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A PIECEWISE DETERMINISTIC SCALING LIMIT OF LIFTED
METROPOLIS–HASTINGS IN THE CURIE–WEISS MODEL1

BY JORIS BIERKENS AND GARETH ROBERTS

Delft University of Technology and University of Warwick

In Turitsyn, Chertkov and Vucelja [Phys. D 240 (2011) 410–414] a non-
reversible Markov Chain Monte Carlo (MCMC) method on an augmented
state space was introduced, here referred to as Lifted Metropolis–Hastings
(LMH). A scaling limit of the magnetization process in the Curie–Weiss
model is derived for LMH, as well as for Metropolis–Hastings (MH). The
required jump rate in the high (supercritical) temperature regime equals n1/2

for LMH, which should be compared to n for MH. At the critical tempera-
ture, the required jump rate equals n3/4 for LMH and n3/2 for MH, in agree-
ment with experimental results of Turitsyn, Chertkov and Vucelja (2011). The
scaling limit of LMH turns out to be a nonreversible piecewise deterministic
exponentially ergodic “zig-zag” Markov process.

1. Introduction. Markov chain Monte Carlo [MCMC, Metropolis et al.
(1953)] has been extremely successful in providing a generic simulation frame-
work with wide-ranging applications. It works by composing collections of move
types, each which leave the target distribution of interest invariant. Invariance is
assured through detailed balance making the building blocks of MCMC reversible,
giving advantages in terms of accessibility to mathematical investigation and prac-
ticality of implementation. Yet there is a growing interest in the phenomenon
that, where comparative mathematical studies are possible, nonreversible Markov
chains often outperform their reversible counterparts.

A fundamental approach for obtaining nonreversible Markov processes is by
“lifting” or “augmenting” the state space. In this case, the states are augmented by
one or more additional variables, which can often be interpreted as, for example,
momentum or direction. Let us provide a (nonexhaustive) overview of the litera-
ture concerning this approach. In Chen, Lovász and Pak (1999), it is shown that
“lifting” a Markov chain may result in a reduced mixing time that is at best of or-
der square root of the original mixing time. In order to achieve this improvement,
a nonreversible lifting is required. In Diaconis, Holmes and Neal (2000), a simple
reversible Markov chain on a finite state space of size n, is lifted to a nonreversible
Markov chain on a space of size 2n. It is shown that this construction reduces the
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mixing time of the chain from O(n2) to O(n). In Turitsyn, Chertkov and Vucelja
(2011) a nonreversible lifting of Metropolis–Hastings is introduced, which we will
refer to as Lifted Metropolis–Hastings (LMH), and applied to the Ising model on
a fully connected graph (i.e., the Curie–Weiss model). In a numerical experiment,
it appears that at the critical temperature, the “relaxation time” is reduced from
O(n1.43) to O(n0.85), where n denotes the number of spins. The “lifting approach”
is not the only way of obtaining nonreversible Markov processes. For interesting
approaches to constructing and analyzing the benefits of nonreversible Markov
processes see, for example, Hwang, Hwang-Ma and Sheu (1993), Sun, Gomez
and Schmidhuber (2010), Chen and Hwang (2013), Rey-Bellet and Spiliopoulos
(2015), Bierkens (2016), Lelièvre, Nier and Pavliotis (2013), Duncan, Lelièvre and
Pavliotis (2016).

It is the goal of this paper to shed light on the general theory of lifted non-
reversible Markov chains, and in particular on the recent experimental result of
Turitsyn, Chertkov and Vucelja (2011) mentioned above. This is achieved by ob-
taining a scaling limit of Lifted Metropolis–Hastings, in its application to the
Curie–Weiss model. This scaling limit may be compared to a similar scaling limit
for (classical) Metropolis–Hastings.

Initiated by Roberts, Gelman and Gilks (1997), a large amount of understanding
of particular Markov Chain Monte Carlo (MCMC) algorithms has been obtained
by identifying a suitable diffusion limit: Given a sequence of Markov chains of
increasing size or dimensionality n, a suitable scaling of the state space and of the
amount of steps per unit time interval is determined. As n tends towards infinity,
the scaled Markov process converges (in the sense of weak convergence on Skoro-
hod path space) to a diffusion process, which is often of an elementary nature. In
particular the required number of Markov chain transitions per unit time interval as
a function of n provides a fundamental measure of the speed of the Markov chain.

The Curie–Weiss model is an exchangeable probability distribution on {−1,1}n
which depends on two parameters, the “external field” h, and the “inverse temper-
ature” β (which describes interactions between components). At inverse tempera-
ture β = 1, the model undergoes a phase transition. This results in differences in
behaviour for β < 1, β = 1 and β > 1, and we shall analyse the behaviour of both
standard Metropolis–Hastings and Lifted Metropolis–Hastings in the first two of
these cases. We will determine a scaling limit of Metropolis–Hastings [Hastings
(1970), Metropolis et al. (1953)] as well as Lifted Metropolis–Hastings [Turitsyn,
Chertkov and Vucelja (2011)] for the magnetization in the Curie–Weiss model, for
the supercritical temperature regime (β < 1) with external field h ∈ R and at the
critical temperature (β = 1), without external field (h = 0). To obtain these results,
we depend on nonasymptotic concentration results of Chatterjee (2007), Chatterjee
and Dey (2010). The case of subcritical temperature (β > 1) is typically more dif-
ficult to analyse. In this paper, we do not obtain results for this case because, as far
as we know, no nonasymptotic concentration results are available.
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TABLE 1
Time to convergence for Metropolis-Hastings and Lifted Metropolis-Hastings

β < 1 β = 1

Metropolis–Hastings O(n) (Theorem 1) O(n3/2) (Theorem 2)
Lifted Metropolis–Hastings O(n1/2) (Theorem 3) O(n3/4) (Theorem 4)

In both the supercritical and critical cases, our results demonstrate that the lifted
chain convergence is an order of magnitude faster (as a function of dimension n)
than the regular Metropolis–Hastings algorithm as is summarised in Table 1.

The results for Lifted Metropolis–Hastings are surprising since it would require
at least O(n) iterations to update each component. Therefore, magnetization is
converging significantly more rapidly than should be expected. This is explained
by the strong concentration of the magnetization around its mean, so that only
relatively few spin updates suffice to update the magnetization at the appropriate
scale.

As is common for weak limits of light-tailed Metropolis–Hasting algorithms,
the limits of Metropolis–Hastings for Curie–Weiss are simple univariate diffusion
processes. Interestingly, in determining the scaling limit of Lifted Metropolis–
Hastings we obtain an elementary Markov process which has so far received only
very limited attention in the literature. The limit process is a one-dimensional
piecewise deterministic Markov process which we will refer to as a zig-zag pro-
cess: the process moves at a deterministic and constant speed, until it switches
direction and moves at the same speed but in the opposite direction. The switch-
ing occurs at a time-inhomogeneous rate which is directly related to the derivative
of the density function of its stationary distribution. We analyse this zig-zag pro-
cess in some detail, establishing in particular exponential ergodicity under mild
conditions.

Piecewise deterministic Markov processes were first introduced in Davis (1984)
and discussed extensively in Davis (1993). A zig-zag process with a constant
switching rate appears in Goldstein (1951) and is discussed further in Kac (1974).
A similar process on the torus is discussed in Miclo and Monmarché (2013). In
Peters and De With (2012), a multi-dimensional version of the zig-zag process
with space inhomogeneous switching rates is introduced and used for MCMC.
This MCMC method is analysed in detail in Bouchard-Côté, Vollmer and Doucet
(2015). Monmarché (2016) discusses the use of the one-dimensional zig-zag pro-
cess for simulated annealing, and in Monmarché (2014) the exponential ergod-
icity of the zig-zag process is discussed in case of bounded switching rates. In
Fontbona, Guérin and Malrieu (2012, 2016) the exponential ergodicity of the one-
dimensional zig-zag process is discussed under seemingly stronger conditions than
in the current paper.
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1.1. Outline. This article is structured as follows. In Section 2, we briefly pro-
vide the necessary background on Metropolis–Hastings (MH), Lifted Metropolis–
Hastings [LMH, based on Turitsyn, Chertkov and Vucelja (2011)], and the Curie–
Weiss model, including the relatively recent nonasymptotic concentration results
of Chatterjee (2007), Chatterjee and Dey (2010). Also we briefly describe the basic
random walk Markov chain, used as proposal chain in MH and LMH, in terms of
magnetization.

In Section 3, we consider the time evolution of the magnetization as n → ∞ for
MH applied to the Curie–Weiss model. By a suitable rescaling of both space (i.e.,
the magnetization variable) and time (i.e., the jump rate within a unit time interval)
we obtain a diffusion limit of this stochastic process, at supercritical temperature
β < 1 (Theorem 1) as well as at critical temperature, β = 1, h = 0 (Theorem 2). It
is perhaps not very surprising that this diffusion limit corresponds to the Langevin
diffusion of the known limiting distribution, that is, a Gaussian distribution in case
β < 1 and non-Gaussian in case β = 1. Also not surprisingly, the required jump
rate to obtain this diffusion limit is in line with known results on mixing time for
Curie–Weiss [Levin, Luczak and Peres (2009), Ding, Lubetzky and Peres (2009)]:
if β < 1, the required speed up is equal to a factor n, while for β = 1 and h = 0
the required speed up is equal to a factor n3/2.

The main result of this paper may be found in Section 4. In this section, we ob-
tain the scaling limit of the magnetization for LMH applied to Curie–Weiss, again
for the cases β < 1 (Theorem 3) and β = 1, h = 0 (Theorem 4). The limiting pro-
cess is a piecewise deterministic Markov process which has received only a small
amount of attention in the mathematics and physics literature. Naturally, it has the
same limiting invariant distribution as for Metropolis–Hastings. Interestingly, the
required time scaling for LMH corresponds exactly to the square root of the time
scaling for MH: this time scaling is n1/2 for β < 1 and n3/4 for β = 1, h = 0. This
“square root” improvement is in agreement with the theory developed in Chen,
Lovász and Pak (1999) and in line with the numerical result of Turitsyn, Chertkov
and Vucelja (2011).

In Section 5, the limiting “zig-zag” process is analysed in detail. First, the pro-
cess is generalized to allow for general one-dimensional invariant distributions sat-
isfying mild conditions on the derivative of the density function. In particular, it is
established that this process is a nonexplosive process satisfying the strong Markov
property (Proposition 3) which is weak Feller (Proposition 4) but not strong Feller
(Observation 1). A straightforward relation between the switching rate of the pro-
cess and its invariant distribution is obtained in Proposition 5. Furthermore, under
a reasonable strengthening of the assumptions exponential ergodicity is obtained
(Theorem 5).

Section 6 is devoted to the proofs of the mentioned results, including necessary
technical lemmas. In particular, let us mention the following intermediate results:
The Feller property is obtained by a coupling argument (Proof of Proposition 4), it
is shown that all compact sets are “petite sets” for the zig-zag process (Lemma 15),
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and a Foster–Lyapunov function is constructed to establish exponential ergodicity
(Lemma 16).

2. Preliminaries.

2.1. Metropolis–Hastings (MH). For a given proposal transition probability
matrix Q and target distribution π on a discrete state space S, the Metropolis–
Hastings transition probabilities are given for x �= y by

(1) P(x, y) =
⎧⎪⎨⎪⎩Q(x,y)

(
1 ∧ π(y)Q(y, x)

π(x)Q(x, y)

)
, if Q(x,y) > 0,

0, otherwise.

As is well established, the transition probabilities P are reversible with respect
to π , that is, π(x)P (x, y) = π(y)P (y, x) for all x, y ∈ S. This implies that π is
invariant for P .

2.2. Lifted Metropolis–Hastings (LMH). In Turitsyn, Chertkov and Vucelja
(2011), a nonreversible chain T is constructed with invariant distribution 1

2(π,π)

on an augmented state space S� := S × {−1,+1}. The set S × {+1} is called the
forward replica and S × {−1} is called the backward replica. The construction is
as follows. Let T +(x, y) and T −(x, y), x �= y, denote probabilities satisfying the
following conditions:

(i) T ±(x, y) ≥ 0 for all x, y ∈ S, x �= y;
(ii)

∑
y∈S,y �=x T ±(x, y) ≤ 1 for all x ∈ S;

(iii) skew detailed balance:

(2) π(x)T +(x, y) = π(y)T −(y, x) for all x �= y.

The values T + and T − will represent transition probabilities within the respec-
tive replicas. Define transition probabilities between the forward and backward
replicas by

T −+(x) = max
(

0,
∑
y∈S

y �=x

(
T +(x, y) − T −(x, y)

))
,

(3)

T +−(x) = max
(

0,
∑
y∈S

y �=x

(
T −(x, y) − T +(x, y)

))
.

Finally, for x ∈ S, define T +(x, x) and T −(x, x) by

T +(x, x) = 1 − T +−(x) − ∑
y∈S

y �=x

T +(x, y) and
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T −(x, x) = 1 − T −+(x) − ∑
y∈S

y �=x

T −(x, y),

so that the rows sums equal 1. Define the full matrix of transition probabilities T

with state space S × {−1,+1} by

T
(
(x,−1), (y,−1)

) = T −(x, y), T
(
(x,+1), (y,+1)

) = T +(x, y),

T
(
(x,+1), (x,−1)

) = T +−(x), T
(
(x,−1), (x,+1)

) = T −+(x),

T
(
(x,−1), (y,+1)

) = 0 for x �= y,

T
(
(x,+1), (y,−1)

) = 0 for x �= y,

or in matrix notation,

T =
(

T + diag
(
T +−)

diag
(
T −+)

T −
)

.

A few important properties of T are stated in the following proposition. Most
importantly, the marginal invariant distribution of T over S is equal to π .

PROPOSITION 1. Let T be as constructed above. Then:

(i) T is a Markov transition matrix,
(ii) T has invariant probability distribution on S ×{−1,+1} equal to 1

2(π,π),
and

(iii) if, for some x, y ∈ S, T +(x, y) �= T −(x, y), then T is not reversible with
respect to its invariant distribution.

PROOF. The proofs of these results are immediate. �

REMARK 1. Once T + and T − are picked, T is fixed according to the defini-
tions above. However, there is still freedom in choosing T + and T − satisfying (2).
In Turitsyn, Chertkov and Vucelja (2011) and here, T is fixed as follows. Sup-
pose that P is a transition matrix on S that is reversible with respect to π , and let
η : S →R. Now define the off-diagonal components of T ± by

T +(x, y) =
{
P(x, y), if η(y) ≥ η(x),

0, if η(y) < η(x),
and

T −(x, y) =
{

0, if η(y) > η(x),

P(x, y), if η(y) ≤ η(x).

Then T ± satisfies the skew detailed balance condition (2). This way, Lifted
Metropolis–Hastings creates a nonreversible lifted chain T out of a given re-
versible chain P , which has (marginally) the same invariant distribution as P . In
particular, this construction may be applied to the Metroplis–Hastings transition
probabilities P given by (1).
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REMARK 2. There is some freedom in the choice of transition probabilities
between replicas, that is, T +−, T −+. In general, transition probabilities between
replicas need to satisfy the conditions

(4) T +−(x) − T −+(x) = ∑
y∈S

y �=x

[
T −(x, y) − T +(x, y)

]
,

in order for 1
2(π,π) to be invariant. Here, as in Turitsyn, Chertkov and Vucelja

(2011), we choose (3). See Sakai and Hukushima (2013) for other variants.

2.3. The Curie–Weiss model. Let Sn := {−1,1}n and let target invariant dis-
tributions πn on Sn be given by

(5) πn(x) = Zn exp
(−βHn(x)

)
,

with

(6) Hn(x) = − 1

2n

n∑
i,j=1

xixj − h

n∑
i=1

xi,

where (Zn) are normalization constants, β is a parameter usually referred to as
inverse temperature, and h ∈ R a parameter known as the external magnetization.
As remarked in the Introduction, we will later specialize to the case 0 ≤ β ≤ 1, but
for now we allow general β ≥ 0. Define the magnetization mn : {−1,1}n → R by
mn(x) = 1

n

∑n
i=1 xi . The crucial observation for the Curie–Weiss model is that the

Hamiltonian may be expressed in terms of m, as

(7) Hn(x) = −n

(
1

2

(
mn(x)

)2 + hmn(x)

)
.

We may consider mn and other mappings from Sn into R as random variables on
the probability space (Sn,πn); in particular, we will suppress the dependence on
x ∈ Sn where this does not cause confusion.

For 0 ≤ β ≤ 1, as well as for β > 1 and h �= 0, there exists a unique m0 =
m0(h,β) around which the magnetization will concentrate. The value of m0 can
be obtained as the unique minimizer of

i(m) = −
(

1

2
βm2 + βhm

)
+ 1 − m

2
log(1 − m) + 1 + m

2
log(1 + m),

(8)
m ∈ (−1,1).

This value m0 satisfies

(9) βm0 + βh = 1

2
log

1 + m0

1 − m0
,

or equivalently m0 = tanh(β(m0 + h)). In case β > 1 and for h sufficiently small,
there exist two other solutions to (9) but these are not global minima of (8). As
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h → 0, m0(h,β) → 0. For h = 0 or β = 0, m0 = 0. For h �= 0, the sign of m0 is
equal to the sign of h. These results are well known; see, for example, Ellis (2006),
Section IV.4.

As n → ∞, the random variables mn will be increasingly concentrated around
m0.

PROPOSITION 2 (Concentration for Curie–Weiss). (i) For all β ≥ 0, h ∈ R

and t ≥ 0,

πn

(∣∣mn − tanh
(
β

(
mn + h

))∣∣ ≥ β

n
+ t√

n

)
≤ 2 exp

(
− t2

4(1 + β)

)
.

(ii) If h = 0 and β = 1, then there exists a constant c > 0 such that for any n ∈ N

and t ≥ 0,

πn(∣∣mn
∣∣ ≥ t1/4) ≤ 2e−cnt .

PROOF. Claim (i) is Chatterjee (2007), Proposition 1.3. Claim (ii) is a simple
consequence of Chatterjee and Dey (2010), Proposition 5. �

REMARK 3. In case β > 1 and h �= 0, there is a unique global minimum
of (8). However, to develop scaling limits for Metropolis–Hastings and Lifted
Metropolis–Hastings we require nonasymptotic concentration results as given in
Lemmas 5 and 7, which are based upon Proposition 2. Even though Proposition 2
includes the case β > 1, the proof of Lemma 5 seems to depend crucially on the
assumption that β < 1. Therefore, we have to restrict our attention to 0 ≤ β < 1
(along with the critical case h = 0, β = 1).

As quantity of interest (which is a necessary ingredient in the formulation of the
lifted Markov chain; see Remark 1), we will consider suitably shifted and renor-
malized magnetization,

ηn(x) := nγ (
mn(x) − m0

)
, x ∈ Sn.

In view of Proposition 2, for ηn to be of O(1) as n → ∞, we will need to choose
γ = 1/2 for 0 ≤ β < 1 and γ = 1/4 for β = 1. For smaller choices of γ , any
limiting random variable would be trivially concentrated at a single point, whereas
for larger choices of γ a suitable limiting random variable would not exist. The
precise concentration statements we will use are given in Lemmas 5 (for 0 ≤ β <

1) and 7 (for β = 1). For now, we will only assume that γ ∈ (0,1).
Rather than using x as state space variable, it will be useful to express all quan-

tities and probabilities in terms of ηn(x). For example, the Hamiltonian Hn can be
re-expressed in terms of ηn(x) by Hn(x) = cn + �n(ηn(x)), where the constants
cn do not depend on ηn, and

(10) �n(η) := −1

2
n1−2γ η2 − n1−γ (m0 + h)η, η ∈R.
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2.4. Random walk on the discrete hypercube. Consider the Markov transition
probabilities on Sn = {−1,1}n given by

Prob(x → y) =
⎧⎨⎩

1

n
, when y = Fk(x) for some k = 1, . . . , n,

0, otherwise.

Here, Fk : Sn → Sn denotes the operation of flipping the sign of x(k), that is,

[
Fk(x)

]
i :=

{
xi, for i �= k,

−xi, for i = k.

In words, a transition consists of flipping the sign of xi , where i is selected uni-
formly among {1, . . . , n}. This Markov chain corresponds to a random walk on the
discrete hypercube Sn. We will express the above transition probabilities in terms
of η = ηn(x) rather than x. For η = ηn(x), a fraction 1

2(1 − mn(x)) = 1
2(1 − m0 −

n−γ η) of entries of x has value −1, and similarly a fraction 1
2(1 + m0 + n−γ η)

has value +1. If one entry of x flips, there is a change in ηn by 2nγ−1. Therefore,
for η ∈ Xn := ηn(Sn), we define

(11) Qn(
η,η ± 2nγ−1) := 1

2

(
1 ∓ (

m0 + n−γ η
))

,

and Qn(η, ζ ) := 0 for all η, ζ ∈ Xn for which |ζ − η| �= 2nγ−1. Defined this way,
Qn is a matrix of transition probabilities on Xn.

3. Diffusion limit of Metropolis–Hastings applied to Curie–Weiss. In this
section, we consider the limit of Metropolis–Hastings for the Curie–Weiss model
as n → ∞ in terms of the scaled magnetization ηn(x) = nγ (mn(x)−m0). In terms
of ηn, the invariant distribution is given by

(12) μn(η) := (
πn ◦ (

ηn)−1)
(η) ∝ exp

(−β�n(η)
)
, η ∈ Xn.

Using the random walk transition probabilities Qn and the target distribution μn

for the Curie–Weiss model, we obtain for the MH transition probabilities

P n(
η,η ± 2nγ−1)

(13)
= Qn(

η,η ± 2nγ−1)(
1 ∧ exp

(
β

{
�n(η) − �n(

η ± 2nγ−1)}))
,

for η ∈ Xn, with �n given by (10).
Let Yn denote the stationary continuous time Markov chain that jumps at

rate nα according to P n with stationary distribution μn ∝ exp(−β�n(η)). Let
D([0,∞),R) denote the space of cadlag paths in R, equipped with the Skoro-
hod topology. We are now in a position to state our first two results concerning the
high-dimensional limit of Yn in the supercritical and critical cases, respectively.
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THEOREM 1 (Diffusion limit of Metropolis–Hastings in the supercritical tem-
perature regime). Suppose 0 ≤ β < 1 and h ∈ R. Suppose Yn jumps at rate n,
that is, we let α = 1 in the above definition of Yn. Let the spatial scaling in the
transition probabilities P n be determined by γ = 1

2 . Then Yn converges weakly in
D([0,∞),R) to Y , where Y is the stationary Ornstein–Uhlenbeck process satis-
fying the stochastic differential equation

dY (t) = −2l(h,β)Y (t) dt + σ(h,β)dB(t), Y (0) ∼ μ,

and with stationary distribution μ, where (B(t)) is a standard Brownian motion,
μ is the centred normal distribution with variance

(14) v(h,β) := 1 − m2
0(h,β)

1 − β(1 − m2
0(h,β))

and with

σ(h,β) := 2
√

1 − ∣∣m0(h,β)
∣∣ and

l(h,β) := 1

1 + |m0(h,β)| − β
(
1 − ∣∣m0(h,β)

∣∣).
The proof depends on the convergence of the infinitesimal generator of the

Markov chain semigroup as, for example, Roberts, Gelman and Gilks (1997), The-
orem 1.1, and is provided in Section 6.

THEOREM 2 (Diffusion limit of Metropolis–Hastings at the critical tempera-
ture). Suppose β = 1 and h = 0. Suppose Yn jumps at rate n3/2, that is, we let
α = 3/2 in the definition of Yn. Let the spatial scaling in the transition probabil-
ities P n be determined by γ = 1

4 . Then Yn converges weakly in D([0,∞),R) to
Y , where Y is the stationary Langevin process satisfying the stochastic differential
equation

dY (t) = −(2/3)
(
Y(t)

)3
dt + 2dB(t), Y (0) ∼ μ

with (B(t)) a standard Brownian motion, where μ is the probability distribution
on R with Lebesgue density

dμ

dy
=

(
4

3

)1/4 exp(−y4/12)

�(1/4)
.

The expression for the limiting non-Gaussian distribution for the Curie–Weiss
model is well known; see, for example, Chatterjee and Dey (2010), page 4.
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4. Scaling limit for lifted Metropolis–Hastings applied to Curie–Weiss.
Carrying out the construction of Section 2.2, the Lifted Metropolis(–Hastings)
scheme with random walk proposal leads to transition probabilities T n in the space
Xn × {−1,+1} given by

(15)

T n(
(η,+1),

(
η + 2nγ−1,+1

)) = pn+(η),

T n(
(η,−1),

(
η − 2nγ−1,−1

)) = pn−(η),

T n(
(η,+1), (η,−1)

) = max
(
0,pn−(η) − pn+(η)

)
,

T n(
(η,−1), (η,+1)

) = max
(
0,pn+(η) − pn−(η)

)
,

and all other transition probabilities from (η,±1) to a different state are equal to
zero. Here, pn± = P n(η, η±2nγ−1), with P n the transition probabilities of MH for
the Curie–Weiss model, as given by (13). Recall that pn±, and hence T n, depends
on the choice of the spatial scaling parameter γ .

Let (Y n, J n) denote the stationary continuous time Markov chain which jumps
at rate nα according to T n. Let

(16) a(h,β) := 1 − |m0|
and let l(h,β) be as given in Theorem 1. In the supercritical temperature regime,
with 0 ≤ β < 1 and h ∈ R, the limiting Markov process will be shown to have
generator

(17) Lϕ(η, j) = a(h,β)j
∂ϕ

∂η
+ max

(
0, j l(h,β)η

)(
ϕ(η,−j) − ϕ(η, j)

)
,

with domain

D(L) =
{
ϕ :R× {−1,1} →R, η �→ ∂ϕ

∂η
(η, j) ∈ C0(R) for j = ±1

}
,

where C0(R) is the Banach space of continuous functions on R, vanishing at in-
finity. This scaling limit is obtained provided we choose the right speed factor: we
have to jump at rate n1/2. This is formulated in the following theorem.

THEOREM 3. Suppose 0 ≤ β < 1 and h ∈ R. Suppose (Y n, J n) jumps at rate
n1/2, that is, we let α = 1/2 in the definition of (Y n, J n). Let the spatial scaling in
the transition probabilities T n be determined by γ = 1

2 . Then (Y n, J n) converges
weakly in D([0,∞),R×{−1,1}) to (Y, J ), where (Y, J ) is the stationary Markov
process with generator L and stationary distribution 1

2μ ⊗ (δ−1 + δ+1), with μ =
N(0, v(h,β)) and v(h,β) given by (14).

It will be established in Section 5 that L is the generator of a Markov–Feller
process. Let (Y, J ) denote the continuous time Markov process with generator L.
The interpretation of (Y, J ) is straightforward: Y moves with constant drift a(h,β)
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in the direction J , until it changes its direction to −J . The changes in direction
occur at events generated by a time inhomogeneous Poisson process with switch-
ing rate given by max(0, J (t)l(h,β)Y (t)). See Section 5 for a detailed discussion
of this process. At the critical temperature, we have to jump at a faster rate n3/4 to
obtain a nontrivial limiting Markov process. The limiting process is slightly differ-
ent (compared to the supercritical temperature regime) in the sense that it switches
replicas at a modified (cubic) rate.

THEOREM 4. Suppose β = 1 and h = 0. Suppose (Y n, J n) jumps at rate n3/4,
that is, we let α = 3/4 in the definition of (Y n, J n). Let the spatial scaling in
the transition probabilities T n be determined by γ = 1

4 . Then (Y n, J n) converges
weakly in D([0,∞),R×{−1,1}) to (Y, J ), where (Y, J ) is the stationary Markov
process with generator L given

(18) Lϕ(η, j) = j
dϕ

dη
(η, j) + max

(
0,1/3jη3)(

ϕ(η,−j) − ϕ(η, j)
)
,

with stationary distribution 1
2μ ⊗ (δ−1 + δ+1), where μ is as in Theorem 2.

REMARK 4. Analogous results can be obtained for the closely related Glauber
dynamics and its lifted version. The only difference is that the resulting Langevin
diffusion (for Glauber dynamics) and zig-zag process (for lifted Glauber dynam-
ics) are a factor 2/(1 + |m0|) ∈ (1,2] slower than for MH and LMH.

5. The limiting zig-zag process. In this section, we will investigate a gen-
eralization of the Markov process with generator (17). Let E = R × {−1,+1}.
For ϕ : E → R, we often write ϕ+(y) := ϕ(y,+1) and ϕ−(y) := ϕ(y,−1). If we
write ϕ±, we mean both ϕ+ and ϕ−. Equip E with the product topology and let
C(E) denote the space of continuous functions ϕ : E → R. Note that ϕ ∈ C(E) if
and only if ϕ± ∈ C(R). Let C0(E) denote the linear subspace of ϕ ∈ C(E) which
vanish at infinity, that is, ϕ± ∈ C0(R) [where C0(R) denotes the Banach space of
continuous functions on R, vanishing at infinity]. Let C1(R) denote the space of
continuously differentiable functions on R.

Throughout this section, let λ : E → [0,∞) be continuous, and a > 0. Introduce
a densely defined linear operator on C0(E)

Lϕ(y, j) = aj
∂ϕ

∂y
(y, j) + λ(y, j)

(
ϕ(y,−j) − ϕ(y, j)

)
,

(19)
y ∈R, j = ±1,

with domain D(L) = {ϕ : E → R, ϕ± ∈ C1(R), (Lϕ)± ∈ C0(R)}. It is easy to
verify that L is closable.
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5.1. Construction of the zig-zag process.

ASSUMPTION 1. There exist constants y0 ≥ 0 and λmin > 0 such that
λ(y, j) ≥ λmin for jy ≥ y0.

We will call a switch from the (j)-replica to the (−j)-replica a “good switch”
when jy ≥ y0, and a “bad switch” when jy ≤ −y0. For example, a switch from +1
to −1 is good for y ≥ y0, but bad for y ≤ −y0. Good switches make the process
direct itself towards the origin, whereas bad switches do the opposite. If “too few”
good switches occur, the process might wander off to infinity. Assumption 1 states
that for |y| ≥ y0 there is a lower bound for the rate at which good switches occur.

For (y, j) ∈ E, define the survival function

(20) F(t;y, j) := exp
(
−

∫ t

0
λ(y + ajs, j) ds

)
, t ≥ 0.

Since λ is continuous, and hence bounded on compact sets, for every (y, j) ∈ E

and t ≥ 0, F(t;y, j) > 0. It is established in Lemma 13 that for every (y, j) ∈ E,
1 −F(·, y, j) is the distribution function of a strictly positive random variable that
is almost surely finite. In fact, 1 − F(·, y, j) will serve as the distribution of the
random time at which the value of j will be switched, starting from (y, j).

Given (y, j) ∈ E, define the process (Y (t), J (t)) along with random variables
(Zi)i∈{1,2,... } and (Ti)i∈{0,1,2,... } as follows:

• Let T0 = 0, J (0) = j , Y(0) = y.
• For i = 1,2, . . . :

– Let Zi be distributed according to Py,j (Zi > t |Z1, . . . ,Zi−1) = F(t;
Y(Ti−1), J (Ti−1)).

– Let Ti := Ti−1 + Zi .
– Define J (t) = J (Ti−1) for Ti−1 < t < Ti and J (Ti) = −J (Ti−1).
– Define Y(t) = Y(Ti−1) + J (Ti−1)a(t − Ti−1) for Ti−1 < t ≤ Ti .

Then Tk := ∑k
i=1 Zi . The process (Y (t)) is continuous and piecewise linear, and

(J (t)) is piecewise constant and right-continuous. It follows that (Y (t), J (t))t≥0
is cadlag. For t ≥ 0, let

N(t) := sup{k ∈ N : Tk ≤ t},
the number of switches that have occurred up to time t . We have defined
(Y (t), J (t)) up to t < T∞ := limk→∞ Tk ≤ ∞. By Lemma 14, we can exclude
the possibility that limk→∞ Tk < ∞.

Let Py,j denote the probability distribution conditional over these random vari-
ables given that Y(0) = y, J (0) = j . Let Ft := σ({(Y (s), J (s)) : s ≤ t}).

PROPOSITION 3. Suppose Assumption 1 holds. Then under Py,j , the process
(Y, J ) is a nonexplosive strong Markov process with respect to (Ft ), with genera-
tor equal to the closure of (19).
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PROOF. This follows directly from general theory for piecewise deterministic
Markov processes; see Davis (1984). �

5.2. Regularity. Let P = (P (t))t≥0 denote the Markov semigroup corre-
sponding to the zig-zag process (Y, J ). By a coupling argument, we can establish
the Feller property for P . The Feller property of piecewise deterministic Markov
processes is established in Davis (1993) under the assumption of bounded switch-
ing rates, which is not satisfactory in our setting. The proofs of this proposition
and subsequent results are located in Section 6.3.

PROPOSITION 4. Suppose Assumption 1 holds. The Markov transition semi-
group P with infinitesimal generator L is Feller, that is, for every ϕ ∈ C0(E) and
t ≥ 0, we have P(t)ϕ ∈ C0(E).

Let Bb(E) and Cb(E) denote the sets of bounded Borel measurable functions
and bounded continuous functions on E, respectively. Recall that (P (t))t≥0 is
strong Feller if P(t)ϕ ∈ Cb(E) for any t > 0 and any ϕ ∈ Bb(E). The transition
semigroup corresponding to the zig-zag process does not satisfy this property.

OBSERVATION 1. Suppose Assumption 1 holds. Then (P (t))t≥0 is not strong
Feller.

PROOF. Let j = +1 and y ∈ R. Let t > 0 and let A = [y + at,∞). Let
ϕ(y, j) = 1A(y). Because t < T1 implies Y(t) ∈ A, it follows that P(t)ϕ(y, j) =
Py,j (Y (t) ∈ A) ≥ Py,j (T1 > t) > 0. However, P(t)ϕ(z, j) = Pz,j (Y (t) ∈ A) = 0
for every z < y, so that P(t)ϕ is not continuous. �

5.3. Invariant measure. Let us strengthen Assumption 1 into the following
assumption.

ASSUMPTION 2. There exist constants y0 ≥ 0 and λmin > 0 such that:

(i) λ(y, j) ≥ λmin for jy ≥ y0, and
(ii) λ(y,−j) ≤ λ(y, j) for jy ≥ y0.

We strengthened Assumption 1 by requiring that in the tails the rate at which
“good switches” (i.e., mean reverting switches) occur is higher than the rate of
“bad switches”.

PROPOSITION 5. Suppose Assumption 2 holds. Let � :R→R be defined by

�(y) = 1

a

∫ y

0

{
λ+(η) − λ−(η)

}
dη, y ∈R.

Then � is bounded from below, �(y) < ∞ for all y ∈ R, and the Markov process
(Y, J ) has invariant measure μ with density (y, j) �→ exp(−�(y)) with respect to
Leb ⊗ (δ−1 + δ+1) on E.
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Under the stated assumption, we cannot yet make any claims as to whether μ

is a finite measure. As an example, consider the case in which λ(y,±j) = λ0 > 0
for all (y, j), which satisfies Assumption 2. By Proposition 5, this corresponds to
a uniform invariant density.

The proof of Proposition 5 is a simple computation that we will include here.

PROOF OF PROPOSITION 5. Note that � and λ are related by

(21) a
d�(y)

dy
+ λ−(y) − λ+(y) = 0, y ∈ R.

It follows from Assumption 2 that � is bounded from below and �(y) < ∞ for
all y ∈ R. Suppose ϕ ∈ D(L) and suppose μ is as specified. Then, using that � is
bounded from below and ϕ ∈ C0(E) in the partial integration below,∑

j=−1,+1

∫ ∞
−∞

Lϕ(y, j) dμ(y, j)

= ∑
j=−1,+1

∫ ∞
−∞

{
aj

∂ϕ(y, j)

∂y

+ λ(y, j)
(
ϕ(y,−j) − ϕ(y, j)

)}
exp

(−�(y)
)
dy

= ∑
j=−1,+1

∫ ∞
−∞

{
aj

d�(y)

dy
− λ(y, j)

}
ϕ(y, j) exp

(−�(y)
)
dy

+ ∑
k=−1,+1

∫ ∞
−∞

λ(y,−k)ϕ(y, k) exp
(−�(y)

)
dy

= ∑
j=−1,+1

∫ ∞
−∞

{
aj

d�(y)

dy
− λ(y, j) + λ(y,−j)

}
ϕ(y, j) exp

(−�(y)
)
dy

= 0.

Note that we first let k = −j and in the next step replaced k by j . It follows that∑
j=−1,+1

∫ ∞
−∞

P(t)ϕ(y, j) dμ(y, j) = μ(ϕ), ϕ ∈ D(L), t ≥ 0.

By a standard approximation argument, this holds for any ϕ ∈ Bb(E), and it fol-
lows that μ is invariant for P . �

5.4. Exponential ergodicity. We will further strengthen Assumption 2 into the
following assumption, which therefore also implies Assumption 1.

ASSUMPTION 3. There is a y0 > 0 such that:
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(i) infy≥y0 λ+(y) > supy≥y0
λ−(y), and

(ii) infy≤−y0 λ−(y) > supy≤−y0
λ+(y).

LEMMA 1 (Invariant measure is finite). Suppose Assumption 3 holds and �

satisfies (21). Then μ defined in Proposition 5 is finite, that is, μ(E) < ∞.

PROOF. Using Assumption 3, we have λ+(y) − λ−(y) ≥ c on [y0,∞) for
some c > 0. Therefore,∫ ∞

y0

exp
(−�(y)

)
dy ≤

∫ ∞
y0

exp
(−�(y0) − c(y − y0)

)
dy < ∞,

and similarly for the integral over (−∞,−y0]. �

Without loss of generality, we will assume below that μ is a probability mea-
sure, that is, μ(E) = 1. For f : E → [1,∞) define the f -norm by

‖μ‖f = sup
|g|≤f

∣∣μ(g)
∣∣ μ signed measure on B(E),

which is a stronger norm than the total variation norm. By characterizing the “pe-
tite sets” and using a Foster–Lyapunov function (Lemmas 15 and 16, respectively,
located in Section 6), we can establish exponential ergodicity. We acknowledge the
recommendation of a referee to use the Lyapunov function of Fontbona, Guérin
and Malrieu (2016) instead of our earlier construction, which allowed us to further
weaken the conditions under which we obtain exponential ergodicity. A function
V ∈ C(E) is norm-like if lim|x|→∞ V (x) = ∞.

THEOREM 5. Suppose Assumption 3 holds. Then (Y (t), J (t))t≥0 is exponen-
tially ergodic, that is, there exist constants 0 < ρ < 1 and 0 < κ < ∞ and a norm-
like function V such that∥∥Py,j

((
Y (t), J (t)

) ∈ ·) − μ
∥∥
f ≤ κf (y, j)ρt , t ≥ 0,

where f (y, j) = 1 + V (y, j).

PROOF. By Lemma 15 and Lemma 16, all conditions of Meyn and Tweedie
(1993), Theorem 6.1, are satisfied, so that the stated result follows. �

5.5. Application to Curie–Weiss. In the Curie–Weiss model, the generator ob-
tained in Theorems 3 and 4 is given by (19) with a = a(h,β) given by (16) and
λ(y, j) = max(0, j

d�(y)
dy

), with

�(y) =
⎧⎨⎩y4/12, β = 1, h = 0,

1

2
l(h,β)y2, 0 ≤ β < 1, h ∈ R,
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with l(h,β) given by (28). In particular λ(y, j) > 0 for jy > 0 and λ(y, j) = 0
for jy ≤ 0. It follows that Assumption 3 is satisfied, taking any y0 > 0. Assump-
tions 1 and 2 are weaker than Assumption 3. To summarize, we have the following
corollary.

COROLLARY 1. L given by (19), with a and λ(y, j) as above, is the gener-
ator of a Markov–Feller transition semigroup on C0(E). The associated Markov
process (Y, J ) has finite invariant measure μ on E as in Proposition 5 and is
exponentially ergodic.

PROOF. This is a combination of Propositions 3, 4, 5 and Theorem 5. �

6. Proofs.

6.1. Estimates on Metropolis–Hastings applied to Curie–Weiss. We can easily
compute the difference in interaction energy for increments in η,

(22) �n(η) − �n(
η ± 2nγ−1) = ±2n−γ η ± 2(m0 + h) + 2n−1.

Combined with (11) and (13), it follows that

(23)

pn±(η) := P n(
η,η ± 2nγ−1)

= 1

2

(
1 ∓ (

m0 + n−γ η
))

× (
1 ∧ exp

(
β

{±2n−γ η ± 2(m0 + h) + 2n−1}))
.

Due to the possibility of rejection, there will be positive mass on transition proba-
bilities P n(η, η). These values are fully determined by the off-diagonal transition
probabilities and will not appear in the analysis below.

To rephrase slightly, for η ∈ Xn, define probability distributions P
n
η on Xn,

and let Y denote Xn-valued random variables with distribution P n(η, ·). In other
words, under Pn

η, Y is distributed according to P n(η, ·). Expectation with respect
to P

n
η will be denoted by E

n
η, so that En

η[ϕ(Y )] = P nϕ(η) for ϕ : Xn →R.
We will be particularly interested in values of η that are concentrated on the

following sets

(24) Fn,δ := {
η ∈ Xn : |η| ≤ nδ},

where δ < γ . In the computations that follow, we will frequently need to approxi-
mate the exponent in the Metropolis–Hastings acceptance probability by its Taylor
approximation. The following lemma helps in determining the required order of
approximation. Let pk(x) denote the kth order Taylor approximation of exp(x),



PIECEWISE DETERMINISTIC SCALING LIMIT OF LMH 863

that is, pk(x) = ∑k
i=0

xi

i! . Define approximate transition probabilities

p
n,k
± (η)

:= 1

2

(
1 ∓ (

m0 + n−γ η
))

(25)

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if h + m0 = 0 and ±η ≥ 0,

pk

(±2βn−γ η
)
, if h + m0 = 0 and ±η < 0,

exp
(±2β(m0 + h)

)
pk

(±2βn−γ η
)
, if ±(h + m0) < 0,

1, if ±(h + m0) > 0.

For example, if η < 0, and h + m0 = 0, then

p
n,k
+ (η) = 1

2

(
1 − (

m0 + n−γ η
))

pk

(
2βn−γ η

)
.

LEMMA 2. Let 0 < δ < γ < 1. Suppose h �= 0, β > 0 or h = 0, 0 ≤ β ≤ 1.
Then, for r < min(1, (k + 1)(γ − δ)),

lim
n→∞ sup

η∈Fn,δ

nr
∣∣pn±(η) − p

n,k
± (η)

∣∣ → 0.

PROOF. The result is trivial in case β = 0. In the remainder, therefore, assume
β > 0. Define

p̃n±(η) := 1

2

(
1 ∓ (

m0 + n−γ η
))(

1 ∧ exp
(±2β

{
n−γ η + (m0 + h)

}))
.

[This is just pn±(η) without the O(n−1) term in the exponent.] We estimate, using
1-Lipschitz continuity of x �→ 1 ∧ e−x (for x ≥ 0), |m0 + n−γ η| ≤ 1, and r < 1,

sup
η∈Fn,δ

nr
∣∣pn±(η) − p̃n±(η)

∣∣ ≤ sup
η∈Fn,δ

1

2

∣∣1 ∓ (
m0 + n−γ η

)∣∣2βnr−1 ≤ 2βnr−1 → 0

as n → ∞. For k ∈ N, define further approximate transition probabilities

p̃
n,k
± (η) = 1

2

(
1 ∓ (

m0 + n−γ η
))

min
{
1, exp

(±2β(m0 + h)
)
pk

(±2βn−γ η
)}

.

Then, using 1-Lipschitz continuity of x �→ 1 ∧ x, |n−γ η| ≤ nδ−γ ≤ 1 on Fn,δ , and
|pk(x) − exp(x)| ≤ eξ xk+1

(k+1)! for some ξ ∈ (min(0, x),max(0, x)), it follows that

sup
η∈Fn,δ

nr
∣∣p̃n±(η) − p̃

n,k
± (η)

∣∣
≤ nr exp

(±2β(m0 + h)
)∣∣exp

(±2βn−γ η
) − pk

(±2βn−γ η
)∣∣

≤ nr exp
(±2β(m0 + h)

)
exp(2β)

(2βn−γ η)k+1

(k + 1)!
= cnr−(k+1)(γ−δ) → 0
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as n → ∞. In the limit as n → ∞, the minimization in the expression for p̃
n,k
± (η)

will only depend on the lowest order terms. Since the convergence of n−γ η is
uniform on Fn,δ , the stated result follows after distinguishing cases for h+m0 = 0
and h + m0 �= 0. �

As a first example of the use of Lemma 2, we have the following result for
the second moment of Metropolis–Hastings updates. We introduce a multiplica-
tive factor nα which will represent speeding up the Markov chain: within a time
interval of length t ∈ R we will make N(t) switches according to P n, where
N(t) ∼ Poisson(nαt). One of the results of our analysis is the correct value of
α for which a suitable scaling limit is obtained, which turns out to be related to γ

by α = 2(1 − γ ).

LEMMA 3 (Metropolis–Hastings second moment for Curie–Weiss). Let 0 <

δ < γ < 1. Let α = 2(1 − γ ). Suppose h �= 0, β > 0 or h = 0, 0 ≤ β ≤ 1. Define

(26) σ(h,β) := 2
√

1 − ∣∣m0(h,β)
∣∣.

Then

(27) lim
n→∞ sup

η∈Fn,δ

∣∣nα
E

n
η

[
(Y − η)2] − σ(h,β)2∣∣ = 0.

PROOF. We have

nα
E

n
η

[
(Y − η)2] = nα(

pn+(η) + pn−(η)
)(

2nγ−1)2 = 4
(
pn+(η) + pn−(η)

)
.

We may apply Lemma 2 with r = 0 and k = 0, to deduce that

lim
n→∞ sup

η∈Fn,δ

∣∣nα
E

[
(Y − η)2] − 4

(
p

n,0
+ (η) + p

n,0
− (η)

)∣∣ = 0,

where

p
n,0
+ (η) + p

n,0
− (η)

= 1

2

(
1 − m0 − n−γ η

)(
1 ∧ exp

(
2β(m0 + h)

))
+ 1

2

(
1 + m0 + n−γ η

)(
1 ∧ exp

(−2β(m0 + h)
))

.

On Fn,δ , we have |n−γ η| ≤ nδ−η → 0, so the remaining dependence on n in the
above expression vanishes asymptotically, and we conclude that (27) holds for

σ(h,β) = {
2(1 − m0)

(
1 ∧ exp

(
2β(m0 + h)

))
+ 2(1 + m0)

(
1 ∧ exp

(−2β(m0 + h)
))}1/2

.

Distinguishing cases and using (9), this is equal to the stated expression for σ . �

Another useful observation is that higher-order moments of Y − η vanish.
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LEMMA 4. Let 0 < δ < γ < 1 and let α = 2(1 − γ ). Suppose h �= 0, β > 0 or
h = 0, 0 ≤ β ≤ 1. Then

lim
n→∞ sup

η∈Fn,δ

nα
E

n
η

[|Y − η|p] = 0

for any p > 2.

PROOF. We have

lim
n→∞ sup

η∈Fn,δ

nα
E

n
η

[|Y − η|p] = lim
n→∞ sup

η∈Fn,δ

2p(
pn+(η) + pn−(η)

)
n(2−p)(1−γ ) = 0,

using that the sum of the probabilities is bounded by 1. �

6.1.1. Supercritical temperature regime. We already mentioned that in the su-
percritical temperature case (0 ≤ β < 1), the correct scaling of the magnetization
would be γ = 1

2 .

LEMMA 5. Suppose γ = 1
2 and δ ∈ (0, 1

2). If 0 ≤ β < 1, then for any α > 0,

lim
n→∞nαπn(

ηn(x) /∈ Fn,δ) = 0.

PROOF. Note{
x : ηn(x) /∈ Fn,δ} = {

x : ∣∣mn(x) − m0
∣∣ > nδ−γ }

.

By the mean value theorem, |m − tanh(β(m + h))| ≥ (1 − β)|m − m0| for m ∈ R.
Therefore, using Proposition 2, with tn := ((1 −β)nδ−γ −βn−1)n1/2, we find that

πn(∣∣mn(x) − m0
∣∣ ≥ nδ−γ ) ≤ πn(∣∣m − tanhβ(m + h)

∣∣ ≥ (1 − β)nδ−γ )
= πn

(∣∣m − tanhβ(m + h)
∣∣ ≥ β

n
+ tn√

n

)

≤ 2 exp
(
− t2

n

4(1 + β)

)
from which the result follows, using that tn ∼ n1/2+δ−γ → ∞. �

LEMMA 6. Suppose 0 ≤ β < 1, γ = 1
2 , α = 2(1 − γ ) = 1 and δ ∈ (0,1/4).

Let

(28) l(h,β) := 1

1 + |m0| − β
(
1 − |m0|).

Then limn→∞ supη∈Fn |nα
E

n
η[Y − η] + 2l(h,β)η| = 0.
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In other words, the “drift” function of the Metropolis–Hastings transitions is
given by −2l(h,β)η.

PROOF OF LEMMA 6. We have, using α = 1,

nα
E

n
η[Y − η] = n

(
pn+(η) − pn−(η)

)(
2n−1/2)

.

Therefore, applying Lemma 2 with r = 1
2 and k = 1, we may approximate

nα
E

n
η[Y − η] to sufficient precision by

2n1/2(
p

n,1
+ (η) − p

n,1
− (η)

)
.

Now distinguish the following cases:

• Suppose m0 = 0 and (therefore) h + m0 = 0. We will show the result for η ≥ 0,
the case η < 0 is analogous. If η ≥ 0, then

2n1/2(
p

n,1
+ (η) − p

n,1
− (η)

)
= n1/2(

1 − n−1/2η
) − n1/2(

1 + n−1/2η
)(

1 − 2βn−1/2η
)

= −2(1 − β)η + 2βn−1/2η2.

Now using that n−1/2η2 ≤ n2δ−1/2 → 0 on Fn,δ , the result follows.
• Suppose h + m0 > 0 (the case h + m0 < 0 is analogous). Then, using (9),

2n1/2(
p

n,1
+ (η) − p

n,1
− (η)

)
= n1/2(

1 − (
m0 + n−1/2η

))
− n1/2(

1 + m0 + n−1/2η
)

exp
(−2β(m0 + h)

)(
1 − 2βn−1/2η

)
= n1/2(

1 − (
m0 + n−1/2η

))
− n1/2(

1 + m0 + n−1/2η
)(1 − m0

1 + m0

)(
1 − 2βn−1/2η

)
= −η − η

(
1 − m0

1 + m0

)
+ 2β(1 − m0)η + 2β

(
1 − m0

1 + m0

)
n−1/2η2

= − 2η

1 + m0
+ 2β(1 − m0)η + 2β

(
1 − m0

1 + m0

)
n−1/2η2,

where again the O(n−1/2η2)-term vanishes. �

PROOF OF THEOREM 1. The generator of Yn is given by

(29) Gn,αϕ(η) := nα(
P nϕ(η) − ϕ(η)

)
, ϕ : Xn →R.

Let G denote the unbounded operator G : D(G) ⊂ C0(R) → C0(R), where

D(G) = {
ϕ ∈ C2

0(R) : η �→ ηϕ′(η) ∈ C0(η)
}
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and

Gϕ(η) = −2l(h,β)η
dϕ

dη
+ 1

2
σ 2(h,β)

d2ϕ

dη2 , ϕ ∈ D(G).

The space of infinitely differentiable functions with compact support C∞
c (R) is

strongly separating [in the sense of Ethier and Kurtz (2005), Section 3.4]. Let
ϕ ∈ C∞

c (R). For η, ζ ∈R, we have∣∣∣∣ϕ(ζ ) −
{
ϕ(η) + ϕ′(η)(ζ − η) + 1

2
ϕ′′(η)(ζ − η)2

}∣∣∣∣ ≤ (1/6)
∥∥ϕ(3)

∥∥∞|ζ − η|3.

Since ϕ(3) is bounded, we may approximate, for α = 1 and δ = 1/8, using Lem-
mas 3, 4 and 6,

sup
η∈Fn,δ

∣∣Gn,αϕ(η) − Gϕ(η)
∣∣

≤ sup
η∈Fn,δ

∣∣∣∣nα
E

n
η

[
ϕn(Y ) − ϕn(η)

] − nα
E

n
η

[
ϕ′(η)(Y − η) + 1

2
ϕ′′(η)(Y − η)2

]∣∣∣∣
≤ (1/6)nα

∥∥ϕ(3)
∥∥∞E

n
η

[|Y − η|3] → 0.

Let Pn denote the distribution of the stationary Markov process Yn with invari-
ant distribution μn. Then, for T > 0, by Lemma 5,

P
n(

Yn(t) /∈ Fn,δ for some 0 ≤ t ≤ T
) ≤ nαπn(

ηn(x) /∈ Fn,δ) → 0.

We may now apply Ethier and Kurtz (2005), Corollary 4.8.7, to arrive at the stated
result. �

6.1.2. At critical temperature. In this section, we assume the “critical” case
h = 0 and β = 1. The correct scaling of the magnetization will be ηn = nγ−1mn

with γ = 1/4.

LEMMA 7. Suppose h = 0 and β = 1. Let γ = 1/4 and δ > 0. Then, for any
α > 0,

lim
n→∞nαπn(

ηn(x) /∈ Fn,δ) = 0.

PROOF. This follows since, by Proposition 2(ii),

nαπn(
ηn /∈ Fn) = nαπn(∣∣mn

∣∣ > nδ−γ ) ≤ 2nα exp
(−cn1+4(δ−γ )) → 0. �

It turns out that in this case, the correct speed-up factor is nα with α = 3/2. In
order to obtain the generator in the critical regime, we will require higher-order
Taylor expansions, resulting in a nonlinear drift in the diffusion limit, and accord-
ingly, a non-Gaussian invariant distribution.
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LEMMA 8. Suppose β = 1 and h = 0. Let δ ∈ (0,1/16). Then

lim
n→∞ sup

η∈Fn,δ

∣∣n3/2
E

[
Yn − η

] + 2/3η3∣∣ = 0.

PROOF. We have n3/2
E

n
η[Y − η] = n3/2(pn+(η) − pn−(η))(2n−3/4) =

2(pn+(η) − pn−(η))n3/4. Applying Lemma 2 with r = 3/4 and γ = 1/4, we find

that we may approximate pn± by the third-order approximation p
n,3
± . Assuming

η > 0 (the other case is analogous),

2
(
p

n,3
+ (η) − p

n,3
− (η)

)
n3/4

= ((
1 − n−1/4η

) − (
1 + n−1/4η

)
× (

1 − 2n−1/4η + 2n−1/2η2 − (4/3)n−3/4η3))
n3/4

= (−(2/3)n−3/4η3 + (4/3)n−1η4)
n3/4.

On Fn,δ with δ < 1/16, we have η4 ≤ n4δ < n1/4. It follows that the fourth-order
term in η vanishes asymptotically, and the stated result follows. �

PROOF OF THEOREM 2. The proof is completely analogous to that of The-
orem 1, taking α = 3/2, γ = 1/4, δ = 1/32, and applying Lemma 8 instead of
Lemma 6. �

6.2. Estimates for lifted Metropolis–Hastings applied to Curie–Weiss. Let
(Y, J ) ∈ R × {−1,1} denote the random variable indicating the new state after
a single jump. Under Pn

η,j , let (Y, J ) have distribution T n((η, j), ·), so that

P
n
η,j

[
ϕ(Y,J )

] = ∑
y,k

T n(
(η, j), (y, k)

)
ϕ(y, k).

We will see that the correct speed-up factor for the LMH chain is α = (1 − γ )

[as opposed to α = 2(1 − γ ) for Metropolis–Hastings]. At this scaling, the second
moment of the increments vanishes for the LMH Markov chain.

LEMMA 9 (LMH second moment for Curie–Weiss). Let 0 < γ < 1. Let α =
1 − γ . Suppose h �= 0, β ≥ 0 or h = 0, 0 ≤ β ≤ 1. Then for any p > 1 and j ∈
{−1,+1},

lim
n→∞ sup

η∈Xn
nα

E
n
η,j

[|Y − η|p] = 0.

PROOF. We compute

nα
E

n
y,j=±

[|Y − η|p] = nαpn±(η)
(
2nγ−1)p = 2ppn±(η)n(p−1)(γ−1).
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Since |pn±(η)| ≤ 1, the supremum over η ∈ Xn converges to zero. �

Asymptotically, the first moment of the increments does not depend on η. Let
a(h,β) be given by (16).

LEMMA 10 (LMH drift for Curie–Weiss). Let 0 < δ < γ < 1. Let α = 1 − γ .
Suppose h �= 0, β ≥ 0 or h = 0, 0 ≤ β ≤ 1. Then for j ∈ {−1,+1},

lim
n→∞ sup

η∈Xn

∣∣nα
E

n
η,j [Y − η] − a(h,β)j

∣∣ = 0.

PROOF. We compute nα
E

n
η,±1[Y − η] = ±pn±(η)2nγ−1nα = ±2pn±(η). We

may apply Lemma 2 with r = 0 and k = 0, to replace p±(η) by p
n,0
± (η), given

by (25). Since n−γ |η| ≤ nδ−γ → 0 in the supremum over Fn,δ , we find that as
n → ∞, using (9),

±2p
n,0
± (η) → ±(1 ∓ m0)min

(
1, exp

(±2β(m0 + h)
))

= ±(1 ∓ m0)min
(

1,

(
1 + m0

1 − m0

)±1)
.

By distinguishing cases, this can be seen to equal (16). �

It only remains to determine the switching rates between the replicas. This will
depend on whether 0 ≤ β < 1 or β = 1.

6.2.1. Supercritical temperature regime. As we have seen, for 0 ≤ β < 1 the
correct scaling is given by γ = 1

2 . In this case, we have the following asymptotic
result for the switching rate between replicas.

LEMMA 11. Let 0 ≤ β < 1 and h ∈ R. Suppose γ = 1
2 , α = 1 − γ = 1

2 and
δ ∈ (0,1/4). Then for j = ±1,

lim
n→∞ sup

η∈Fn,δ

∣∣nα
P

n
η,j (J = −j) − max

(
0, j l(h,β)η

)∣∣ = 0,

with l(h,β) given by (28).

PROOF. We have

nα
P

n
η,j=±1(J = −j) = n1/2 max

(
0,pn∓(η) − pn±(η)

)
.

Applying Lemma 2 with r = 1
2 and k = 1, we find that pn±(η) may be approximated

to sufficient accuracy by p
n,1
± (η), given by (25). We distinguish cases.
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• Suppose h = 0 (and hence m0 = 0) and j = +1. Then

p
n,1
− (η) − p

n,1
+ (η)

= 1

2

{(
1 + n−1/2η

)
min

(
1,1 − 2βn−1/2η

)
− (

1 − n−1/2η
)

min
(
1,1 + 2βn−1/2η

)}
= (1 − β)n−1/2η − sign(η)βn−1η2.

Using Lipschitz continuity of x �→ max(0, x) and δ < 1/4,∣∣n1/2 max
(
0,p

n,1
− (η) − p

n,1
+ (η)

) − max
(
0, (1 − β)η

)∣∣
≤ βn−1/2η2 ≤ βn−1/2+2δ → 0

in the supremum over η, as n → ∞. The case j = −1 is analogous.
• Suppose h �= 0. Let us say without loss of generality h > 0, and hence m0 > 0.

Taking j = +1, we compute using (9),

p
n,1
− (η) − p

n,1
+ (η)

= 1

2

(
1 + m0 + n−1/2η

)
exp

(−2β(m0 + h)
)(

1 − 2βn−1/2η
)

− 1

2

(
1 − m0 − n−1/2η

)
= 1

2

(
1 + m0 + n−1/2η

)(1 − m0

1 + m0

)(
1 − 2βn−1/2η

) − 1

2

(
1 − m0 − n−1/2η

)
= 1

2

{
n−1/2η

(
1 − m0

1 + m0

)
− 2βn−1/2η(1 − m0) + n−1/2η

}
+ O

(
η2n−1)

=
(

1

1 + m0
− β(1 − m0)

)
η.

The other cases follow by analogous computations, or by exploiting the symme-
try transformations (η, j) ↔ (−η,−j) and (h,m0) ↔ (−h,−m0). �

PROOF OF THEOREM 3. The generator of (Y n, J n) is given by

(30) Ln,αϕ(η, j) = nα(
T nϕ(η, j) − ϕ(η, j)

)
, ϕ : Xn × {−1,+1} →R.

It is established in Proposition 3 that L given by (30) generates a Markov process
in R × {−1,1}. By Proposition 4, the Markov process corresponds to a Feller
semigroup (P (t)) on C0(E). Note

Ln,αϕ(η, j) = nα
E

n
η,j

[
ϕ(Y,J ) − ϕ(y, j)

]
= nα

E
n
η,j

[(
ϕ(Y, j) − ϕ(y, j)

)
1{J=j }

]
+ (

ϕ(y,−j) − ϕ(y, j)
)
P

n
η,j (J = −j).
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Consider the set of functions M = {ϕ : R × {−1,1} → R, ϕ(·, j) ∈ C∞
c (R) for

j = ±1}. Then M is strongly separating. Using an analogous Taylor approximation
argument as in the proof of Theorem 1, for j = ±1,

sup
η∈Fn,δ

∣∣Ln,αϕ(η, j) − Lϕ(η, j)
∣∣

≤ sup
η∈Fn,δ

∣∣∣∣Ln,αϕ(η, j) − ∂

∂η
ϕ(η, j)En

η,j [Y − η]

− nα
P

n
η,j (J = −j)

(
ϕ(η,−j) − ϕ(η, j)

)∣∣∣∣
+ sup

η∈Fn,δ

∣∣∣∣ ∂

∂η
ϕ(η, j)En

η,j [Y − η]

+ nα
P

n
η,j (J = −j)

(
ϕ(η,−j) − ϕ(η, j)

) − Lϕ(η, j)

∣∣∣∣
≤ 1

2
nα sup

η∈Fn,δ

∥∥∥∥∂2ϕ

∂η2

∥∥∥∥∞
E

n
η,j

[
(Y − η)2]

+ 2 sup
η∈Fn,δ

∣∣nα
P

n
η,j (J = −j) − max

(
0, j l(h,β)η

)∣∣‖ϕ‖∞

+ sup
η∈Fn,δ

∥∥∥∥∂ϕ

∂η

∥∥∥∥∞
∣∣nα

E
n
η,j [Y − η] − a(h,β)j

∣∣,
which converges to zero by applying Lemmas 9, 10 and 11, taking α = 1/2,
γ = 1/2 and δ = 1/8. As in the proof of Theorem 1, using Lemma 5 (Y n, J n)

are increasingly concentrated on Fn,δ for δ = 1/8. We may now apply Ethier and
Kurtz (2005), Corollary 4.8.7, to deduce the stated weak convergence. It is estab-
lished in Proposition 5 that (Y, J ) has the stated stationary distribution. �

6.2.2. At critical temperature. As above for h = 0 and β = 1, we consider the
scaled magnetization ηn = nγ mn with γ = 1/4.

LEMMA 12. Let β = 1, h = 0, γ = 1/4, α = 1 − γ = 3/4, and δ ∈ (0,1/16).
Then

lim
n→∞ sup

η∈Fn,δ

∣∣nα
P

n
η,j (J = −j) − max

(
0,1/3jη3)∣∣ = 0.

PROOF. As before

nα
P

n
η,j (J = −j) = n3/4 max

(
0,pn∓(η) − pn±(η)

)
.

Applying Lemma 2 with r = 3/4, γ = 1/4 and k = 3, we find that a sufficiently
precise approximation is pn±(η) ≈ p

n,3
± (η). The computation of pn∓(η) − pn±(η)

has already been performed in Lemma 8, resulting in the stated expression. �
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PROOF OF THEOREM 4. The proof is fully analogous to the proof of Theo-
rem 3, now taking δ = 1/32, γ = 1/4 and α = 3/4, and applying Lemmas 7 and 12
instead of Lemmas 5 and 11. �

6.3. The limiting zig-zag process. By rescaling the time variable and λ± if
necessary, we may assume a = 1 without loss of generality throughout the proofs
below.

6.3.1. Construction.

LEMMA 13. Suppose Assumption 1 holds. Then for every (y, j) ∈ E,
limt→∞ F(t;y, j) = 0. In particular, for every (y, j) ∈ E, 1 − F(·;y, j) is the
distribution function of a positive random variable that is almost surely finite.

PROOF. We fix (y, j) ∈ E. Suppose T is distributed according to 1−F . Since
F is continuous at 0, P(T = 0) = 0. By Assumption 1, there exist t0 and λmin such
that λ(y + js, j) ≥ λmin for s ≥ t0. Then, for t ≥ t0,

F(t;y, j) = F(t0;y, j) exp
(
−

∫ t

t0

λ(y + js, j) ds

)
≤ F(t0;y, j) exp

(−(t − t0)λmin
)
,

and the stated result follows. �

LEMMA 14. Suppose Assumption 1 holds. Then for every t ≥ 0 and (y, j) ∈
E, Py,j (N(t) < ∞) = 1.

PROOF. We assume y, j are fixed and suppress the (y, j)-subscript in Py,j ,
etc. Introduce the notation Yk = Y(Tk), Jk = J (Tk). Observe that on {Tk−1 ≤ t ≤
Tk},

∣∣Y(t) − y
∣∣ = ∣∣Jk−1(t − Tk−1) + Yk−1 − y

∣∣ ≤ t − Tk−1 +
∣∣∣∣∣
k−1∑
i=1

(Yi − Yi−1)

∣∣∣∣∣
≤ t − Tk−1 + Tk−1 = t.

It follows that on {0 ≤ t ≤ Tk}, for every s ≤ t , Y(s) ∈ [y−s, y+s] ⊂ [y− t, y+ t].
By Assumption 1, λ is bounded on [y − t, y + t], say by a constant λmax > 0.

We will show by induction that, for 0 ≤ s ≤ t and k ∈ N∪ {0},

P(Tk ≤ s) ≤ 1 − exp(−λmaxs)

k−1∑
j=0

(λmaxs)
j

j ! .
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For k = 0, this is trivial. We have for any k ∈ N and 0 ≤ s ≤ t ,

P(Tk ≤ s|Tk−1)

= E
[
P(Tk ≤ s|Yk−1, Jk−1)1{Tk−1≤s}|Tk−1

]
= Ey,j

[(
1 − exp

(
−

∫ s−Tk−1

0
λ
(
Y (r), J (r)

)
dr

))
1{Tk−1≤s}|Tk−1

]
≤ (

1 − exp
(−λmax(s − Tk−1)

))
1{Tk−1≤s}.

For s ≤ t , it follows that

Py,j (Tk ≤ s) = Ey,j

[
Py,j (Tk ≤ s|Tk−1)

]
≤ E

[(
1 − exp

(−λmax(s − Tk−1)
))

1{Tk−1≤s}
]

(31)

= P(Tk−1 ≤ s) − exp(−λmaxs)E
[
exp(λmaxTk−1)1{Tk−1≤s}

]
.

Let G denote the distribution function of Tk−1 and note by the induction hypothesis
for k − 1,

G(r) = P(Tk−1 ≤ r) ≤ 1 − exp(−λmaxr)

k−2∑
i=0

(λmaxr)
i

i! , 0 ≤ r ≤ t.

Then

E
[
exp(λmaxTk−1)1{Tk−1≤s}

]
=

∫ s

0
exp(λmaxr) dG(r)

= [
exp(λmaxr)G(r)

]s
0 − λmax

∫ s

0
exp(λmaxr)G(r) dr

≥ exp(λmaxs)P(Tk−1 ≤ s)

− λmax

∫ s

0
exp(λmaxr)

(
1 − exp(−λmaxr)

k−2∑
i=0

(λmaxr)
i

i!
)

dr

= exp(λmaxs)P(Tk−1 ≤ s) + 1 − exp(λmaxs) +
k−2∑
i=0

(λmaxs)
i+1

(i + 1)! .

Inserting this expression into (31), the induction hypothesis follows for k. It now
follows by the Fatou lemma that

P
(
N(t) = ∞) = P

(
lim inf
k→∞ {Tk ≤ t}

)
≤ lim inf

k→∞ P(Tk ≤ t) = 0. �
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6.3.2. Regularity. The total variation distance between measures on a Polish
space is defined as usual by

‖ν − μ‖TV := sup
A

∣∣ν(A) − μ(A)
∣∣,

where the supremum is over all Borel sets.

PROOF OF PROPOSITION 4. Let ϕ ∈ C0(E). The value of P(t)ϕ(y, j) only
depends on values of ϕ within the bounded set ([y − t, y + t],±1) ⊂ E. Since
ϕ vanishes at infinity P(t)ϕ vanishes at infinity as well. It remains to establish
continuity of P(t)ϕ.

We construct a coupling of (Y, J ) starting from two different initial conditions,
(y, j) and (z, j), as follows. Let (y, j), (z, j) ∈ E and suppose z ∈ R. Without
loss of generality, assume j = +1 and z ≥ y. Let ν1 denote the distribution of
T1 + (z − y)/2, with initial condition (z, j), that is, ν1 has distribution function

H1(t;y, z) = Pz,j

(
T1 + (z − y)/2 ≤ t

) = Pz,j

(
T1 ≤ t − (z − y)/2

)
= 1 − F

(
t − (z − y)/2; z, j )

,

and let ν2 denote the distribution of T1 with initial condition (y, j), that is, ν2 has
distribution function

H2(t;y, z) = Py,j (T1 ≤ t) = 1 − F(t;y, j).

Let c1(y, z) := ‖ν1 − ν2‖TV. There exists a “maximal” coupling (R1,R2) un-
der a probability measure P of ν1 and ν2 such that P(R1 �= R2) = c1(y, z); see,
for example, Lindvall (2002), Theorem I.5.2. Use (Y y, J y) to denote the process
starting from initial condition (y, j) and (Y z, J z) for the process starting from
initial condition (z, j). We introduce a dependence between the two processes
through the distribution of the first replica switch time, T1. Using the same su-
perscript notation here, we let T z

1 = R1 − (z − y)/2 and T
y
1 := R2. Let all other

switch times T
y
i and T z

i be defined as usual, that is, T
y
i+1 = T

y
i + Z

y
i+1 where

P(Zi+1 ≥ ζ ) = F(ζ ;Yy

T
y
i

, J
y

T
y
i

), etc. and construct the continuous time processes

(Y y, J y) and (Y z, J z) as in Section 5.1. Define an event

�coupling := {
R1 = R2 and T z

2 > T
y
1

}
,

that is, on �coupling a coupling occurs between R1 and R2, and (Y z, J z) does not
switch a second time before T

y
1 ; see also Figure 1. On �coupling,

T
y
1 = R2 = R1 = T z

1 + (z − y)/2

and hence

Y z(T y
1

) = z + T z
1 − (

T
y
1 − T z

1

) = z + T z
1 − (z − y)/2 = (y + z)/2 + T z

1 ,
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FIG. 1. Illustration of the coupling used in the proof of Proposition 4.

and

Yy(
T

y
1

) = y + T
y

1 = y + T z
1 + (z − y)/2 = (y + z)/2 + T z

1 ,

that is, Y z(T
y

1 ) = Yy(T
y

1 ). By the Strong Markov property, the process

(
Ỹ y, J̃ y)

(t,ω) :=
{(

Y z(t,ω), J z(t,ω)
)
, ω ∈ �coupling, t ≥ T

y
1 ,(

Yy(t,ω), J y(t,ω)
)
, otherwise,

is a Markov process with generator L. Since H1 and H2 have densities, we may
evaluate

c1(y, z) = ‖ν1 − ν2‖TV

= 1

2

∫ ∞
0

∣∣H ′
1(t) − H ′

2(t)
∣∣dt = 1

2

∫ z−y
2

0

∣∣H ′
2(t)

∣∣dt

+ 1

2

∫ ∞
z−y

2

∣∣H ′
1(t) − H ′

2(t)
∣∣dt

= 1

2

∫ z−y
2

0
λ(y + t)F (t;y, j) dt

+ 1

2

∫
z−y

2

∣∣λ(
z + t − (z − y)/2

)
F

(
t − (z − y)/2; z, j )

− λ(y + t)F (t;y, j)
∣∣dt.

The second integrand is trivially dominated by

λ
(
z + t − (z − y)/2

)
F

(
t − (z − y)/2; z, j ) + λ(y + t)F (t;y, j),
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which is integrable (since it is the sum of two density functions). Since λ and F

depend continuously on y, z, we may apply the dominated convergence theorem to
conclude that c1(y, z) is continuous in y, z. Also note that c1(y, y) = c1(z, z) = 0.
Hence, limy→z c1(y, z) = limz→y c1(y, z) = 0. Also let

c2(y, z) = Pz,j

(
T z

2 ≤ T z
1 + (z − y)/2

) = 1 −Ez,j

[
F

(
(z − y)/2;Y(T1), J (T1)

)]
,

and note that c2 is continuous in (y, z) and limy→z c2(y, z) = 0. We estimate

P(� \ �coupling) = P
(
R1 �= R2 or T z

2 ≤ T
y
1

)
= P

(
R1 �= R2 or T z

2 ≤ T z
1 + (z − y)/2

)
≤ P(R1 �= R2) + P

(
T z

2 ≤ T z
1 + (z − y)/2

)
= c1(y, z) + c2(y, z).

Fix t ≥ 0. Let ε > 0 and let y ∈ R. Pick δ > 0 such that c1(y, z) + c2(y, z) <

ε/(2‖ϕ‖∞) for all z for which |y − z| < δ and (using uniform continuity) |ϕ(ζ1)−
ϕ(ζ2)| < ε/2 for all ζ1, ζ2 : |ζ1 −ζ2| < δ with ζi ∈ [y − t, z+ t]. Then, for |y −z| <
δ, using that on �coupling, the processes Yy(t) and Y z(t) remain within distance
|y − z| of each other and within [y − t, z + t], we estimate∣∣Ey,jϕ

(
Y (t), J (t)

) −Ez,jϕ
(
Y (t), J (t)

)∣∣
≤ E

∣∣ϕ(
Yy(t), J y(t)

) − ϕ
(
Y z(t), J z(t)

)∣∣
≤ P(�coupling)ε/2 + (

c1(y, z) + c2(y, z)
)‖ϕ‖∞

< ε,

which establishes continuity of P(t)ϕ(y, j) in y for j = +1. The case j = −1 is
analogous. �

6.3.3. Petite sets. Let K denote the resolvent Markov kernel given by

K
(
(y, j),A

) =
∫ ∞

0
exp(−t)Py,j

((
Y (t), J (t)

) ∈ A
)
dt,

(y, j) ∈ E,A ∈ B(E).

The notion of a petite set plays an important role in establishing exponential ergod-
icity for a continuous time Markov process; see, for example, Meyn and Tweedie
(1993). A set C ⊂ E is petite for K if there exists a nontrivial reference measure
ν on E such that K((y, j),A) ≥ ν(A), for any (y, j) ∈ C and A ∈ B(E). The fol-
lowing lemma is instrumental in establishing exponential ergodicity (Theorem 5).

LEMMA 15. Suppose Assumption 1 holds. Then every compact set C ⊂ E is
petite for K .
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FIG. 2. Illustration of the proof of Lemma 15.

PROOF. Let y0 ≥ 0 and λmin > 0 be as defined in Assumption 1(ii). With-
out loss of generality, it is sufficient to show that any set C of the form C :=
[−y1, y1] × {−1,1}, with y1 ≥ y0, is petite. Indeed, given a compact set C̃ choose
y1 ≥ y0 sufficiently large such that C̃ ⊂ C. If C is petite, then clearly C̃ is petite.

Let C = [−1,1] × {−1,1} and δ > 0. We will show that for any δ > 0 there
exists a constant c > 0 such that for every (y, j) ∈ C and ϕ ∈ Bb(E), ϕ ≥ 0,∫ ∞

0
exp(−t)Ey,j

[
ϕ

(
Y (t), J (t)

)]
dt

(32)

≥ c

∫ (1+δ)y1

y1

ϕ(z,+1) dz.

This then establishes that C is ν-petite with ν proportional to Lebesgue measure
on [y1, (1 + δ)y1] × {+1}.

Claim (i): There exists a constant c > 0 such that for ϕ ∈ Bb(E), ϕ ≥ 0, and
y ∈ [−y1, y1], (32) holds for j = +1; see Figure 2(a).

Proof of Claim (i): Let j = +1. Let λmax := maxy∈[−y1,(1+δ)y1] λ(y,+1), which
is finite by Assumption 1(i). The time of reaching (1 + δ)y1 from −y1 is tmax :=
(2 + δ)y1. Let c := exp(−(λmax + 1)tmax).

Let ϕ ∈ Bb(E), ϕ ≥ 0, y ∈ [−y1, y1] and 0 ≤ t ≤ tmax. Then

exp(−t)Ey,j

[
ϕ

(
Y (t), J (t)

)]
≥ exp(−t)Ey,+1

[
ϕ

(
Y (t), J (t)

)
1{T1≥t}

]
= exp(−t)ϕ(y + t,+1)F (t;y,+1)

≥ exp
(−(λmax + 1)tmax

)
ϕ(y + t,+1)

= cϕ(y + t,+1).
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Define t0(y) := inf{t ≥ 0 : y + t = y1} = y1 − y and t1(y) := inf{t ≥ 0 : y + t =
(1 + δ)y1} = (1 + δ)y1 − y ≤ tmax. Then∫ ∞

0
exp(−t)Ey,j

[
ϕ

(
Y (t), J (t)

)]
dt

≥ c

∫ t1

t0

ϕ(y + t,+1) dt

= c

∫ (1+δ)y1

y1

ϕ(z,+1) dz.

Claim (ii): There exists a constant c > 0 such that for ϕ ∈ Bb(E), ϕ ≥ 0, and
y ∈ [−y1, y1], (32) holds for j = −1; see Figure 2(b).

Proof of Claim (ii): Let j = −1. We know by Assumption 1(ii), that λ(z,−1) is
bounded from below for z ≤ −y1 by λmin. Heuristically, in order to obtain a uni-
formly positive probability of switching to the +-replica, we need to spend at least
a certain amount of time, τ > 0 say, in the region (−∞,−y1]. For definiteness, let
τ ∈ (0,2y1). Hence, from a given y ∈ [−y1, y1] we will travel for a certain amount
of time t0(y) := y1 + y until we reach −y1, and then continue moving in the nega-
tive direction up to time t1(y) := t0(y) + τ . We will then have to move back in the
positive direction from −y1 − τ until reaching y1(1 + δ). The maximum amount
of time required is obtained if we start from y = +y1, which results in a value
tmax := (4 + δ)y1 + 2τ .

Let

λmax := sup
0≤t≤tmax

λ(y − t,−1) ∨ λ(y + t,+1) ∨ λ(y − t,+1) ∨ λ(y + t,+1),

a crude but effective upper bound for the switching rate in either replica. Define

c := λmin exp
(−(λmax + 1)tmax

)
τ.

Let ϕ ∈ Bb(E), ϕ ≥ 0, y ∈ [−y1, y1] and 0 ≤ t ≤ tmax. Then

(33)

Ey,j

[
exp(−t)ϕ

(
Y (t), J (t)

)
1{T1≤t,T2>t}

]
= Ey,j

[
exp(−t)

∫ t

0
ϕ

(
y − s + (t − s),+1

)
1{T1∈ds,T2>t}

]
= exp(−t)

∫ t

0
ϕ(y − 2s + t,+1)λ(y − s,−1)

× F(s;y,−1)F (t − s;y − s,+1) ds

≥
∫ t

t0(y)
ϕ(y − 2s + t,+1)λmin exp

(−(λmax + 1)t
)
ds

= c

τ

∫ t

t0(y)
ϕ(y − 2s + t,+1) ds.
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We have ∫ ∞
0

Ey,j

[
exp(−t)ϕ

(
Y (t), J (t)

)]
dt

≥
∫ tmax

0
Ey,j

[
exp(−t)ϕ

(
Y (t), J (t)

)
1{T1≤t,T2>t}

]
dt

≥ c/τ

∫ tmax

0

∫ t

t0(y)
ϕ(y − 2s + t,+1) ds dt

[
by (33)

]
≥ c/τ

∫ t1(y)

t0(y)

∫ tmax

t1(y)
ϕ(y − 2s + t,+1) ds dt

(Fubini, reduced integration area)

≥ c/τ

∫ t1(y)

t0(y)

∫ (1+δ)y1−y+2s

y1−y+2s
ϕ(y − 2s + t,+1) dt ds (�)

= c/τ

∫ t1(y)

t0(y)

∫ (1+δ)y1

y1

ϕ(z,+1) dz ds

= c

∫ (1+δ)y1

y1

ϕ(z,+1) dz (z = y − 2s + t).

In the step labelled (�), we have reduced the integration area: For s ≥ t0(y), since
τ ≤ 2y1,

y1 − y + 2s ≥ y1 − y + 2t0(y) = 3y1 + y ≥ y1 + y + τ = t1(y),

and for s ≤ t1(y),

(1 + δ)y1 − y + 2s ≤ (1 + δ)y1 − y + 2(y + y1) + 2τ ≤ (4 + δ)y1 + 2τ = tmax.

This establishes the claim.
By taking the minimum over the constants c obtained in Claims (i) and (ii),

inequality (32) follows for all (y, j) ∈ C. �

6.3.4. Foster–Lyapunov function. The following lemma, in particular the
choice of the Lyapunov function V , is based on the proof of Fontbona, Guérin
and Malrieu (2016), Proposition 2.8.

LEMMA 16 (Existence of a Foster–Lyapunov function). Suppose Assump-
tion 3 holds. Then there are constants c > 0 and y1 > 0 and a continuously dif-
ferentiable function V : E → (0,∞) such that V (y, j) → ∞ as |y| → ∞, and
LV (y, j) ≤ −cV (y, j) for (y, j) ∈ E with |y| > y1.

PROOF. Define

m+ := sup
y≥y0

λ−(y), M+ := inf
y≥y0

λ+(y),
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m− := sup
y≤−y0

λ+(y), M− := inf
y≤−y0

λ−(y).

By Assumption 3, M+ > m+ and M− > m−. In particular, there exist constants
β+ > 0, β− > 0 such that m+ exp(2β+) < M+ and m− exp(2β−) < M−. It fol-
lows that

m±(
exp

(
2β±) − 1

) = m± exp
(
2β±)(

1 − exp
(−2β±))

< M±(
1 − exp

(−2β±))
.

Therefore, we can pick positive constants α± ∈ (m±(exp(2β±) − 1),M±(1 −
exp(−2β±))). Let y1 ≥ y0 be undefined for now. As a Lyapunov function, we
take a function V such that, outside of (−y1,+y1), and for j ∈ {−1,+1},

(34) V (y, j) =
{

exp
(
α+y + β+ sign(j)

)
, if y ≥ y1,

exp
(−α−y − β− sign(j)

)
, if y ≤ −y1,

and such that V is positive and continuously differentiable on (−y1,+y1). As
long as y1 ≥ y0 is taken sufficiently large, then V thus defined is positive and
continuously differentiable on E. Now on y ≥ y1, we have

LV (y,+1) = (
α+ − λ+(y)

(
1 − exp

(−2β+)))
V (y,+1),

LV (y,−1) = (−α+ + λ−(y)
(
exp

(
2β+) − 1

))
V (y,−1).

By the choice of α±, we have

α+ − λ+(y)
(
1 − exp

(−2β+)) ≤ α+ − M+(
1 − exp

(−2β+))
< 0 and

−α+ + λ−(y)
(
exp

(
2β+) − 1

) ≤ −α+ + m+(
exp

(
2β+) − 1

)
< 0.

It follows that there exists a constant c+ > 0 such that LV (y, j) ≤ −c+V (y, j)

for y ≥ y1 and j ∈ {−1,+1}. Analogously, there exists a constant c− > 0 such that
LV (y, j) ≤ −c−V (y, j) for y ≤ −y1 and j ∈ {−1,+1}. The proof is completed
by taking c := c− ∧ c+. �
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