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We obtain explicit Berry–Esseen bounds in the Kolmogorov distance for
the normal approximation of nonlinear functionals of vectors of independent
random variables. Our results are based on the use of Stein’s method and of
random difference operators, and generalise the bounds obtained by Chatter-
jee (2008), concerning normal approximations in the Wasserstein distance.
In order to obtain lower bounds for variances, we also revisit the classical
Hoeffding decompositions, for which we provide a new proof and a new rep-
resentation. Several applications are discussed in detail: in particular, new
Berry–Esseen bounds are obtained for set approximations with random tes-
sellations, as well as for functionals of coverage processes.

1. Introduction.

1.1. Overview. Let X = (X1, . . . ,Xn) be a collection of independent random
variables, defined on some probability space (�,F ,P) and taking values in some
Polish space (E,E ); let f : En → R be a measurable function such that f (X) is
square-integrable. The aim of the present paper is to deduce a new class of explicit
upper bounds for the Kolmogorov distance dK(f (X),N), between the distribution
of f (X) and that of a Gaussian random variable N ∼ N (m,σ 2) such that m =
Ef (X) and σ 2 = Varf (X). Recall that dK(f (X),N) is defined as

dK

(
f (X),N

) = sup
t∈R

∣∣P[
f (X) ≤ t

] − P[N ≤ t]∣∣.
The problem of obtaining explicit estimates on the distance between the distribu-
tions of f (X) and N has been recently dealt with in the paper [4], where the author
was able to apply a standard version of Stein’s method (see, e.g., [6]) in order to
deduce effective upper bounds on the Wasserstein distance

dWass
(
f (X),N

) = sup
h

∣∣E[
h
(
f (X)

)] − E
[
h(N)

]∣∣,
where the supremum runs over 1-Lipschitz functions, by using a class of difference
operators that we shall explicitly describe in Section 2.1 below (see, e.g., [5, 16,
23] for some relevant applications of these bounds).
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It is a well-known fact that upper bounds on dWass(f (X),N) also yield a (typ-
ically suboptimal) bound on dK(f (X),N) via the standard relation dK(f (X),

N) ≤ 2
√

dWass(f (X),N). The challenge we are setting ourselves in the present
paper is to deduce upper bounds on dK(f (X),N) that are potentially of the same
order as the bounds on dWass(f (X),N) that can be deduced from [4]. Our main ab-
stract findings appear in the statement of Theorem 4.2 below. In order to prove our
main bounds, we shall exploit some novel estimates for the solutions of the Stein’s
equations associated with the Kolmogorov distance that are strongly inspired by
computations developed in [8, 29] in the framework of normal approximations for
functionals of Poisson random measures.

Another important contribution of the present work (see Section 2.2) is a novel
representation (in terms of difference operators) of the kernels determining the
Hoeffding decomposition (see, e.g., [15, 24, 32], as well as [30], Chapter 5) of
a random variable of the type f (X). This new representation is put into use for
deducing effective lower bounds on Varf (X).

As demonstrated in the sections to follow, we are mainly interested in geo-
metric applications and, in particular, in the normal approximation of geometric
functionals whose dependency structure can be assessed by using second-order
difference operators. One of the applications developed in detail in Section 6.2 is
that of Voronoi set approximations, where a given set K is estimated by the union
of Voronoi cells. Remarkably, our bounds allow one to deduce normal approxima-
tion bounds for the volume approximation of sets K having a highly nonregular
boundary. The present paper is associated with the work [19], where it is proved
that, for a large class of sets with self-similar boundary of dimension s > d − 1,
the variance of the volume approximation is asymptotically of the same order as
n−2+s/d and the Kolmogorov distance between the volume approximation and the
normal law is smaller than some multiple of n−s/2d multiplied by a logarithmic
term. It turns out that the crucial feature for a set to be well behaved with respect
to Voronoi approximation is its density at the boundary, which is mathematically
independent of its fractal dimension (see [19] for an in-depth discussion of these
phenomena). For illustrative purposes, we will also present an application of our
methods to covering processes (re-obtaining the results of [12] in a slightly more
general framework, see Section 6.1 below), as well as to some models already
studied in [4] and [23].

In the reference [11], Gloria and Nolen have effectively used Theorem 4.2 below
for deducing Berry–Esseen bounds in the Kolmogorov distance for the effective
conductance on the discrete torus. A further application of Theorem 4.2 can be
found in [13], where the authors apply such a result to study the fluctuations of
optimal alignments scores in multiple random words.

1.2. Plan. Section 2 contains our main results concerning decompositions of
random variables. Section 3 deals with some estimates associated with Stein’s
method, and Section 4 contains our main abstract findings. Section 5 focusses on
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estimates based on second-order difference operators. Finally, several applications
are developed in Section 6.

From now on, every random object is defined on an adequate common proba-
bility space (�,F ,P), with E denoting expectation with respect to P.

2. Decomposing random variables.

2.1. Some difference operators. Let (E,E ) be a Polish space endowed with
its Borel σ -field. Given two vectors y = (y1, . . . , yn) ∈ En and y′ = (y′

1, . . . , y
′
n) ∈

En, for every C ⊆ [n] := {1, . . . , n} and every measurable function f : En → R,
we denote by f C(y, y′) the quantity that is obtained from f (y) by replacing yi

with y′
i whenever i ∈ C. For instance, if n = 4 and C = {1,4}, then

f C(
y, y′) = f

(
y′

1, y2, y3, y
′
4
)

and

f C(
y′, y

) = f
(
y1, y

′
2, y

′
3, y4

)
.

Given C ⊆ [n], we introduce the operator

�Cf
(
y, y′) = f (y) − f C(

y, y′).
When C = {j} (to simplify the notation), we shall often write f {j} = f j and
�{j} = �j , for j = 1, . . . , n, in such a way that

�{j}f
(
y, y′) = �jf

(
y, y′)

= f (y) − f j (
y, y′)

= f (y) − f
(
y1, . . . , yj−1, y

′
j , yj+1, . . . , yn

)
and

�{j}f
(
y′, y

) = �jf
(
y′, y

)
= f

(
y′) − f j (

y′, y
)

= f
(
y′) − f

(
y′

1, . . . , y
′
j−1, yj , y

′
j+1, . . . , y

′
n

)
.

We can canonically iterate the operator �j as follows: for every k ≥ 2 and every
choice of distinct indices 1 ≤ i1 < · · · < ik ≤ n, the quantity �i1 · · ·�ikf (y, y′), is
defined as

�i1 · · ·�ik−1f
(
y, y′) − (

�i1 · · ·�ik−1f
(
y, y′))

ik
,

where (�i1 · · ·�ik−1f (y, y′))ik is obtained by replacing yik with y′
ik

inside the ar-
gument of

�i1 · · ·�ik−1f
(
y, y′).
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Note that the operator �i1 · · ·�ik defined in this way is invariant with respect to
permutations of the indices i1, . . . , ik . For instance, if n = 2,

�1�2f
(
y, y′) = �2�1f

(
y, y′)

= f
(
y′

1, y
′
2
) − f

(
y′

1, y2
) − f

(
y1, y

′
2
) + f (y1, y2).

The notation introduced above also extends to random variables: if X = (X1, . . . ,

Xn) and X′ = (X′
1, . . . ,X

′
n) are two random vectors with values in En, then we

write

�Cf
(
X,X′) := f (X) − f C(

X,X′), C ⊆ [n],
and define �i1 · · ·�ikf (X,X′), 1 ≤ i1 < · · · < ik ≤ n, exactly as above. The def-
initions of �Cf (X′,X) and �i1 · · ·�ikf (X′,X) are given analogously. Now as-
sume that E[|f (X)|] < ∞. Our aim in this section is to discuss two representations
of the quantity f (X) − E[f (X)] that are based on the use of the difference opera-
tors �j . The first one is a reformulation of the classical Hoeffding decomposition
for functions of independent random variables (see, e.g., [15, 24, 32], as well as
[30], Chapter 5). The second one comes from [4] (see also [5], Chapter 7) and will
play an important role in the derivation of our main estimates.

2.2. A new look at Hoeffding decompositions. Throughout this section, for ev-
ery fixed integer n ≥ 1 we write X = (X1, . . . ,Xn) to indicate a vector of indepen-
dent random variables with values in a Polish space E, and let X′ = (X′

1, . . . ,X
′
n)

be an independent copy of X. If f : En → R is a measurable function such that
E[f (X)2] < ∞, then the classical theory of Hoeffding decompositions for func-
tions of independent random variables (see, e.g., [17, 32]) implies that f (X) ad-
mits a unique decomposition of the type

(2.1) f (X) = E
[
f (X)

] +
n∑

k=1

∑
1≤i1<···<ik≤n

ϕi1,...,ik (Xi1, . . . ,Xik ),

where the square-integrable kernels ϕi1,...,ik verify the degeneracy condition

E
[
ϕi1,...,ik (Xi1, . . . ,Xik ) | Xj1, . . . ,Xja

] = 0,

for any strict subset {j1, . . . , ja} of {i1, . . . , ik}. The derivation of (2.1) is custom-
arily based on some implicit recursive application of the inclusion-exclusion prin-
ciple, and the kernels ϕi1,...,ik can be represented as linear combinations of condi-
tional expectations. As abundantly illustrated in the above-mentioned references,
a representation such as (2.1) is extremely useful for analysing the variance of a
wide range of random variables (in particular, U -statistics). Our aim in the present
section is to point out a very compact way of writing the decomposition (2.1) that
is based on the use of the operators �j introduced above. Albeit not surprising,
such an approach toward Hoeffding decompositions seems to be new and of inde-
pendent interest, and will be quite useful in the present paper for explicitly deriving
lower bounds on variances. Our starting point is the following statement, where we
make use of the notation introduced in Section 2.1.
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LEMMA 2.1. For every f : En →R,

(2.2) f (y) − f
(
y′) =

n∑
k=1

∑
1≤i1<···<ik≤n

(−1)k�i1 · · ·�ikf
(
y′, y

)
.

PROOF. The key observation is that, for every k ≥ 1 and every B = {i1, . . . , ik},
�i1 · · ·�ikf

(
y′, y

) = ∑
A⊆B

(−1)|A|f A(
y′, y

)
,

a relation that can be easily proved by recursion. By virtue of this fact, one can
now rewrite the right-hand side of (2.2) as

(2.3)
∑

A⊆[n]
ψ(A) × Z(A),

where ψ(A) := f A(y′, y) and Z(A) := ∑
B:B �=∅,A⊆B(−1)|B\A|. Write [n] =

{1,2, . . . , n}. Standard combinatorial considerations yield that Z([n]) = 1,
Z(∅) = −1 and Z(A) = 0, for every nonempty strict subset of [n]. This implies
that (2.3) is indeed equal to ψ([n]) − ψ(∅), and the desired conclusion follows at
once. �

Now fix an integer n, as well as n-dimensional vectors X and X′ as above
(in particular, X′ is an independent copy of X): the following statement provides
an alternate description of the Hoeffding decomposition of f (X) in terms of the
difference operators defined above.

THEOREM 2.2 (Hoeffding decompositions). Let f : En → R be such that
E[f (X)2] < ∞. One has the following representation for f (X):

(2.4) f (X) = E
[
f (X)

] +
n∑

k=1

∑
1≤i1<···<ik≤n

(−1)kE
[
�i1 · · ·�ikf

(
X′,X

) | X]
.

Formula (2.4) coincides with the Hoeffding decomposition (2.1) of f (X): in par-
ticular, one has that, for any choice of i1, . . . , ik , E[�i1 · · ·�ikf (X′,X) | X] =
ϕi1,...,ik (Xi1, . . . ,Xik ), and consequently

(2.5) E
{
E

[
�i1 · · ·�ikf

(
X′,X

) | X] × E
[
�j1 · · ·�jl

f
(
X′,X

) | X]} = 0,

whenever {i1, . . . , ik} �= {j1, . . . , jl}.

PROOF. By Lemma 2.1,

f (X) = f
(
X′) +

n∑
k=1

∑
1≤i1<···<ik≤n

(−1)k�i1 · · ·�ikf
(
X′,X

)
,
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and (2.4) follows at once by taking conditional expectations with respect to X on
both sides. To prove (2.5), it suffices to show the following stronger result: for
every 1 ≤ i1 < · · · < ik ≤ n (all k indices different),

E
[
�i1 · · ·�ikf

(
X′,X

) | Xi1, . . . ,Xik−1

] = 0.

This is a consequence of the following fact: the random variable �i1 · · ·�ik−1f (X′,
X) is a function of Xi1, . . . ,Xik−1 and of X′. By independence, it follows that

E
[
�i1 · · ·�ik−1f

(
X′,X

) | Xi1, . . . ,Xik−1

]
= E

[(
�i1 · · ·�ik−1f

(
X′,X

))
ik

| Xi1, . . . ,Xik−1

]
,

where the random variable (�i1 · · ·�ik−1f (X′,X))ik has been obtained from
�i1 · · ·�ik−1f (X′,X) by replacing X′

ik
with Xik . Since (as already observed)

�ik�i1 · · ·�ik−1f
(
X′,X

) = �i1 · · ·�ikf
(
X′,X

)
,

we deduce immediately the desired conclusion. �

The next statement is a direct consequence of (2.4)–(2.5).

COROLLARY 2.3. Let f (X) be as in the statement of Theorem 2.2. Then, the
variance of f (X) can be expanded as follows:

(2.6) Var
(
f (X)

) =
n∑

k=1

∑
1≤i1<···<ik≤n

E
[(

E
[
�i1 · · ·�ikf

(
X′,X

) | X])2]
.

As a first application of (2.6), we present a useful lower bound for variances.

COROLLARY 2.4. Let f (X) be as in the statement of Theorem 2.2. Then one
has the lower bound

Var
(
f (X)

) ≥
n∑

i=1

E
[(

E
[
�if

(
X′,X

) | X])2]
.

In particular, if X = (X1, . . . ,Xn) is a collection of n i.i.d. random variables with
common distribution equal to μ, and f : En → R is a symmetric mapping such
that E[f (X)2] < ∞, then

Var
(
f (X)

) ≥ n

∫
E

(
E

[
f (X) − f (x,X2, . . . ,Xn)

])2
μ(dx).

REMARK 2.5. The estimates in Corollary 2.4 should be compared with the
classical Efron–Stein inequality (see, e.g., [1], Chapter 3), stating that

Var
(
f (X)

) ≤ 1

2

n∑
i=1

E
[
�if

(
X,X′)2]

,
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which, in the case where the Xi are i.i.d. and f is symmetric, becomes

Var
(
f (X)

) ≤ n

2

∫
E

E
[(

f (X) − f (x,X2, . . . ,Xn)
)2]

μ(dx).

For instance, if f (X) = X1 + · · · + Xn is a sum of real-valued independent and
square-integrable random variables, then the Efron–Stein upper bounds coincides
with the lower bound in Corollary 2.4, that is,

n∑
i=1

E
[(

E
[
�if

(
X′,X

) | X])2] = 1

2

n∑
i=1

E
[
�if

(
X,X′)2] =

n∑
i=1

Var(Xi).

Heuristically, in the general case where the Xi are i.i.d. and f is symmetric, it
seems that, in order for the Efron–Stein upper bound and the lower bound of Corol-
lary 2.4 to have the same magnitude, it is necessary that the functional f (X) is not
homogeneous, meaning that the law of f (X) − f (x,X2, . . . ,Xn) depends on x.
Examples of such a behaviour will be described in Section 6.2, where we will deal
with Voronoi approximations.

2.3. Another subset-based interpolation. Let n ≥ 1, let f : En → R, and let
y, y′ ∈ En. In [4], the following formula is pointed out:

(2.7) f (y) − f
(
y′) = ∑

A�[n]

1( n
|A|

)
(n − |A|)

∑
j /∈A

�jf
(
yA, y′),

where the vector yA has been obtained from y by replacing yi with y′
i whenever

i ∈ A, in such a way that, with our notation, �jf (yA, y′) = f (yA)−f (yA∪{j}) =
f A(y, y′) − f A∪{j}(y, y′).

Now consider a vector X = (X1, . . . ,Xn), with independent components and
with values in En, and let X′ be an independent copy of X. For every A ⊆ [n], we
define XA = (XA

1 , . . . ,XA
n ) according to the above convention, that is,

XA
i =

{
Xi, if i /∈ A,

X′
i , otherwise.

The following statement is a direct consequence of (2.7).

PROPOSITION 2.6 (See [4], Lemma 2.3). For every f,g : An → R such that
E[f (X)2],E[g(X)2] < ∞,

(2.8)

Cov
(
f (X), g(X)

)
= 1

2

∑
A�[n]

1( n
|A|

)
(n − |A|)

∑
j /∈A

E
[
�jg

(
X,X′)�jf

(
XA,X′)].
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To simplify the notation we shall sometimes write

1( n
|A|

)
(n − |A|) := κn,A.

Observe that, for every j ,
∑

A�[n]:j /∈A κn,A = 1.

REMARK 2.7. As demonstrated in [5], Lemmas 7.8–7.10, the identity (2.8)
can also be used to deduce effective lower bounds on variances. Such lower bounds
seem to have a different nature than the ones that can be proved by means of
Hoeffding decompositions.

3. Stein’s method and a new approximate Taylor expansion. Let U and
V be two real-valued random variables. The Kolmogorov distance between the
distributions of U and V is given by

dK(U,V ) = sup
t∈R

∣∣P(U ≤ t) − P(V ≤ t)
∣∣.

As anticipated in the Introduction, our aim in this paper is to provide upper
bounds for quantities of the type dK(W,N), where W = f (X) and N is a stan-
dard Gaussian random variable, that are based on the use of Stein’s method. The
following statement gathers together some classical facts concerning Stein’s equa-
tions and their solutions [see points (a)–(e) below], together with a new important
approximate Taylor expansion for solutions of Stein’s equations, that we partially
extrapolated from reference [8] [see point (f) below], generalising previous find-
ings from [29]; see also [2], Theorem 2.

PROPOSITION 3.1. Let N ∼N (0,1) be a centred Gaussian random variable
with variance 1 and, for every t ∈ R, consider the Stein’s equation

g′(w) − wg(w) = 1{w≤t} − P(N ≤ t),(3.1)

where w ∈ R. Then, for every real t , there exists a function gt : R → R : w �→
gt (w) with the following properties:

(a) gt is continuous at every point w ∈R, and infinitely differentiable at every
w �= t ;

(b) gt satisfies the relation (3.1), for every w �= t ;

(c) 0 < gt ≤ c :=
√

2π
4 ;

(d) for every u, v,w ∈ R,

(3.2)
∣∣(w + u)gt (w + u) − (w + v)gt (w + v)

∣∣ ≤
(
|w| +

√
2π

4

)(|u| + |v|);
(e) adopting the convention

(3.3) g′
t (t) := tgt (t) + 1 − P(N ≤ t),

one has that |g′
t (w)| ≤ 1, for every real w.
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(f) using again the convention (3.3), for all w,h ∈R one has that∣∣gt (w + h) − gt (w) − g′
t (w)h

∣∣(3.4)

≤ |h|2
2

(
|w| +

√
2π

4

)
+ |h|(1[w,w+h)(t) + 1[w+h,w)(t)

)

= |h|2
2

(
|w| +

√
2π

4

)
+ h

(
1[w,w+h)(t) − 1[w+h,w)(t)

)
.(3.5)

PROOF. The proofs of points (a)–(e) are classical, and can be found, for exam-
ple, in [6], Lemma 2.3. We will prove (f) by following the same line of reasoning
adopted in [8], Proof of Theorem 3.1. Fix t ∈ R, recall the convention (3.3) and
observe that, for every w,h ∈ R, we can write

gt (w + h) − gt (w) − hg′
t (w) =

∫ h

0

(
g′

t (w + u) − g′
t (w)

)
du.

Since gt solves the Stein’s equation (3.1) for every real w, we have that, for all
w,h ∈R,

gt (w + h) − gt (w) − hg′
t (w)

=
∫ h

0

(
(w + u)gt (w + u) − wgt(w)

)
du

+
∫ h

0
(1{w+u≤t} − 1{w≤t}) du := I1 + I2.

It follows that, by the triangle inequality,

(3.6)
∣∣gt (w + h) − gt (w) − hg′

t (x)
∣∣ ≤ |I1| + |I2|.

Using (3.2), we have

(3.7) |I1| ≤
∫ h

0

(
|w| +

√
2π

4

)
|u|du = h2

2

(
|w| +

√
2π

4

)
.

Furthermore, observe that

|I2| = 1{h<0}
∣∣∣∣
∫ h

0
(1{w+u≤t} − 1{w≤t}) du

∣∣∣∣
+ 1{h≥0}

∣∣∣∣
∫ h

0
(1{w+u≤t} − 1{w≤t}) du

∣∣∣∣
= 1{h<0}

∣∣∣∣−
∫ 0

h
1{w+u≤t<w} du

∣∣∣∣ + 1{h≥0}
∣∣∣∣−

∫ h

0
1{w≤t<w+u} du

∣∣∣∣
= 1{h<0}

∫ 0

h
1{w+u≤t<w} du + 1{h≥0}

∫ h

0
1{w≤t<w+u} du.



BINOMIAL KOLMOGOROV BERRY–ESSÉEN BOUNDS 2001

Bounding u by h in both integrals provides the following upper bound:

(3.8)

|I2| ≤ 1{h<0}(−h)1[w+h,w)(t) + 1{h≥0}h1[w,w+h)(t)

≤ h
(
1[w,w+h)(t) − 1[w+h,w)(t)

)
= |h|(1[w,w+h)(t) + 1[w+h,w)(t)

)
.

Applying the estimates (3.7) and (3.8) to (3.6) completes the proof. �

An immediate consequence of Proposition 3.1 is that for N ∼ N (0,1) and for
every real-valued random variable W , one has that

dK(W,N) = sup
t∈R

∣∣E[
g′

t (W) − Wgt(W)
]∣∣(3.9)

[observe in particular that convention (3.3) defines unambiguously the quantity
g′

t (x) for every t, x ∈ R].

4. New Berry–Esseen bounds in the Kolmogorov distance. Let n ≥ 1 be an
integer, and consider a vector X = (X1, . . . ,Xn) of independent random variables
with values in the Polish space E. Let X′ = (X′

1, . . . ,X
′) be an independent copy

of X. Consider a function f : En → R such that W := f (X) is a centred and
square-integrable random variable. We shall adopt the same notation introduced in
Sections 2.1, 2.2, 2.3 and 3. For every A� [n], we write

TA = ∑
j /∈A

�jf
(
X,X′)�jf

(
XA,X′),

T ′
A = ∑

j /∈A

�jf
(
X,X′)∣∣�jf

(
XA,X′)∣∣

and

T = 1

2

∑
A�[n]

κn,ATA,

T ′ = 1

2

∑
A�[n]

κn,AT ′
A.

Observe that each T ′
A is a sum of symmetric random variables in such way that

0 = E[T ′] = E[T ′
A], A � [n].

REMARK 4.1. An immediate application of (2.8) implies that Var(f (X)) =
E[T ]. We stress that the random variables TA and T already appear in [4] in the
context of normal approximations in the Wasserstein distance. Our use of the class
of random objects {T ′, T ′

A : A � [n]} for deducing bounds in the Kolmogorov dis-
tance is new.



2002 R. LACHIÈZE-REY AND G. PECCATI

The next statement is the main abstract finding of the paper.

THEOREM 4.2. Let the assumptions and notation of the present section pre-
vail, let N ∼N (0,1), and assume that EW = 0 and EW 2 = σ 2 ∈ (0,∞). Then

dK

(
σ−1W,N

)
≤ 1

σ 2

√
Var

(
E(T | X)

) + 1

σ 2

√
Var

(
E

(
T ′ | X))

(4.1)

+ 1

4σ 4 E
∑

j,A,j /∈A

κn,A

∣∣f (X)
∣∣∣∣�jf

(
X,X′)2

�jf
(
XA,X′)∣∣

+
√

2π

16σ 3

n∑
j=1

E
∣∣�jf

(
X,X′)∣∣3

≤ 1

σ 2

√
Var

(
E(T | X)

) + 1

σ 2

√
Var

(
E

(
T ′ | X))

(4.2)

+ 1

4σ 3

n∑
j=1

√
E

∣∣�jf
(
X,X′)∣∣6 +

√
2π

16σ 3

n∑
j=1

E
∣∣�jf

(
X,X′)∣∣3.

PROOF. By homogeneity, we can assume that σ = 1, without loss of general-
ity. By virtue of (3.9), the Kolmogorov distance between W and N is the supremum
over t ∈ R of

(4.3)

∣∣E[
g′

t (W) − Wgt(W)
]∣∣

≤ E
∣∣g′

t (W) − g′
t (W)T

∣∣ + ∣∣E[
gt (W)W − g′

t (W)T
]∣∣,

where the derivative g′
t (w) is defined for every real w, thanks to the convention

(3.3). Since W is σ(X)-measurable, |g′
t | ≤ 1 and ET = EW 2 = 1, one infers that

E
∣∣g′

t (W) − g′
t (W)T

∣∣ ≤ E
[∣∣g′

t (W) × E[T − 1 | X]∣∣]
≤ E

∣∣E[T − 1 | X]∣∣ ≤
√

Var
(
E(T | X)

)
.

Our aim is now to show that the quantity |E(gt (W)W − g′
t (W)T )| is bounded by

the last three summands on the right-hand side of (4.1) (with σ = 1). Reasoning as
in [4], the relation (2.8) applied to Egt (W)W and the definition of T yield

∣∣Egt (W)W − g′
t (W)T

∣∣ =
∣∣∣∣1

2

∑
A�[n]

κn,A

∑
j /∈A

E(RA,j − R̃A,j )

∣∣∣∣
≤ 1

2

∑
A�[n]

κn,A

∑
j /∈A

E|RA,j − R̃A,j |,
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with

RA,j = �j

(
gt

(
f (X)

))
�jf

(
XA)

,

R̃A,j = g′
t

(
f (X)

)
�jf (X)�jf

(
XA)

,

where, here and for the rest of the proof, we use the simplified notation
�jf (XA) = �jf (XA,X′), �jf (X) = �jf (X,X′), and so on. We have

E|RA,j − R̃A,j | = E
[∣∣gt

(
f (X) − �jf (X)

)
− gt

(
f (X)

) − g′
t

(
f (X)

)(−�jf (X)
)∣∣ × ∣∣�jf

(
XA)∣∣].

Now we use (3.5) with w = f (X),h = −�jf (X), together with the fact that

h
(
1[w,w+h)(t) − 1[w+h,w)(t)

) = −h(1{w>t} − 1{w+h>t})

to deduce that

(4.4)

∣∣E[
gt (W)W − g′

t (W)T
]∣∣

≤ 1

2
E

∑
j,A,j /∈A

κn,A

{(∣∣f (X)
∣∣ + √

2π/4
) |�jf (X)|2|�jf (XA)|

2

+ �j(1f (X)>t )�jf (X)
∣∣�jf

(
XA)∣∣}.

Using the independence of X and X′, one proves immediately that, for j /∈ A,

E
[
�j(1f (X)>t )�jf (X)

∣∣�jf
(
XA)∣∣] = 2E1f (X)>t�jf (X)

∣∣�jf
(
XA)∣∣,

from which it follows that the right-hand side of (4.4) is bounded by

1

4
E

[ ∑
j,A,j /∈A

κn,A

(∣∣f (X)
∣∣ +

√
2π

4

)∣∣�jf (X)2�jf
(
XA)∣∣]

+ ∣∣E[
1f (X)>t × T ′]∣∣

≤ 1

4
E

[ ∑
j,A,j /∈A

κn,A

(∣∣f (X)
∣∣ +

√
2π

4

)∣∣�jf (X)2�jf
(
XA)∣∣]

+
√

Var
(
E

(
T ′ | X))

,

where we have applied the Cauchy–Schwarz inequality, together with the fact that
indicator functions are bounded by 1. The bound (4.1) is obtained by using the
Hölder inequality in order to deduce that, for all j,A,

E
[∣∣�jf (X)

∣∣2∣∣�jf
(
XA)∣∣] ≤ E

[∣∣�jf (X)
∣∣3]

,
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and (4.2) follows by

E
[∣∣f (X)

∣∣∣∣�jf (X)
∣∣2∣∣�jf

(
XA)∣∣] ≤

√
Ef (X)2

√
E

[
�jf (X)4�jf

(
XA

)2]
≤

√(
E�jf (X)6

)2/3(
E�jf

(
XA

)6)1/3

≤ (
E�jf (X)6)1/2

,

where we have used the fact that X and XA have the same distribution. �

REMARK 4.3. Recall that the Wasserstein distance between the laws of two
real-valued random variables U,V is defined as

dWass(U,V ) := sup
h

∣∣E[
h(U)

] − E
[
h(V )

]∣∣,
where the supremum runs over all 1-Lipschitz functions h : R → R. In [4], Theo-
rem 2.2, one can find the following bound: under the assumptions of Theorem 4.2,

(4.5) dWass(W,N) ≤ 1

σ 2

√
Var

(
E(T | X)

) + 1

2σ 3

n∑
j=1

E
∣∣�jf

(
X,X′)∣∣3.

EXAMPLE 4.4. Consider a vector X = (X1, . . . ,Xn) of i.i.d. random variables
with mean zero and variance 1, and assume that E|X1|4 < ∞. Define, for any
n ≥ 1 and any n-tuple of real numbers x1, . . . , xn, f (x) = n−1/2(x1 + · · · + xn).
It is easily seen that, in this case, for n ≥ 1, for every j /∈ A, �jf (XA,X′) =
n−1/2(Xj − X′

j ), in such a way that

T = 1

2n

n∑
j=1

(
Xj − X′

j

)2 and T ′ = 1

2n

n∑
j=1

sign
(
Xj − X′

j

)(
Xj − X′

j

)2
.

We also have, denoting X̂j the vector X after removing Xj ,

E
∣∣f (X)�jf (X)2�jf

(
XA)∣∣

≤ E
∣∣f (X) − f

(
X̂j )∣∣∣∣�jf (X)2�jf

(
XA)∣∣

+ E
∣∣f (

X̂j )∣∣E∣∣�jf (X)2∣∣∣∣�jf
(
XA)∣∣

≤ En−2|Xj |
∣∣Xj − X′

j

∣∣2∣∣Xj − X′
j

∣∣
+ E

∣∣f (
X̂j )∣∣En−3/2∣∣Xj − X′

j

∣∣2∣∣Xj − X′
j

∣∣
≤ 8

(
n−2EX4

j + n−3/2EX3
j

)
[note that the bound (4.2) can be used instead, whenever EX6

1 < ∞]. An elemen-
tary application of (4.1) yields therefore that there exists a finite constant C > 0,
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independent of n, such that, for W = f (X),

dK(W,N) ≤ C√
n
,

providing a rate of convergence that is consistent with the usual Berry–Esseen
estimates. One should notice that the estimate (4.5) yields the similar bound
dWass(W,N) ≤ C/

√
n.

5. Symmetric functions and geometric applications. In this section, we
adapt our results to random structures with local dependence, in a spirit close to
[4], Section 2.3—see Remark 5.4 below. Our principal focus will be on measur-
able and symmetric real-valued mappings f on En: we recall that f : En → R is
said to be symmetric if

f (xσ(1), . . . , xσ(n)) = f (x1, . . . , xn)

for any permutation σ of [n] and vector x ∈ En.
In the following, X and X′ denote two independent sets of n i.i.d. random vari-

ables with common generic distribution μ. We will use the following short-hand
notation: for any random vector Z of dimension n, and for every 1 ≤ i �= j ≤ n,

�if (Z) := �if
(
Z,X′),

�i,j f (Z) := �i�jf
(
Z,X′),

where the notation is the same as in Section 2.1; we also adopt the additional
convention that �i,i = �i . Now let X̃ be a further independent copy of X. We
shall use the following terminology: a vector Z = (Z1, . . . ,Zn) is a recombination
of {X,X′, X̃}, if Zi ∈ {Xi,X

′
i , X̃i} for every 1 ≤ i ≤ n.

The next statement provides a bound for the normal approximation of geomet-
ric functionals that is amenable to geometric analysis, and can be heuristically
regarded as the binomial counterpart to the second order Poincaré inequalities on
the Poisson space (in the Kolmogorov distance), proved in [20].

THEOREM 5.1. Let f : En → R be a symmetric measurable functional such
that W = f (X) is centred, and σ 2 = Var(W) < ∞. Let N be a centred Gaussian
random variable with variance 1. Define

Bn(f ) := sup
(Y,Z,Z′)

E
[
1{�1,2f (Y ) �=0}�1f (Z)2�2f

(
Z′)2]

,

B ′
n(f ) := sup

(Y,Y ′,Z,Z′)
E

[
1{�1,2f (Y ) �=0,�1,3f (Y ′) �=0}�2f (Z)2�3f

(
Z′)2]

,
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where the suprema run over all vectors Y,Y ′,Z,Z′ that are recombinations of
{X,X′, X̃}. Then

(5.1)

dK

(
σ−1W,N

)

≤
[

4
√

2n1/2

σ 2

(√
nBn(f ) +

√
n2B ′

n(f ) +
√

E�1f (X)4
)

+ n

4σ 4 sup
A⊆[n]

E
∣∣f (X)�1f

(
XA)3∣∣ + (√

2π

16σ 3 nE
∣∣�1f (X)3∣∣)]

.

REMARK 5.2. We shall often use the following bounds, following at once
from the Cauchy–Schwarz inequality:

(5.2)

B ′
n(f ) ≤ sup

(Y,Y ′,Z,Z′)

(√
E

[
1{�1,2f (Y ) �=0,�1,3f (Y ′) �=0}�2f (Z)4

]

×
√

E
[
1{�1,2f (Y ) �=0,�1,3f (Y ′) �=0}�3f

(
Z′)4])

≤ sup
(Y,Y ′,Z)

E
[
1{�1,2f (Y ) �=0,�1,3f (Y ′) �=0}�2f (Z)4]

and

Bn(f ) ≤ sup
(Y,Z)

E
[
1{�1,2f (Y ) �=0}�1f (Z)4]

.(5.3)

In the framework of the applications developed in this paper, such estimates sim-
plify some computations and do not worsen the associated rates of convergence.

In the applications developed below, we will often consider functions f that
are obtained as restrictions to En of general real-valued mappings on the set⋃

n≥1 En, corresponding to the class of all finite ordered point configurations (with
possible repetitions). Now fix f : ⋃

n≥1 En → R and, for every n ≥ 1 and every
x = (x1, . . . , xn) ∈ En, introduce the notation x̂i to indicate the element of En−1

obtained by deleting the ith coordinate of x, that is: x̂i = (x1, . . . , xi−1, xi, . . . , xn).
Analogously, write x̂ij ∈ En−2 to denote the vector obtained from x by removing
its ith and j th coordinates. We write

Dif (x) = f (x) − f
(
x̂i),

Di,j f (x) = f (x) − f
(
x̂i) − f

(
x̂j ) + f

(
x̂ij ) = Dj,if (x).

PROPOSITION 5.3. Let f be a functional defined on
⋃

k≤n Ek such that its
restriction to En satisfies the hypotheses of Theorem 5.1. Then we have

B ′
n(f ) ≤ 28 sup

(Y,Y ′,Z,Z′)
E

[
1{D1,2f (Y ) �=0}1{D1,3f (Y ′) �=0}D2f (Z)2D3f

(
Z′)2]

,

Bn(f ) ≤ 26 sup
(Y,Z,Z′)

E
[
1{D1,2f (Y ) �=0}D1f (Z)2D2f

(
Z′)2]

.
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PROOF. First, observe that∣∣�jf (X)
∣∣ ≤ ∣∣Djf (X)

∣∣ + ∣∣Djf
(
Xj )∣∣,(5.4)

�i,jf (X) = Di,jf (X) − Di,jf
(
Xi) − Di,jf

(
Xj ) + Di,jf

(
X{i,j}).(5.5)

Let Y,Y ′,Z,Z′ be recombinations of {X,X′, X̃}. Using the bounds above, there
are recombinations Y (i), Y ′(i), i = 1, . . . ,4 and Z(l),Z′(l), l = 1,2, such that

E
[
1{�1,2f (Y ) �=0,�1,3f (Y ′) �=0}�2f (Z)2�3f

(
Z′)2]

≤ E

[ 4∑
i=1

1{D1,2f (Y (i)) �=0}

×
4∑

j=1

1{D1,3f (Y ′(j)) �=0}
2∑

l,m=1

4D2f
(
Z(l))2

D3
(
Z′(m))2

]

≤ 256 sup
(Y,Y ′,Z,Z′)

E
[
1{D1,2f (Y ) �=0}1{D1,3f (Y ′) �=0}D2f (Z)2D3f

(
Z′)2]

,

which gives the bound on B ′
n(f ). The bound on Bn(f ) is obtained analogously.

�

REMARK 5.4. Our framework is more restrictive than that of [4], Theo-
rem 2.5, where it is not assumed that f is symmetric, but rather that its depen-
dency graph is symmetric, meaning that the relation �i,jf (X) = 0 is equivalent to
�σ(i),σ (j)f (Xσ ) = 0 for any i �= j and every permutation σ of {1, . . . , n}, where
Xσ

i := Xσ(i). One should notice that this subtlety is not exploited in most appli-
cations of [4]; see, for example, [23]. Under our symmetry assumption, a bound
analogous to the main estimate in [4], Theorem 2.5, can be retrieved from (5.1) by
using the bounds√

E�jf (X)4 +
√

nBn(f ) +
√

n2B ′
n(f )

≤ 3
√

E�jf (X)4 + nBn(f ) + n2B ′
n(f )

≤ 3

√√√√8
n∑

j,k=1

sup
(Y,Y ′,Z,Z′)

E1{�1,j f (Y ) �=0}1{�1,kf (Y ′) �=0}�jf (Z)2�kf
(
Z′)2

≤ 6
√

2

√√√√ n∑
j,k=1

sup
(Y,Y ′,Z)

n−2E
(

n
sup
j=1

∣∣�jf (Z)
∣∣)4

δ1(Y )δ1
(
Y ′)

≤ 6
√

2
(
EM(X)8)1/4(

Eδ1(X)4)1/4
,
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where M(X) = supi |�if (X)| and δ1(X) = #{j : �1,j f (X) �= 0}. One should no-
tice that the additional term involving quantities of the type E|f (X)�1f (X)2 ×
�1f (XA)| appears in our bounds because we are dealing with the Kolmogorov
distance. In general, we shall control this term by using the rough estimate

E|f (X)�1f (X)2�1f (XA)| ≤ σ
√

E�jf (X)6, that one can, for example, deduce
by applying twice the Cauchy–Schwarz inequality—see Section 6 for more details.

PROOF OF THEOREM 5.1. Assume without loss of generality that σ = 1. Our
estimate follows by appropriately bounding each of the four summands appearing
on the right-hand side of (4.1). We have for A ⊆ [n],1 ≤ j ≤ n, by the Hölder
inequality,

E
∣∣f (X)�jf (X)2�jf

(
XA)∣∣

= E
∣∣f (X)2/3�jf (X)2∣∣∣∣�jf (X)1/3�jf

(
XA)∣∣

≤ (
E

∣∣f (X)�jf (X)3∣∣)2/3(
E

∣∣f (X)�jf
(
XA)3∣∣)1/3

≤ sup
A⊆[n]

E
∣∣f (X)�jf

(
XA)3∣∣,

because �jf (X) = �jf (X∅). The two last terms on the right-hand side of (4.1)
are therefore bounded by the last two terms in (5.1), in view of the symmetry of
f and of the relation

∑
A�[n]:1/∈A κn,A = 1. To control the first two summands in

(4.1), we first bound the square root of the variance of a random variable of the type
U := 1

2
∑

A�[n] κn,AUA, for a general family of square-integrable random variables
UA(X,X′),A� [n]. Using, for example, [4], Lemma 4.4, we infer that

(5.6)

√
Var

(
E(U | X)

) ≤ 1

2

∑
A�[n]

κn,A

√
VarE(UA | X)

≤ 1

2

∑
A�[n]

κn,A

√
E

(
Var

(
UA | X′)).

This inequality will be used both for UA = TA and UA = T ′
A. Let us now bound

each summand separately. Fix A ⊆ [n]. Introduce the substitution operator based
on X̃ = (X̃i)1≤i≤n

S̃i(X) = (X1, . . . , X̃i, . . . ,Xn).

Recall that, by the Efron–Stein’s inequality, for any square-integrable functional
Z(X1, . . . ,Xn),

Var(Z) ≤ 1

2

n∑
i=1

E
(
�̃iZ(X)

)2
,
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where

(�̃iZ)(X) := Z
(
S̃i(X)

) − Z(X)

is clearly centred. Applying this to Z(X) = UA(X,X′) for fixed X′,

Var
(
UA | X′) ≤ 1

2

n∑
i=1

E
[(

�̃iUA

(
X,X′))2 | X′].

From this relation, we therefore infer that

√
Var

(
E(U | X)

) ≤ 1√
8

∑
A�[n]

κn,A

√√√√ n∑
i=1

E(�̃iUA)2.

Now recall that UA = TA or UA = T ′
A, that is, UA = ∑

j /∈A �jf (X)g(�jf (XA)),
where either g is the identity or g(·) = | · |. Expanding the square yields

(5.7)

n∑
i=1

E(�̃iUA)2

=
n∑

i=1

∑
j,k /∈A

E
[∣∣�̃i

(
�jf (X)g

(
�jf

(
XA)))∣∣

× ∣∣�̃i

(
�kf (X)g

(
�kf

(
XA)))∣∣].

Now fix 1 ≤ i ≤ n, write X̃i = S̃i(X) and observe that for j /∈ A,

(5.8)
�̃i

(
�jf (X)g

(
�jf

(
XA)))

= �̃i

(
�jf (X)

)
g
(
�jf

(
XA)) + �jf

(
X̃i)�̃i

(
g
(
�jf

(
XA)))

.

We note immediately that, in the case i = j , using |�̃ig(V (X))| ≤ |�̃i(V (X))|
and �̃i(�i(V (X))) = �̃i(V (X)) for any random variable V (X), the right-hand
side of (5.8) is bounded by the simpler expression

(5.9)

∣∣�̃if (X)�if
(
XA)∣∣ + ∣∣�if

(
X̃i)�̃if

(
XA)∣∣

≤ 1

2

[
�̃if (X)2 + �if

(
XA)2 + �if

(
X̃i)2 + �̃if

(
XA)2]

.

Now let us examine each summand appearing in (5.7) separately. If i /∈ A and
i = j = k, using (5.9), the summand is smaller than

1

4
E

[
�̃if (X)2 + �if

(
XA)2 + �if

(
X̃i)2 + �̃if

(
XA)2]2 ≤ 4E�1f (X)4.

In the case where i, j, k are pairwise distinct, introduce the vector X̄ by{
X̄i = X̃i,

X̄l = X′
l , if l �= i,
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and, for x ∈ En and some mapping ψ on En, define, for 1 ≤ l ≤ n,

�̄lϕ(x) = ψ(x) − ψ(x1, . . . , xl−1,Xl, xl+1, . . . , xn).

Then the corresponding summands are bounded by

4 sup
(Y,Y ′,Z,Z′)

E
∣∣�̄i

(
�̄jf (Y )

)
�̄jf

(
Y ′)�̄i

(
�̄kf (Z)

)
�̄kf

(
Z′)∣∣.

Using X̄
(d)= X′ and the fact that if Y is a recombination, switching the roles of X̃i

and X′
i in Y still yields a recombination of {X,X′, X̃}, the previous expression is

bounded by

= 4 sup
(Y,Y ′,Z,Z′)

E
∣∣�i

(
�jf (Y )

)
�jf

(
Y ′)�i

(
�kf (Z)

)
�kf

(
Z′)∣∣

≤ 4 sup
(Y,Y ′,Z,Z′)

E
[
1{�i,j f (Y ) �=0}

(∣∣�jf (Y )
∣∣ + ∣∣�jf

(
Y i)∣∣)∣∣�jf

(
Y ′)∣∣

× 1{�i,kf (Z) �=0}
(∣∣�kf (Z)

∣∣ + ∣∣�kf
(
Zi)∣∣)∣∣�kf

(
Z′)∣∣]

≤ 16B ′
n(f ),

where we have used the Cauchy–Schwarz inequality. The case i �= j = k is treated
with the same vector X̄ and operators �̄l . Using similar computations and the
Cauchy–Schwarz inequality, we have the upper bound

4 sup
(Y,Y ′,Z,Z′)

E�̄i

(
�̄jf (Y )

)
�̄jf

(
Y ′)�̄i

(
�̄jf (Z)

)
�̄jf

(
Z′)

≤ 4 sup
(Y,Y ′)

[
E�̄i

(
�̄jf (Y )

)2
�̄jf

(
Y ′)2]

= 4 sup
(Y,Y ′)

[
E�j

(
�if (Y )

)2
�jf

(
Y ′)2]

≤ 4 sup
(Y,Y ′)

E
[
1{�i,j f (Y ) �=0}

(∣∣�if (Y )
∣∣ + ∣∣�if

(
Y j )∣∣)2

�jf
(
Y ′)2]

≤ 16 sup
(Y,Y ′,Z)

E
[
1{�i,j f (Y ) �=0}�if (Z)2�jf

(
Y ′)2]

≤ 16Bn(f ),

where the suprema run over recombinations Y,Y ′,Z,Z′ of {X,X′, X̃}. Finally,
if i = j �= k, the corresponding summands on the right-hand side of (5.7) are
bounded by

4 sup
(Y,Y ′,Z)

E
[∣∣�̄if (Y )2�̄i

(
�̄kf

(
Y ′))�̄kf (Z)

∣∣]
≤ 4 sup

(Y,Y ′,Z)

E
[
1{�i,kf (Y ′) �=0}

(∣∣�kf (Y )
∣∣
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+ ∣∣�kf
(
Y i)∣∣)�if (Y )2∣∣�kf (Z)

∣∣]
≤ 8Bn(f ).

This yields

n∑
i=1

E(�̃iUA)2

≤ 16n
∑

j,k /∈A

[
1{j=k=1}E�1f (X)4

+ (1{k �=j=1} + 1{k=j �=1})Bn(f ) + 1{k �=j �=1}B ′
n(f )

]
≤ 16n

(
1{1/∈A}E�1f (X)4 + 2

(
n − |A|)Bn(f ) + (

n − |A|)2
B ′

n(f )
)
,

and using the inequality
√

x + y ≤ √
x + √

y (x, y ≥ 0) we deduce that√√√√ n∑
i=1

E(�̃iUA)2

≤ √
16n

(
1{1/∈A}

√
E�1f (X)4

+
√

2Bn(f )
√

n − |A| +
√

B ′
n(f )

(
n − |A|)).

Finally,√
Var

(
E(U | X)

)
≤ √

8n

(√
E�1f (X)4

∑
A�[n]:1/∈A

κn,A

+
√

Bn(f )
∑

A�[n]
κn,A

√
n − |A| +

√
B ′

n(f )
∑

A�[n]
κn,A

(
n − |A|))

and the result follows by evaluating the three sums over A� [n] in the last expres-
sion. �

6. Applications.

6.1. Covering processes. Let (K,K ) be the space of compact subsets of
Rd , endowed with the hit-and-miss topology (see [22] for a formal introduc-
tion) and a Borel probability measure ν. Let En be a cube of volume n, and
C1, . . . ,Cn i.i.d. uniform variables in En, called the germs. Let n i.i.d. compact
sets K1, . . . ,Kn be distributed as ν, called the grains, and define the germ-grain
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process {Xi = Ci +Ki, i = 1, . . . , n}. An important feature of the model regarding
Gaussian approximation is the radius

Ri := sup
{‖x‖ : x ∈ Ki

}
, 1 ≤ i ≤ n.

We consider the random closed set formed by the union of the grains translated by
the germs

Fn =
(

n⋃
k=1

Xk

)
∩ En.

We are interested in the volume of Cn covered by Fn

fV (X1, . . . ,Xn) = Vol(Fn),

the number of isolated grains

fI (X1, . . . ,Xn) = #{k : Xk ∩ Xj ∩ En = ∅, k �= j},
and their centred versions with unit variance f̃V , f̃I . The functional fV denotes the
total volume of the germ-grain process, and n−1fV (X1, . . . ,Xn) can serve as an
estimator for the volume fraction, that is, the portion of the space occupied by the
Boolean model

⋃
k Xk , and, therefore, be used in estimating the parameters of ν

(see [21] for insights on the Boolean model statistics).
Kolmogorov bounds in n−1/2 for binomial input for fV or fI have only been

obtained very recently in [12] with balls with deterministic identical radii (with
the possibility to extend the method to random radii), using size-biased couplings.
Chatterjee [4] obtained similar bounds in Wasserstein distance. We present here
the first such bound in the Kolmogorov distance in the unbounded random grain
context. Furthermore, the computations are quite straightforward and the method
is generalisable to similar local functionals of the Boolean model, such as the
perimeter, or other Minkowski functionals. The use of the bound (5.1) is cru-
cial to have a decay in n−1/2 in the context of random grains. The variance is
a straightforward computation of integral geometry, it is a consequence for in-
stance of [18], Theorem 4.4, that under the conditions of the theorem below, we
have cn ≤ Varf (X1, . . . ,Xn) ≤ Cn for some c,C > 0, for f = fV or f = fI , for
n sufficiently large.

THEOREM 6.1. Assume that ER5d
1 < ∞. Let N be a standard Gaussian vari-

able. Then we have for some C > 0,

dK

(
f̃V (X1, . . . ,Xn),N

) ≤ Cn−1/2.

If ER8d
1 < ∞, for some C′ > 0,

dK

(
f̃I (X1, . . . ,Xn),N

) ≤ C′n−1/2.
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PROOF. Let first f = fV . Given a n-tuple x = (x1, . . . , xn) ∈ Kn, we have
Di,jf (x) = 0 as soon as Vol(xi ∩ xj ) = 0, which gives us a sufficient condition.
Let us estimate the right-hand side of (5.1). Introduce independent copies X′, X̃
of X, and for U a random compact set among those families, denote by c(U),
r(U),K(U) its centre, radius and grain, so that{

c(Xi), c
(
X′

i

)
, c(X̃i),K(Xi),K

(
X′

i

)
,K(X̃i),1 ≤ i ≤ n

}
is a family of independent variables. Let us write Vi = Vol(Xi),V

′
i = Vol(X′

i). We
have |D1fV (X)| ≤ V1, and since the volume has a finite moment of order 5,

sup
n≥1

E
∣∣D1f (X)

∣∣3 < ∞, sup
n≥1

E
∣∣D1f (X)

∣∣4 < ∞.

We also have for A ⊆ [n]
E

∣∣f (X)
∣∣∣∣D1f

(
XA)∣∣3 ≤ E

∣∣f (
X1̂)

D1f
(
XA)∣∣3+E

∣∣D1f (X)D1f
(
XA)3∣∣

≤ E
∣∣f (

X1̂)∣∣(V 3
1 + (

V ′
1
)3) + ED1f (X)4

≤ E
∣∣f (

X1̂)∣∣2EV 3
1 + EV1(X)4,

whence

σ−4nE
∣∣f (X)D1f

(
XA)3∣∣ ≤ Cn−1/2

for some C > 0.
To estimate Bn(f ),B ′

n(f ), we use Proposition 5.3, (5.2) and (5.3). Fix Y,Y ′,Z
recombinations of {X,X′, X̃}, we have

E
[
1{D1,2f (Y ) �=0}D1f (Z)4]

≤ E
[
1{Y2∩Y1 �=∅} Vol(Z1)

4]
≤ E

[
κ4
d r(Z1)

4dP
(
c(Y2) ∈ B

(
c(Y1), r(Y1) + r(Y2)

)|Y1,Z1, r(Y2)
)]

≤ n−1κ5
dE

[
r(Z1)

4d(
r(Y1) + r(Y2)

)d]
whence supn nBn(f ) < ∞ since ER5d

1 < ∞.
Then

E
[
1{D1,2f (Y ) �=0,D1,3f (Y ′) �=0}D2f (Z)4]

≤ E
[
Vol(Z2)

41{D12f (Y ) �=0}
× P

(
c
(
Y ′

3
) ∈ B

(
c
(
Y ′

1
)
, r

(
Y ′

1
) + r

(
Y ′

3
)) | Z2, Y1, Y2, Y

′
1, r

(
Y ′

3
))]

≤ n−1κ5
dE

[
r(Z2)

4(
r
(
Y ′

1
) + r

(
Y ′

3
))d

× P
(
c(Y2) ∈ B

(
c(Y1), r(Y1) + r(Y2)

) | Z2, Y1, Y
′
1, Y

′
3, r(Y2)

)]
≤ n−2κ6

dE
[
r(Z2)

4(
r
(
Y ′

1
) + r

(
Y ′

3
))d(

r(Y1) + r(Y2)
)d]

.
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Using the definition of recombinations, the variables Y ′
1,Z2, Y

′
3 are pairwise inde-

pendent, and the expectation above is finite because of Er(X1)
5d < ∞. We indeed

have supn n2B ′
n(f ) < ∞, which concludes the proof for the Kolmogorov bound

on f̃V .
Dealing with f = fI is slightly more complicated. Introduce di,j (X), the dis-

tance between i and j in the germ-grain process X, defined as the smallest num-
ber q such that there is a chain i1 = i, . . . , iq = j such that Xik ∩ Xik+1 �= ∅. Call
B

p
i (X) the set of points at distance ≤ p from the point i for the distance d·,·(X).

For some 1 ≤ i, j ≤ n, the value of the functional

1{Xj is isolated} := 1{Xj∩Xk∩En=∅,k �=j}
can be affected by the removal of Xi only if Xi ∩Xj �=∅, therefore, for 1 ≤ i ≤ n,∣∣DifI (X)

∣∣ ≤ #B1
i (X),

whence,

E
∣∣D1fI (X)

∣∣q ≤ E#B1
i (X)q, q ≤ 1.(6.1)

We will estimate this bound later. With the same notation than for the functional
fV , let us now deal with Bn(f ),B ′

n(f ). Remark that Di,jfI (X) = 0 if di,j (X) > 2.
We have

Bn(f ) ≤ sup
(Y,Z)

E
[
1{2∈B2

1 (Y )}#B1
1 (Z)4]

and

1{2∈B2
1 (Y )} ≤ ∑

k

1{X1∩Xk �=∅,X2∩Xk �=∅}.

To simplify notation, remark that for Y,Z recombinations of {X,X′, X̃},
#B

p
1 (Y ) ≤ #B

p
1 (T ), where T is the concatenation of Y and Z and is in fact com-

posed of m i.i.d. variables distributed as X1, where n ≤ m ≤ 2n. We then have

(6.2)

Bn(f ) ≤ sup
n≤m≤2n

E

[
m∑

k=1

1{T1∩Tk �=∅,Tk∩T2 �=∅}

× ∑
1≤k1,k2,k3,k4≤m

1{Tki
∩T1 �=∅,i=1,...,4}

]
,

and the supremum is reached for m = 2n. We have similarly, with m = 3n,

(6.3)

B ′
n(f ) ≤ E

[
m∑

k=1

1{T1∩Tk �=∅,T2∩Tk �=∅}
m∑

k′=1

1{T1∩Tk′ �=∅,T3∩Tk′ �=∅}

× ∑
(k1,k2,k3,k4)∈[m]4

1{T1∩Tki
�=∅,i=1,2,3,4}

]
.
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To estimate (6.1)–(6.3), it is useful to introduce some more notation. Call graph
on [n] the finite data of distinct edges t = {{i1, j1}, . . . , {iq, jq}}. For such a graph,
introduce the probability

p(t) = P(Ti1 ∩ Tj1 �= ∅, . . . , Tiq ∩ Tjq �= ∅).

Say that this graph is a tree when it is connected and has no cycles. Let us prove
that for every tree t with q distinct vertices,

p(t) ≤ (
dκdn−1)q−1Er(T1)

(q−1)d .(6.4)

Let t be such a tree, and let an arbitrary vertex i0 of t , designated to be the
root of t . Call Gk(t), k ≥ 1, the members of the kth generation, noticing that there
cannot be more than q generations, that is, Gk(t) = ∅ for k > q . Call G−

k (t) =⋃
j<k Gj (t),G+

k (t) = Gk(t) \ G−
k (t), and call Gk+1

k (t) the collection of all pairs
(i, j) such that i ∈ Gk(t), j ∈ Gk+1(t), {i, j} ∈ t . We have

p(t) ≤ E
[
1{Ti∩Tj �=∅;{i,j}∈t;i,j∈G−

q (t)}P
(
c(Tj ) ∈ B

(
c(Ti), r(Ti) + r(Tj )

);
(i, j) ∈ Gq

q−1(t)
∣∣ c(Ti), i ∈ G−

q (t); r(Ti), i ∈ [m])]
≤ E

[
1{Ti∩Tj �=∅;{i,j}∈t,i,j∈G−

q (t)}
∏

(i,j)∈Gq
q−1(t)

n−1κd

(
r(Ti) + r(Tj )

)d]

≤ (
κdn−1)#Gq

q−1(t)E
[
1{Ti∩Tj �=∅;{i,j}∈t,i,j∈G−

q (t)}

× ∏
{i,j}∈t :i,j∈G+

q (t)

(
r(Ti) + r(Ti)

)d]
.

Applying this procedure inductively back until the 1st generation, that is the root
i0 of the tree, yields

p(t) ≤ (
κdn−1)∑

k≥1 #Gk+1
k (t)E

[ ∏
(i,j)∈⋃

k Gk+1
k (t)

(
r(Ti) + r(Tj )

)d]
.

Now,
⋃

k≥1 Gk+1
k (t), contains all the q − 1 edges of t , whence

p(t) ≤ κ
q−1
d n−(q−1)

× E
[ ∏
{i,j}∈t

(
r(Ti) + r(Tj )

)d ≤ (
dκdn−1)q−1Er(T1)

(q−1)d

]
,

by using the Cauchy–Schwarz inequality, whence (6.4) follows.
We have

E
∣∣D1fI (X)

∣∣6 ≤ ∑
k=(k1,...,k6)∈[m]6

p
({1, ki}, i = 1, . . . ,6

) ≤ Cn−5
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for some C > 0, by using Er(X1)
5d < ∞, which treats all the terms of (5.1) except

the ones containing Bn(f ) and B ′
n(f ).

We call, for u1, . . . , uq distinct integers, l ≥ 0,p ≥ 4,

[m]pu1,...,uq ;l = {
k = (k1, . . . , kp) ∈ [m]p : #{u1, . . . , uq, k1, . . . , kp}} = q + l.

We can easily prove that there are constants Cl not depending on m such that

#[m]pu1,...,uq ;l ≤ Cln
l.(6.5)

We have, for T with 2n i.i.d. components, using (6.2),

Bn(f ) ≤
n∑

k=1

∑
k=(ki)∈[2n]4

p
({1, k}, {2, k}, {1, ki}; i = 1, . . . ,4

)

≤
5∑

l=0

∑
k∈[m]5

1,2;l

p
({1, k1}, {2, k1}, {1, ki}; i = 2, . . . ,5

)
.

For k ∈ [m]5
1,2;l , one can easily extract a tree with l+1 edges from {{1, k1}, {2, k1},

{1, ki}; i = 2, . . . ,5}, whence (6.4) yields

Bn(f ) ≤ C

5∑
l=0

∑
k∈[m]5

1,2;l

n−l−1 ≤ C′n−1,

using also (6.5). This gives supn nBn(f ) < ∞. Similar computations yield

B ′
n(f ) ≤ E

∑
k

1{T1∩Tk �=∅,T2∩Tk �=∅}

× ∑
k′

1{T1∩Tk′ �=∅,T3∩Tk′ �=∅}
∑

k=(k1,k2,k3,k4)∈[m]4

1{T1∩Tki
�=∅}

≤ ∑
k=(ki)∈[m]6

p
({1, k1}, {2, k1}, {1, k2}, {3, k2}, {1, ki}, i = 3, . . . ,6

)

=
6∑

l=0

∑
k=(ki )∈[m]6

1,2,3;l

p
({2, k1}, {3, k2}, {1, ki}, i = 1, . . . ,6

)

and for k ∈ [m]6
1,2,3;l one can extract a tree with l + 2 edges from {{2, k1}, {3, k2},

{1, ki}; i = 1, . . . ,6}, whence

B ′
n(f ) ≤

6∑
l=0

∑
k∈[m]6

1,2,3;l

(
κd dn−1)l+2 ≤ Cn−2,

which completes the proof. �
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6.2. Set approximation with random tessellations. Let K be a compact subset
of Rd with positive volume, and let X = (Xi) be a locally finite collection of
points. Assume the only information available about K is given by the values of
the indicator function 1{x∈K}, x ∈ X. Then the Voronoi reconstruction, or Voronoi
approximation, of K based on X is defined as

KX = {
y ∈ Rd : the closest point from y in X lies in K

}
.

This chapter is devoted to the study of the error committed when one approximates
the volume of K ⊆ [0,1]d with that of KX , when X is a random input consisting
in n i.i.d. points in [0,1]d .

The underlying structure in this approximation scheme is the Voronoi tessel-
lation based on X. For x ∈ [0,1]d , denote by V (x;X) the Voronoi cell with
nucleus x among X, that is, the convex set formed by points y ∈ [0,1]d such
that ‖y − x‖ ≤ ‖y − x′‖ for any point x′ ∈ (X,x), where in all this section
(X,x) := X∪{x}, and we extend the set notation ∈ to ordered collections of points
in an obvious way. The volume approximation described above is denoted

ϕ(X) = Vol
(
KX) = ∑

i

1{Xi∈K} Vol
(
V (Xi;X)

)
.

Along the same lines, one can also approximate the perimeter of K , whenever such
a notion is well defined, via the relation ϕPer(X) = Vol(KX�K) where � denotes
the symmetric difference of sets.

This set approximation can serve in image reconstruction and estimation: it
has first been introduced by Einmahl and Khmaladze [9] as a discriminating
statistic in the two-sample problem. These authors proved a strong law of large
numbers in dimension 1. Heveling and Reitzner [14] proved that if K is con-
vex and compact and X = X′ is a homogeneous Poisson process with inten-
sity n, Eϕ(X′) = Vol(K), and Var(ϕ(X′)) ≤ cn−1−1/dS(K) where c is an ex-
plicit constant and S(K) is the surface area of K . They also established that
EϕPer(X

′) = c′n−1/dS(K)(1 + O(n−1/d)) and Var(ϕPer(X
′)) ≤ c′n−1−1/dS(K).

Reitzner, Spodarev and Zaporozhets [25] extended these results to sets with fi-
nite variational perimeter, and also gave upper bounds for E|ϕ(X′)q − Vol(K)q |
for q ≥ 1. Schulte [29] proved a similar lower bound for the variance, that is,
CS(K)n−1−1/d ≤ Var(ϕ(X′)) with K a convex body and C a universal constant,
and the corresponding CLT

dWass

(
ϕ(X′) − Eϕ(X′)√

Var(ϕ(X′))
,N

)
→ 0.

Yukich [34] then gave an upper bound on the speed of convergence in Kolmogorov
distance under the assumption that the boundary of K contains a C2-manifold with
positive Hausdorff measure. See also [31], Section 2, for estimates in the Kol-
mogorov distance involving analogous functionals of a Poisson point process.
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For binomial input, Penrose proved that for measurable K and X consisting in
n i.i.d. variables with density κ(x) > 0 on [0,1]d ,

Eϕ(X) → Vol(K),(6.6)

without assumption on K , not even the negligibility of its boundary. Yukich [34]
managed to extend to a non-Poissonized setting the estimates on the variance mag-
nitude as well as the central limit theorem for the Volume approximation. See also
[3] for a result involving the Hausdorff distance.

In this section, we consider a binomial input X = (X1, . . . ,Xn), where the Xi

are n i.i.d. variables uniformly distributed on [0,1]d . We give asymptotic upper
bounds for the moments of ϕ(X) − Eϕ(X), as well as a central limit theorem with
rates of convergence in the Kolmogorov distance that is new in the literature. Note
that, in the words of Heveling and Reitzner [14],“the general problem whether KX

approximates K for complicated sets seems to be difficult”, and many applications
of set approximation are concerned with the detection or approximation of sets
with an irregular boundary; see, for instance, [7] or the survey [18], Chapter 11.
Our results also hold for large classes of irregular sets, with a possibly fractal
boundary. The regularity of the boundary of K will be assessed in terms of the
following quantities. Call below Lebesgue-boundary of K , written ∂K , the class of
points x such that for all ε > 0, Vol(B(x, ε) ∩ K) > 0 and Vol(B(x, ε) ∩ Kc) > 0.
Let β > 0. Denote by d(x,A) the Euclidean distance from a point x ∈ Rd to a
subset A ⊆ Rd . Define

∂Kr = {
x : d(x, ∂K) ≤ r

}
,

∂Kr+ = Kc ∩ ∂Kr,

γ (K, r) =
∫
∂Kr+

(
Vol(B(x,βr) ∩ K)

rd

)2
dx.

K is said to satisfy the weak rolling ball condition if

γ (K) := lim inf
r>0

Vol
(
∂Kr)−1(

γ (K, r) + γ
(
Kc, r

))
> 0.(6.7)

This assumption somehow implies that either K or Kc occupies a constant pos-
itive proportion of space as one zooms in on a typical point close to ∂K , at least
in a nonnegligible region of [0,1]d . It is related to a weak form of the rolling ball
condition used in set estimation (see, for instance, condition (a) of Theorem 1 in
[7], the definition of standard sets in [27], Remark 4 in [29], or the survey [18],
Chapter 11, and references therein), where for each x ∈ ∂K a ball of radius βr

touching x should lie in ∂(Kc)r+ or ∂Kr+. In our weaker form of the condition, the
ball is somehow allowed to be deformed to fit in the parallel body. It certainly al-
lows sets which boundary is smooth in a certain sense, and does not discard a priori
fractal sets. It is proved in [19] that a class of fractal sets including for instance the
2-dimensional Von Koch flake and antiflake satisfy the condition, as well as the
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hypotheses of the following theorem with α = 2 − s, s = log(4)/ log(3) being the
fractal dimension of the boundary.

THEOREM 6.2. Let K ⊂ [0,1]d be such that

Vol
(
∂Kr) ≤ S+(K)rα, r > 0,(6.8)

for some S+(K),α > 0. Then for n,q ≥ 1,

E
∣∣ϕ(X) − Eϕ(X)

∣∣q ≤ S+(K)Cd,q,αn−q/2−α/d,(6.9)

for some Cd,q,α > 0 explicit in the proof. If furthermore K satisfies the weak rolling
ball condition (6.7) and

Vol
(
∂Kr) ≥ S−(K)rα, r > 0,(6.10)

for some S−(K) > 0, then for n sufficiently large

C−
d S−(K)γ (K) ≤ Var(ϕ(K,X))

n−1−α/d
≤ C+

d S+(K)Cd,2,α,

for some C−
d ,C+

d > 0, and for every ε > 0, there is cε > 0 not depending on n

such that

dK

(
ϕ(X) − Eϕ(X)√

Var(ϕ(X))
,N

)
≤ cεn

−1/2+α/2d log(n)3+α/d+ε,

for n ≥ 1, where N is a standard Gaussian variable.

REMARKS 1. 1. The previous theorem also applies to smooth sets. Blaschke’s
theorem (see, for instance, [33], Theorem 1), yields that any C1 manifold K with
Lipschitz normals admits inside and outside rolling balls in the traditional sense,
and satisfies in particular our weak rolling ball condition. Furthermore, such a set
and its complement have positive reach, which proves by Steiner’s formula that the
upper and lower bounds (6.8), (6.10) are satisfied; see the pioneering work of Fed-
erer [10]. The result might still hold if the boundary is only piecewise regular (see,
for instance, Remark 4 in [29]), where the idea of using rolling ball assumptions
in order to deduce Voronoi approximation results (in particular, for controlling
variances from below) appears for the first time.

2. If (6.7) is not satisfied, we can still get a lower bound on the variance (and
therefore a rate of convergence), but its magnitude will not match that of the upper
bound; see Lemma 6.9. It might be difficult for such a set to get a clear estimate of
the variance. See also the counterexample in [19].

3. The constant β in the rolling ball condition is left at our choice. The larger
β , the easier it is for K to verify the condition.
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4. Conditions (6.8) and (6.10) imply that K has Minkowski dimension equal
to d −α, and furthermore that K has lower and upper Minkowski content (see, for
instance, [19]). Self-similar sets satisfy these hypotheses, and are treated in [19],
as well as some examples, such as the Von Koch flake, that also satisfies the weak
rolling ball condition. We provide as well an example of a set K with lower and
upper Minkowski content for α = 1/2 that does not satisfy the rolling ball condi-
tion. Simulations indicate that for this example the variance is indeed negligible
with respect to n−1−α/d , but it is still possible to get a rate of convergence for the
Kolmogorov distance to the normal law.

5. The uniformity of the distribution of the Xi ’s does not have a crucial im-
portance, apart from easing certain geometric estimates. The results should hold,
up to constants, under the condition that the common distribution of the Xi’s has
a bounded density that is also bounded from below by some constant κ > 0 on the
domain ∂Kr , for some r > 0.

6. The Berry–Esseen bounds are derived from (5.1). It turns out that each of
the terms on the right-hand side of (5.1) contributes with the same power of n,
heuristically indicating that this power is likely to be optimal.

The proof of the theorem is decomposed into several independent results. The
variance lower bound is established in the specific framework of Voronoi volume
approximation. The Kolmogorov distance and moments upper bounds are poten-
tially valid in a more general framework.

THEOREM 6.3. Define σ 2 = Var(ϕ(X)). Assume that Vol(∂Kr) ≤ S+(K)rα

for some S+(K),α > 0. Then (6.9) holds, and for every ε > 0 there is a constant
cε not depending on n such that, for n ≥ 1,

(6.11)

dK

(
σ−1(

ϕ(X) − Eϕ(X)
)
,N

)
≤ cε

(
σ−2n−3/2−α/2d

+ σ−3n−2−α/d + σ−4n−3−α/d)
log(n)3+α/2d+ε,

where N is a standard Gaussian variable.

We observe that the random tessellation studied in this section is facet-to-facet
with probability one; see, for example, [28], Section 10.2. Say that two points
x, y ∈ [0,1]d are Voronoi neighbours among a point set X if V (x;X)∩V (y;X) �=
∅. More generally, denote dV (x, y;X) the Voronoi distance between x and y,
that is, the minimal integer k ≥ 1 such that we can form a path x0 = x;x1 ∈
X, . . . , xk−1 ∈ X,xk = y where xi and xi+1 are Voronoi neighbours. Denote
v(x, y;X) = Vol(V (x, (X,y)) ∩ V (y,X)) the volume that the cell V (y,X) loses
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when x is added to X. We have the explicit expression, for x /∈ X,

(6.12)

ϕ(X,x) − ϕ(X)

= 1{x∈K}
∑

y∈X∩Kc

v(x, y;X) − 1{x∈Kc}
∑

y∈X∩K

v(x, y;X).

Since v(x, y;X) = 0 if x and y are not Voronoi neighbours in (X,x, y), the con-
catenation of X with x and y, the following properties hold.

PROPOSITION 6.4. Let X = (Xi)1≤i≤n be a finite collection of points:

(i) For 1 ≤ i ≤ n, such that Xi ∈ K (resp. Kc), if every Voronoi neighbour of
Xi among X is also in K (resp., Kc), then Diϕ(X) = 0.

(ii) For every point Xj at Voronoi distance > 2 from some Xi ∈ X,
Di,jϕ(X) = 0.

REMARK 6.5. These properties mean somehow that ϕ is of range 2 with re-
spect to the Voronoi tessellation. An analogue of Theorem 6.3 should hold for any
functional with finite range, such as the perimeter approximation induced by ϕPer.
On the other hand, the variance lower bound derived in this section is specific
to the volume approximation. See again [31] for similar asymptotic results in the
framework of Poisson point processes.

We define for x ∈ Rd,X = (Xi) a finite collection of points, k ≥ 1,

Rk(x;X) = sup
{‖y − x‖ : y ∈ V (Xi;X),dV (x,Xi;X) ≤ k

}
the distance to the furthest point in the cell of a kth order Voronoi neighbour,
with R(x;X) := R0(x;X). If x does not have kth order neighbours, we put by
convention Rk(x;X) = diam([0,1]d) = √

d . We obviously have

Vol
(
V (x;X)

) ≤ κdR(x;X)d, x ∈ Rd,(6.13)

where κd is the volume of the unit ball in Rd .

PROOF OF THEOREM 6.3. We will use Theorem 5.1 with the functional
f (X) = ϕ(X) − Eϕ(X). Let us start with a crucial bound.

LEMMA 6.6. Assume that (6.8) holds. Define for some k ≥ 0, the random
variable

Uk = 1{d(X1,∂K)≤Rk(X1;X)}Rk(X1;X)d.

Then, for some cd,qd+α,k > 0,

EU
q
k ≤ S+(K)cd,qd+α,kn

−q−α/d, n ≥ 1, q ≥ 1.
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PROOF. Under this form, it is problematic to give a sharp upper bound because
the law of Rk(X1;X) depends on the position of X1 within [0,1]d . To inject some
stationarity in the problem, we will bound Rk(X1;X) = Rk(X1; X̂1) by introduc-
ing a closely related quantity Rk(X1; X̂1) whose conditional law with respect to
X̂1 is independent of the value of X1. To this end, introduce the process

X′ = ⋃
m∈Zd

(X + m),

which law is invariant under translations. Remark that given any t ∈ Rd,X′ has
a.s. exactly n points in [t, t + 1]d . For x ∈ Rd , call

Cx = {[x − t, x − t + 1]d; t ∈ [0,1]d}
= {[y, y + 1]d : y ∈ Rd, x ∈ [y, y + 1]d}

,

the family of translates of [0,1]d that contain x. Then by translation invariance of
X′, the law μk,n of

Rk(x,X) := sup
C∈Cx

Rk

(
x,X′ ∩ C

)

does not depend on x. Also, for x ∈ [0,1]d , [0,1]d ∈ Cx , whence Rk(x,X) ≤
Rk(x,X). This yields

(6.14)

EU
q
k ≤

∫
[0,1]d

dx1{d(x;∂K)≤Rk(x;X̂1)}Rk

(
x; X̂1)qd

dx

≤
∫
R+×[0,1]d

1{d(x,∂K)≤r}rqdμk,n−1(dr) dx

≤ S+(K)ERk

(
0; X̂1)qd+α

,

using (6.8). Let us now bound the probability of the event Rk(0,X) ≥ r , for some
r ≥ 0. If this event is realised, there is a kth order Voronoi neighbour z ∈ X′ of
0 and a point y in the Voronoi cell of z such that ‖y‖ ≥ r . Therefore, there is
a sequence of points x1 = 0, x2 ∈ X′, . . . , xk = z, xk+1 = y such that for i < k,
xi and xi+1 are Voronoi neighbours. Since the midpoint zi of xi and xi+1 has xi

and xi+1 as closest neighbours in (X′,0), the open ball Bo(zi,‖xi − xi+1‖/2) has
an empty intersection with X′. Since z is the point of X′ closest to y, Bo((z +
y)/2,‖z − y‖/2) ∩ X = ∅ also. We therefore have k (possibly empty) open balls
B1, . . . ,Bk , with respective radii ri, i = 1, . . . , k, such that [xi, xi+1] is a diameter
of Bi , and such that X′ has a point in none of them. Since ‖y‖ ≥ r , the radius of at
least one of these balls is larger than r/2k. Define

i0 := min{1 ≤ i ≤ k : ri ≥ r/2k}.
We have by the triangle inequality ‖xi0‖ ≤ i0r/2k ≤ r/2, and the ball B(xi0, r/2k)

is empty of points of X′ and is contained in [−r, r]d . It is easy to find γd > 0 such
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that at least one of the cubes [g,g + γdr]d, g ∈ γdrZd ∩ [−r, r]d is contained in
every ball with radius r/2 contained in [−r, r]d . This yields

P
(
Rk(0,X) ≥ r

) ≤ P
(∃g ∈ γdrZd ∩ [−r, r]d : X′ ∩ [g,g + γdr]d = ∅

)
≤ #

(
γ ′
dZ

d ∩ [−1,1]d)
P

([0,0 + γdr]d ∩ X′ =∅
)
.

Since #[0,0+γdr]d ∩X′ ≥ n for r ≥ γ −1
d and X′ ∩ [0,0+γdr] = X∩[0,0+γdr]

for r ≤ γ −1
d , we finally have

P
(
Rk(0,X) ≥ r

) ≤ 2dγ −d
d

(
1 − γ d

d rd)n ≤ 2dγ −d
d exp

(−nγ d
d rd)

.

It then follows that, for u > 0,

ERk

(
0, X̂1)u =

∫ ∞
0

P
(
Rk

(
0, X̂1) ≥ r1/u)

dr

≤ 2dγ −d
d

∫ ∞
0

exp
(−(n − 1)γ d

d rd/u)
dr

≤ 2dγ −d
d (n − 1)−u/d

∫ ∞
0

exp
(−γ d

d rd/u)
dr.

The conclusion follows by reporting this in (6.14). �

Proposition 6.4 and (6.13) yield for q ≥ 1∣∣ED1f (X)q
∣∣ ≤ κ

q
d EU

qd
1 .

Lemma 6.6 implies, for q ≥ 1,

E
∣∣D1f (X)

∣∣q ≤ cd,qd+ακ
q
d S+(K)n−q−α/d,(6.15)

therefore the second term of the right-hand side of (6.11) follows immediately
from the last estimate in (5.1). We now state the Rhee–Talagrand inequality [26],
which then immediately yields (6.9).

LEMMA 6.7 (Rhee–Talagrand’s inequality). Let ψ(X) be a symmetric mea-
surable functional with finite qth moment for some q ≥ 1. Then

E
∣∣ψ(X) − Eψ(X)

∣∣q ≤ nq/2cqED1
∣∣ψ(X)

∣∣q
with cq = 2q(18

√
qq ′)q ′

, where 1/q +1/q ′ = 1. For q = 2, Stein–Efron’s inequal-
ity yields the better constant c2 = 1/2.

Let us bound the first two terms of (5.1). We need for that to control the max-
imum radius of Voronoi cells over X. We first introduce the event on the circum-
scribed radii of the Voronoi spheres,

�n(X) =
(

max
1≤j≤n

(
R(Xj ;X)

) ≤ n−1/dρn

)
,

where ρn = log(n)1/d+ε′
for ε′ sufficiently small. We have the following lemma,

proved later for the sake of readability.
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LEMMA 6.8. For all η > 0, nηP(�n(X)c) → 0 as n → ∞.

To bound the first term of (5.1), let Y,Y ′,Z be recombinations of {X,X′, X̃}.
Introduce the event � := �n(Y ) ∩ �n(Y

′) ∩ �n(Z) ∩ �n(Z
′) which satisfies

P(�c) ≤ 4P(�n(X)c). Recall the fact that Dijf (X) can only be nonzero if Xj

is at Voronoi distance ≤ 2 from Xi , and that Djf (X) can only be nonzero if Xj

has a Voronoi neighbour whose cell touches ∂K . In the notation of (5.1), we have

E
[
1{D1,2ϕ(Y ) �=0}D1ϕ(Z)4]

≤ E
[
1�1{D1,2ϕ(Y ) �=0}D1ϕ(Z)4] + P

(
�c)

≤ κ4
dn−4ρ4d

n E
[
1{d(Y1,∂K)≤2n−1/dρn}E[1{‖Y1−Y2‖≤2n−1/dρn} | Y1]]

+ P
(
�c)

≤ κ5
dn−4ρ4d

n 2dn−1ρd
n P

(
d(Y1, ∂K) ≤ 2n−1/dρn

) + P
(
�c)

≤ C1,2n
−5−α/dρ5d+α

n

for some C1,2 ≥ 0, whence Proposition 5.3 and (5.3) yield nBn(f ) ≤ C′ ×
n−4−α/dρ5d+α

n for some C′ > 0. With a similar computation,

E
[
1{�}1{D1,2ϕ(Y ) �=0,D1,3ϕ(Y ′) �=0}D2ϕ(Z)4]

≤ κ4
dn−4ρ4d

n P
(‖Y1 − Y2

∥∥≤ 2n−1/dρn,
∥∥Y ′

1 − Y ′
3‖ ≤ 2n−1/dρn,

d(Y1, ∂K) ≤ 2n−1/dρn

) + P
(
�c)

≤ C2,3n
−6−α/dρ6d+α

n ,

from which n2B ′
n(f ) ≤ C′′n−4−α/dρ6d+α

n for some C′′ > 0. Therefore, the first
term of (5.1) is bounded by

σ−2√n
(
n−2−α/2d)

log(n)3+α/2d+dε′/2

up to a constant, which yields the first term of (6.11). It remains to bound the term

E
[∣∣f (X)

∣∣∣∣Djf
(
XA)∣∣3]

from (5.1). Recall that under �n(X
A), all Voronoi cell volumes and, therefore, all

|Djf (XA)|, 1 ≤ j ≤ n, are bounded by κdn−1ρd
n , and also, Djf (XA) = 0 if Xj

and X′
j are at distance more than 2n−1/dρn from K’s boundary. We have

E
∣∣f (X)Djf

(
XA)∣∣3

≤ E
(∣∣f (X)

∣∣∣∣Djf
(
XA)∣∣31�n

(
XA)) + P

(
�n(X)c

)
≤ cn−3ρ3d

n E
[∣∣f (X)

∣∣1{Xj or X′
j∈∂K2n−1/dρn }

] + P
(
�n(X)c

)



BINOMIAL KOLMOGOROV BERRY–ESSÉEN BOUNDS 2025

≤ cn−3ρ3d
n E

((∣∣f (
X̂j )| + |Djf (X)

∣∣)1{Xj or X′
j∈∂K2n−1/dρn }

)
+ P

(
�n(X)c

)
.

We have

E
∣∣Djf (X)

∣∣ ≤ c′n−1−α/d

by (6.15), while the other term is bounded by independence by

E
∣∣f (

X̂j )∣∣1{Xj or X′
j∈∂K2n−1/d log(n)} ≤ 2E

∣∣f (
X̂j )∣∣P(

Xj ∈ ∂K2n−1/dρn
)

≤ c′′σn−α/dρα
n .

Finally, for some C > 0,

E
∣∣f (X)Djf

(
XA)∣∣3 ≤ Cn−3−α/d log(n)3+ε/2(

σ log(n)α/d+ε/2 + n−1)
,

which gives the desired bound. �

PROOF OF LEMMA 6.8. We can find a constant γd > 0 such that the intersec-
tion with [0,1]d of every ball centred in [0,1]d of radius r ≤ 1 contains a cube
g + [0, γdr]d for some g ∈ γdrZd . If max1≤j≤n R(Xj ;X) > n−1/dρn, then two
Voronoi neighbours Xi,Xj are at distance more than n−1/dρn from one another,
and the open ball with diameter [Xi,Xj ] does not contain points of X, by the con-
struction of the Voronoi tessellation. It follows that a cube g + [0, γdn−1/dρn]d ⊆
[0,1]d is empty of points of X, for some g ∈ γdn−1/dρnZ

d , and this event happens
with a probability bounded by(

γdn−1/dρn

)−dP
([

0, γdn−1/dρn

]d ∩ X = ∅
)

≤ γ −d
d nρ−d

n

(
1 − γ d

d n−1ρd
n

)n
≤ γ −d

d nρ−d
n exp

(
n log

(
1 − γ d

d n−1ρd
n

))
≤ γ −d

d nρ−d
n exp

(−γ d
d log(n)1+dε′)

,

which proves the result. �

PROOF OF THEOREM 6.2. It only remains to prove the lower bound on the
variance in (6.10). Lemma 2.4 states that the variance is larger than n‖h‖2

L2([0,1]d )
,

where

h(x) = Eϕ
(
X̂1, x

) − Eϕ(X), x ∈ [0,1]d, and

‖h‖2
L2([0,1]d )

:=
∫
[0,1]d

h2(x1, . . . , xd) dx1 · · ·dxd.
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We decompose h as follows:

(6.16)
h(x) = (

Eϕ
(
X̂1, x

) − ϕ
(
X̂1)) − (

Eϕ(X) − ϕ
(
X̂1))

=: h1(x) − h2, x ∈ [0,1]d .

Voronoi volume approximation is not homogeneous in the sense that points falling
close to K’s boundary have more influence than other points of Xn. The following
lemma shows that this inhomogeneity makes h1 the dominant term in the previous
decomposition.

LEMMA 6.9. Let K be a measurable subset of [0,1]d , define h1 as in (6.16).
Then we have∫

[0,1]d
h1(x)2 dx ≥ Cd

(
γ

(
K,n−1/d) + γ

(
Kc,n−1/d))

n−2

for some Cd > 0.

Let us first conclude the proof of Theorem 6.2. If the weak rolling ball condition
is satisfied along with (6.10), it yields∫

[0,1]d
h1(x)2 dx ≥ CdS−(K)γ (K)

(
n−1/d)α

n−2.

According to Lemma 6.6, h2 = O(n−1−α/d), which is indeed negligible with re-
spect to ‖h1‖L2 ≥ Cd,Kn−1−α/2d . �

PROOF OF LEMMA 6.9. It follows from (6.12) that for x ∈ Kc

∣∣ϕ(
x, X̂1) − ϕ

(
X̂1)∣∣ =

n∑
j=2

1{Xj∈K}v
(
x,Xj ; X̂1)

,

where we notice that the summand distribution does not depend on j . Then∣∣h1(x)
∣∣ ≥ 1

(
x ∈ ∂Kn−1/d

+
)
(n − 1)E1{X2∈K}v

(
x,X2; X̂1)

≥ 1
(
x ∈ ∂Kn−1/d

+
)
(n − 1)E

∫
y∈K

v
(
x, y; X̂1,2)

dy

≥ 1
(
x ∈ ∂Kn−1/d

+
)
(n − 1)

× Vol
(
B

(
x,βn−1/d) ∩ K

)
inf

y:‖y−x‖≤βn−1/d
Ev

(
x, y; X̂1,2)

.

If for some y ∈ [0,1]d, ε > 0, no point of X̂1,2 := (Xi)i �=1,2 falls in B(y,6ε),
then B(y,3ε) ⊂ V (y, X̂1,2). If furthermore x ∈ [0,1]d lies at distance less than ε

from y, then with z = x + ε‖x − y‖−1(x − y),

B(z, ε) ⊂ V
(
x,

(
X̂1,2, y

)) ⊂ B(y,3ε) ⊂ V
(
y; X̂1,2)
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and, therefore, v(x, y; X̂1,2) ≥ κdεd . We finally have

inf
y:‖y−x‖≤βn−1/d

Ev
(
x, y; X̂1,2)

≥ κdβdn−1P
(
X̂1,2 ∩ B

(
y,6βn−1/d) = ∅

) ≥ c′
dn−1

for some c′
d > 0. With a completely similar result for x ∈ K , we have for some

c′′
d > 0 ∫

W
h1(x)2 dx

≥ c′′
d

(∫
∂Kn−1/d

+
Vol

(
B

(
x,βn−1/d) ∩ K

)2
dx

+
∫
∂Kn−1/d

−
Vol

(
B

(
x,βn−1/d) ∩ Kc)2

dx

)
. �

REMARK 6.10. All three terms of (5.1) give in the case of Theorem 6.2 a
bound of order n−1/2+α/2d log(n)q for some q > 0. In these conditions it seems
hard to reach a Berry–Esseen bound negligible with a better magnitude than
n−1/2+α/2d , but removing the log is an open problem.

6.3. Further applications. It is proved in [4] that, in the notation of Theo-
rem 4.2 and for σ = 1,

(6.17)

dWass(W,N) ≤ δ1 + δ2 with

δ1 : =
√

Var
(
E(T | X)

)
,

δ2 : = 2c

n∑
j=1

E
∣∣�jf (X)

∣∣3,
where dWass is the 1-Wasserstein distance. This bound has been successfully ap-
plied in [4], [5] and [23] to several normal approximation problems. Without fully
developing the details, we indicate here how we can obtain similar bounds in the
Kolmogorov’s distance by using the techniques developed in this paper. Assuming
that σ = 1, the new terms in (4.2) with respect to (6.17) are

δ′
1 =

√
Var

(
E

(
T ′ | X))

,

δ′
2 = 6

n∑
j=1

√
E

∣∣Djf (X)
∣∣6.

The term δ′
1 is very close in its expression to δ1. In the examples developed below,

it is indeed possible to apply the bound already derived for δ1 to δ′
1. The term
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δ′
2 has to be dealt with separately, it is in general more straightforward. Remark

that δ′
2 can be replaced by the bound δ′′

2 = supA

∑n
j=1 E|f (X)Djf (XA)3| from

(4.1), which can give a better convergence rate or less restrictive hypotheses, but it
requires a specific analysis and we do not develop it below.

Nearest neighbours statistics. Let k ≥ 1, i ≥ 1, let ψ : (Rd)k → R be a measur-
able function and let

f (x1, . . . , xn) := 1√
n

n∑
i=1

ψ
(
x

(1)
i , . . . , x

(k)
i

)
,

where the x
(j)
i are the k nearest neighbours of xi among (x1, . . . , xn) for the Eu-

clidean distance, ordered by increasing distance to xi , with an arbitrary tie breaking
rule. Given n i.i.d. random points X1, . . . ,Xn in Rd , in [4] Chatterjee obtains es-
timates on the Wasserstein distance between f (X) and the normal law under the
assumptions that for i �= j , ‖Xi −Xj‖ is a continuous random variable. He obtains
the bounds, for p ≥ 8,

δ1 ≤ Cd

k4γ 2
p

σ 2n(p−8)/2p
,

δ2 ≤ Cd

k3γ 3
p

σ 3n(p−6)/2p
,

where γp := (E|ψ(X
(1)
1 , . . . ,X

(k)
1 )|p)1/p,Cd > 0. These bounds are obtained

through [4], Theorem 2.5, which is similar to Theorem 5.1, where our bound on δ′
1

is already smaller or equal to the bound on δ1 from [4], Theorem 2.5, up to a con-
stant; see Remark 5.4. Therefore, we have δ′

1 ≤ Cδ1. In order to obtain an explicit
bound on the Kolmogorov distance, it therefore only remains to bound δ′

2. In [4] it
is shown that E supn

j=1 |�jf (X)|p ≤ (n2 + n)n−p/2γ
p
p from where the bounds

δ′
1 ≤ Ck,dn1/2

(
E

n
sup
j=1

∣∣�jf (X)
∣∣p)2/p

≤ Ck,dn4/pn1/2n−1γ 2
p = Ck,d

γ 2
p

n(p−8)/2p
,

δ2 ≤ Ck,dn
(
E

n
sup
j=1

∣∣�jf (X)
∣∣p)3/p ≤ Ck,d

γ 3
p

n1/2−6/p
,

δ′
2 ≤ Ck,dn

(
E

n
sup
j=1

∣∣�jf (X)
∣∣p)3/p ≤ δ2

easily follow. We observe that in [4] a more general situation is actually consid-
ered: for each i, a different functional ψi is applied to (x

(1)
i , . . . , x

(k)
i ) in the def-

inition of f . However, all the explicit examples developed in such reference are
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purely geometric, in the sense that this subtlety is not exploited, and the functional
f (X) is symmetric. These examples includes the average distance to the nearest
neighbour, the degree count in the nearest-neighbour graph, and the Levina–Bickel
statistic with parameter k, which is defined by

f (x1, . . . , xl) = 1

n

n∑
i=1

(
1

k − 1

k−1∑
j=1

log
(‖xi − x

(k)
i ‖

‖xi − x
(j)
i ‖

))
.

Flux through a random conductor. In [23], Nolen considers the solution of an
elliptic partial differential equation with a stationary random conductivity coeffi-
cient a(x) over the torus [0,L)d,L > 0. The random function a(x) depends on
the local contributions of a set of i.i.d. variables Z = (Z1, . . . ,Zk) indexed by
Zd ∩ [0,L)d . He derives a bound on the Wasserstein distance between the normal
law and the average flux �(Z) of the solution. He obtains the bounds

δ1 ≤ CL−3d/2σ−2 log(L)
(
E�

8q
0

)1/2q
,(6.18)

δ2 ≤ Cσ−3L−2dE�6
0,(6.19)

where σ 2 is the variance and �0 is an integral related to the gradient of the solution
over [0,1)d (see [23] for details).

Our method allows one to extend this result to the Kolmogorov distance, under
slightly stronger assumptions. Gloria and Nolen [11] have also used Theorem 4.2
for a Kolmogorov Berry–Esseen bound with a discretised version of the problem.
Once again, the simple inequality ||a| − |b|| ≤ |a − b|, a, b ∈ R, yields that the
upper bound on Var(T (Z,Z′) | Z′) derived in [23], (2.25)–(2.27), and then used
in (4.53) can be used in an exact similar fashion to bound Var(T ′(Z,Z′) | Z′)
where T ′ is defined as in our Theorem 4.2. This yields that δ′

1 satisfies the same
bound as δ1, up to a constant. Then [23], Lemma 4.1, provides the estimate

E
∣∣�j�(Z)

∣∣q ≤ CqL−qdE
∣∣�0(Z)

∣∣2q

which readily yields the first term of (6.18), and the bound on the Kolmogorov
distance

δ1 + δ2 + δ′
1 + δ′

2 ≤ C
(
δ1 + L−2d

√
E|�0|12

)
.

Note that the new condition E|�0|12 < ∞ might be weakened if one uses (4.1)
instead of (4.2), as it is done in the proof of Theorem 6.2.
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