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We consider one-dimensional, boundary driven, weakly asymmetric ex-
clusion processes in contact with reservoirs at fixed density. For a general set
of initial measures and by using a microscopic Cole–Hopf transformation,
we derive the nonequilibrium fluctuations which are given by a generalized
Ornstein–Uhlenbeck process.

1. Introduction. Nonequilibrium fluctuations of interacting particle systems
around the hydrodynamic limit is one of the main open problems in the field of
scaling limits of interacting particle systems. It has only been derived for few one-
dimensional dynamics and no progress has been made in the last 20 years in Gaus-
sian nonequilibrium fluctuations. We refer to the last section of [13], Chapter 11,
for references and an historical account.

We examine in this article the dynamical nonequilibrium fluctuations of one-
dimensional weakly asymmetric exclusion processes in contact with reservoirs. In
a future work, following the strategy presented in [16] for the symmetric simple
exclusion process, we use the results presented here to prove the stationary fluctu-
ations of the density field.

The motivations are twofold. On the one hand, the investigation of the steady
states of boundary driven interacting particle systems has attracted a lot of attention
in these last fifteen years, mainly after [1, 6]. The density fluctuations at the steady
state are an important part of the theory and they can only be seized through the
dynamical nonequilibrium fluctuations [16]. On the other hand, several published
results [5] still wait for rigorous proofs.

The proof of the nonequilibrium density fluctuations we present here relies on a
microscopic Cole–Hopf transformation introduced by Gärtner [11] to investigate
the hydrodynamic behavior of weakly asymmetric exclusion processes on Z, and

Received July 2015; revised June 2016.
1Supported by the French Ministry of Education through the grant ANR (EDNHS); CNPq (Brazil)

through the research project “Additive functionals of particle systems”, Universal n. 480431/2013-
2; FAPERJ (Brazil) “Jovem Cientista do Nosso Estado” n. E-25/203.407/2014 and FCT/Portugal
project UID/MAT/04459/2013.

MSC2010 subject classifications. 60k35.
Key words and phrases. Nonequilibrium fluctuations, weakly asymmetric exclusion, Dirichlet

boundary conditions, Cole–Hopf transformation, Ornstein–Uhlenbeck process.

140

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/16-AAP1200
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


NONEQUILIBRIUM FLUCTUATIONS OF WEAKLY ASYMMETRIC EXCLUSION 141

used by Dittrich and Gärtner [9] to prove the nonequilibrium fluctuations of the
same models.

As in PDE, the microscopic Cole–Hopf transformation turns a nonlinear prob-
lem involving local functions into a linear one. For this reason, it permits to avoid
proving a nonequilibrium Boltzmann–Gibbs principle [13], Section 11.1, intro-
duced by Rost [3], which is the main technical difficulty in the proof of density
fluctuations.

The proof of the nonequilibrium fluctuations relies on sharp estimates of the
moments of the microscopic Cole–Hopf variables, and on sharp estimates of the
fundamental solution of initial-boundary value semi-discrete linear partial differ-
ential equations. These results are presented in the last two sections of this article.
The bounds on the fundamental solutions are derived in a similar way as hyper-
contractivity is proven for ergodic Markov chains.

2. Notation and results.

2.1. The model. Fix E > 0, α, β in (0,1) and N ≥ 1. Denote by {ηN
t : t ≥

0}, the speeded-up, one-dimensional, boundary driven, weakly asymmetric simple
exclusion process with state space �N = {0,1}{1,...,N−1}. The configurations of the
state space are denoted by the symbol η, so that η(j) = 1 if site j is occupied for
the configuration η and η(j) = 0 if site j is empty. The infinitesimal generator of
the Markov process is denoted by LN and acts on functions f : �N →R as

(LNf )(η) = N2
N−1∑
j=0

cj,j+1(η)
{
f
(
σ j,j+1η

)− f (η)
}
,

where, for 1 ≤ j ≤ N − 2,

cj,j+1(η) =
(

1 + E

N

)
η(j)

[
1 − η(j + 1)

]+ η(j + 1)
[
1 − η(j)

]
,

c0,1(η) =
(

1 + E

N

)
η(0)

[
1 − η(1)

]+ η(1)
[
1 − η(0)

]
,

cN−1,N (η) =
(

1 + E

N

)
η(N − 1)

[
1 − η(N)

]+ η(N)
[
1 − η(N − 1)

]
,

with the convention, adopted throughout the article, that

(2.1) η(0) = α, η(N) = β.

In these formulas, σ j,j+1η, 1 ≤ j ≤ N − 2, is the configuration obtained from η

by exchanging the occupation variables η(j), η(j + 1),

(
σ j,j+1η

)
(k) =

⎧⎪⎪⎨⎪⎪⎩
η(j + 1), k = j,

η(j), k = j + 1,

η(k), k �= j, j + 1,
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while σ 0,1η = σ 1η, σN−1,Nη = σN−1η are the configurations obtained by flipping
the occupation variables η(1), η(N − 1), respectively,

(
σ jη

)
(k) =

{
η(k), k �= j,

1 − η(k), k = j.

2.2. Hydrodynamic limit. Let D(R+,�N) be the space of �N -valued func-
tions which are right continuous with left limits, endowed with the Skorohod
topology. For a probability measure μN on �N , denote by PμN

the measure on
D(R+,�N) induced by the Markov process ηN

t with initial distribution μN . We
represent by EμN

the expectation with respect to PμN
and by EμN

the expectation
with respect to μN .

Let πN
t (du), t ≥ 0, be the positive random measure on [0,1] obtained by rescal-

ing space by N−1 and by assigning mass N−1 to each particle:

πN
t (dx) = 1

N

N−1∑
j=1

ηN
t (j)δj/N(dx),

where δj/N is the Dirac mass at j/N .
Fix a measurable density profile ρ0 : [0,1] → [0,1] and let {μN : N ≥ 1} be

a sequence of probability measures on �N associated to ρ0 in the sense that for
every continuous function G : [0,1] → R and every δ > 0,

lim
N→+∞μN

(∣∣∣∣∣ 1

N

N−1∑
k=1

G(k/N)η(k) −
∫ 1

0
G(x)ρ0(x) dx

∣∣∣∣∣> δ

)
= 0.

Then, for each t ≥ 0, πN
t converges in PμN

-probability to a measure which is
absolutely continuous with respect to the Lebesgue measure and whose density
ρ(t, x) is the unique weak solution of the viscous Burgers equation with Dirichlet’s
boundary conditions:

(2.2)

⎧⎪⎪⎨⎪⎪⎩
∂tρ = ∂2

xρ − E∂xσ(ρ),

ρ(t,0) = α, ρ(t,1) = β, t ≥ 0,

ρ(0, x) = ρ0(x), 0 ≤ x ≤ 1,

where σ(ρ) represents the mobility and is given by σ(ρ) = ρ(1 − ρ). We refer to
[2, 7, 10, 11, 13] and references therein.

2.3. Nonequilibrium fluctuations. To define the space in which the fluctua-
tions take place, denote by C2

0([0,1]) the space of twice continuously differen-
tiable functions on (0,1) which are continuous on [0,1] and which vanish at the
boundary. Let −� be the positive operator, essentially self-adjoint on L2[0,1],
defined by

−� = − d2

dx2 , D(−�) = C2
0
([0,1]).
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Its eigenvalues and corresponding (normalized) eigenfunctions have the form
λn = (nπ)2 and en(x) = √

2 sin(nπx), respectively, for any n ≥ 1. By the Sturm–
Liouville theory, {en, n ≥ 1} forms an orthonormal basis of L2[0,1].

We denote with the same symbol the closure of −� in L2[0,1]. For any nonneg-
ative integer k, we define the Hilbert spaces Hk = D({−�}k/2), with inner product
(f, g)k = ({−�}k/2f, {−�}k/2g), where (·, ·) is the inner product in L2[0,1]. By
the spectral theorem for self-adjoint operators,

Hk =
{
f ∈ L2[0,1] :

+∞∑
n=1

n2k(f, en)
2 < ∞

}
,

(f, g)k =
+∞∑
n=1

(nπ)2k(f, en)(g, en).

Moreover, if H−k denotes the topological dual space of Hk ,

H−k =
{
f ∈ D′(0,1) :

+∞∑
n=1

n−2k〈f, en〉2 < ∞
}
,

(f, g)−k =
+∞∑
n=1

(nπ)−2k〈f, en〉〈g, en〉,

where D′(0,1) represents the space of distributions on (0,1) and 〈f, ·〉 the action
of the distribution f on test functions.

Fix a continuous density profile ρ0 : [0,1] → [0,1], and denote by ρ(t, x) the
unique weak solution of the viscous Burgers equation (2.2). Let YN

t represent the
density fluctuation field which acts on functions H in C1([0,1]) as

(2.3) YN
t (H) = 1√

N

N−1∑
k=1

H(k/N)
{
ηt (k) − ρ(t, k/N)

}
.

Fix t > 0 and a function G in C2
0([0,1]). Recall that we denote by ρ(s, x) =

ρs(x) the solution of the viscous Burgers equation (2.2). Let (Tt,sG)(x) = G(s, x),
0 ≤ s ≤ t , be the solution of the backward linear equation with final condition

(2.4)

⎧⎪⎪⎨⎪⎪⎩
−∂sG = ∂2

xG + E(1 − 2ρs) ∂xG,

G(t, x) = G(x), 0 ≤ x ≤ 1,

G(s,0) = G(s,1) = 0, 0 ≤ s ≤ t.

Denote by D([0, T ],H−k) the set of trajectories Y : [0, T ] → H−k which are
right continuous and have left limits, endowed with the Skorohod topology.

THEOREM 2.1. Fix T > 0, a positive integer k > 7/2, and a density profile
ρ0 : [0,1] → [0,1] in C4([0,1]) such that ρ0(0) = α, ρ0(1) = β . Let {μN : N ≥
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1} be a sequence of probability measures on �N for which there exists a finite
constant A2 such that

(2.5) sup
N≥1

max
1≤k≤N−1

EμN

[(
1√
N

k∑
j=1

{
η0(j) − ρ0(j/N)

})4]
≤ A2.

Let QN be the probability measure on D([0, T ],H−k) induced by the density fluc-
tuation field YN and the probability measure μN . Then the sequence QN is tight
and all its limit points Q∗ are concentrated on paths Y such that for all t ≥ 0 and
G in C5

0([0,1]),
W(t,G) := Yt (G) − Y0(Tt,0G)

are mean-zero Gaussian random variables with covariances given by

EQ∗
[
W(t,G)W(s,H)

]
(2.6)

= 2
∫ t∧s

0

∫ 1

0
σ
(
ρ(r, x)

)
(∂xTt,rG)(x)(∂xTs,rH)(x) dx dr,

for all 0 ≤ s, t ≤ T . Moreover, for all G and H in C5
0([0,1]), and t > 0,

EQ∗
[
W(t,G)Y0(H)

]= 0.

REMARK 2.2. Note that in the definition (2.3) of the density fluctuation field
ρ(t, k/N) is used instead of EμN

[ηt (k)]. Part of the proof of Theorem 2.1 consists
in justifying this replacement.

COROLLARY 2.3. In addition to the hypotheses of Theorem 2.1, assume that
YN

0 converges to a zero-mean Gaussian field Y with covariance denoted by 〈〈·, ·〉〉,
so that for all G, H in C2([0,1]),

lim
N→∞EμN

[
YN

0 (H)YN
0 (G)

]= 〈〈H,G〉〉.

Then the sequence QN converges to a mean-zero Gaussian measure Q whose
covariances are given by

EQ

[
Yt (G)Ys(H)

]= 〈〈Tt,0G,Ts,0H 〉〉

+ 2
∫ t∧s

0

∫ 1

0
σ
(
ρ(r, x)

)
(∂xTt,rG)(x)(∂xTs,rH)(x) dx dr,

for all 0 ≤ s, t ≤ T , H , G in C5
0([0,1]).

This result is an immediate consequence of Theorem 2.1. Under any limit point
Q∗ of the sequence QN , for any function G in C5

0([0,1]), Yt (G) can be written as
the sum of two uncorrelated mean-zero Gaussian variables W(t,G) and Y0(Tt,0G).
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Since under the measure Q, W(t,G) is a Brownian motion changed in time,
the process Yt may be understood as a generalized Ornstein–Uhlenbeck process
described by the formal stochastic partial differential equation

dYt =LtYt dt +√
2σ(ρt )∇ dWt ,

where Lt is the linear differential operator ∂2
x − E∂x[(1 − 2ρt )·]. The article is

organized as follows. In Section 3, we introduce the microscopic Cole–Hopf trans-
formation and we write the density fluctuation field as the sum of a current field and
a remainder. In Section 4, we prove Theorem 2.1 and Corollary 2.3, assuming that
the density field YN

t is tight and that three estimates are in force. In Sections 5–7,
we prove these three estimates, and in Section 8 we prove tightness of YN

t . All
proofs rely on estimates on the moments of the microscopic Cole–Hopf variables,
presented in Section 9, and on estimates of the solutions of certain semi-discrete
equations, presented in Section 10.

3. A microscopic Cole–Hopf transformation. To keep notation simple,
from now on we drop the superscript N on the process ηN

t . Following [9, 11],
we define in this section a microscopic Cole–Hopf transformation of the process
ηt and an approximate inverse transformation. For N ≥ 1, let


−
N = {1, . . . ,N − 1}, 
N = {0, . . . ,N − 1}, 
+

N = {0, . . . ,N}.
For 0 ≤ j, k ≤ N with |j − k| = 1, denote by J

j,k
t , the total number of jumps from

j to k in the time interval [0, t], and let W
j,j+1
t be the total current over the bond

{j, j + 1}, that is,

W
j,j+1
t = J

j,j+1
t − J

j+1,j
t .

In this formula, J
0,1
t (resp., J

1,0
t ) stands for the total number of particles created

(resp., removed) at the left boundary, with a similar convention at the right bound-
ary.

For j ∈ 
N , let ξt (j) be the Cole–Hopf transformation of ηt (j), which is de-
fined as

(3.1) ξt (j) = exp

{
(γ /N)

[
W

j,j+1
t −

j∑
k=1

η0(k)

]}
.

Since

ξt (j) − ξ0(j) =
∫ t

0
ξs−(j)

[
eγ/N − 1

]
dJ j,j+1

s +
∫ t

0
ξs−(j)

[
e−γ /N − 1

]
dJ j+1,j

s ,

taking γ = γN ≤ 0 such that e−γ /N = 1 + E/N we see that ξt (j) can be written
as

(3.2) ξt (j) = ξ0(j) +
∫ t

0
ξs(j)gj,j+1(ηs) ds +MN

t (j),
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where MN
t (j) is a martingale with quadratic variation given by

(3.3)
〈
MN(j),MN(k)

〉
t = δj,kE

2
∫ t

0
ξs(j)2hj (ηs) ds.

Above δj,k is the delta of Kroenecker, and recalling the convention (2.1),

gj,j+1(η) = EN
[
η(j + 1) − η(j)

]
,

(3.4)
hj (η) := eγ/Nη(j)

[
1 − η(j + 1)

]+ η(j + 1)
[
1 − η(j)

]
.

By the continuity equation, for 1 ≤ j ≤ N − 1,

(3.5) W
j−1,j
t − W

j,j+1
t = ηt (j) − η0(j).

As a consequence, for 0 ≤ j ≤ N − 2, 1 ≤ k ≤ N − 1,

ξt (j + 1) − ξt (j) = ξt (j)ηt (j + 1)
[
exp{−γ /N} − 1

]
,

(3.6)
ξt (k − 1) − ξt (k) = ξt (k)ηt (k)

[
exp{γ /N} − 1

]
.

These equations explain the choice of the term
∑

1≤k≤j η0(k) in the definition of
ξt (j). In view of the previous identities, by definition of gj,j+1, and by the choice
of γ ,

(3.7) ξt (j) = ξ0(j) +
∫ t

0
(�ξs)(j) ds +MN

t (j),

where � = �N is the linear operator defined on functions f : 
N →R by

(3.8)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(�f )(0) = −αENf (0) + N

(∇+
Nf

)
(0),

(�f )(j) = (�Nf )(j) − E
(∇−

Nf
)
(j), 1 ≤ j ≤ N − 2,

(�f )(N − 1) = βENf (N − 1) − N

(
1 + E

N

)(∇−
Nf

)
(N − 1).

In this formula, (∇+
Nf

)
(j) = N

[
f (j + 1) − f (j)

]
,(∇−

Nf
)
(j) = −N

[
f (j − 1) − f (j)

]
,

and

(�Nf )(j) = N2[f (j + 1) + f (j − 1) − 2f (j)
]
.

The advantage of the process ξt compared to the original process ηt is that it
evolves according to the linear equation (3.7). Of course, the original process ηt

can be recovered from ξt , since from (3.1) and by the continuity equation appearing
in (3.5), for 1 ≤ j ≤ N − 1,

ηt (j) = − 1

γ

[∇−
N ln(ξt )

]
(j).
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Now, let λt = λN
t be the solution of the linear equation

(3.9)

⎧⎪⎪⎨⎪⎪⎩
(∂tλt )(j) = (�λt )(j), 0 ≤ j ≤ N − 1,

λ0(j) = exp

{
−(γ /N)

j∑
k=1

ρ0(k/N)

}
,

where ρ0 : [0,1] → [0,1] is a density profile satisfying the assumptions of Theo-
rem 2.1. For j ∈ 
−

N , let

(3.10) rt (j) = − 1

γ

[∇−
N ln(λt )

]
(j).

Denote by Ỹ N
t , t ≥ 0, the modified density fluctuation field defined on functions

G in C1([0,1]) by

Ỹ N
t (G) = 1√

N

N−1∑
j=1

G(j/N)
{
ηt (j) − rt (j)

}
.

Next, result asserts that the original density fluctuation field YN
t is close to the

modified density field Ỹ N
t .

PROPOSITION 3.1. For each T > 0,

sup
N≥1

sup
0≤t≤T

max
1≤j≤N−1

N
∣∣rt (j) − ρ(t, j/N)

∣∣< ∞.

Denote by JN
t , t ≥ 0, the current fluctuation field defined on functions G ∈

C1([0,1]) by

JN
t (G) = 1√

N

N−1∑
j=0

(∇+
NG)(j/N)

γ λt (j)

(
ξt (j) − λt (j)

)
.

By the formula for ηt (j) in terms of ξt (j), and by (3.10), a summation by parts
yields that for functions G ∈ C1

0([0,1])
(3.11) Ỹ N

t (G) = JN
t (G) + RN

t (G),

where the remainder RN
t (G) is given by

RN
t (G) = 1√

N

N−1∑
j=0

1

γ

(∇+
NG

)
(j/N)

[
ln
(

ξt (j)

λt (j)

)
+ 1 − ξt (j)

λt (j)

]
.

Notice that both the current field JN
t and the remainder RN

t depend only on the
process ξt . Sometimes, by abuse of notation, we consider that RN

t acts on discrete
functions g : {0, . . . ,N} →R instead of continuous functions G : [0,1] → R. This
is the case in the next proposition.

The second result of this section asserts that the modified density fluctuation
field Ỹ N

t is close to the current fluctuation field JN
t .
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PROPOSITION 3.2. Fix T > 0 and a function φ : [0, T ] × 
+
N →R such that

sup
0≤t≤T

max
j∈
N

∣∣(∇+
Nφt

)
(j)

∣∣< ∞.

Then, for any δ > 0,

lim
N→+∞PμN

[
sup

0≤t≤T

∣∣RN
t (φt )

∣∣> δ
]
= 0.

4. Proof of Theorem 2.1. Fix a density profile ρ0 satisfying the assumptions
of the theorem and denote by ρ(t, x) the solution of the viscous Burgers equation
(2.2) with initial condition ρ0. Let {μN : N ≥ 1} be a sequence of probability
measures on �N for which (2.5) holds.

Let φ : 
N →R be a strictly positive function. Denote by Aφ = AN
φ the differ-

ence operator which acts on functions g : 
+
N →R by⎧⎪⎨⎪⎩

(Aφg)(0) = (Aφg)(N) = 0,

(Aφg)(j) = (�Ng)(j) + E
[1 − θφ(j)]

1 + (E/N)θφ(j)

(∇+
Ng

)
(j) − Eθφ(j)

(∇−
Ng

)
(j)

for 1 ≤ j ≤ N − 1, where

θφ(j) = (∇−
Nφ)(j)

Eφ(j − 1)
·

Denote by λs the solution of (3.9). For s ≥ 0, let As =Aλs , and let

(4.1) r̃s(j) := θλs (j) = (∇−
Nλs)(j)

Eλs(j − 1)
, 1 ≤ j ≤ N − 1.

By Lemma 5.2 below, |r̃t (j ) − ρ(t, j/N)| ≤ C0/N uniformly in 0 ≤ t ≤ T and
1 ≤ j ≤ N − 1. Moreover, as (Asg)(0) = (Asg)(N) = 0, the solution gs of the
semi-discrete equation

(4.2)

{−(∂sg)(s, j) = (Asg)(s, j), 0 ≤ j ≤ N,

g(t, j) = G(j/N), 0 ≤ j ≤ N,

for some t > 0 and some G in C2
0([0,1]), is such that gs(0) = gs(N) = 0 for

all 0 ≤ s ≤ t . Hence, the semi-discrete equation (4.2) has to be understood as a
discrete approximation of the differential equation (2.4).

Fix a function G in C2
0([0,1]) and t > 0. Let gs(j) = gN,t

s (j) be the solution of
(4.2). A long computation yields that for 0 ≤ s ≤ t ,

(4.3) MN
s (t,G) := JN

s (gs) − JN
0 (g0) = 1√

N

∑
j∈
N

∫ s

0

(∇+
Ngr)(j)

γ λr(j)
dMN

r (j),

where MN
s (j) is the martingale introduced in (3.2). We present some details of

this computation below equation (7.2).
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PROPOSITION 4.1. Fix a density profile ρ0 : [0,1] → [0,1] and a sequence
{μN : N ≥ 1} of probability measures on �N satisfying the assumptions of The-
orem 2.1. Then, for each function G in C2

0([0,1]) and t > 0, there exists a finite
constant C0, depending only on G and t , such that for all N ≥ 1,

EμN

[
sup

0≤s≤t

MN
s (t,G)4

]
≤ C0, EμN

[〈
MN(t,G)

〉2
t

]≤ C0.

If G belongs to C5
0([0,1]), then the sequence of martingales MN

s (t,G), 0 ≤ s ≤
t , converges in D([0, t],R) to a mean-zero, continuous martingale, denoted by
Ws(t,G). For G1, G2 in C5

0([0,1]), t1, t2 > 0, and 0 ≤ sj ≤ tj , the covariances of
Ws1(t1,G1) and Ws2(t2,G2) are given by

E
[
Ws1(t1,G1)Ws2(t2,G2)

]
= 2

∫ s1∧s2

0

∫ 1

0
σ
(
ρ(r, x)

)
(∂xTt1,rG1)(x)(∂xTt2,rG2)(x) dx dr.

REMARK 4.2. We note that since Ws(t,G) is a continuous martingale whose
quadratic variation is deterministic, Ws(t,G) is a Brownian motion changed in
time. In particular, Wt(t,G) is a mean-zero Gaussian random variable.

PROOF OF THEOREM 2.1. Let Q∗ be a limit point of the sequence QN , whose
existence follows from the estimates of Section 8. Fix a function G ∈ C5

0([0,1])
and t > 0. Let gs(j) = gN,t

s (j) be the solution of (4.2) with final condition equal
to G. By (3.11), Proposition 3.1 and (4.3),

YN
t (G) − YN

0 (g0) = MN
t (t,G) + RN

t (G) − RN
0 (g0) + CN√

N
,

where CN is a sequence of numbers uniformly bounded. By Proposition 4.1
and in view of Remark 4.2, MN

s (t,G), 0 ≤ s ≤ t , converges in distribution to a
Brownian motion changed in time, denoted by Ws(t,G). In particular, the vari-
ance of Wt(t,G) is given by the right-hand side of (2.6), with H = G, s = t ,
W(r, J ) = Wr(r, J ).

Let ψ(s, j) = (∇+
Ngt−s)(j)/λt−s(j), j ∈ 
N , 0 ≤ s ≤ t . By Remark 7.2

and by Proposition 3.2, RN
t (G) and RN

0 (g0) converges to 0 in probability. Re-
call that we denote by Tt,sG the solution of equation (2.4). By Lemma 7.4,
|YN

0 (g0)−YN
0 (Tt,0G)| ≤ C0/

√
N . In conclusion, YN

t (G)−YN
0 (Tt,0G) converges

in distribution to Wt(t,G).
The covariance between Y0(H) and Wt(t,G) vanishes because Ws(t,G), 0 ≤

s ≤ t is a martingale which vanishes at s = 0.
To complete the proof, it remains to compute the covariance between Wt(t,G)

and Ws(s,H). Assume that s ≤ t . Since Wr(t,G), 0 ≤ r ≤ t , is a martingale,

EQ∗
[
Wt(t,G)Ws(s,H)

]= EQ∗
[
Ws(t,G)Ws(s,H)

]
.

By the polarization identity, we may express the covariance of a pair of random
variables (X,Y ) in terms of the variances of the variables X + Y and X − Y . �
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5. Proof of Proposition 3.1. The main result of this section asserts that the
solution λt of the linear equation (3.9) (satisfied by the expectation of the Cole–
Hopf variables ξt ), is close to the Cole–Hopf transformation of the solution of the
viscous Burgers equation (2.2).

Fix a profile ρ0 : [0,1] → [0,1] in C4([0,1]), and denote by ρ(t, x) the solution
of the hydrodynamic equation (2.2). Let K(t, x) be the Cole–Hopf transformation
of ρ(t, x):

K(t, x) = exp
{
E

[∫ t

0

{
∂xρ(s, x) − Eσ

(
ρ(s, x)

)}
ds +

∫ x

0
ρ0(y) dy

]}
.

Since ∂tK = KE[∂xρ−Eσ(ρ)] and ∂xK = EKρ, K satisfies the linear parabolic
equation with boundary conditions

(5.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tK = ∂2

xK − E∂xK,

(∂xK)(t,0) = EαK(t,0), (∂xK)(t,1) = EβK(t,1), 0 < t ≤ T ,

K(0, x) = exp
{
E

∫ x

0
ρ0(y) dy

}
, 0 ≤ x ≤ 1.

As ρ0 belongs to C4([0,1]), K0 belongs to C5([0,1]), and, by Lemma 10.1, K

belongs to C2,4(R+ × [0,1]).
Denote by ‖f ‖M the sup norm of a function f : 
N,
±

N →R:

‖f ‖M = max
j

∣∣f (j)
∣∣,

where the maximum is carried over the domain of definition of f . By abuse of
notation, if G belongs to C([0,1]), ‖G‖M represents max0≤j≤N |G(j/N)|.

LEMMA 5.1. Let λt and Kt be the solutions of (3.9) and (5.1), respectively.
Then, for every T > 0,

sup
N≥1

sup
0≤t≤T

max
0≤j≤N−1

N
∣∣λt (j) − Kt(j/N)

∣∣< +∞,

sup
N≥1

sup
0≤t≤T

max
1≤j≤N−1

N
∣∣(∇−

Nλt

)
(j) − (∂xKt)(j/N)

∣∣< +∞.

PROOF. Fix T > 0. In this proof, C0 represents a finite constant which may
depend on the parameters E, β , α, on the initial condition ρ0, and on T . Let
wt(j) := λt (j) − Kt(j/N). A simple computation shows that

(5.2) (∂twt )(j) = (�wt)(j) + ϕ(t, j),

where � has been introduced in (3.8) and where ϕ(t, j) is given by⎧⎪⎪⎨⎪⎪⎩
N
{(∇+

NKt

)
(j/N) − αEKt(j/N)

}− (∂tKt )(j/N), j = 0,[(
�N − ∂2

x

)
Kt

]
(j/N) − E

[(∇−
N − ∂x

)
Kt

]
(j/N), 1 ≤ j ≤ N − 2,

EβNKt(j/N) − (N + E)
(∇−

NKt

)
(j/N) − (∂tKt )(j/N), j = N − 1.
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In view of the boundary conditions satisfied by Kt , we may replace in the previous
equation αEKt(0) by (∂xKt)(0) and EβKt([N −1]/N) by Eβ{Kt([N −1]/N)−
Kt(1)} + (∂xKt)(1). After these replacements, recalling that Kt and ρ0 belong
to C4([0,1]), we obtain that ϕ(t, j) is absolutely bounded by C0N

−1 for j in
{1, . . . ,N − 2} and by C0 for j = 0 and for j = N − 1.

Let Gt(j) = ϕt(j)1{1 ≤ j ≤ N − 2}, Ut(j) = ϕt(j) − Gt(j) so that |Gt(j)| ≤
C0N

−1. We may represent the solution wt of (5.2) as

wt = e�tw0 +
∫ t

0
e�(t−s)(Gs + Us)ds.

By Lemma 10.4, ‖e�tw0‖M is bounded by C0e
C0t‖w0‖M ≤ C0N

−1 and
‖e�(t−s)Gs‖M is absolutely bounded by C0e

C0(t−s)N−1 ≤ C0N
−1. Further-

more, since Us vanishes everywhere except at two points, by Corollary 10.7,
‖e�(t−s)Us‖M ≤ C0(t − s)−1/2N−1 for all N large enough. Putting together all
the previous estimates, we conclude that ‖wt‖M is bounded by C0N

−1, proving
the first assertion of the lemma.

We turn to the second assertion. Let

γt (j) =

⎧⎪⎪⎨⎪⎪⎩
[
N/(N + E)

]
αEλt(0), j = 0,(∇−

Nλt

)
(j), 1 ≤ j ≤ N − 1,

βEλt(N − 1), j = N.

It is not difficult to show that for 1 ≤ j ≤ N − 1, γt solves the equation

∂tγt (j) = (�Nγt)(j) − E
(∇−

Nγt

)
(j).

Clearly, (∂xK) satisfies a similar equation where the discrete differential operators
are replaced by continuous ones. Therefore, in view of (5.1), wt(j) = {γt (j) −
(∂xK)(t, j/N)}, 0 ≤ j ≤ N , satisfies

(5.3)

⎧⎪⎪⎨⎪⎪⎩
wt(0) = αE

{[
N/(N + E)

]
λt (0) − K(t,0)

}
,

∂twt (j) = (�Nwt)(j) − E
(∇−

Nwt

)
(j) + ϕ(t, j), 1 ≤ j ≤ N − 1,

wt (N) = βE
{
λt (N − 1) − K(t,1)

}
,

where ϕ(t, j) accounts for the difference between the discrete and continuous
derivatives, namely

ϕ(t, j) = (�Nvt )(j/N) − (
∂2
xv
)
(t, j/N) − E

{(∇−
Nvt

)
(j/N) − (∂xv)(t, j/N)

}
,

where v(t, j) = (∂xK)(t, j/N).
Since Kt belongs to C4([0,1]), ϕ is absolutely bounded by C0N

−1 uniformly
in t and j . By the first part of the proof and by Lemma 10.4, wt(0) and wt(N) are
also absolutely bounded by C0N

−1.
Let w∗

t (j ) be the solution of (5.3) with the same initial condition satisfied by
wt(j), but with boundary conditions w∗

t (0) = C/N , w∗
t (N) = C/N , where C is a
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finite constant such that wt(0)∨wt(N) ≤ C/N for all 0 ≤ t ≤ T . By the maximum
principle, see (10.3), wt(j) ≤ w∗

t (j ) for 0 ≤ t ≤ T , 0 ≤ j ≤ N . Denote by �†
the generator of a weakly asymmetric random walk on {0, . . . ,N} absorbed at 0
and N . We may represent w∗

t as

w∗
t = e�†tw∗

0 +
∫ t

0
e�†(t−s)ϕs ds,

where above we extend the function ϕ to the boundaries by setting ϕ(0) = ϕ(N) =
0 and we repeat the arguments presented in the first part of the proof to conclude
that ‖w∗

t ‖M ≤ C0/N . This provides an upper bound for wt . A lower bound can be
derived along the same lines. �

Recall the definition of r̃t given in (4.1).

LEMMA 5.2. For every T > 0,

sup
N≥1

sup
0≤t≤T

max
1≤j≤N−1

N
∣∣r̃t (j ) − ρ(t, j/N)

∣∣< ∞.

PROOF. By definition of r̃t and by the uniform lower bound for λt , proved in
Lemma 10.5,∣∣r̃t (j ) − ρ(t, j/N)

∣∣≤ C0
∣∣(∇−

Nλt

)
(j) − Eλt(j − 1)ρ(t, j/N)

∣∣
for some finite constant C0, whose value may change from line to line. Since
(∂xKt)(j/N) = Eρ(t, j/N)Kt(j/N) and since ρ is bounded, the right-hand side
of the previous expression is less than or equal to

C0
{∣∣(∇−

Nλt

)
(j) − (∂xKt)(j/N)

∣∣+ ∣∣Kt(j/N) − λt (j − 1)
∣∣}.

The result follows from Lemma 5.1 and the smoothness of K . �

LEMMA 5.3. For every T > 0,

sup
N≥1

sup
0≤t≤T

max
1≤j≤N−2

∣∣∇+
N r̃t (j)

∣∣< ∞.

PROOF. Write∣∣∇+
N r̃t (j)

∣∣≤ N
∣∣r̃t (j + 1) − ρ

(
t, [j + 1]/N)∣∣

+ N
∣∣ρ(t, [j + 1]/N)− ρ(t, j/N)

∣∣
+ N

∣∣ρ(t, j/N) − r̃t (j )
∣∣.

The first and third terms on the right-hand side of the last expression are bounded
by the previous lemma. To complete the proof, it remains to recall that ρ is of
class C1,2. �
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PROOF OF PROPOSITION 3.1. By Lemma 5.2, it is enough to show that

(5.4) sup
0≤t≤T

max
1≤j≤N−1

N
∣∣rt (j) − r̃t (j )

∣∣≤ C0.

By definition of rt and r̃t , for 1 ≤ j ≤ N − 1

rt (j) = log(1 + [E/N]r̃t (j ))

log(1 + [E/N]) ·
Since, by Lemma 10.3,

0 ≤ r̃t (j ) ≤ 1,

for 1 ≤ j ≤ N −1, 0 ≤ t ≤ T , (5.4) holds, which completes the proof of the propo-
sition. �

6. Proof of Proposition 3.2. Fix T > 0 and a sequence of probability mea-
sures {μN : N ≥ 1} fulfilling (2.5).

LEMMA 6.1. For every T > 0 and δ > 0,

lim
N→∞PμN

[
sup

0≤t≤T

1√
N

∑
j∈
N

[
ξt (j) − λt (j)

]2
> δ

]
= 0.

PROOF. Fix T > 0. It is enough to show that there exists a sequence {τN : N ≥
1} such that for each δ > 0

(6.1) lim
N→∞ sup

0≤t≤T

1

τ
PμN

[
sup

t≤s≤t+τ

1√
N

∑
j∈
N

[
ξs(j) − λs(j)

]2
> δ

]
= 0.

A long and simple computation shows that for t ≤ s,

1√
N

N−1∑
j=0

[
ξs(j) − λs(j)

]2 − 1√
N

N−1∑
j=0

[
ξt (j) − λt (j)

]2

=
∫ s

t

2√
N

N−1∑
j=0

(ξr − λr)(j)
[
�(ξr − λr)

]
(j) dr

(6.2)

+
∫ s

t

1√
N

N−1∑
j=0

{(
�2ξ

2
r

)
(j) − 2ξr(j)(�ξr)(j)

}
dr

−
∫ s

t

aN√
N

N−1∑
j=0

ξ2
r (j)ηr(j)ηr(j + 1) dr + {Ms − Mt },

where aN = N2{eγ/N − e−γ /N + e−2γ /N − 1} is a positive constant, Mt is a mar-
tingale and the operator �2 is defined in (9.4).
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Consider a sequence τ = τN such that N−1 � τN � N−2/3. We show below
that with this choice (6.1) holds for each term of the previous decomposition. For
instance, by Lemma 9.2 and Chebyshev’s inequality,

lim
N→∞ sup

0≤t≤T

1

τ
PμN

[
1√
N

N−1∑
j=0

[
ξt (j) − λt (j)

]2
> δ

]
= 0.

Hence, (6.1) holds for the second term on the left-hand side of (6.2) provided
N−1 � τN .

Repeating the arguments presented in the proof of Lemma 10.2, we can show
that the expression inside the first integral on the right-hand side of (6.2) is bounded
by

C0√
N

N−1∑
j=0

[
ξr(j) − λr(j)

]2
for some finite constant C0. To show that (6.1) holds for this term, it is therefore
enough to apply Markov inequality and to recall the statement of Lemma 9.2. No
condition on τN is needed in this argument due to the time integral.

The expression inside the integral in the second term on the right-hand side of
(6.2) is bounded by

C0√
N

{
N−1∑
j=0

N2[ξr(j + 1) − ξr(j)
]2 + Nξr(0)2 + Nξr(N − 1)2

}

for some finite constant C0. By (9.1), ξr(0)2 and ξr(N − 1)2 are bounded
above by C0N

−1∑
j∈
N

ξr(j)2, and |ξr(j + 1) − ξr(j)| is less than or equal
to (e−γ /N − 1)ξr(j). The previous expression is thus less than or equal to
C0N

−1/2∑
j∈
N

ξr(j)2. By the Chebyshev and Hölder inequalities,

PμN

[
sup

t≤s≤t+τ

∫ s

t

1√
N

N−1∑
j=0

ξr(j)2 dr > δ

]
≤ N2τ 3

δ4 EμN

[∫ t+τ

t

1

N

N−1∑
j=0

ξr(j)8 dr

]
.

By Lemma 9.1, this expression is bounded above by C0N
2τ 4δ−4. The contribution

of the second term on the right-hand side of (6.2) to (6.1) is thus bounded by
C0N

2τ 3δ−4, which vanishes, as N → ∞, provided τN � N−2/3.
Since the third term in (6.2) is negative, it remains to consider the martin-

gale Mt . Its quadratic variation 〈M〉t is such that

〈M〉s − 〈M〉t ≤
∫ s

t

C0

N

N−1∑
j=0

ξr(j)2
{

1

N2 ξr(j)2 + [
ξr(j) − λr(j)

]2}
dr
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for some finite constant C0 and all t ≤ s. Therefore, by Doob’s inequality,

PμN

[
sup

t≤s≤t+τ
|Ms − Mt | > δ

]

≤ C0

δ2 EμN

[∫ t+τ

t

1

N

N−1∑
j=0

ξr(j)2
{

1

N2 ξr(j)2 + [
ξr(j) − λr(j)

]2}
dr

]
.

By Lemmas 9.1 and 9.2, this expectation is bounded above by C0τN−1. Hence,
(6.1) holds for the martingale part in (6.2), which proves the lemma. �

COROLLARY 6.2. For every T > 0, δ > 0 and a < 1,

lim
N→∞PμN

[
sup

0≤t≤T

∣∣ξt (0) − λt (0)
∣∣> δ

]
= 0,

lim
N→∞PμN

[
inf

0≤t≤T

ξt (0)

λt (0)
< a

]
= 0.

PROOF. By the triangular inequality, by Lemma 10.3 and by (9.1), [ξt (0) −
λt (0)]2 is bounded by

C1

{(
j

N

)2
ξt (0)2 + [

ξt (j) − λt (j)
]2 +

(
j

N

)2
λt (0)2

}
,

for some finite constant C1 and all j ∈ 
N . In view of Lemma 9.1 and Lemma
10.4, averaging over 0 ≤ j ≤ εN , the first assertion of the corollary follows from
Lemma 6.1.

By Lemma 10.5, there exists a positive constant c0, depending only on ρ0, E, α,
β and T , such that λt (j) ≥ c0 for all 0 ≤ t ≤ T , 0 ≤ j ≤ N −1. Let δ = c0(1−a) >

0 so that

PμN

[
inf

0≤t≤T

ξt (0)

λt (0)
< a

]
≤ PμN

[
sup

0≤t≤T

∣∣ξt (0) − λt (0)
∣∣> δ

]
.

Hence, the second assertion of the corollary follows from the first one. �

PROOF OF PROPOSITION 3.2. By Lemma 10.3 and by (9.1), ξt (j)/λt (j) ≥
eγ ξt (0)/λt (0) for all j ∈ 
N . Therefore, by the second assertion of Corollary 6.2,
for every a < eγ ,

lim
N→∞PμN

[
inf

0≤t≤T
min

0≤j≤N−1

ξt (j)

λt (j)
< a

]
= 0.

Fix a < eγ and denote by 
c
a the previous set of trajectories.

For each 0 < δ < 1, there exists a finite constant C(δ) such that∣∣log(z) + 1 − z
∣∣≤ C(δ)|1 − z|2, z ≥ δ.
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Therefore, on the set 
a , by Lemma 10.5 applied to the function λt , for every
function φ : [0, T ] × 
+

N →R satisfying the assumptions of the proposition,

∣∣RN
t (φt )

∣∣≤ C1√
N

N−1∑
j=0

∣∣(∇+
Nφt

)
(j)

∣∣(ξt (j) − λt (j))2

λ2
t (j )

≤ C′
1√
N

N−1∑
j=0

(
ξt (j) − λt (j)

)2
,

for some finite constant C1. Hence, the assertion of the proposition follows from
Lemma 6.1. �

7. Proof of Proposition 4.1. Fix a density profile ρ0 satisfying the assump-
tions of Theorem 2.1 and denote by ρ(t, x) the solution of the viscous Burgers
equation (2.2) with initial condition ρ0. Let {μN : N ≥ 1} be a sequence of proba-
bility measures on �N for which (2.5) holds.

Denote by �∗ the adjoint operator of � with respect to the counting measure.
An elementary computation gives that⎧⎪⎪⎨⎪⎪⎩

(
�∗f

)
(0) = (1 − α)ENf (0) + (E + N)

(∇+
Nf

)
(0),(

�∗f
)
(j) = (�Nf )(j) + E

(∇+
Nf

)
(j), 1 ≤ j ≤ N − 2,(

�∗f
)
(N − 1) = −(1 − β)ENf (N − 1) − N

(∇−
Nf

)
(N − 1).

Note that �∗ has exactly the same structure as �. Fix a function ψ : 
N →R, and
denote by ψ(s, j), j ∈ 
N , s ≥ 0 the solution of

(7.1)

{
∂sψs = �∗ψs,

ψ0(j) = ψ(j).

LEMMA 7.1. Assume that F belongs to C4([0,1]) and let F(t, x) be the so-
lution of the linear equation{

∂sF = ∂2
xF + E ∂xF,

F (0, x) = F(x) , x ∈ [0,1],
with boundary conditions

(∂xF )(s,0) = −(1 − α)EF(s,0),

(∂xF )(s,1) = −(1 − β)EF(s,1), s ≥ 0.

Suppose that there exists a finite constant C0 such that

max
j∈
N

∣∣ψ(j) − F(j/N)
∣∣≤ C0/N ·

Then, for every T > 0, there exists a finite constant C0 such that

sup
0≤t≤T

max
j∈
N

∣∣ψ(t, j) − F(t, j/N)
∣∣≤ C0/N.
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PROOF. By the note following Lemma 10.1, F belongs to C1,3(R+ × [0,1]).
As in the proof of Lemma 5.1, let wt(j) := ψ(t, j)−F(t, j/N). As F belongs to
C1,3(R+ × [0,1]), equation (5.2) holds with � replaced by �∗ for some function
ϕ(t, j) which is absolutely bounded by C0N

−1 for j in {1, . . . ,N − 2} and by
C0 for j = 0 and for j = N − 1. Since, by assumption, the initial condition w0 is
also uniformly bounded by C0/N , the arguments presented in the proof of the first
assertion of Lemma 5.1 yield that let wt(j) := ψ(t, j) − F(t, j/N) is uniformly
bounded by C0/N . �

Recall the definition of the operator Aφ introduced at the beginning of Section 4.
The proof of Proposition 4.1 relies on the following remarkable identity, derived
from a long, but elementary, computation. For every pair of functions g : 
+

N →R,
φ : 
N →R,

(7.2) �∗
(∇+g

φ

)
(j) − (∇+g

)
(j)

(�φ)(j)

φ(j)2 = [∇+(Aφg)](j)

φ(j)
, j ∈ 
N.

Identity (7.2) explains the second identity in (4.3). Indeed, for a time-
independent function g : 
+

N → R, since ∂sλ
−1
s = −λ−2

s �λs , due to (3.9), (3.7)
and an integration by parts,

JN
s (g) − JN

0 (g)

= 1√
N

∑
j∈
N

∫ s

0

(∇+g)(j)

γ λr(j)
dMN

r (j)(7.3)

+ 1

γ
√

N

∑
j∈
N

∫ s

0

{
�∗

(∇+g

λs

)
(j) − (∇+g

)
(j)

(�λs)(j)

λs(j)2

}
ξr(j) dr.

By (7.2), the expression inside braces in the previous equation is equal to
[∇+(Asg)](j)/λs(j), where As = Aλs . Hence, if we consider a time-dependent
function gs which solves (4.2), the additive part in the previous decomposition of
JN

s (gs) − JN
0 (g0) vanishes, yielding (4.3).

REMARK 7.2. Fix a function G in C2
0([0,1]) and t > 0. Let gs be the solu-

tion of (4.2) with final condition equal to G, g(t, j) = G(j/N), and let ψ(s, j) =
(∇+

Ngt−s)(j)/λt−s(j), j ∈ 
N , 0 ≤ s ≤ t . By (4.2) and (7.2), in the time interval
[0, t], ψ(s, j) solves the equation (7.1) with initial condition

ψ(0, j) = (∇+
NG

)
(j/N)/λt (j).

In particular, by Lemmas 10.5 and 10.4, there exists a finite constant C0 such that
for all N ≥ 1,

(7.4) sup
0≤s≤t

‖ψs‖M ≤ C0.
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REMARK 7.3. Similarly, let G(s, x) be the solution of (2.4) with final con-
dition G(t, x) = G(x). A computation, based on a continuous version of equa-
tion (7.2), shows that in the time interval [0, t], the function Fs = ∂xGt−s/Kt−s

solves the equation appearing in the statement of Lemma 7.1 with initial condition
F(0, x) = (∂xG)(x)/K(t, x).

Therefore, if G belongs to C5
0([0,1]), since K belongs to C2,4(R+ × [0,1]),

F(0, x) = (∂xG)(x)/K(t, x) belongs to C4([0,1]). Moreover, for ψ given in Re-
mark 7.2, we conclude by Lemmas 10.5 and 5.1 that ψ(0, j) − F(0, j/N) is uni-
formly bounded by C0/N . Therefore, by Lemma 7.1, there exists a finite constant
C0 for which for all N ≥ 1,

(7.5) sup
0≤s≤t

max
j∈
N

∣∣ψ(s, j) − F(s, j/N)
∣∣≤ C0/N.

LEMMA 7.4. Fix G in C5
0([0,1]) and t > 0. Denote by G(s, x) the solution of

(2.4) with final condition equal to G, and by g the solution of (4.2) with the same
final condition. Then there exists a finite constant C0 such that for all N ≥ 1,∥∥G(0, ·) − g(0, ·)∥∥M ≤ C0/N.

PROOF. Since G(s,0) = gs(0) = 0 for 0 ≤ s ≤ t , for every j ∈ 
N , by Re-
marks 7.2 and 7.3,∣∣G(0, j/N) − g0(j)

∣∣
≤ 1

N

j−1∑
k=0

∣∣(∇+
NG

)
(0, k/N) − (∇+

Ng0
)
(k/N)

∣∣
= 1

N

j−1∑
k=0

∣∣∣∣N ∫ (k+1)/N

k/N
F (t, y)K(0, y) dy − ψ(t, k/N)λ0(k)

∣∣∣∣.
We have seen just before the statement of the lemma, that under the assumptions
that G belongs to C5

0([0,1]), F(0, ·) belongs to C4([0,1]). Therefore, by the proof
of Lemma 7.1, F belongs to C1,3([0, t] × [0,1]). The assertion of the lemma fol-
lows from this remark, from the fact that ρ0 belongs to C1([0,1]) and from (7.5).

�

LEMMA 7.5. For each function G in C5
0([0,1]) and t > 0, the quadratic vari-

ation 〈MN(t,G)〉s of the martingale MN
s (t,G) converges in L1(PμN

) to

2
∫ s

0

∫ 1

0
σ
(
ρ(r, x)

)[
(∂xTt,rG)(x)

]2
dx dr,

where Tt,rG is the solution of (2.4).
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PROOF. With the notation introduced in (3.4) and (3.7), the quadratic variation
of the martingale MN

s (t,G) can be written as

(7.6)
〈
MN(t,G)

〉
s =

∫ s

0

E2

γ 2N

∑
j∈
N

ξr(j)2hj (ηr)ψt−r (j)2 dr.

By (7.4), ψ is uniformly bounded in the time interval [0, t]. Since the cylinder
functions hj are also bounded, by Lemma 9.2, we may replace ξr(j)2 by λr(j)2 in
the previous formula paying the price of an error which converges to 0 in L1(PμN

).
For two functions f , g : 
N → R, and 1 ≤ � ≤ N/2, since b2 − a2 = (b −

a)(b + a),

1

N

N−1−�∑
j=�

1

2� + 1

�∑
k=−�

[
f (j + k)2 − f (j)2]g(j)

≤ 4�‖f ‖M‖g‖M

N

N−2∑
j=0

∣∣f (j + 1) − f (j)
∣∣.

Applying this identity to � = εN , f = λrψt−r and g(j) = hj , by Lemma 10.2, we
may replace in the quadratic variation of MN

s (t,G) the term λr(j)2ψ(t − r, j)2

by an average of these quantities over a macroscopic interval of length εN , pay-
ing the price of an error which vanishes in L1(PμN

), as N ↑ ∞ and then ε ↓ 0.
A summation by parts yields that

〈
MN(t,G)

〉
s =

∫ s

0

E2

γ 2N

(1−ε)N∑
j=εN

λr(j)2ψ(t − r, j)2Vj,εN(ηr) dr + O(ε),

where Vj,εN(η) = (2εN + 1)−1∑|k|≤εN hj+k(η). By Lemma 7.8 below, we may
replace Vj,εN(ηr) by 2ρr(j/N)[1−ρr(j/N)] = 2σ(ρr(j/N)) with an error of the
same type.

Up to this point, we proved that〈
MN(t,G)

〉
s

= 2
∫ s

0

E2

γ 2N

(1−ε)N∑
j=εN

λr(j)2ψ(t − r, j)2σ
(
ρr(j/N)

)
dr + O(ε) + RN,ε,

where RN,ε is an error which vanishes in L1(PμN
), as N ↑ ∞ and then ε ↓ 0. Note

that the first term on the right-hand side is deterministic.
By Lemma 5.1, λs converges to Ks , and, by (7.5), ψs converges to Fs =

∂xGt−s/Kt−s uniformly in time and space. Since K2
r F 2

t−r = (∂xGr)
2 and since

γ converges to E, the lemma is proved. �
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LEMMA 7.6. For each function G in C2
0([0,1]) and t > 0, there exists a finite

constant C0, depending only on G and t , such that for all N ≥ 1,

EμN

[〈
MN(t,G)

〉2
t

]≤ C0, EμN

[
sup

0≤s≤t

MN
s (t,G)4

]
≤ C0.

PROOF. We first estimate the quadratic variation 〈MN(t,G)〉s , given by (7.6).
By (7.4), the solution ψs of equation (7.1) is uniformly bounded. As the cylinder
function hj is also bounded, 〈MN(t,G)〉s is less than or equal to

C0

∫ s

0

1

N

∑
j∈
N

ξr(j)2 dr.

The first assertion of the lemma follows therefore from Lemma 9.1 with n = 2.
We turn to the second assertion of the lemma. By the Burkholder–Davis–Gundy

inequality and by [9], Lemma 3, the second expectation appearing in the statement
of the lemma is bounded above by

C0

{
EμN

[〈
MN(t,G)

〉2
t

]+EμN

[
sup

0≤s≤t

∣∣MN
s (t,G) − MN

s−(t,G)
∣∣4]}

for some finite constant C0. In view of the first part of the proof, it remains to
estimate the fourth moment of the jumps. Clearly, |MN

s (t,G) − MN
s−(t,G)| =

|JN
s (gs) − JN

s−(gs)|. By the definition of JN
s and of ψs , since |ξs−(j)/ξs(j)| ≤

e−γ /N , and since ψs is uniformly bounded, this latter quantity is less than or equal
to

1

γ
√

N

N−1∑
j=0

∣∣(ψt−s)(j)
∣∣∣∣ξs(j) − ξs−(j)

∣∣≤ C0

N3/2

N−1∑
j=0

ξs(j).

The second assertion of the lemma follows from Schwarz inequality and from
Lemma 9.1. �

LEMMA 7.7. Fix G in C5
0([0,1]) and t > 0. The sequence of martingales

MN
s (t,G) introduced in (4.3) converges in D([0, t],R) to a mean-zero, continuous

martingale, denoted by Ws(t,G). For G1, G2 in C5
0([0,1]), t1, t2 > 0, and 0 ≤

sj ≤ tj , the covariations of Ws1(t1,G1) and Ws2(t2,G2) are given by

E
[
Ws1(t1,G1)Ws2(t2,G2)

]
= 2

∫ s1∧s2

0

∫ 1

0
σ
(
ρ(r, x)

)
(∂xTt1,rG1)(x)(∂xTt2,rG2)(x) dx dr.

PROOF. The proof of the convergence in D([0, t],R) of the martingales
MN

s (t,G) to a mean-zero, continuous martingale, whose quadratic variation is
given by the right-hand side of the displayed equation appearing in the statement
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of the lemma with Gj = G and tj = t , relies on [12], Theorem VIII.3.12. We claim
that conditions (3.14) and b-(iv) are fulfilled. Condition [γ5-D] (defined in 3.3,
page 470 of [12]) follows from Lemma 7.5. By Assertion VIII.3.5 in [12], condi-
tion [δ̂5-D] and condition (3.14) are a consequence of

lim
N→∞EμN

[
sup
s≤t

∣∣MN
s (t,G) − MN

s−(t,G)
∣∣]= 0,

an assertion which has been proved in the previous lemma.
It remains to prove the formula for the covariances. Fix G1, G2 in C5

0([0,1]),
t1, t2 > 0, 0 ≤ sj ≤ tj , and let s = s1 ∧ s2. Since MN

s (tj ,Gj ), 0 ≤ s ≤ tj , are
martingales in L2(PμN

), EμN
[MN

s1
(t1,G1)M

N
s2

(t2,G2)] = EμN
[MN

s (t1,G1) ×
MN

s (t2,G2)]. By the polarization identity, the computation of the covariance is
reduced to the computation of the variance of the martingales MN

s (t1,G1) ±
MN

s (t2,G2). In view of (4.3), the martingale MN
s (t1,G1) ± MN

s (t2,G2) can be
represented as a martingale MN

s (t1, t2,G1,G2). The proof of Lemma 7.5 shows
that the quadratic variation of this martingale converges in L1(PμN

) to

(7.7) 2
∫ s

0

∫ 1

0
σ
(
ρ(r, x)

)[
(∂xTt1,rG1 ± Tt2,rG2)(x)

]2
dx dr.

By the first part of the proof, the martingale MN
s (t1,G1) ± MN

s (t2,G2) converges
in distribution to the martingale Ws(t1,G1) ± Ws(t2,G2). As the limit is continu-
ous, the convergence in the Skorohod topology entails convergence in distribution
at fixed times. Since, by Lemma 7.6, MN

s (t1,G1) ± MN
s (t2,G2) is bounded in

L4(PμN
),

E
[{

Ws(t1,G1) ± Ws(t2,G2)
}2]= lim

N→∞EμN

[{
MN

s (t1,G1) ± MN
s (t2,G2)

}2]
which completes the proof of the lemma since the right-hand side converges
to (7.7). �

We conclude this section stating a result which permits to replace cylinder func-
tions by functions of the empirical measure. Denote by νρ , 0 ≤ ρ ≤ 1, the Bernoulli
product measure on {0,1}Z with density ρ. For a function h : {0,1}Z → R which
depends only on a finite number of sites, let ĥ(ρ) = Eνρ [h(η)]. Denote by τjη,
j ∈ Z, η ∈ {0,1}Z, the configuration η translated by j : (τjη)(k) = η(j + k), k ∈ Z.
For a cylinder function h, whose support is represented by 
 ⊂ Z, and for a con-
figuration η ∈ �N the meaning of h(τjη) is clear provided j + 
 ⊂ {1, . . . ,N}.

LEMMA 7.8. Let {μN : N ≥ 1} be a sequence of probability measures in �N .
For every continuous function G : R+ × [0,1] → R and every cylinder function h,

lim sup
N→+∞

EμN

[∫ t

0

∣∣∣∣ 1

N

∑
j

G(s, j/N)h(τjηs) −
∫ 1

0
G(s, x)̂h

(
ρ(s, x)

)
dx

∣∣∣∣ds

]
= 0,
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where ρ(s, x) is the solution of the hydrodynamic equation (2.2) and where the sum
over j is carried over all j ’s for which the support of h is contained in �N − j .

The proof of this result is similar to the one presented in [13], given the estimate
presented in [2], Lemma 3.1.

8. Tightness of the density field. We prove in this section that the sequence
{YN

t : N ≥ 1} is tight in D(R+,H−k) for k > 7/2. Recall from Section 2.3 the
definition of the eigenfunctions {en : n ≥ 1} and of the eigenvalues {λn : n ≥ 1}
of the operator −� defined on C2

0([0,1]). Denote by ‖ · ‖−k the norm of H−k ,
defined as

‖f ‖2−k = ∑
n≥1

λ−2k
n 〈f, en〉2.

By Propositions 3.1, 3.2 and by (3.11), to prove that the sequence {YN
t : N ≥ 1}

is tight it is enough to show that the sequence {JN
t : N ≥ 1} is tight: We claim that

for every k > 7/2, T > 0, ε > 0,

lim
A→∞ lim sup

N→∞
PμN

[
sup

0≤t≤T

∥∥JN
t

∥∥−k > A
]
= 0,

lim
δ→0

lim sup
N→∞

PμN

[
ωδ

(
JN

t

)≥ ε
]= 0,

where, for δ > 0,

ωδ

(
JN

t

)= sup
|s−t |<δ
0≤s,t≤T

∥∥JN
t − JN

s

∥∥−k.

The first condition in the penultimate displayed equation is a consequence of part
(a) of Corollary 8.2. The second condition follows from part (b) of that corollary
and from Lemma 8.3.

LEMMA 8.1. There exists a finite constant C0, such that for every n ≥ 1,

EμN

[
sup

0≤t≤T

〈
JN

t , en

〉2]≤ C0n
6·

PROOF. By (7.2) and (7.3),

(8.1) JN
t (en) = JN

0 (en) +
∫ t

0
JN

s (Asen) ds +MN
t (en),

where MN
t (en) is the martingale appearing on the right-hand side of (7.3) with

g = en. We estimate separately each term of the previous expression. By Schwarz’s
inequality,

EμN

[
JN

0 (en)
2]≤ 1

γ 2

N−1∑
j=0

(∇+
Nen)(j/N)2

λ0(j)2 EμN

[{
ξ0(j) − λ0(j)

}2]
.
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By assumption (2.5), the expectation is bounded by C0/N . Hence, since λ0 is
bounded below by a strictly positive constant, the previous sum is less than or
equal to C0n

2.
We turn to the time integral term in the decomposition of JN

t (en). By Schwarz’s
inequality, and by the definition of JN

t ,

EμN

[
sup

0≤t≤T

(∫ t

0
JN

s

(
AN

s en

)
ds

)2]

≤ T

∫ T

0

1

γ 2N

N−1∑
j,k=0

[∇+
N(Asen)](j)[∇+

N(Asen)](k)

λs(j)λs(k)
ϕs(j, k) ds,

where ϕs(j, k) = EμN
[{ξs(j) − λs(j)}{ξs(k) − λs(k)}]. Recall from Lemma 10.5

that λs(j) is bounded below by a strictly positive constant. By Lemma 9.2,
sup0≤s≤T maxj,k |ϕs(j, k)| ≤ C0/N . On the other hand, in view of Lemma 5.3,
by a Taylor expansion and since (Asen)(0) = (Asen)(N) = 0,

sup
0≤s≤T

max
1≤j≤N−2

∣∣[∇+
N(Asen)

]
(j)

∣∣≤ C0n
3,

sup
0≤s≤T

max
k=0,N−1

∣∣[∇+
N(Asen)

]
(k)

∣∣≤ C0n
2N.

It follows from these bounds that the penultimate displayed equation is bounded
by C0n

6.
It remains to examine the martingale term in the decomposition of JN

t (en). By
definition (7.3) of the martingale MN

t (en), by Doob’s inequality and by (3.3),

EμN

[
sup

0≤t≤T

MN
t (en)

2
]
≤ EμN

[∫ T

0

4E2

γ 2N

N−1∑
j=0

(∇+
Nen)(j)2

λs(j)2 ξs(j)2hj (ηs) ds

]
.

Since the cylinder functions hj are bounded and since, by Lemma 10.5, λs is uni-
formly bounded from below, by Lemma 9.1 this expression is less than or equal to
C0n

2. This completes the proof of the lemma. �

COROLLARY 8.2. For each k > 7/2,

(a) lim sup
N→+∞

EμN

[
sup

0≤t≤T

∥∥JN
t

∥∥2
−k

]
< ∞,

(b) lim
m→+∞ lim sup

N→+∞
EμN

[
sup

0≤t≤T

∑
n≥m

〈
JN

t , en

〉2
λ−2k

n

]
= 0.

PROOF. This result is a consequence of the previous lemma and of the obser-
vation that

sup
0≤t≤T

∥∥JN
t

∥∥2
−k ≤ ∑

n≥1

λ−2k
n sup

0≤t≤T

∣∣JN
t (en)

∣∣2.
�
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LEMMA 8.3. For every n ≥ 1 and every ε > 0,

lim
δ→0

lim sup
N→+∞

PμN

[
sup

|s−t |<δ
0≤s,t≤T

[
JN

t (en) − JN
s (en)

]2
> ε

]
= 0.

PROOF. Recall the decomposition of JN
t (en) presented at the beginning of the

proof of Lemma 8.1. We first claim that for every ε > 0,

(8.2) lim
δ→0

lim sup
N→+∞

PμN

[
sup

|s−t |<δ
0≤s,t≤T

∣∣MN
t (en) −MN

s (en)
∣∣> ε

]
= 0.

Denote by ω′
δ(x) the modified modulus of continuity of a path x in D([0, T ],R)

defined by

ω′
δ(x) = inf{ti}

max
0≤i≤r

sup
ti≤s<t≤ti+1

|xt − xs |,

where the infimum is taken over all partitions of [0, T ] such that 0 ≤ i ≤ r , 0 =
t0 < t1 < · · · < tr = T with ti+1 − ti > δ. Since ωδ(x) ≤ 2ω′

δ(x) + supt≤T |xt −
xt−|, to prove (8.2) it is enough to show that for every ε > 0

lim
δ→0

lim sup
N→+∞

PμN

[
ω′

δ

(
MN

t (en)
)
> ε

]= 0,

(8.3)
lim sup
N→+∞

PμN

[
sup
t≤T

∣∣MN
t (en) −MN

t−(en)
∣∣> ε

]
= 0.

Clearly, |MN
t (en) − MN

t−(en)| = |JN
t (en) − JN

t− (en)|. By definition of JN
t and

since |ξt−(j)/ξt (j)| ≤ e−γ /N this latter quantity is less than or equal to

1√
N

N−1∑
j=0

|(∇+
Nen)(j)|
λt (j)

∣∣ξt (j) − ξt−(j)
∣∣≤ C0n

N3/2

N−1∑
j=0

ξt (j).

The second condition of (8.3) follows from the previous estimate, from Markov
inequality and from the fact that the expectation of ξt (j) [which is equal to λt (j)]
is uniformly bounded.

We turn to the first condition of (8.3). By Aldous’s criterium, it is enough to
show that for every ε > 0

lim
δ→0

lim sup
N→+∞

sup
τ∈Tτ

0≤θ≤δ

PμN

[∣∣MN
τ+θ (en) −MN

τ (en)
∣∣> ε

]= 0,

where Tτ represents the set of stopping times bounded by T . By Chebyshev in-
equality and by the explicit expression for the quadratic variation of MN

t (en)

given in (7.6), the previous probability is bounded by

EμN

[∫ τ+θ

τ

E2

γ 2ε2N

N−1∑
j=0

ξs(j)2hj (ηs)
(∇+

Nen)(j/N)2

λs(j)2 ds

]
.
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By Lemma 9.1 and Lemma 10.5, the previous expectation is bounded above by
C0n

2δ/ε2, proving the first assertion of (8.3). This proves (8.2).
We claim that for every ε > 0

(8.4) lim
δ→0

lim sup
N→+∞

PμN

[
sup

|s−t |<δ
0≤s,t≤T

∣∣∣∣∫ t

s
JN

r (Aren) dr

∣∣∣∣> ε

]
= 0.

By Chebyshev’s inequality, the previous probability is bounded by

δ

ε2EμN

[∫ T

0

(
1

γ
√

N

N−1∑
j=0

∇+
N(Aren)(j/N)

λr(j)

[
ξr(j) − λr(j)

])2

dr

]
.

The computations performed in the proof of Lemma 8.1 yield that the previous
expression is bounded by C0n

6δ/ε2. This proves (8.4).
The assertion of the lemma is a consequence of (8.2), (8.4). �

9. Exponential estimates. We present in this section some bounds on the pro-
cess ξt . By (3.6) and by the definition of the variables ξt (j), for 0 ≤ j ≤ N − 2,

(9.1) ξt (j) ≤ ξt (j + 1) ≤ e−γ /Nξt (j).

LEMMA 9.1. Fix n ≥ 1, T > 0 and a sequence of probability measures {μN :
N ≥ 1} on �N . There exists a finite constant C1 and N0 ≥ 1, depending only on n,
β , E and T , such that for all 0 ≤ j ≤ N − 1 and all N ≥ N0,

EμN

[
sup

0≤t≤T

ξt (j)n
]
≤ C1.

PROOF. Fix n ≥ 1 and T > 0. In the proof C1 represents a finite constant
which depends only on n, β , T and E and which may change from line to line. We
first claim that

(9.2) sup
0≤t≤T

max
0≤j≤N−1

EμN

[
ξt (j)n

]≤ C1.

A similar computation to the one performed just after (3.1) shows that for each
0 ≤ j ≤ N − 1

(9.3) ξt (j)n = ξ0(j)n +
∫ t

0

{[
�nξ

n
s

]
(j) + An(s, j)

}
ds +MN

n (t, j).

In this formula, MN
n (·, j) is a zero-mean martingale; �n is the linear operator

equal to � in the interior of 
N and given at the boundary by

(9.4)

⎧⎪⎨⎪⎩
(�nf )(0) = −αNRnf (0) + N

(∇+
Nf

)
(0),

(�nf )(N − 1) = βNSnf (N − 1) − N

(
1 + E

N

)(∇−
Nf

)
(N − 1),
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where

Rn = N

(
1 + E

N

)(
1 − enγ/N ), Sn = N

(
e−nγ/N − 1

)
and

An(t, j) = −N2
{(

1 + E

N

)(
eγn/N − 1

)+ (
e−γ n/N − 1

)}
ξt (j)nηt (j)ηt (j + 1).

Notice that A1(t, j) = 0 and that R1 = S1 = E so that �1 = �.
It follows from the previous computations that fn(t, j) = EμN

[ξt (j)n] satisfies
the differential inequality

∂tf (t, j) ≤ (�nf )(t, j).

Let Fn(t, ·) be the solution of equation (3.9), with �n instead of � and initial
condition Fn(0, j) = fn(0, j). By the maximum principle, see (10.3), fn(t, ·) ≤
Fn(t, ·) for all t ≥ 0. Claim (9.2) follows from Lemma 10.4 and the bound
Fn(0, j) ≤ exp{−γ n}.

It remains to bring the supremum inside the expectation. Since, by (9.1), ξt (j)

is increasing in j , it is enough to prove the lemma for j = N − 1. However, by
(9.1), ξt (N − 1) ≤ e−γ ξt (j) so that

EμN

[
sup

0≤t≤T

ξt (N − 1)n
]
≤ e−γ n

EμN

[
sup

0≤t≤T

1

N

N−1∑
j=0

ξt (j)n

]
.

By (9.3),

ξt (j)n ≤ ξ0(j)n +
∫ t

0

[
�nξ

n
s

]
(j) ds +MN

n (t, j).

We need therefore to estimate three terms. The first one is given by

1

N

N−1∑
j=0

ξ0(j)n ≤ e−γ n.

The second one is also simple to handle. Since

1

N

N−1∑
j=0

[
�nξ

n](j) ≤ Eξ(0)n + βN
(
e−γ n/N − 1

)
ξ(N − 1)n,

we have that

EμN

[
sup

0≤t≤T

∫ t

0

1

N

N−1∑
j=0

[
�nξ

n
s

]
(j) ds

]
≤ C1EμN

[∫ T

0

{
ξs(0)n + ξs(N − 1)n

}
ds

]
.
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By (9.2), this expression is bounded by a constant independent of N . To estimate
the martingale term, apply Doob’s inequality and use the fact that the martingales
MN

n (t, ·) are orthogonal to get that

EμN

[(
sup

0≤t≤T

1

N

N−1∑
j=0

MN
n (t, j)

)2]
≤ EμN

[∫ T

0

C1

N2

N−1∑
j=0

ξt (j)2n dt

]
.

By (9.2), this expression is bounded by C1N
−1, which completes the proof of the

lemma. �

LEMMA 9.2. Let {μN : N ≥ 1} be a sequence of measures on �N satisfy-
ing (2.5). Then, for each fixed T > 0, there exist finite constants C1 and N0 ≥ 1,
depending only on E, β , T and A2 such that

sup
0≤t≤T

max
j∈
N

EμN

[(
ξt (j) − λt (j)

)4]≤ C1

N2 ·

PROOF. For 0 ≤ k ≤ N − 1 and t ≥ 0, let qt (k, ·) be the solution of equation
(3.9) with initial condition q0(k, j) = δk,j . By (3.7),

ξt (j) =
N−1∑
k=0

ξ0(k)qt (k, j) +
N−1∑
k=0

∫ t

0
qt−s(k, j) dMN

s (k),

so that

(9.5) ξt (j) − λt (j) =
N−1∑
k=0

(
ξ0(k) − λ0(k)

)
qt (k, j) +

N−1∑
k=0

∫ t

0
qt−s(k, j) dMN

s (k).

To prove the lemma, we need to estimate the fourth moments of the terms on the
right-hand side of (9.5).

By Hölder’s inequality,

EμN

[(
N−1∑
k=0

(
ξ0(k) − λ0(k)

)
qt (k, j)

)4]

≤ EμN

[
N−1∑
k=0

(
ξ0(k) − λ0(k)

)4
qt (k, j)

](
N−1∑
k=0

qt (k, j)

)3

.

Notice that

∣∣ξ0(k) − λ0(k)
∣∣≤ C1

N

∣∣∣∣∣
k∑

j=1

{
η0(j) − ρ0

(
j

N

)}∣∣∣∣∣
for some finite constant C1 which depends only on E, β , T , A2, and whose value
may change from line to line. Therefore, by assumption (2.5) and since, by (10.11),
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k=0 qs(k, j) is uniformly bounded in j and 0 ≤ s ≤ T , the fourth moment of the

first term on the right-hand side of (9.5) is bounded by C1/N
2.

We turn to the martingale term in (9.5). For 0 ≤ r ≤ t , let MN
j,t (r) be the mar-

tingale defined by

MN
j,t (r) =

N−1∑
k=0

∫ r

0
qt−s(k, j) dMN

s (k).

By the Burkholder–Davis–Gundy inequality and [9], Lemma 3, there exists a finite
constant C0 such that

EμN

[
MN

j,t (t)
4]≤ C0

{
EμN

[〈
MN

j,t

〉2
t

]+EμN

[
sup

0≤s≤t

∣∣MN
j,t (s) −MN

j,t (s−)
∣∣4]},

where 〈MN
j,t 〉r stands for the quadratic variation of the martingale MN

j,t .

We first estimate the jump term. By (9.5) and by definition of ξs , |MN
j,t (s) −

MN
j,t (s−)| = |ξs(j) − ξs−(j)| ≤ (C0/N)ξs(j). Hence, by Lemma 9.1, the second

expectation on the right-hand side of the previous formula is bounded above by
C0/N

4.
It remains to examine the quadratic variation. By (3.3), the quadratic variation

of the martingale MN
j,t (r) is bounded above by

C1

∫ r

0

N−1∑
k=0

qt−s(k, j)2ξs(k)2 ds

≤ C1

∫ r

0
max

0≤k≤N−1
qt−s(k, j)

N−1∑
k=0

qt−s(k, j)ξs(k)2 ds.

By remark (10.11),
∑N−1

k=0 qs(k, j) is uniformly bounded in j and 0 ≤ s ≤ T , and
by Corollary 10.7, max0≤k≤N−1 qt−s(k, j) is bounded above by C1{N2(t −s)}−1/2

for all N large enough and all j . Since, by (9.1), ξs(k) ≤ ξs(N −1), 0 ≤ k ≤ N − 1,
the previous expression is less than or equal to

C1

∫ r

0

1

N
√

t − s
ξs(N − 1)2 ds.

Hence, by the Cauchy–Schwarz inequality,

EμN

[〈
MN

j,t

〉2
t

]≤ C1

N2EμN

[∫ t

0

1√
t − s

ξs(N − 1)4 ds

]
,

which completes the proof of the lemma in view of Lemma 9.1. �
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10. The operators �n. We prove in this section some properties of the so-
lutions of the differential equation ∂tft = �nft , where �n is the linear operator
defined by (3.8) and (9.4). We start with a result on classical solutions of the vis-
cous Burgers equation (2.2).

LEMMA 10.1. Let ρ0 be a density profile in C4([0,1]). Then the solution
of the viscous Burgers equation (2.2) belongs to C2,3([0,∞) × [0,1]) and the
solution of the linear equation (5.1) belongs to C2,4([0,∞) × [0,1]).

PROOF. Since ρ0 belongs to C4([0,1]), K0 defined by (5.1) belongs to
C2m+1([0,1]) with m = 2. Therefore, the (generalized) Fourier series expansion
of the solution K of (5.1) with initial condition K0, provided by the method of sep-
aration of variables, yields that K ∈ Cm,2m([0,∞) × [0,1]). Moreover, since the
semigroup corresponding to (5.1) is positivity improving and since K0 is bounded
below by a positive constant, so is Kt . Thus, ρ(t, x) = ∂xK/EK , which solves
the viscous Burgers equation, is well defined and belongs to C2,3([0,∞)×[0,1]).
Uniqueness of classical solutions of (2.2) completes the proof. �

Note: With the same notation as in the previous lemma, assume that K0 be-
longs to C2m+2([0,1]), m ≥ 0, so that ∂xK0 ∈ C2m+1([0,1]). Since ∂xK satis-
fies the same equation as K , one obtains by the previous argument that ∂xK ∈
Cm,2m([0,∞) × [0,1]), so that K ∈ Cm,2m+1([0,∞) × [0,1]).

We turn to the operator �n, which should be understood as a small perturbation
of �0, obtained from �n by setting α = β = 0, and which represents the generator
of a weakly asymmetric random walk on 
N with reflection at the boundary.

Let mN be the measure given by

mN(k) =
(

1 + E

N

)−k

, 0 ≤ k ≤ N − 1.

Denote by 〈·, ·〉mN
the scalar product in L2(mN). A calculation shows that for each

n ≥ 0, �n is self-adjoint in L2(mN), that is,

〈g,�nf 〉mN
= 〈�ng,f 〉mN

, f, g ∈ L2(mN).

For p ≥ 0, denote by ‖ · ‖p , the Lp norm with respect to mN and by DN the
Dirichlet form associated to �0 and mN :

DN(f ) = 〈f,−�0f 〉mN
= N2

N−2∑
k=0

[
f (k + 1) − f (k)

]2
mN(k).

The logarithmic Sobolev inequality for the weakly asymmetric random walk on

N with reflection at the boundary [8], Example 3.6, states that there exists a
finite constant A0, depending only on E, such that

(10.1)
N−1∑
k=0

f (k)2 logf (k)2mN(k) ≤ A0DN(f )
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for all functions f such that ‖f ‖2 = 1 and all N ≥ 2.
Fix n ≥ 1, an initial condition f : 
N → R and denote by f (n) the solution of

the linear differential equation

(10.2) ∂tf
(n)
t = �nf

(n)
t , f

(n)
0 = f.

It is not difficult to prove a maximum principle for the solution of this linear equa-
tion,

(10.3) f
(n)
t ≥ 0 for all t ≥ 0 if f ≥ 0,

and to deduce the existence of a unique solution.

LEMMA 10.2. Fix n ≥ 1 and let ft = f
(n)
t be the solution of (10.2). There

exists a finite constant C0, depending only on E, β and n, such that for any t ≥ 0

‖ft‖2
2 +

∫ t

0
DN(fs) ds ≤ eC0t‖f0‖2

2.

PROOF. Fix n ≥ 1. Differentiating ‖ft‖2
2 yields

1

2

d

ds
‖ft‖2

2 = −αNRnfs(0)2mN(0)

(10.4)
+ βNSnfs(N − 1)2mN(N − 1) − DN(fs).

For every 1 ≤ m ≤ N and every s ≥ 0,

(10.5) fs(N − 1)2 ≤ 2e−γ

(
m

N2 DN(fs) + 1

m
〈fs, fs〉mN

)
.

Indeed, fix 1 ≤ m ≤ N . By Young’s inequality,

fs(N − 1)2 ≤ 2

(
fs(N − 1) − 1

m

N−1∑
k=N−m

fs(k)

)2

+ 2

(
1

m

N−1∑
k=N−m

fs(k)

)2

.

By Schwarz’s inequality and since mN(k) ≥ eγ for 0 ≤ k ≤ N −1, the second term
on the right-hand side is less than or equal to

2

m

N−1∑
k=N−m

fs(k)2 ≤ 2e−γ

m

N−1∑
k=0

fs(k)2mN(k) = 2e−γ

m
〈fs, fs〉mN

.

The first term on the right-hand side can be rewritten as

2

(
1

m

N−1∑
k=N−m

N−2∑
j=k

[
fs(j + 1) − fs(j)

])2

≤ 2
N−1∑

k=N−m

N−2∑
j=k

[
fs(j + 1) − fs(j)

]2
.
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Since mN(k) ≥ eγ , this sum is bounded above by

2me−γ
N−2∑
j=0

[
fs(j + 1) − fs(j)

]2
mN(j) = 2e−γ m

N2 DN(fs),

which proves (10.5).
Set m = [Neγ /4βSn] ∧ N , where [a] represents the integer part of a. Putting

together (10.4) and (10.5) yields
d

ds
〈fs, fs〉mN

≤ −DN(fs) + C0〈fs, fs〉mN
.

To conclude the proof it remains to apply Gronwall’s inequality. �

Next result shows that the solutions of (10.2) are monotone.

LEMMA 10.3. Fix n ≥ 1 and a nonnegative initial condition f0 : 
N → R

such that f0(j) ≤ f0(j + 1), 0 ≤ j < N − 1. Then the solution ft = f
(n)
t of (10.2)

conserves the monotonicity:

ft (j) ≤ ft (j + 1)

for all t ≥ 0 and 0 ≤ j < N − 1. Conversely, if the nonnegative initial condition
is such that f0(j + 1) ≤ e−γ n/Nf0(j), 0 ≤ j < N − 1, the same property holds at
later times:

ft (j + 1) ≤ e−γ n/Nft (j)

for all t ≥ 0 and 0 ≤ j < N − 1.

PROOF. For t > 0, j ∈ {1, . . . ,N −1}, let gt (j) = ft (j)−ft (j −1). It is easy
to show that gt satisfies an equation of the form

(10.6)
d

dt
gt = �̃ngt + ψt,

where all the entries in ψt are null except for the first and the last which are equal
to αNRnft (0) and βNSnft (N − 1), respectively.

Moreover, �̃n is a tridiagonal matrix whose diagonal elements are equal to
−N2(2 + E/N), upper off-diagonal elements equal N2 and lower off-diagonal
elements are equal to N2(1 + E/N).

We may now apply the maximum principle, see (10.3), to conclude the proof
of the first assertion of the lemma because, as already seen, the solution ft is
nonnegative. Alternatively, we can recall the observation (see [17], Exercise 97,
page 375) that for any t > 0 the exponential eAt of a matrix A has all its entries
positive if and only if all the off-diagonal elements of A are nonnegative. Since
that holds for �̃n and �n, then gt , which can be written as

gt = e�̃ntg0 +
∫ t

0
e�̃n(t−s)ψs ds,

is nonnegative.
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The same argument applies to the second assertion. For t > 0, j ∈ {1, . . . ,N −
1}, let gt (j) = e−γ n/Nft (j − 1) − ft (j). Then, gt satisfies the equation (10.6)
where all the entries in ψt are null except for the first and the last which are equal
to N(N + E)(1 − α)(e−γ n/N − 1)ft (0) and N2(1 − β)(e−γ n/N − 1)ft (N − 1),
respectively. �

LEMMA 10.4. Fix n ≥ 1 and let ft = f
(n)
t be the solution of (10.2). There

exists a finite constant C0, depending only on E, β and n, such that for any t ≥ 0

‖ft‖M ≤ C0e
C0t‖f0‖M,

for all t ≥ 0.

PROOF. Let g0 be the function which is constant and equal to ‖f0‖M and
denote by gt the solution of (10.2) with initial condition g0. By the maximum
principle, see (10.3) ft (j)2 ≤ gt (j)2, for all 1 ≤ j ≤ N , t ≥ 0.

By Lemma 10.3, enγ gt (k) ≤ gt (j) ≤ e−nγ gt (k) for all 0 ≤ j, k ≤ N − 1,
t ≥ 0, which together with mN(j) ≥ eγ , 0 ≤ j ≤ N − 1, gives that ‖gt‖2

M ≤
e−(2n+1)γ N−1‖gt‖2

2. By Lemma 10.2, ‖gt‖2
2 ≤ eC0t‖g0‖2

2. In conclusion,

ft (j)2 ≤ C0e
C0tN−1‖g0‖2

2 ≤ C0e
C0t‖g0‖2

M = C0e
C0t‖f0‖2

M,

which proves the lemma. �

Fix n ≥ 1 and denote by qt (j, ·) = q
(n)
t (j, ·) the solution of the linear equa-

tion (10.2) with initial condition q0(j, k) = δj,k . Fix a function f : 
N → R.
We may represent the solution ft of (10.2) with initial condition f as ft (k) =∑

j∈
N
f (j)qt (j, k). In the particular case where f (k) = 1 for all k ∈ 
N , by

Lemma 10.4,

max
k∈
N

∑
j∈
N

qt (j, k) = max
k∈
N

ft (k) ≤ C0e
C0t .

LEMMA 10.5. Fix n ≥ 1, a strictly positive initial condition f0 : 
N →R and
let ft be the solution of (10.2). For every T > 0, there exists a positive constant
c0, depending only on f0, E, α, β and T , such that

c0 ≤ ft (j)

for all 0 ≤ t ≤ T , j ∈ 
N .

PROOF. By the maximum principle [see (10.3)], it is enough to prove the
lemma for a constant initial profile. Assume, therefore, that f0(j) = a for all
j ∈ 
N and for some a > 0. A simple computation shows that

d

dt

1

N

N−1∑
j=0

ft (j)mN(j) = 1

N

N−1∑
j=0

(�nft )(j)mN(j) ≥ −αRnft (0)mN(0).
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By Lemma 10.3, ft (0) ≤ N−1∑
0≤j≤N−1 ft (j). On the other hand, mN(0) = 1 ≤

mN(j)e−γ for all j ∈ 
N . Hence,

d

dt

1

N

N−1∑
j=0

ft (j)mN(j) ≥ −αRne
−γ 1

N

N−1∑
j=0

ft (j)mN(j).

Therefore, by Gronwall’s inequality and since Rn is bounded above by a finite
constant independent of N ,

1

N

N−1∑
j=0

ft (j)mN(j) ≥ e−At 1

N

N−1∑
j=0

f0(j)mN(j) ≥ aeγ e−At .

A constant profile satisfies both conditions of Lemma 10.3. We may therefore ap-
ply this lemma to bound above N−1∑

j∈
N
ft (j) by C0 mink∈
N

ft (k), which
completes the proof since mN(j) ≤ 1. �

The next result provides a bound for the fundamental solution of (10.2). The
proof is based on the classical arguments of hypercontractivity [4, 8]. We need,
however, to estimate additional terms which appear because �n is not a generator.

For ε > 0, let δ = ε/(1 + ε), and let ϕε : [0,1] → [δ,1 − 2ε] be given by

ϕε(t) =
⎧⎨⎩
√

δ2 + t, for 0 ≤ t ≤ 1/8,

1 −
√

4ε2 + 1 − t , for 7/8 ≤ t ≤ 1.

We complete the definition of ϕε in the interval [1/8,7/8] in a way to obtain
an increasing C1 function whose derivative in the interval [1/8,7/8] is bounded
by 2. Note that this bound is compatible with ϕ′

ε(1/8) and ϕ′
ε(7/8), which are both

bounded by
√

2.
Actually, the exact form of ϕε is irrelevant for the proof of Lemma 10.6. The

only important properties needed are that∫ 1

0

1

ϕε(t)[1 − ϕε(t)] dt < ∞ and
∫ 1

0
ϕ̇ε(t) log

ϕ̇ε(t)

ϕε(t)[1 − ϕε(t)] dt < ∞,

where ϕ̇ε(t) represents the derivative of ϕε .

LEMMA 10.6. Fix n ≥ 1 and recall that we denote by qt (j, ·) the solution
of the linear equation (10.2) with initial condition q0(j, k) = δj,k . Assume that
N ≥ n + 1 and let A1 = −γ nβ . There exists a finite constants C0, depending only
on E, β and n, such that

max
0≤j,k≤N−1

qT (j, k) ≤ C0e
C0T√

N2T
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for all T such that

log
(
T N2)≥ 16, log

(
T N2)≤

√
T N2

8A0
,

(10.7)

log
(
T N2)≤ N

(
1 ∧ 1

8eEA1

)
,

where A0 is given in (10.1).

PROOF. Here, we follow [14, 15]. In this proof, C0 represents a finite constant
depending only on β , E and n, which may change from line to line.

Fix 0 ≤ k ≤ N −1 and T in the range (10.7). Let ε−1 = log(T N2), p : [0, T ] →
[1+ ε,2ε−1] be given by p(t) = [1−ϕε(t/T )]−1. Set ft (·) = qt (x, ·), u2

t = f
p(t)
t ,

v2
t = u2

t /‖ut‖2
2. An elementary computation, identical to the one presented at the

beginning of the proof of Theorem 2.1 in [14], gives that

d

dt
log‖ft‖p(t) ≤ ṗ(t)

p(t)2

∫
v2
t logv2

t dmN

(10.8)

− 2[p(t) − 1]
p(t)2 DN(vt ) + A1Nvt(N − 1)2.

Set

�(t)2 = N2
{
p(t) − 1

4A0ṗ(t)
∧ 1

}
= T N2

A0

{
ϕε(t/T )[1 − ϕε(t/T )]

4ϕ̇ε(t/T )
∧ A0

T

}
.

By the second condition in (10.7), �(t) ≥ 1. Divide the interval 
N in subintervals
of length �(t). The last interval has length between �(t) and 2�(t) − 1. By the
logarithmic Sobolev inequality (10.1) and by the proof of Lemma 4.3 of [14],
since mN(k) ≥ eγ , the first term on the right-hand side of (10.8) is less than or
equal to

ṗ(t)

p(t)2

{
A0

4�(t)2

N2 DN(vt ) − log
[
eγ �(t)

]}·

By definition of �(t), the right-hand side of (10.8) is bounded by

(10.9) − ṗ(t)

2p(t)2 log
[
e2γ �(t)2]− [p(t) − 1]

p(t)2 DN(vt ) + A1Nvt(N − 1)2.

Let

m(t) = N
p(t) − 1

p(t)2

{
1

2eEA1
∧ 4

}
= Nϕε(t/T )

[
1 − ϕε(t/T )

]{ 1

2eEA1
∧ 4

}
.

Notice that m(t) ≤ N , because 0 ≤ p(t)−1 ≤ 1. On the other hand, as p(t)−1[1 −
p(t)−1] ≥ {4 log(T N2)}−1 and N ≥ log(T N2){8eEA1 ∨ 1}, we have that
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m(t) ≥ 1. Adding and subtracting the average of vt (j) over the interval {N −
m(t), . . . ,N −1}, and repeating the same argument as in the proof of Lemma 10.2,
since −γ ≤ E, we obtain that

vt (N − 1)2 ≤ 2m(t)

N−2∑
j=N−m(t)

{
vt (j + 1) − vt (j)

}2 + 2

m(t)

N−1∑
j=N−m(t)

vt (j)2

≤ 2eEm(t)

N2 DN(vt ) + 2eE

m(t)

because ‖v(t)‖2 = 1. By the definition of m(t), the first term of this expression
multiplied by A1N may be absorbed by the Dirichlet form in (10.9). Hence, (10.9)
is less than or equal to

− ṗ(t)

2p(t)2 log
[
e2γ �(t)2]+ C0

p(t)2

p(t) − 1
·

Up to this point, we proved that

(10.10) log
(‖fT ‖p(T )

‖f0‖p(0)

)
≤ −

∫ T

0

ṗ(t)

2p(t)2 log
[
e2γ �(t)2]dt + C0

∫ T

0

p(t)2

p(t) − 1
dt ·

Since ṗ(t)/p(t)2 = T −1ϕ̇ε(t/T ), in view of (10.7), the first term on the right-hand
side is less than or equal to

−1

2
log

(
T N2)+ C0 + 1

2

∫ 1

0
ϕ̇ε(t) log

{
ϕ̇ε(t)

ϕε(t)[1 − ϕε(t)] ∨ T

4A0

}
dt.

Since log(a∨b) ≤ log+ a+ log+ b, where log+ a = loga∨0, the previous integral
can be estimated by the sum of two terms. The first one is log+(T /4A0) ≤ C0T ,
while the second one is

1

2

∫ 1

0
ϕ̇ε(t) log+

{
ϕ̇ε(t)

ϕε(t)[1 − ϕε(t)]
}

dt.

On the interval [1/8,7/8], ϕ̇ε(t) is bounded by 2 and ϕε(t)[1 − ϕε(t)] is bounded
below by a positive constant independent of the parameters. On the other hand, on
the interval [0,1/8], in view of (10.7), ϕ̇ε(t)/{ϕε(t)[1 − ϕε(t)]} ≥ [δ2 + t]−1 ≥ 1.
Hence, in this interval, the previous integral is bounded by

1

4

∫ 1/8

0

1√
δ2 + t

log
1

δ2 + t
dt ≤ C0.

A similar analysis can be carried out in the interval [7/8,1].
The second term on the right-hand side of (10.10) is equal to

C0T

∫ 1

0

1

ϕε(t)[1 − ϕε(t)] dt ≤ C ′
0T .
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Therefore,

log
(‖fT ‖p(T )

‖f0‖p(0)

)
≤ −(1/2) log

{
N2T

}+ C0 + C0T .

To complete the proof of the lemma, it remains to observe that ‖fT ‖M ≤ eE/2

‖fT ‖p(T ), ‖f0‖p(0) ≤ 1. �

COROLLARY 10.7. Fix n ≥ 1, T0 > 0, and denote by qt (j, ·) the solution of
the linear equation (10.2) with initial condition q0(j, k) = δj,k . There exist a finite
constant C0 and N0 ≥ 1, depending only on E, β and n, such that

qt (j, k) ≤ C0e
C0t√

N2t

for all 0 ≤ t ≤ T0, N ≥ N0 and 0 ≤ j, k ≤ N − 1.

PROOF. Fix n ≥ 1, T0 > 0, and 0 ≤ j ≤ N − 1. There exists N0 ≥ n + 1 for
which the last condition in (10.7) is satisfied for all 0 ≤ t ≤ T0, N ≥ N0.

There exists a > 0 such that supx≥a logx/
√

x ≤ (8A0)
−1/2. Let b =

max{a, e16}. Fix 0 ≤ t ≤ T0. If tN2 ≤ b, by Lemma 10.4,

max
0≤k≤N−1

qt (j, k) ≤ C0e
C0t ≤

√
bC0e

C0t√
N2t

·
On the other hand, if tN2 ≥ b, t fulfills all the assumptions of the previous lemma.
This completes the proof. �

We conclude this section with a remark used several times in the previous sec-
tions. Let ft (k) = ∑

j∈
N
qt (j, k). Thus, f is the solution of (10.2) with initial

condition f (k) = 1 for all k ∈ 
N . By Lemma 10.4, for all T > 0, there exists a
finite constant C0, depending only on E, β and T such that

(10.11) sup
0≤t≤T

max
k∈
N

∑
j∈
N

qt (j, k) = sup
0≤t≤T

max
k∈
N

ft (k) ≤ C0.
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