiths (1984)). Suppose β = 1
2(θ − 1)t , and let

μ(t,θ) = 2η

t
,

(
σ (t,θ))2 =

⎧⎪⎪⎨⎪⎪⎩
2η

t
(η + β)2

(
1 + η

η + β
− 2η

)
β−2, β �= 0,

2

3t
, β = 0,

where

η =
⎧⎨⎩

β

eβ − 1
, β �= 0,

1, β = 0.
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Then P((Aθ∞(t) − μ(t,θ))(σ (t,θ))−1 ≤ x) → �(x) as t → 0, where �(·) is the cu-
mulative distribution function (CDF) of a standard normal random variable.

[The statement in Griffiths (1984) is missing the factor β−2.] To apply this ap-
proximation in practice when t is small, we replace line 1 in Algorithm 1 with

1′ . Simulate A∞(t) ∼ N(μ(t,θ), (σ (t,θ))2) and round it to the nearest nonnegative
integer.

4.1. Comparison with Euler–Maruyama simulation. To check the correctness
of our algorithm and to compare its performance to the Euler–Maruyama simula-
tion, we performed the following experiment. We fixed θ1 = θ2 = 1/2, explored
various fixed values of x and t , and for each parameter combination drew 10,000
samples from f (x, ·; t) using Algorithm 1. To quantify whether the resulting sam-
ple was consistent with the true distribution f (x, ·; t), we performed a one-sample
Kolmogorov–Smirnov (K–S) test. We then performed the same experiment instead
using Euler simulation with various stepsizes δ. For this purpose, we used the Bal-
anced Implicit Split Step (BISS) algorithm of Dangerfield et al. (2012), an Euler-
type algorithm with some advanced modifications that guarantee each sample path
stays within [0,1], and which is state-of-the-art for θ1, θ2 > 0. (Their algorithm
has an additional tuning parameter ε; we followed their recommendation and set
ε = δ/4.)

To obtain an accurate expression for the CDF of the true distribution for use
within the K–S statistic, we exploited the fact that, in the special case θ1 = θ2 =
1/2, a Lamperti transformation of (1) (or conversion to Stratonovich form) leads
to

Xt = 1

2
(1 − cosBt),

where (Bt )t≥0 is a Brownian motion commenced from arccos(1 − 2x) and reflect-
ing at 0 and π . A rapidly converging series expression for the CDF of Bt (and
hence of Xt ) is available [Linetsky (2005), equation (26)]; the first 1000 terms
in the series suggested convergence to machine precision and were used as the
reference CDF.

As is evident from Table 1, exact simulation strongly outperforms the BISS al-
gorithm over almost all the parameter combinations investigated. Over a timescale
of t � 0.1, errors in the Euler-type method accumulate sufficiently fast that the
resulting samples are easy to reject in a K–S test. Even reducing the stepsize so
that its running time is several orders of magnitude greater than the exact method
provides only a modest improvement to the quality of the sample. Note also that
the performance of the BISS algorithm deteriorates for paths started close to the
boundary (compare x = 0.01 with x = 0.5), whereas the exact method is in-
different to starting position. One reason p-values are persistently small for the
BISS algorithm is that sample paths are constrained by construction to stay inside



1492 P. A. JENKINS AND D. SPANÒ

TABLE 1
Comparison of exact simulation methods for the neutral Wright–Fisher diffusion. BISS: Algorithm

of Dangerfield et al. (2012) with stepsize δ. Exact: Algorithm 1. Exact′: Algorithm 1 with the
approximation of Griffiths (1984) described on page 1491. Tabulated are the computing time

needed to simulate 10,000 sample paths and the p-value of a K–S test applied to
the resulting collection of endpoints. Paths are initiated at X0 = x and run

for length t . Mutation parameters are θ1 = θ2 = 1/2

x = 0.01 x = 0.5

Method δ Time (s) p-value Method δ Time (s) p-value

t = 0.01
BISS 10−3 0.03 <10−100 BISS 10−3 0.02 8.0 × 10−3

10−4 0.05 <10−100 10−4 0.05 0.36
10−5 0.30 <10−100 10−5 0.30 0.22
10−6 2.83 <10−100 10−6 2.78 0.30
10−7 27.61 <10−100 10−7 27.44 0.78

Exact′ — 0.19 0.94 Exact′ — 0.17 0.18

t = 0.05
BISS 10−3 0.04 <10−100 BISS 10−3 0.04 9.0 × 10−4

10−4 0.16 <10−100 10−4 0.16 0.35
10−5 1.40 <10−100 10−5 1.39 0.53
10−6 13.77 <10−100 10−6 13.66 0.02
10−7 138.08 <10−100 10−7 137.06 0.72

Exact — 0.35 0.09 Exact — 0.34 0.64
Exact′ — 0.17 0.30 Exact′ — 0.17 0.97

t = 0.5
BISS 10−3 0.16 <10−100 BISS 10−3 0.16 1.2 × 10−28

10−4 1.43 <10−100 10−4 1.43 9.0 × 10−18

10−5 14.07 <10−100 10−5 14.08 9.4 × 10−17

10−6 137.82 <10−100 10−6 138.23 6.3 × 10−13

10−7 1378.33 <10−100 10−7 1368.33 8.1 × 10−13

Exact — 0.19 0.16 Exact — 0.19 0.81
Exact′ — 0.17 0.21 Exact′ — 0.17 0.60

t = 5
BISS 10−2 0.17 <10−100 BISS 10−2 0.16 <10−100

10−3 1.43 <10−100 10−3 1.43 <10−100

10−4 14.01 <10−100 10−4 14.04 <10−100

10−5 137.95 <10−100 10−5 138.09 4.7 × 10−100

10−6 1375.75 <10−100 10−6 1378.54 1.6 × 10−100

Exact — 0.18 0.58 Exact — 0.18 0.88
Exact′ — 0.17 1.2 × 10−47 Exact′ — 0.17 0.49
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FIG. 1. Histogram of 10,000 simulated points using (a) Algorithm 1 and (b) the Euler-type BISS al-
gorithm of Dangerfield et al. (2012). Parameters are θ1 = θ2 = 1/2, x = 0.5, t = 0.5, δ = 10−6. For
visual clarity, plotted are samples of the driving reflecting Brownian motion Bt = arccos(1 − 2Xt )

rather than Xt (since the density function of Bt —shown as a solid line—is bounded and can be
calculated; see main text).

[δ/4,1 − δ/4], yet the narrow region close to the boundaries is precisely where we
expect to find much of the probability mass for many choices of parameters. An
example of how this affects the resulting transition density is given in Figure 1.
By contrast, in no application of the K–S test to samples from our method would
we have rejected at level 0.05 the hypothesis that they were drawn from the true
distribution. Only over short timescales and away from the boundaries (Table 1,
t ≤ 0.05 and x = 0.5) do the two methods seem comparable. At t = 0.05, the
same computational investment as in the exact method but applied to the BISS
method buys a stepsize of about δ = 10−4, which is adequate in the interior of the
state space (x = 0.5) but not near the boundaries (x = 0.01).

When t ≥ 0.05, it is also possible to compare the exact method both with and
without the approximation of Griffiths (1984) (see page 1491); the two versions
exhibit similar running times and generate bona fide samples from the true distri-
bution (according to a K–S test) for moderate t . However, the approximate version
deteriorates (as reported by the K–S p-value) for large t (see Table 1, t = 5), away
from its asymptotic regime. Thus, a suitable rule-of-thumb is to use the exact algo-
rithm for t ≥ 0.05 and its approximate version for t < 0.05, with the two methods
in good agreement in their region of overlap in t .

We investigated several other choices of x and t with predictable results (not
shown); for example, performance of the exact method seems unrelated to starting
position x, while the BISS method deteriorates even further as x → 0.

5. Simulating the nonneutral Wright–Fisher process. In this section, we
develop an exact rejection algorithm for simulating from the Wright–Fisher diffu-



1494 P. A. JENKINS AND D. SPANÒ

sion (1) with general drift. We make use of retrospective sampling techniques for
the exact simulation of diffusions, which we first summarize.

5.1. Overview of the exact algorithm. Here we give a brief overview of the
exact algorithm (EA) of Beskos and Roberts (2005), Beskos, Papaspiliopoulos and
Roberts (2006, 2008) and Pollock, Johansen and Roberts (2016), and we refer the
reader to those papers for further details. The EA returns a recipe for simulating
the sample paths of a diffusion X = (Xt)t∈[0,T ] satisfying the SDE

(20) dXt = μ(Xt) dt + dBt , X0 = x0, t ∈ [0, T ],
with μ assumed to satisfy the requirements for (20) to admit a unique, weak solu-
tion. Denote the law of such a process, our target, by Qx0 . The idea of the EA is to
use Brownian motion started at x0, whose law will be denoted Wx0 , as the candi-
date process in a rejection sampling algorithm. The goal is then to write down the
rejection probability, which is possible under the following assumptions:

(A1) The Radon–Nikodým derivative of Qx0 with respect to Wx0 exists and is
given by Girsanov’s formula,

(21)
dQx0

dWx0

(X) = exp
{∫ T

0
μ(Xt) dXt − 1

2

∫ T

0
μ2(Xt) dt

}
;

(A2) μ ∈ C1;
(A3) φ(x) := 1

2 [μ2(x) + μ′(x)] is bounded below, by φ− say;
(A4) A(x) := ∫ x

0 μ(z) dz is bounded above, by A+, say.

Using (A1–A4) and Itô’s lemma, (21) can be reexpressed as

dQx0

dWx0

(X) ∝ exp
{
A(XT ) − A+} exp

{
−
∫ T

0

[
φ(Xt) − φ−]dt

}
.(22)

Written in this form, the right-hand side of (22) is less than or equal to 1 and,
therefore, provides the required rejection probability. To make the accept/reject
decision, it is necessary to construct an event occurring with probability (22). This
is easy to achieve given a realized sample path (Xt)t∈[0,T ] ∼ Wx0 , but obtaining
such a path would require an infinite amount of computation. Instead, note that the
right-hand term in (22) is the probability that all points in a Poisson point process
� = {(tj ,ψj ) : j = 0,1, . . .} of unit rate on [0, T ] × [0,∞) lie in the epigraph of
t �→ [φ(Xt)−φ−], and this event can be determined by simulating X only at times
t1, t2, . . . . Thus, the following algorithm returns a (random) collection of skeleton
points from X ∼Qx0 .

Once a skeleton has been accepted, further points can be filled in as required
by sampling from Brownian bridges; no further reference to Qx is necessary. If
φ is bounded above, by φ+ say, then Algorithm 6 can be implemented with finite
computation by thinning � to a Poisson Point process on [0, T ] × [0, φ+ − φ−];
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Algorithm 6: Exact algorithm for simulating the path of a diffusion process
with law Qx

1 repeat
2 Simulate �, a Poisson point process on [0, T ] × [0,∞)

3 Simulate U ∼ Uniform[0,1]
4 Given � = {(tj ,ψj ) : j = 0,1, . . .}, simulate B ∼ Wx at times

(tj )j=0,1,... and at time T .
5 if φ(Btj )−φ− ≤ ψj for all j = 0,1, . . . and U ≤ exp{A(BT )−A+} then
6 return {(tj ,Btj ) : j = 0,1 . . .} ∪ {(T ,BT )}
7 end
8 until false;

|�| is then almost surely finite. (However, this requirement on φ can be relaxed
[Beskos, Papaspiliopoulos and Roberts (2006, 2008)].)

We remark that assumption (A4) is restrictive, and can in fact be removed by
using a certain biased Brownian motion as an alternative candidate; this also im-
proves the efficiency of the algorithm [Beskos and Roberts (2005)]. We present the
EA in the form above since an analogue of (A4) does hold for the Wright–Fisher
diffusion, and in any case a “biased Wright–Fisher diffusion” is not available.

5.2. Exact algorithm for the Wright–Fisher diffusion. As noted earlier, the re-
quirements (A1–A4) need not hold when our target is the Wright–Fisher diffusion.
However, related techniques can be used if the candidate process is chosen to be
another Wright–Fisher diffusion, and in particular one with the same mutation
parameters. Denote the target law WFγ,x0 (with drift γ ), and the candidate law
WFα,x0 [with drift (3)]. We will write γ ∈WF if there exists a drift α of the form
(3) such that the following hold:

(WF1) The Radon–Nikodým derivative of WFγ,x0 with respect to WFα,x0 exists
and is given by Girsanov’s formula,

dWFγ,x0

dWFα,x0

(X) = exp
{∫ T

0

γ (Xt) − α(Xt)

Xt(1 − Xt)
dXt

(23)

− 1

2

∫ T

0

γ 2(Xt) − α2(Xt)

Xt(1 − Xt)
dt

}
.

(WF2) γ is continuously differentiable on (0,1).
(WF3) φ̃(x) is bounded on (0,1): φ̃− ≤ φ̃(x) ≤ φ̃+, where

φ̃(x) := 1

2

[
γ 2(x) − α2(x)

x(1 − x)
+ γ ′(x) − α′(x) − [

γ (x) − α(x)
] 1 − 2x

x(1 − x)

]
.
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Algorithm 7: Exact algorithm for simulating the path of a diffusion process
with law WFγ,x

1 repeat
2 Simulate �, a Poisson point process on [0, T ] × [0, φ̃+ − φ̃−]
3 Simulate U ∼ Uniform[0,1]
4 Given � = {(tj ,ψj ) : j = 0,1, . . . , J }, simulate X ∼WFα,x at times

(tj )j=0,1,...,J and at time T

5 if φ̃(Xtj ) − φ̃− ≤ ψj for all j = 0,1, . . . , J and U ≤ exp{Ã(XT ) − Ã+}
then

6 return {(tj ,Xtj ) : j = 0,1 . . . , J } ∪ {(T ,XT )}
7 end
8 until false;

(WF4) Ã(x) := ∫ x
0

γ (z)−α(z)
z(1−z)

dz is bounded above, by Ã+ say.

Specific conditions on α and γ to satisfy (WF1) are detailed, for example, in The-
orem 8.6.8 in Øksendal (2003). [This theorem imposes some unduly restrictive
conditions to ensure that the SDE has a unique weak solution, but this can be estab-
lished for (1) by other means; Pardoux (2009), Chapter 4.] Following Section 5.1,
we apply Itô’s lemma to Ã(x) to reexpress (23) as

dWFγ,x0

dWFα,x0

(X) ∝ exp
{
Ã(XT ) − Ã+} exp

{
−
∫ T

0

[
φ̃(Xt ) − φ̃−]dt

}
.(24)

We recognize the rightmost term in (24) as the probability that no points in a
Poisson point process on [0, T ]× [0, φ̃+ − φ̃−] lie in the epigraph of t �→ φ̃(Xt)−
φ̃−. Hence, Algorithm 7 returns exact samples from WFγ,x0 . Step 4 of Algorithm 7
is achieved via Algorithm 1. Once a skeleton is accepted, further points can be
filled in via Algorithm 4.

5.3. A class of drifts for which exact simulation is possible. The class WF
defines the set of drifts for which exact simulation is possible. Here, we show that
WF contains all the most popular population genetics diffusion processes with
mutation and selection (including frequency-dependent selection), whose drift ad-
mits the general form

(25) γ (x) = α(x) + x(1 − x)η(x),

where α is as in (3) for some θ1, θ2 > 0 and η is a reasonably regular function
of x. The case of diploid selection (2) is recovered by setting η(x) ∝ (x + h(1 −
2x)). For general η the properties of diffusion processes with drift (25) and of
the corresponding genealogies are studied, among others, by Coop and Griffiths
(2004).
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PROPOSITION 6. Any drift of the form (25), for α as in (3) for some θ1, θ2 > 0
and for η continuously differentiable in (0,1), is a member of WF .

It is worth noting that the additive structure in the drift γ (i.e., with a selection
component added to the mutation component α) is a widely accepted and theoret-
ically justified property of all population genetics diffusion models [see, e.g., the
discussion in Karlin and Taylor (1981), pages 186–187].

5.3.1. Example: Wright–Fisher diffusion with diploid selection. By Proposi-
tion 6, the drift β [equation (2)] satisfies β ∈ WF . In fact, in the haploid case
(h = 1/2), there is much simplification: φ̃ is a quadratic polynomial for which
analytic bounds are available, and Ã(x) = σx/2. We implemented our exact al-
gorithm on this model, and investigated its performance by considering several
combinations of parameters; results are shown in Table 2. For moderate selection

TABLE 2
Performance of Algorithm 7 applied to the Wright–Fisher diffusion with symmetric mutation and
additive selection. Each row reports means (per accepted path) across a simulation to generate

1000 accepted paths. Paths were initiated at X0 = x and run for time t , with mutation parameters
θ1 = θ2 = 0.01 and selection parameter σ (and h = 0.5). Reported are the total numbers (per

accepted path) of: attempts, Poisson points simulated, coefficients b
(t,θ)
k (m) needed, random

variables generated (i.e., the aggregate of all draws from underlying constituent distributions:
uniforms, betas and so on), the number of times the simulation resorted to the approximation

of Theorem 1, and the running time in milliseconds

Poisson Random
t x Attempts points Coefficients variables G1984 Time (ms)

σ = 1
0.1 0.5 1.27 0.00 116.07 7.37 0.00 0.007
0.1 0.25 1.40 0.00 132.87 8.01 0.00 0.008
0.1 0.01 1.58 0.01 141.34 8.91 0.01 0.009
0.5 0.5 1.23 0.03 18.65 7.22 0.00 0.003
0.5 0.25 1.48 0.03 21.60 8.45 0.01 0.003
0.5 0.01 1.58 0.03 23.84 9.02 0.01 0.003
5.0 0.5 1.29 0.24 5.23 8.58 0.00 0.002
5.0 0.25 1.49 0.27 6.18 9.64 0.01 0.002
5.0 0.01 1.67 0.28 7.36 10.79 0.01 0.002

σ = 10
0.1 0.5 11.83 3.72 995.92 62.68 1.83 0.062
0.1 0.25 41.69 12.97 3714.82 224.95 7.86 0.225
0.1 0.01 145.73 45.96 14,937.52 856.21 45.88 0.879
0.5 0.5 13.16 20.96 641.52 109.00 2.47 0.054
0.5 0.25 43.82 69.05 2729.80 399.95 10.89 0.214
0.5 0.01 149.21 235.34 17,044.43 1869.54 71.54 1.185
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(|σ | = 1), the algorithm is extremely efficient, with only slightly more than one
candidate needed per acceptance. Furthermore, most simulations resulted in zero
Poisson points. These results are quite robust to the length of the path t , the ini-
tial frequency x, and the sign of the selection parameter. For stronger selection
(σ = 10), we observe some deterioration in efficiency because of the greater mis-
match between candidate and target paths—to the extent that simulation of paths
of length t = 5.0 became prohibitive. Nonetheless, it is still feasible to simulate a
collection of shorter paths in a few seconds (and to string these together to con-
struct longer paths, if necessary).

To make this observation more precise, Beskos, Papaspiliopoulos and Roberts
(2006), Proposition 3, obtained an explicit upper bound on the expected number
of Poisson points required of Algorithm 6, and hence on the computational com-
plexity of the algorithm. A careful reading of their result shows that it relies on
the existence of the bounds φ± but does not depend on the laws of the diffusions
involved, and carries over easily to the Wright–Fisher case. We therefore omit a
proof of the following.

PROPOSITION 7. Let N(T,θ) denote the number of Poisson points required
until the first accepted path. Then

E
[
N(t,θ)] ≤ (

φ̃+ − φ̃−)T e(φ̃+−φ̃−)T +Ã+
.

An immediate consequence of Proposition 7 is that the complexity of simulating
a path of length KT is O((φ̃+ − φ̃−)KT e(φ̃+−φ̃−)KT +Ã+

) as KT → ∞. However,
superior performance can be achieved by splitting the problem into K separate
simulations; the complexity is then O((φ̃+ − φ̃−)KT e(φ̃+−φ̃−)T +Ã+

), which is
linear in K as in Beskos, Papaspiliopoulos and Roberts (2006).

As this is a statement about the complexity of the algorithm as the path length
increases, it continues to hold even if we account for the increasing cost associated
with each Poisson point as T → 0, as quantified by Proposition 5. In practice, one
might wish to optimize the choice of K and T for a given path length KT . In
our application, we must be prepared to introduce an additional constraint in order
to fix T some distance away from 0 (and, as we recommend above, the choice
T ≥ 0.05 seems adequate).

6. Simulating a nonneutral Wright–Fisher bridge. For completeness, here
we provide an algorithm for simulating a nonneutral Wright–Fisher bridge (Algo-
rithm 8). This follows immediately from the previous sections; the only modifica-
tion is to note that the appropriate candidate process is the corresponding neutral
bridge, which can be simulated via Algorithm 4. The rest follows exactly as in the
Brownian case; see Beskos, Papaspiliopoulos and Roberts (2006), Section 6.2, for
details.
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Algorithm 8: Exact algorithm for simulating the path of a diffusion process
with law WFγ,x conditioned on XT = y

1 repeat
2 Simulate �, a Poisson point process on [0, T ] × [0, φ̃+ − φ̃−]
3 Given � = {(tj ,ψj ) : j = 0,1, . . . , J }, simulate X ∼ (WFα,x | XT = y)

at times (tj )j=0,1,...,J

4 if φ̃(Xtj ) − φ̃− ≤ ψj for all j = 0,1, . . . , J then
5 return {(tj ,Xtj ) : j = 0,1 . . . , J } ∪ {(T , y)}
6 end
7 until false;

7. Discussion. In this paper, we have shown how to simulate exactly from
the scalar Wright–Fisher diffusion, as well as a number of important and closely
related processes: these include the ancestral process of an ∞-leaf Kingman coa-
lescent tree, the Fleming–Viot process with parent-independent mutation, the non-
neutral Wright–Fisher diffusion and neutral and nonneutral Wright–Fisher bridges.
Some interesting open problems remain, including mutation operators which do
not lead to reversible diffusions, and the problem of sampling from (d − 1)-
dimensional (2 < d ≤ ∞) Wright–Fisher bridges.

It is also important to notice that, in order to employ the machinery proposed
in this paper, the mutation parameters θ1, θ2 in the α-component of a general drift
γ need to be both positive: models of the form (25) with no mutation (α = 0)
or with one-directional mutation (with only one mutation parameter positive and
the other null) have at least one absorbing boundary and, therefore, there cannot
be absolute continuity with respect to a stationary Wright–Fisher diffusion with a
transition density expansion of the form of (12). For such cases, series expansions
are in fact available with a structure similar to (4) [see, e.g., Ethier and Griffiths
(1993)] and we believe it should be relatively simple to adapt our method to en-
compass selection models with absorbing boundaries, a goal we do not pursue
here. For choices of drifts γ more general than (25), arising possibly in models
beyond population genetics, it is harder to specify conditions for (WF1) verifiable
in a simple way by inspection of γ . The determination of which drift functions γ

guarantee (assuming identical diffusion coefficients) absolute continuity with re-
spect to a Wright–Fisher process, seems to be, to our knowledge, an open problem.
We expect that most of what is affected by the drift pertains to the behaviour of the
process at the boundaries. The problem, however, might be delicate and not just
limited to making sure that γ prevents the boundaries from being absorbing: for
example, if for the diffusion with drift γ the boundaries are entrance or reflecting,
the rate of escape from the boundaries might still make its sample paths qualita-
tively different from those of any Wright–Fisher diffusion, even within the same
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boundary regime, respectively entrance or reflecting. To support this conjecture,
we remark that the very same circumstances induce mutual singularity in squared
Bessel processes (whose diffusion coefficient is

√
x hence quite similar near zero

to the Wright–Fisher diffusion): it is well known that any two squared Bessel pro-
cesses starting at 0 are mutually singular whenever their drifts differ, even if they
are both within the same boundary regime [see Pitman and Yor (1981), Lemma
(2.1) and references therein].

In a wider perspective, we believe that the approach proposed here might serve
as a template for developing new techniques for sampling exactly from diffusion
processes by means of non-Brownian bridges whose transition function admits a
transparent transition function expansion.

8. Proofs.

PROOF OF PROPOSITION 1. First, suppose m > 0:
(i) Note that

(26)
b

(t,θ)
k+1 (m)

b
(t,θ)
k (m)

= θ + m + k − 1

k − m + 1
· θ + 2k + 1

θ + 2k − 1
e− (2k+θ)t

2 =: f θ
m(k)e− (2k+θ)t

2 ,

say. Treat f θ
m(k) as having domain R; it then suffices to show that (f θ

m)′(k) < 0 for
all sufficiently large k. Then the right-hand side of (26) is subsequently decreasing
in k monotonically to 0. Part (i) follows for the finite k (= m + i) for which the
right-hand side of (26) drops below 1. Routine calculations show that (f θ

m)′(k) < 0
for all k > (

√
2(m − 1) + θ − θ)/2.

(ii) Note that
√

2(m − 1) + θ − θ

2
<

√
m − 1

2
+

√
θ − θ

2
<

√
m − 1

2
+ 1

8
< m,

so in fact (f θ
m)′(k) < 0 for all k ≥ m, and thus as soon as b

(t,θ)
k+1 (m) < b

(t,θ)
k (m) for

some k, it must also hold for all subsequent k.
(iii) The right-hand side of (26) can be made independent of m by noting that

(27) f θ
m(k) < f θ

k (k) = θ + 2k + 1.

Thus for C
(t,θ)
m = 0 to hold we need m to exceed the upper of the two solutions on

R of

(θ + 2k + 1)e−(2k+θ)t/2 = 1.

The definition of D
(t,θ)
0 is one way to express this condition, since the maximum

of (θ + 2k + 1)e−(2k+θ)t/2 which separates the two solutions is at k = (1
t
− θ+1

2 ).
Finally, consider the special case m = 0. If θ > 1, then similar arguments as in
(i)–(ii) above continue to hold. However, if θ ≤ 1 then in fact (f θ

0 )′(k) > 0 for
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all k, with f θ
0 (k) continuous on k ≥ 1. But then f θ

0 (k) < f θ
0 (∞) = 1 for k ≥ 1, so

f θ
0 (k)e−(2k+θ)t/2 < 1 for all k ≥ 1 and hence (i–ii) still hold, with C

(t,θ)
0 ≤ 1. �

PROOF OF PROPOSITION 2. This follows by substituting (4) into (11), multi-
plying by B(θ1 + l + j, θ2 + m − l + k − j)/B(θ1 + l + j, θ2 + m − l + k − j),
and rearranging. �

PROOF OF LEMMA 1. First, suppose l ≤ �mz�. Then, using �(x + 1) =
x�(x),

P(Lm+1 = l)Dθ1+l,θ2+m+1−l(z)

=
[

m + 1

m + 1 − l
(1 − x)

θ + m

θ2 + m − l
(1 − z)

]
P(Lm = l)Dθ1+l,θ2+m−l(z)

≤
[

m + 1

m + 1 − mz
(1 − x)

θ + m

θ2 + m − mz
(1 − z)

]
P(Lm = l)Dθ1+l,θ2+m−l(z)

≤
[

1 − x

1 − z

]
P(Lm = l)Dθ1+l,θ2+m−l(z),

maximizing the term in square brackets first in l and then in m, noting for the last
inequality that this term is increasing in m. Hence, summing over l = 0, . . . , �mz�,

�mz�∑
l=0

P(Lm+1 = l)Dθ1+l,θ2+m+1−l(z)

(28)

<
1 − x

1 − z

�mz�∑
l=0

P(Lm = l)Dθ1+l,θ2+m−l(z).

By a similar argument, for l ≥ �mz�,

P(Lm+1 = l + 1)Dθ1+(l+1),θ2+m+1−(l+1)(z) ≤ x

z
P(Lm = l)Dθ1+l,θ2+m−l(z)

(this time it is crucial we compare Lm+1 = l + 1 with Lm = l, rather than with
Lm = l + 1), and hence

m+1∑
l=�mz�+1

P(Lm+1 = l)Dθ1+l,θ2+m+1−l(z)

(29)

<
x

z

m∑
l=�mz�

P(Lm = l)Dθ1+l,θ2+m−l(z).

Finally, sum (28) and (29) to yield (18), noting that the overlap on the right-hand
side at l = �mz� necessitates the given definition of K(x,z) (instead of the simpler
bound 1−x

1−z
∨ x

z
). �
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PROOF OF PROPOSITION 3. First, since m ≥ E(t,θ) we know j ≥ C
(t,θ)
m−j for

j = 0, . . . ,m, and hence by Proposition 1 that b
(t,θ)
m+j+1(m − j) < b

(t,θ)
m+j (m − j).

Now multiply this inequality by E[Dθ1+Lm−j ,θ2+m−j−Lm−j
(z)] to yield

(30) c
(x,z,t,θ)
m+j+1,m−j < c

(x,z,t,θ)
m+j,m−j .

Thus, summing over j = 0,1, . . . ,m,

(31)
m∑

j=0

c
(x,z,t,θ)
m+1+j,m−j <

m∑
j=0

c
(x,z,t,θ)
m+j,m−j ,

which says precisely that d2m+1 < d2m. We also need to show that d2m+2 < d2m+1,
but this case is more subtle since the left-hand side is a sum over one more term
than the right. Instead, we will increment the first index in (30) and then sum over
j = 1, . . . ,m:

(32)
m∑

j=1

c
(x,z,t,θ)
m+2+j,m−j <

m∑
j=1

c
(x,z,t,θ)
m+1+j,m−j .

It then suffices to show

(33) c
(x,z,t,θ)
m+1,m+1 + c

(x,z,t,θ)
m+2,m < c

(x,z,t,θ)
m+1,m ,

for if we sum (32) and (33) we obtain d2m+2 < d2m+1 as required (Figure 2). To
show (33), first note that

c
(x,z,t,θ)
k+1,m

c
(x,z,t,θ)
k,m

= b
(t,θ)
k+1 (m)

b
(t,θ)
k (m)

= f θ
m(k)e− (2k+θ)t

2 ≤ (θ + 2k + 1)e− (2k+θ)t
2 ,

with f θ
m(k) defined as in (26) and the inequality following from (27). Hence,

choosing k = m + 1 and noting that m ≥ C
(t,θ)
ε ,

(34) c
(x,z,t,θ)
m+2,m ≤ (θ + 2k + 1)e− (2k+θ)t

2 c
(x,z,t,θ)
m+1,m < (1 − ε)c

(x,z,t,θ)
m+1,m .

Second, note that

c
(x,z,t,θ)
m+1,m+1

c
(x,z,t,θ)
m+1,m

= 1

m + 1

θ + 2m

θ + m

E[Dθ1+Lm+1,θ2+m+1−Lm+1(z)]
E[Dθ1+Lm,θ2+m−Lm(z)]

≤ 1

m + 1
· 2

E[Dθ1+Lm+1,θ2+m+1−Lm+1(z)]
E[Dθ1+Lm,θ2+m−Lm(z)](35)

< ε,

using Lemma 1 and m + 1 ≥ 2K(x,z)/ε for the last inequality. Rearrange (35) and
sum with (34) to get (33). �
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FIG. 2. Computation of c
(x,z,t,θ)
k,m . The sum of each antidiagonals (dashed) defines the sequence

(di)i=0,1,.... To show that di+1 < di terms are paired off as shown by the arrows; that is, the coeffi-
cient at the head of a set of arrows is greater in magnitude than the sum of the terms at its tails.

PROOF OF PROPOSITION 4. This follows immediately from Propositions 1
and 3. It can also be viewed as an application of Proposition 1 of Beskos, Pa-
paspiliopoulos and Roberts (2008) to a function g(u1, u2, u3) ∝ u1u2/u3. �

PROOF OF PROPOSITION 5. (i) Using (26) and (27),

(36)
b

(t,θ)
K+1(m)

b
(t,θ)
K (m)

= f θ
m(K)e− (2K+θ)t

2 < (θ + 2K + 1)e− (2K+θ)t
2 .

The right-hand side of (36) is less than 1 provided

K >
log(θ + 2m + 1)

t
− θ

2
,

which implies that C
(t,θ)
m <

log(θ+2m+1)
t

− θ
2 = O(t−1) as t → 0.

(ii) Continuing,

C(t,θ)
m <

log(θ + 2m + 1)

t
− θ

2
<

log(θ + 2D
(t,θ)
0 + 1)

t
− θ

2
,

with the right-hand side independent of m and asymptotically O(t−1 log(t−1)) as
t → 0 by (iii) below.

(iii) By inspection of the definition (8) of D
(t,θ)
0 , in order to ensure K > D

(t,θ)
0

it suffices that

K >
1 ∨ log(θ + 2K + 1)

t
,
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which holds for sufficiently small t if K ∼ t−(1+κ), for any fixed κ > 0. Hence,
D

(t,θ)
0 = o(t−(1+κ)) as t → 0.
(iv) Parts (i)–(iii) cover those terms that must be precomputed in Algorithm 2:

For the random number of remaining terms, we may assume K ≥ m + C
(t,θ)
m , so

that bK+1(m) < bK(m). Write Qθ
M(t) := P(Aθ∞(t) ≤ M). Our aim is to show that

these random remaining terms do not add to the complexity of the calculation
beyond (iii); we achieve this by determining the complexity of

C̃
(t,θ)
δ (M) := inf

{
K ≥ max

m∈{0,...,M}
(
m + C(t,θ)

m

) :
M∑

m=0

∞∑
k=K

(−1)k−mbk(m) < δ

}
as t → 0, for a fixed δ > 0. This is the appropriate quantity to look at, since if K ≥
C̃

(t,θ)
δ (M) then |Qθ

M(t)−S±
k (M)| < δ, when 2ki ≥ K ; i = 0, . . . ,M . Furthermore,

averaging over the uniform random variable U drawn for inversion sampling, the
total number of coefficients N(t,θ) | U = u needed to determine that Qθ

m−1(t) <

u < Qθ
m(t) is given by the number of terms needed to bound both our estimates of

Qθ
m−1(t) and Qθ

m(t) away from u:

E
(
N(t,θ)) = E

[
E
(
N(t,θ) | U )]

(37)

≤
∞∑

m=0

∫ Qθ
m(t)

Qθ
m−1(t)

[
C̃

(t,θ)

Qθ
m(t)−u

(m) + C̃
(t,θ)

u−Qθ
m−1(t)

(m − 1)
]
du.

We will show that if K ∼ t−(1+κ) as t → 0, for a fixed κ > 0, then we can attain
the stated growth condition on E(N(t,θ)). Using that the right-hand side of (36) is
decreasing in K for K ≥ m + C

(t,θ)
m , for each ζ < 1 we can find a constant c

(θ)
1

such that for K > c
(θ)
1 t−1, f θ

m(K)e−(2K+θ)t/2 < ζ . Hence,

M∑
m=0

∞∑
k=K

(−1)k−mbk(m) <

M∑
m=0

∞∑
k=K

bk(m)

(38)

<

M∑
m=0

∞∑
k=K

ζ k−KbK(m) =
M∑

m=0

bK(m)

1 − ζ
.

Routine calculations show that, for m ≥ 1,

aθ
k,m+1 = aθ

km

(k − m)(θ + m + k − 1)

(m + 1)(θ + m)

≤ aθ
km

(k − 1)(θ + k)

2(θ + 1)
≤ aθ

k1

[
(k − 1)(θ + k)

2(θ + 1)

]k−1
,

and thus, applying Stirling’s formula to aθ
k1 ∼ kc

(θ)
2 ,

(39) bK(m) = aθ
Kme−K(K+θ−1)t/2 ≤ ec

(θ)
3 K logK−K(K+θ−1)t/2 ≤ c

(θ)
4 e−K2t/2,
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for some constants c
(θ)
2 , c

(θ)
3 , c

(θ)
4 (which again exist by our assumption about the

asymptotic growth of K). In the special case m = 0, Stirling’s formula also yields

aθ
k0 ∼ kc

(θ)
2 and so the inequalities in (39) continue to hold. Combining (38) with

(39), we find
M∑

m=0

∞∑
k=K

(−1)k−mbk(m) < c
(θ)
5 (M + 1)e−K2t/2,

for some c
(θ)
5 , which is less than δ if

(40) K >

√
2

t
log

(
c
(θ)
5 (M + 1)

δ

)
.

(This is not a tight bound but suffices in the calculations below.) In summary, if K

satisfies both K > c
(θ)
1 t−1 and (40) then K > C̃

(t,θ)
δ (M). Integrating over δ:∫ Qθ

m(t)

Qθ
m−1(t)

C̃
(t,θ)

Qθ
m(t)−u

(m)du

=
∫ qθ

m(t)

0
C̃

(t,θ)
δ (m)dδ

(41)

<

∫ qθ
m(t)

0

[
c
(θ)
1

t1+κ
+
√

2

t
log

(
c
(θ)
5 (m + 1)

δ

)]
dδ

= qθ
m(t)

[
c
(θ)
1

t1+κ
+
√

2

t

[
log

(
cθ

5(m + 1)
)+ 1 − logqθ

m(t)
])

.

It remains to show that the resulting expression (41) can be summed over m, which
is possible by Theorem 1; in particular,

qθ
m(t) = 1√

2π(σ (t,θ))2
exp

(
(m − μ(t,θ))2

2(σ (t,θ))2

)
+ o(1),

μ(t,θ) = 2

t
+ O(1),

(
σ (t,θ))2 = 2

3t
+ O(1).

Hence, by Jensen’s inequality,
∞∑

m=0

qθ
m(t) logm = E

[
logAθ∞(t)

] ≤ logE
[
Aθ∞(t)

] = O
(
log t−1),

∞∑
m=0

qθ
m(t)

[− logqθ
m(t)

] = E

[
log

(√
2πσ (t,θ))+ 1

2

(
Aθ∞(t) − μ(t,θ)

σ (t,θ)

)2]

= O
(
log t−1)+ 1

2
E
[
X2]+ O(1) = O

(
log t−1),
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where X ∼ N(0,1). Combining these results with (41), we obtain

∞∑
m=0

∫ Qθ
m(t)

Qθ
m−1(t)

C̃
(t,θ)

Qθ
m(t)−u

(m)du = O
(
t−(1+κ))+ O

(
t−1/2 log t−1)

= O
(
t−(1+κ)),

showing that the first term on the right of (37) is O(t−(1+κ)). The second term
is also O(t−(1+κ)) by a similar argument. Since κ was arbitrary, E[N(t,θ)] =
o(t−(1+κ)). �

PROOF OF PROPOSITION 6. For a diffusion with drift γ , since η is continuous
on (0,1), then∫ T

0

γ 2(Xt) − α2(Xt)

Xt(1 − Xt)
dt =

∫ T

0

[
η2(Xt)Xt(1 − Xt) + 2η(Xt)α(Xt)

]
dt < ∞,

then Novikov’s condition is satisfied and a Girsanov transform exists with respect
to the neutral WF diffusion with drift α, that is, (WF1) holds. In particular, (23)
reads

(42) exp
{∫ T

0
η(Xt) dXt − 1

2

∫ T

0

[
η2(Xt)Xt(1 − Xt) + 2η(Xt)α(Xt)

]
dt

}
.

The function η is also continuously differentiable in (0,1), so γ ′(x) − α′(x) =
η′(x)x(1 − x) + η(x)(1 − 2x) is continuous and

(43) φ̃(x) = 1

2

[
x(1 − x)

(
η2(x) + η′(x)

)+ 2η(x)α(x)
]

which, being itself continuous in [0,1], is then bounded in (0,1), and (WF3) fol-
lows.

(WF2) and (WF4) are obvious. Thus, (42) has a version of the form (24) with φ̃

as in (43) and Ã(x) = ∫ x
0 η(z) dz. �
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