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Consider an urn model where at each step one of q colors is sampled
according to some probability distribution and a ball of that color is placed in
an urn. The distribution of assigning balls to urns may depend on the color
of the ball. Collisions occur when a ball is placed in an urn which already
contains a ball of different color. Equivalently, this can be viewed as sequen-
tially coloring a complete q-partite graph wherein a collision corresponds to
the appearance of a monochromatic edge. Using a Poisson embedding tech-
nique, the limiting distribution of the first collision time is determined and the
possible limits are explicitly described. Joint distribution of successive colli-
sion times and multi-fold collision times are also derived. The results can
be used to obtain the limiting distributions of running times in various birth-
day problem based algorithms for solving the discrete logarithm problem,
generalizing previous results which only consider expected running times.
Asymptotic distributions of the time of appearance of a monochromatic edge
are also obtained for other graphs.

1. Introduction. Suppose the vertices of a finite graph G = (V ,E), with
|V | = N , are colored independently and uniformly at random with c colors. The
probability that the resulting coloring has no monochromatic edge, that is, it is a
proper coloring is χG(c)/cN , where χG(c) denotes the number of proper colorings
of G using c-colors. The function χG is the chromatic polynomial of G, which is a
central object in graph theory [18, 30]. A natural extension is to consider a general
coloring distribution p = (p1,p2, . . . , pc), where the probability that a vertex is
colored with color a ∈ [c] is pa which is independent of the colors of the other
vertices, where pa ≥ 0, and

∑c
a=1 pa = 1. Then the probability that G is properly

colored is related to Stanley’s generalized chromatic polynomial [19, 43]. Limit
theorems for the number of monochromatic edges under the uniform coloring dis-
tribution, that is, pa = 1/c for all a ∈ [c], was derived recently by Bhattacharya et
al. [8].

When the underlying graph G is a complete graph, this reduces to the well-
known birthday problem: by replacing the colors by birthdays, occurring with
possibly nonuniform probabilities, the birthday problem can be seen as coloring
the vertices of a complete graph independently with c = 365 colors. The event
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that two people share the same birthday is the event of having a monochromatic
edge in the colored graph. The birthday problem was generalized to the sequential
setting by Camarri and Pitman [12] as follows: in a stream of people, determine
the distribution of the first time that a person arrives whose birthday is the same
as that of some person previously in the stream. More generally, they derived the
asymptotic distribution of the first repeat time in an i.i.d. PN sequence, in a limit-
ing regime with the probability distribution PN depending on a parameter N ∈ N.
Formally, suppose that the N th distribution PN is a ranked discrete distribution,
pN1 ≥ pN2 ≥ · · · ≥ 0 and

∑∞
i=1 pNi = 1. A sequence XN := (XN1,XN2, . . .) of

i.i.d. random variables distributed as PN is said to have a repeat at time t , if
XNt = XNs , for some s < t . The first repeat time

RN1 = inf
{
t ∈ N : rN(t) = 1

}
,(1.1)

where rN(t) is the number of repeats in the sequence XN up to time t . In other
words, RN1 is the first time some element is observed twice in the sequence XN .
More generally, the mth repeat time RNm of the sequence XN , is the minimum
t such that rN(t) = m, that is, the first time that m repetitions occur in the se-
quence XN .

This can also be viewed as sequentially coloring the vertices of the infinite com-
plete graph, independently with probability PN , and RN1 is the first time that a
monochromatic edge appears. Another way to rephrase this is in terms of an urn
model with urns (corresponding to birthdays) indexed by {1,2, . . .} and with in-
finitely many balls. Initially, all the urns are empty, and at every subsequent time
step a ball is dropped into urn i with probability pNi , where

∑∞
i=1 pNi = 1, and

pN1 ≥ pN2 · · · ≥ 0. Then RN1 is the first time that there are two balls in the same
urn.

In the uniform case, where pNi = 1/N for all i ∈ {1,2, . . . ,N}, it is well known
that for all r ≥ 0, RN1/

√
N converges to the Rayleigh distribution with parame-

ter 1. Camarri and Pitman [12] used the Poisson embedding technique and char-
acterized the set of all possible asymptotic distributions of RN1 derived from any
sequence of general ranked distributions. In the uniform case, Arratia et al. [2]
derived the limiting distribution of the mth repeat time RNm, when m = O(N).

The nonsequential version of the urn model described above is the classical oc-
cupancy scheme with infinitely many boxes, where balls are thrown independently
into boxes with probability PN . Asymptotics for the number of boxes occupied by
exactly r balls are well known [5, 26]. In a different context, Paninsky [39] used
B1, the number of boxes with 1 ball, for testing uniformity given sparsely-sampled
discrete data. The Poisson embedding technique is also useful in other occupancy
urn problems: Holst [27, 28] used it to derive moments of a general quota problem;
Holst [29] and later Neal [38] also used these techniques to obtain limiting distribu-
tions in coupon-collector problems. For other variations of occupancy urn models
and their applications, refer to [26, 32] and the references therein. For embedding
Pólya-type urn schemes into continuous time Markov branching processes refer to
[3, 32, 35].
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1.1. Collision times in a multicolor urn model. A natural generalization of the
birthday problem is to consider coincidences among individuals of different types,
that is, in a room occupied with an equal number of boys and girls, when can
one expect a boy and girl to share the same birthday. This can be viewed as an urn
model with two colors, where balls are colored independently with probability 1/2
and placed in the urns uniformly. The event of having a matching birthday is same
as having an urn with balls of both the colors. This event is often referred to as
a collision. For exact expressions of the number of collisions, factorial moments
and other related problems, refer to Nakata [37] and the references therein. The
number of collisions between two discrete distributions was also used by Batu et
al. [7] for distributional property testing. Wendl [44] studied a very related problem
and referred to some applications in collisions of airborne planes, celestial objects
and transportation.

In this paper, we consider the sequential version of this problem, for general urn
selection distributions.

DEFINITION 1.1. Consider an urn model with balls of q distinct colors (corre-
sponding to types) indexed by {1,2, . . . , q}, and urns (corresponding to birthdays)
indexed by {1,2, . . .}. Initially, all the boxes are empty, and at every subsequent
time point the following steps are executed:

1. (Color selection) A color is a ∈ [q] is chosen uniformly, that is, with proba-
bility 1/q .

2. (Urn selection) If the color chosen is a ∈ [q], then a ball with color a

is dropped into urn i with probability pNi , where pN1 ≥ pN2 · · · ≥ 0 and∑∞
i=1 pNi = 1, is a ranked discrete distribution.

Let Ct be the color of the ball chosen at the t th step, and ZNt be the urn to which
the ball is assigned. The urn model described above is said to have a collision at
time t , if ZNs = ZNt and Cs �= Ct , for some s < t . In other words, a collision
happens when a ball is dropped in an urn which already contains a ball with a
different color. Given the above process, define the first collision time TN1 to be
the first time that there exist two balls with different colors in the same urn.

Using the Poisson embedding technique, the limiting distribution of TN1 can be
obtained.

THEOREM 1.1. For N, i ∈ N, let

sN =
(∑

i

p2
Ni

) 1
2
, ψNi = pNi

sN
.(1.2)

Suppose that limN→∞ pN1 = 0, and ψi = limN→∞ ψNi exists, for i ∈N. Then

lim
N→∞P(sNTN1 > r)

(1.3)
= e

− 1
2 (

q−1
q

)r2·(1−∑i ψ2
i )
∏
i

e
−(

q−1
q

)ψir
(
q − (q − 1)e

−ψi
r
q
)
.
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Conversely, if there exist positive constants cN → 0 and dN such that the distribu-
tion of cN(TN1 − dN) has a nondegenerate weak limit as N → ∞, then pN1 → 0
and limits ψi exist as before. So the weak limit is just a rescaling of that described
in (1.3), with cN/sN → α for some 0 < α < ∞, and cNdN → 0.

If the process described above is continued after the first collision time TN1,
more collisions occur. Recall that a collision corresponds to a ball being dropped
in an urn which already contains a ball with a different color.

DEFINITION 1.2. For m ≥ 1, let TNm be the time of the mth collision, that is,

TNm = inf

{
t ∈ N :

t∑
i=1

Kt = m

}
,

where Kt is the indicator variable which is 1 if and only if the urn model described
above has a collision at time t .

From the continuous time embedding of the process, the joint convergence of
the collision times can be obtained.

THEOREM 1.2. Suppose limN→∞ pN1 = 0, ψi = limN→∞ ψNi exists for
each i ∈ N, and sN as in (1.2). Then there is the convergence of m-dimensional
distributions

(sNTN1, sNTN2, . . . , sNTNm)
D→ (η1, η2, . . . , ηm),

where 0 < η1 < η2 < · · · are the arrival times of a process M, which is the super-
position of independent point processes B∗, B

−L1
1 ,B

−L2
2 , . . . , where:

• B∗ is a Poisson process on [0,∞) of rate (1 −∑
i ψ

2
i )t · (1 − 1

q
) at time t .

• For each i ∈ N, Bi is the superposition of q independent Poisson processes{
B1

i (t)
}
t≥0,

{
B2

i (t)
}
t≥0, . . . ,

{
B

q
i (t)

}
t≥0

on [0,∞) of rate ψi/q . Finally, B−Li

i is the process Bi with its first Li := Bi(T
′
i )

points removed, where T ′
i is the last arrival time in Bi before Ti = inf{t ≥ 0 :

Ba
i (t) > 0 and Bb

i (t) > 0 for some, a �= b}.

The time T ′
i defined above is the last arrival time when all points of Bi have

the same color. Therefore, removing the first Li := Bi(T
′
i ) points ensures that any

subsequent arrival in Bi corresponds to a collision in the urn labelled i.
The urn model described in Definition 1.1 can be generalized further by consid-

ering nonuniform color selection and letting the probability of selecting an urn to
depend on the color selected.
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DEFINITION 1.3. Consider an urn model with balls of q distinct colors in-
dexed by {1,2, . . . , q}, and urns indexed by {1,2, . . .}. Initially, all the boxes are
empty, and at every time instance the following steps are executed:

1. (Nonuniform color selection) A color is chosen with probability distribution
c = (c1, c2, . . . cq), that is, the probability of selecting the color a ∈ [q] is ca , where
ca > 0 and

∑q
a=1 ca = 1.

2. (Nonuniform urn selection) If the color chosen is a ∈ [q], then a ball with
color a is dropped into urn i with probability pNi,a , where

∑∞
i=1 pNi,a = 1, for all

a ∈ [q].

As in Definition 1.1, denote by TN1 the first time there exist two balls with
different colors in the same urn.

THEOREM 1.3. For a ∈ [q], and N, i ∈ N, let

s2
N =∑

i

(∑
a

capNi,a

)2

, ψNi,a = pNi,a

sN
.

Suppose that limN→∞ maxi pNi,a = 0 and ψi,a = limN→∞ ψNi,a exists, for all
a ∈ [q] and i ∈ N. Moreover, assume that φa = limN→∞

∑
i ψ

2
Ni,a exists for all

a ∈ [q]. Then

lim
N→∞P(sNTN1 > r)

(1.4)

= e−(1−β) r2
2
∏
i

e−r
∑q

a=1 caψi,a

(
1 +

q∑
a=1

eψi,acar − q

)
,

where β =∑q
a=1 c2

aφa +∑
i

∑
a �=b cacbψi,aψi,b.

Theorem 1.1 is a special case of the above theorem when ca = 1/q and
pNi,a = pNi , for all a ∈ [q]. Another special case was considered by Selivanov
[42], where only Rayleigh distributions were obtained as limits.1 Recently, Gal-
braith and Holmes [22] considered a variant of the urn model in Definition 1.3,

1Selivanov ([42], Theorem 4.1) claims that sNTN1 converges to a Rayleigh distribution, when-

ever
∑

i p2
Ni → 0 and pN1(

∑
i p2

Ni)
− 1

2 < c, for some constant c. However, the second condi-

tion is vacuously true for all distributions, for any c > 1 (since p2
Ni ≤∑

i p2
Ni , for all i ≥ 1, im-

plies that p2
N1 ≤ ∑

i p2
Ni ). This implies that sNTN1 converges to a Rayleigh distribution, when-

ever
∑

i p2
Ni → 0. However, Theorem 1.1 shows that this is clearly incorrect, since the conditions

pN1 → 0 and
∑

i p2
Ni → 0 are equivalent (see Examples 2.2 and 2.3 for specific counterexamples).

A possible fix to Selivanov’s condition is to assume that pN1(
∑

i p2
Ni)

− 1
2 → 0. This would imply

that ψi = limN→∞ ψNi = 0, for all i ≥ 1, and by (1.3), limN→∞ P(sNTN1 > r) = e− r2
4 , for q = 2.
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where the color selection probabilities change with time, and used the Chen–Stein
method to determine the expected first collision time. Theorem 1.3 extends these
results and characterizes the different limiting distributions that may arise. More-
over, this general theorem can be used to find the asymptotic distributions of the
running times for a class of algorithms for solving the discrete logarithm problem
(DLP) that requires generalizations of the birthday problem (details in Section 1.3
and Section 5).

1.2. Sequential graph coloring. The repeat time RN1 of Pitman and Camarri
[12] is the first time when a monochromatic edge appears while sequentially col-
oring the vertices of the (infinite) complete graph, independently with probability
distribution PN . The collision time TN1 in the urn model defined in the previous
section is the first time a monochromatic edge appears while sequentially coloring
the (infinite) complete q-partite graph, where at every step one of the q partite sets
is chosen uniformly at random, and a vertex in that set is colored independently
with probability PN . Similar questions can be asked for any sequence of naturally
growing graphs, which motivate us to formulate the following general problem.

Let G := (Gt)t≥1 be a deterministic sequence graphs Gt = (Vt ,Et ), with
Vt+1 ⊂ Vt , |Vt+1| = |Vt | + 1, and Et ⊆ Et+1. For N ≥ 1, consider the following
sequential coloring scheme:2

• Every vertex in V1 is colored independently with a ranked discrete probability
distribution PN .

• For t ≥ 2, the new vertex v ∈ Vt \ Vt−1 is colored with PN :

P(the vertex v has color i ∈ N) = pNi,

independent of the color all the other vertices.3 Define the first collision time
T G

N1 to be the first index s when a monochromatic edge (u, v) ∈ Es appears.

Note that this general framework includes the repeat time RN1 defined in (1.1)
(take Gt = Kt the complete graph on t vertices), and the collision time TN1 (Gt is
a complete q-partite graph on t vertices with the added randomness that at every
step one of the q partite sets is chosen uniformly at random).

A popular model for evolving random graphs is the preferential attachment (PA)
model, introduced in a seminal paper by Barabási and Albert [4]. It builds on the
paradigm that new vertices are attached to those already present with probability

2More formally, we have a triangular array of growing graphs ((GNs))s≥1, whose vertices are
colored independently with probability distribution PN . For notational simplicity, the process is only
described for a sequence of growing graphs (Gt )t≥1, and in all the examples considered this simpli-
fication suffices.

3This should not be confused with the color of the ball in the urn model, described in the previous
section. The urn model corresponds to coloring a complete q-partite graph, and the color of a ball
corresponds to which of the q sets the vertex belongs to.
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proportional to their degree. This model enjoys many properties observed in so-
cial networks and other real world networks: the power law distribution of vertex
degrees, a small diameter, and a small average degree [10, 11]. For every fixed
integer m ≥ 2, the PA(m) model is formally defined as follows:

The graph sequence grows one vertex at a time, and at the t th step the graph Gt
m

is an undirected graph on the vertex set V := [t] defined inductively as follows. G1
t

consists of a single vertex with m self-loops. For all t > 1, Gt
m is built from Gt−1

m

by adding a new node labelled t together with m edges et
1 = (t, v1), . . . , e

t
m =

(t, vm) inserted one after the other in this order. Let Gt
m,i−1 denote the graph right

before the edge et
i is added. Let Mi =∑

v∈V dGt
m,i−1

(v) be the sum of the degrees

of all the nodes in Gt
m,i−1. The endpoint vi is selected randomly such that vi = u

with probability dGt
m,i−1

(u)/(Mi + 1), except for t that is selected with probability
(dGt

m,i−1
(t) + 1)/(Mi + 1).

Note that the graph Gt
m can have loops and multiple edges. However, it forms

a vanishing fraction of the total edges and for the coloring problem it suffices to
consider the underlying simple graph [to be denoted by S(Gt

m)].
By taking G = (S(Gt

m))t≥1, define T
PA(m)
N1 to be the first time there is a

monochromatic edge in the sequential coloring of G. Using the Stein’s method
for Poisson approximation, the following theorem can be proved.

THEOREM 1.4. Let sN be as in (1.2) and limN→∞ pN1 → 0, as N → ∞.

Then s2
NT

PA(m)
N1

D→ Exp(m), the exponential distribution with parameter m.

The asymptotics for collision times can also be studied for any deterministic
sequence of graphs which grow naturally one vertex at a time. This is demonstrated
for the infinite path: take Z = (Pt )t≥1, where Pt is the path with t vertices, and
define T Z

N,m to be the first time there exists a monochromatic path with m vertices
while sequentially coloring Z . As in Theorem 1.4, the limit distribution of T Z

N,m

can be proved (see Theorem 6.2).

1.3. Applications to the discrete logarithm problem. The discrete logarithm
problem (DLP) in a finite group G is as follows: given g,h ∈ G find an integer
a such that h = ga . Due to its presumed computational difficulty, the problem
figures prominently in various cryptosystems, including the Diffie–Hellman key
exchange, El Gamal system and elliptic curve cryptosystems. The best algorithms
to solve the discrete logarithm problem in a general group originate in the seminal
work of Pollard [40, 41]. A standard variant of the classical Pollard Rho algorithm
for finding discrete logarithms can be described using a Markov chain on the cycle.
The running time of the algorithm is the collision time of the Markov chain that
is, the first time the chain visits a state that was already visited. Several years later,
Kim et al. [33] finally proved the widely believed �(

√|G|) collision time for this
walk.
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The discrete logarithm problem in an interval asks: given g,h ∈ G and an inte-
ger N find an integer a, if it exists, such that h = ga and 0 ≤ a < N . The DLP in
an interval can be solved using the baby-step-giant-step algorithm in

√
2N group

operations and storage of O(
√

N) group elements. The Pollard kangaroo method
[41] was designed to solve the DLP in an interval using a constant number of group
elements of storage. Using distinguished points a heuristic average case expected
complexity of essentially 2

√
N group operations and low storage can be obtained.

Montenegro and Tetali [36] gave a more rigorous analysis of the kangaroo method.
Recently, Galbraith et al. [23] used a 4-kangaroo method, instead of the usual two,
to obtain a heuristic average case expected running time of (1.715 + o(1))

√
N .

There has been several recent work extending and improving Pollard’s algo-
rithms for variants of the discrete logarithm problem which require generalizations
of the birthday problem [21, 23, 24]. Gaudry and Schost [25] presented one of the
first birthday problem based methods for solving the DLP in an interval. The algo-
rithm is based on the collision time of 2 independent pseudo-random walks. A tame
walk is a sequence of points {gai }i≥1 where ai ∈ T and a wild walk is a sequence
of points gbi = hgai with bi ∈ W , where T ,W ⊆ {1,2, . . . , |G|} are the tame and
wild sets, respectively. When the same element is visited by two different types of
walk, there is a tame-wild collision giving an equation of the form gai = hgbj , and
the DLP is solved as h = gai−bj . Therefore, the running time of the algorithm is
the time required until a tame and wild walk collide. The average expected running
time of this algorithm is 2.08

√
N group operations on a serial computer. Recently,

Galbraith et al. [23] proposed a four-set Gaudry–Schost algorithm with heuristic
average case expected running time of (1.661 + o(1))

√
N . Later, modifying the

Gaudry–Schost algorithm and using a variant of the birthday paradox, Galbraith
and Ruprai [24] proposed an improvement in groups in which inversions are faster
than general group operations, as in elliptic curves. This algorithm will be referred
to as the accelerated Gaudry–Schost algorithm, and has a heuristic average case
expected running time of approximately 1.36

√
N group operations.

In the analyses of all such algorithms the quantity used to compare the running
times is the expectation of the tame-wild collision time, averaged over all problem
instances. However, in the light of the above theorems, the asymptotic distribution
of the running time of all such algorithms can be obtained, under the assumption
that the pseudo-random walks performed by the algorithms are sufficiently ran-
dom and their running times can be analyzed by an idealized birthday problem
involving the tame-wild collision. This is derived for the Gaudry–Schost algo-
rithm (Theorem 5.1) and the accelerated Gaudry–Schost algorithm of Galbraith
and Ruprai (Theorem 5.2). To the best of our knowledge, these are the first known
results about the limiting distributions of the running times of these algorithms.
Though these results are based on some heuristic assumptions, they give consider-
able insight about the dependence between the running times and the complexity
of the problem instance.



3294 B. B. BHATTACHARYA

1.4. Organization of the paper. The paper is organized as follows: The proofs
of Theorem 1.1 and Theorem 1.2, and examples are given in Section 2. An anal-
ogous limit theorem for the m-fold collision time is proved in Section 3. In Sec-
tion 4, the generalized urn model is considered and the proof of Theorem 1.3 is
presented. The asymptotic distributions of the running times of algorithms for the
discrete logarithm problem are proved in Section 5. The limiting distributions of
the collision times for the preferential attachment model and the infinite path are
derived in Section 6.

2. Proofs of Theorems 1.1 and 1.2. In this section, limiting distributions of
collision times in the urn model described in Definition 1.1 are derived.

2.1. Proof of Theorem 1.1. Let P be a homogeneous Poisson process on R :=
[0,∞) × [0,1] of rate 1 per unit area, with points {(S1,W1), (S2,W2), . . .}, where
0 < S1 < S2 < are the points of a homogeneous Poisson process on [0,∞) of rate
1 per unit length, and W1,W2, . . . are i.i.d. Unif(0,1). Let Rt = [0, t] × [0,1] and
P(t) be the restriction of P to Rt .

• Color the points in P independently with one of q colors, {1,2, . . . , q} with
probability 1/q , that is,

P
(
(Si,Wi) ∈ P has color a ∈ [q])= 1/q,

independently for every point in P . For a ∈ [q], denote by Pa the subsets of P
colored a ∈ [q]. By the marking theorem [34], P1,P2, . . . ,Pq are independent
Poisson process each with rate 1/q on R.

• For N ≥ 1, partition [0,1] into intervals JN1, JN2, . . . , such that the length of
JNi is pNi (see Figure 1). For t ≥ 0 and a ∈ [q], let

PNi = P ∩ [0,∞) × JNi and Pa
Ni =Pa ∩ [0,∞) × JNi.(2.1)

Clearly, PN1,PN2, . . . are independent Poisson processes with rates pN1,

pN2, . . . , respectively; and for a ∈ [q], Pa
N1,Pa

N2, . . . are independent Poisson
processes with rates pN1/q,pN2/q, . . . , respectively.

The collision time TNm (Definition 1.2) can be described in terms of the above
process: let Cj be the color of the point (Sj ,Wj ) and ZNj =∑

i i1{Wj ∈ JNi}.
The sequence {(Cj ,ZNj )}j≥1 in the discrete time model corresponds to the color
of the j th ball and the urn to which the j th ball is assigned. For j ∈ N, define

Kj := 1
{∃n ∈ N with ZNj = ZNj ′ = n and Cj ′ �= Cj , for some j ′ < j

}
,

the indicator that there is a collision at the j th step. The mth collision time (recall
Definition 1.2) is defined as

TNm
D= inf

{
j ∈N :

j∑
i=1

Ki = m

}
.(2.2)
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FIG. 1. A schematic of the Poisson embedding for q = 2 colors. Points are colored red or blue with
probability 1

2 .

In particular, the first collision time TN1 (defined as in Definition 1.1) is

inf
{
j ∈ N : ∃n ∈ N with ZNj = ZNj ′ = n and Cj ′ �= Cj , for some j ′ < j

}
.

LEMMA 2.1. Let τNm = inf{t ∈ R : |P(t)| ≥ TNm}, where TNm is as defined

in (2.2). Then TNm

τNm

P→ 1, whenever pN1 → 0, as N → ∞.

PROOF. By the strong law of large numbers |P(t)|/t converges almost surely
to 1 as t → ∞. Therefore, it suffices to show τN1 converges in probability to infin-
ity as N → ∞, since by definition |P(τN1)| = TN1. This implies τNm converges
in probability to infinity, as τNm ≥ τN1, for m ≥ 1.

By definition τN1 is

inf
{
t ≥ 0 : ∃j ∈ N with

∣∣Pα
Nj (t)

∣∣> 0,
∣∣Pβ

Nj (t)
∣∣> 0, for some α �= β ∈ [q]},

where Pa
Nj (t) is the restriction of Pa

Nj [defined in (2.1)] to Rt , for a ∈ [q]. This
implies that

P(τN1 > t) =∏
i

(
q
(
1 − e

−pNi
t
q
)
e
−(q−1)pNi

t
q + e−pNi t

)
(2.3)

= e
−(

q−1
q

)t
∏
i

(
q − (q − 1)e

−pNi
t
q
)
.

Using log(q − (q − 1)e
− x

q ) ≥ q−1
q

(x − x2

2 ), for x ≥ 0, (2.3) simplifies to

∣∣logP(τN1 > t)
∣∣≤ 1

2

(
q − 1

q

)
t2
∑
i

p2
Ni ≤ 1

2

(
q − 1

q

)
t2pN1

∑
i

pNi → 0,

and the result follows. �

Let pN = (pN1,pN2, . . .) be the vector of probabilities. By the above lemma,
to get the limiting distribution of TN1 it suffices to derive the limiting distribution
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of τN1. From (2.3), log(P(τN1 > t)) = g(t,pN), where

g(r,ψ) :=∑
i

log
{
e
−(

q−1
q

)rψi
(
q − (q − 1)e

−ψi
r
q
)}

,(2.4)

for r ≥ 0 and a vector ψ = (ψ1,ψ2, . . .).

LEMMA 2.2. Let ψ = (ψ1,ψ2, . . .) and ψ1 ≥ ψ2 ≥ . . . ≥ 0 and
∑

i ψ
2
i < ∞.

Then there exists a constant 0 < c(q) ≤ 1, depending only on q , such that for
r ∈ R := [0, c(q)/ψ1), there exists {as}∞s=3 nonnegative constants with

g(r,ψ) = −1

2

(
q − 1

q

)
r2

∞∑
i=1

ψ2
i +∑

s≥3

(−1)s+1asr
s

∞∑
i=1

ψs
i ,(2.5)

and the above series is absolutely convergent.

PROOF. For c(q) chosen small enough, |1 − e−ψ1r | < 1/(q − 1), for r ∈ R.
As ψi ≤ ψ1, |1 − e−ψir | < 1/(q − 1), for r ∈ R and all i ∈ N. Now, using the
expansion of log(1 + z), for |z| < 1,

g(r,ψ) =∑
i

{
−
(

q − 1

q

)
rψi +

∞∑
s=1

(−1)s+1(q − 1)s

s

(
1 − e

−ψi
r
q
)s}

=∑
i

{
−
(

q − 1

q

)
rψi +

∞∑
s=1

(−1)s+1(q − 1)s

s

( ∞∑
x=1

(−1)x+1 ψx
i rx

qxx!
)s}

(2.6)

= T1 + T2,

where

T1 =∑
i

(q − 1)

( ∞∑
x=2

(−1)x+1 ψx
i rx

qxx!
)
,

and

T2 =∑
i

∞∑
s=2

(−1)s+1(q − 1)s

s

( ∞∑
x=1

(−1)x+1 ψx
i rx

qxx!
)s

.

Define

S =∑
i

{
(q − 1)

( ∞∑
x=2

ψx
i rx

qxx!
)

+
∞∑

s=2

∑
γ1,...,γs≥1

(q − 1)s

s

(ψir)
∑s

b=1 γb

q
∑s

b=1 γb
∏s

b=1 γb!

}
.
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To show that (2.6) is absolutely convergent, it suffices to show S < ∞, whenever
r ∈ R and C :=∑

i ψ
2
i < ∞. Let λ = rψ1

q
, and observe,

S ≤ C(q − 1)

∞∑
x=2

ψx−2
1 rx

qx
+ C

ψ2
1

∞∑
s=2

(q − 1)s
∑

γ1,...,γs≥1

(
rψ1

q

)∑s
b=1 γb

≤ C(q − 1)r2

q2

1

1 − λ
+ C

ψ2
1

∞∑
s=2

(q − 1)s

( ∞∑
x=1

λx

)s

(2.7)

≤ C(q − 1)r2

q2

1

1 − λ
+ C

ψ2
1

∞∑
s=0

(
λ(q − 1)

1 − λ

)s

< ∞,

when r ∈ R. Therefore, by expanding (2.6) further and interchanging the order of
the summation using the absolute convergence, (2.5) follows. �

2.1.1. Completing the Proof of (1.3) in Theorem 1.1. Let sN and ψNi be as
defined in the statement of the theorem. By Lemma 2.1, it suffices to obtain the
limiting distribution of τN1. From (2.3), it follows

P(sNτN1 > r) =∏
i

e
−(

q−1
q

)ψNir
(
q − (q − 1)e

−ψNi
r
q
)
.(2.8)

As
∑

i ψ
2
Ni = 1 and limN→∞ ψNi = ψi exists for all i, by Fatou’s lemma,

∑
i ψ

2
i <

∞. This implies that limi→∞ ψi = 0. Therefore, for every fixed r > 0 and there
exists j (r),N(r) be such that for N > N(r), ψNj(r) < c(q)/r . Lemma 2.2 then
implies

TN := ∑
i>j (r)

log
{
e
−(

q−1
q

)ψNir
(
q − (q − 1)e

−ψNi
r
q
)}

(2.9)

= −1

2

(
q − 1

q

)
r2

∑
i>j (r)

ψ2
Ni +

∞∑
s=3

(−1)s+1asr
s
∑

i>j (r)

ψs
Ni,

where {as}s≥1 are nonnegative constants. Note that limN→∞
∑

i>j (r) ψ
2
Ni = 1 −∑

i≤j (r) ψ
2
i . Moreover, for any s ≥ 3 and i > j (r), ψs

Ni ≤ ψs−2
Nj(r)ψ

2
Ni and∑

i ψ
2
Ni = 1. Therefore, taking limit in (2.9) as N → ∞,

TN → −1

2

(
q − 1

q

)
r2

(
1 −

j (r)∑
i=1

ψ2
i

)
+ ∑

i>j (r)

log
(
q − (q − 1)e

−ψi
r
q
)
.(2.10)

Moreover, as N → ∞,
j (r)∏
i=1

e
−(

q−1
q

)ψNir
(
q − (q − 1)e

−ψNi
r
q
)

→
j (r)∏
i=1

e
−(

q−1
q

)ψir
(
q − (q − 1)e

−ψi
r
q
)
,

which combined with (2.10) gives (1.3).
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2.1.2. Proof of the converse in Theorem 1.1. The converse to (1.3) is proved
using the convergence of types, and the following lemma.

LEMMA 2.3. Let α > 0 and ψ := (ψi, i ≥ 1) a nonincreasing sequence of

reals with
∑N

i=1 ψ2
i ≤ 1. Then (α,ψ) can be uniquely reconstructed from the func-

tion r → h(αr,ψ) for r ∈ [0,∞), where

h(r,ψ) := e
− 1

2 (
q−1
q

)r2·(1−∑i ψ2
i )

(2.11)
×∏

i

e
−(

q−1
q

)ψir
(
q − (q − 1)e

−ψi
r
q
)
.

PROOF. Using (2.6), the sequence α,
∑∞

i=1 ψ3
i ,
∑∞

i=1 ψ4
i , . . . , can be uni-

quely extracted from the function r → h(αr,ψ). Now, let (Ji, i ≥ 0) be a partition
of the unit interval such that the length of J0 is 1 −∑∞

i=1 ψ2
i and the length of Ji

is ψ2
i , for all i ≥ 1. Define Z :=∑∞

i=1 ψi1{U ∈ Ji}, where U is a uniform [0,1]
random variable. Then E(Zk) =∑∞

i=1 ψk+2, and these moments of Z uniquely de-
termine the distribution of Z on [0,1]. Finally, it is easily seen that this distribution
uniquely determines the sequence (ψ1,ψ2, . . .). �

The converse to (1.3) now follows using the above lemma, and by taking
sub-sequential limits and an application of convergence of types (Theorem 14.2,
Billingsley [9]).

2.2. Proof of Theorem 1.2. Let P be a homogeneous Poisson process on
[0,∞) × [0,1] of rate 1 per unit area, and PNi , Pa

Ni be as defined before, for
i ∈ N and a ∈ [q]. Note that the process PNi is a Poisson process of rate pNi ,
which is the superposition of q independent Poisson processes P1

Ni,P2
Ni . . . ,P

q
Ni

each of rate pNi/q .
Define

FNi = inf
{
t ≥ 0 : ∣∣Pa

Ni(t)
∣∣> 0 and

∣∣Pb
Ni(t)

∣∣> 0, for some a �= b ∈ [q]}.
Note that the process PNi has points (S1,W1), (S2,W2), . . ., where the inter-arrival
times S1, S2 −S1, . . . have independent exponential distribution with mean 1/pNi ,
and W1,W2, . . . are i.i.d. Unif(0,1). Every point of PNi is colored by a color
a ∈ [q] with probability 1/q , and the set of points colored a is the process Pa

Ni . Let

P−LNi

Ni be the process PNi obtained removing the first LNi points, where LNi =
|PNi(F

′
Ni)| and F ′

Ni is the last arrival time in PNi before FNi , that is, the last
arrival time when all points in PNi are marked with the same color. Note that F ′

Ni

is distributed as
∑W

j=1 Wj , where Wj are i.i.d. exponential with mean 1/pNi and
W is a geometric with parameter 1/q , that is,

P(W = w) = 1

qw−1

(
1 − 1

q

)
,
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for w ≥ 1. By conditioning on W and calculating the characteristic function, it
follows that

∑W
j=1 Wj has a exponential distribution with mean r(q)/pNi , where

r(q) = q/(q − 1).
Now, let P−LNi

Ni (t) := P−LNi

Ni ([0, t] × [0,1]), and define the counting process
XN := (XN(t), t ≥ 0) as

XN(t) :=
∞∑
i=1

∣∣P−LNi

Ni (t/sN)
∣∣.

The above series is bounded by |P(t/sN)| and so it converges. Note that

(sNTN1, sNTN2, . . . , sNTNm) are the arrival times of this process. As TNm

τNm

P→ 1,
for all m ≥ 1, by the standard theory of weak convergence of point processes (Da-
ley and Vere-Jones [14], Theorem 9.1.VI) it is enough to show that the processes
XN converge weakly to M.

The process PNi(·) is a homogeneous Poisson process of rate pNi , with com-
pensator (pNir, r ≥ 0). Thus, the process (PNi(·/sN), t ≥ 0) has compensator
(ψNit, t ≥ 0) and the compensator of P−LNi

Ni (·/sN) is CNi(t) = ψNi(t − sNF ′
Ni)+,

where sNF ′
Ni has a exponential distribution with mean r(q)/ψNi . Consider the

following three cases:

Case 1. limN→∞ ψN1 = 0. For N, i ≥ 1 let FNi := (FNi
t , t ≥ 0) be the natural

filtration of PNi(·/sN) and let FN be the smallest filtration containing {FNi : i ≥
1}. Let (CNi(t), t ≥ 0) be the compensator of P−LNi

Ni (·/sN) with respect to the
filtration FNi and (CN(t), t ≥ 0) the compensator of XN with respect to FN .
Thus, CN(t) =∑

i CNi(t),

E
(
CN(t)

)=∑
i

(
e
−ψNi

t
r(q) − 1 + ψNi

t

r(q)

)

and

Var
(
CN(t)

)=∑
i

(
1 − e

−2ψNi
t

r(q) − 2ψNi

t

r(q)
e
−ψNi

t
r(q)

)
.

Now, by elementary inequalities as in [12], Lemma 11, it can be shown that
E(CN(t)) → t2/2r(q)2 and Var(CN(t)) → 0 for t > 0. This implies that XN con-
verges weakly to the inhomogeneous Poisson process of rate t/r(q) at time t , as
required.

Case 2.
∑

i ψ
2
i < 1. Let (jN ≥ 1) be such that limN→∞

∑
i≤jN

ψ2
Ni =∑

i ψ
2
i .

Define the process X∗
N(t) :=∑

i>jN
|P−LNi

Ni (t/sN)|, and XNi(t) = |P−LNi

Ni (t/sN)|.
Clearly, XNi converges weakly to B

−Li

i . Moreover, as in the previous case it can be
shown that X∗

N(sN t/s∗
N) converges weakly to the inhomogeneous Poisson process

of rate t/r(q) at time t . As (s∗
N/sN)2 → 1 −∑

i ψ
2
i , independence then implies

that (
X∗

N,XN1, . . . ,XNjN
,0,0, . . .

) D→ (
B∗,B−L1

1 ,B
−L2
2 , . . .

)
.
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Case 3.
∑

i ψ
2
i = 1. Let (jN ≥ 1) be a sequence with limN→∞

∑
i≤jN

ψ2
Ni = 1.

Define the process X∗
N(t), and XNi(t) as before. Clearly, XNi converges weakly

to B
−Li

i . Now, it is easy to show that the compensator C∗
N(t) of X∗

N(sN t/s∗
N)

satisfies: E(C∗
N(t)) → 0 and Var(C∗

N(t)) → 0, and the result follows.

2.2.1. Corollary for the uniform case. Under the uniform distribution, that is,
pNi = 1/N , for i ∈ {1,2, . . . ,N}, the limiting distribution of the first collision
time TN1 is a Rayleigh distribution.

COROLLARY 2.1. Suppose there are q ≥ 2 colors and pNi = 1/N , for i ∈
[N ], then the distribution of TN1/

√
N is the Rayleigh distribution with parameter√

1 − 1/q , that is,

lim
N→∞P(TN1/

√
N > r) = e

− 1
2 (

q−1
q

)r2
.

Moreover, the distribution of TNm/
√

N converges to
√

q
q−1 · χ2

2m, where χ2
2m is a

Chi-squared distribution with 2m degrees of freedom.

PROOF. The limiting distribution of TN1/
√

N follows directly from The-
orem 1.1. Theorem 1.2 implies that the limiting distribution of TNm/

√
N is

the time of the mth arrival of an inhomogeneous Poisson process Pλ with rate
λ(t) = t/r(q), where r(q) = q/(q − 1). Denote the mth arrival time by κm, and
|Pλ(t)| the number of arrivals in Pλ up to time t . Using |Pλ(t)| ∼ Pois(t2/2r(q))

and P(κm < t) = P(|Pλ(t)| ≥ m), the result follows. �

2.3. Examples. In this section, connections of Theorem 1.1 to the famous
birthday problem are discussed. Other examples involving nonuniform urn selec-
tion probabilities are also given, illustrating the generality of the above results.

EXAMPLE 2.1 (Birthday problem). The classical birthday problem asks for
the minimum number of people in a room such that two of them have the same
birthday with probability at least 50%. It is well known that the minimum num-
ber people for which this holds is approximately 23. In fact, the expected number
of samples, chosen uniformly with replacement, required from a set of size N

until some value is repeated, is asymptotically
√

πN/2. A generalization of this
considers birthday coincidences among individuals of different types, that is, in a
room with equal numbers of boys and girls, when can one expect a boy and girl
to share the same birthday. Finding matches among different types can also be
stated in terms of sampling colored balls and placing them in urns: Suppose there
are N urns and two colors, and the balls are colored independently with proba-
bility 1/2 and placed in the urns uniformly with probability 1/N . The number of
draws needed to have 2 balls with different colors in the same urn is the first time
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when a boy and a girl share the same birthday, when boys and girls sequentially
enter a room independently with probability 1/2. In this case, Corollary 2.1 for
q = 2 shows that the limiting distribution of the first collision time is a Rayleigh
distribution with parameter

√
1/2. This implies that the expected time of the first

collision is
√

πN . When N = 365 and the birthdays are assumed to be uniformly
distributed over the year, the expected time before there is a boy and a girl with the
same birthday is 34. For a detailed discussion on the birthday problem and its var-
ious generalizations and applications, refer to [1, 6, 15–17, 31] and the references
therein.

The following two examples exhibit the range of distributions that can be ob-
tained from Theorem 1.1 when the urn selection distribution is nonuniform.

EXAMPLE 2.2. Consider the probability distribution

pN1 = 1√
N

and pNi = cN

N
, for i ∈ [2,N + 1],(2.12)

where is cN = 1 − 1√
N

, is such that
∑

i pNi = 1. Note that cN → 1, as N → ∞,

and ψ1 = 1/
√

2 and ψi = 0 for all i ∈ [2,N + 1]. Therefore, by Theorem 1.1,

lim
N→∞P(sNTN1 > r) = e

−(
q−1
q

)· r2
4 e

−(
q−1
q

) r√
2
(
q − (q − 1)e

− r

q
√

2
)
.

Note that in this case
∑∞

i=1 ψ2
i < 1, so in (1.3) both the exponential term outside

the product, and the terms inside the product are nonvanishing. For q = 2, the
limiting distribution has the following simpler form:

lim
N→∞P(sNTN1 > r) = e− r2

8
(
2e

− r

2
√

2 − e
− r√

2
)
.

EXAMPLE 2.3. Consider the following nonuniform urn selection distribution:

pN1 = 1

logN
and pNi = cN

N
, for i ∈ [2,N + 1],(2.13)

where is cN = 1 − 1
logN

, is such that
∑

i pNi = 1. Note that cN → 1, as N → ∞,
and in this case ψ1 = 1 and ψi = 0 for all i ∈ [2,N + 1]. Therefore,

lim
N→∞P(sNTN1 > r) = e

−(
q−1
q

)r(
q − (q − 1)e

− r
q
)
.

Note that in this case
∑∞

i=1 ψ2
i = 1, and so the exponential term in (1.3) outside

the product vanishes. For q = 2, the limiting distribution simplifies to

lim
N→∞P(sNTN1 > r) = 2e− r

2 − e−r .
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3. Limiting distribution of the m-fold collision time. Recall the urn model
in Definition 1.1, and analogous to the first collision time TN1, define the m-fold
collision time TN1,m as the first time there exists an urn with m balls of color a and
m balls of color b, for some a �= b ∈ [q].

The next theorem gives the asymptotic distribution of TN1,m. Calculations are
similar to those in the proof of Theorem 1.1, and some details are omitted.

THEOREM 3.1. Let m ≥ 1 be a fixed positive integer, and

s
(2m)
N =

(∑
i

p2m
Ni

) 1
2m

and ψ
(2m)
Ni = pNi

s
(2m)
N

.

Suppose limN→∞ pN1 = 0, and ψ
(2m)
i := limN→∞ ψ

(2m)
Ni exist for each i ∈ N.

Then for r ≥ 0,

lim
N→∞P

(
s
(2m)
N TN1,m > r

)
(3.1)

= e−βmr2m ∏
i

{
hm

(
ψ

(2m)
i r

q

)q−1[
q − (q − 1)hm

(
ψ

(2m)
i r

q

)]}
,

where βm = (1 −∑∞
i=1(ψ

(2m)
i )2m)

(q−1)

2q2m−1(m!)q and hm(x) =∑m−1
y=0 e−x xy

y! .

PROOF. We consider the same embedding of the process as before: let P be a
homogeneous Poisson process on [0,∞) × [0,1] of rate 1 per unit area, and PNi

and Pa
Ni be as defined in (2.1). The m-fold collision time can be defined as in (2.2)

in terms of continuous-time process, and let τN1,m = inf{t : |P(t)| ≥ TN1,m}. By
the strong law of large numbers, |P(t)|/t converges almost surely to 1 as t →
∞. As τN1,m ≥ τN1, for m ≥ 1, by Lemma 2.1, limN→∞ τN1,m = ∞ whenever

pN1 → 0. This implies TN1,m

τN1,m

P→ 1, whenever pN1 → 0, as |P(τN1,m)| = TN1,m.
Therefore, it suffices to derive the asymptotic distribution of τN1,m. By defini-

tion, τN1,m is

inf
{
t ≥ 0 : ∃j ∈N with

∣∣Pα
Nj (t)

∣∣≥ m and
∣∣Pβ

Nj (t)
∣∣≥ m, for α �= β ∈ [q]}.

This implies

P(τN1,m > r) =∏
i

[
q · hm

(
pNir

q

)q−1(
1 − hm

(
pNir

q

))
+ hm

(
pNir

q

)q]
(3.2)

=∏
i

{
hm

(
pNir

q

)q−1[
q − (q − 1)hm

(
pNir

q

)]}
,
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where hm(x) =∑m−1
y=0 e−x xy

y! . Note that

(q − 1) loghm(x) + log
(
q − (q − 1)hm(x)

)
= (q − 1) log

(
1 − (1 − hm(x)

))+ log
(
1 + (q − 1)

(
1 − hm(x)

))
= −

∞∑
k=2

(q − 1) + (−1)k(q − 1)k

k
· (1 − hm(x)

)k(3.3)

= −
∞∑

k=2

(q − 1) + (−1)k(q − 1)k

k
·
( ∞∑

y=m

e−x (x)y

y!
)k

= −q(q − 1)

2
· x2m

(m!)2 +
∞∑

k=2m+1

(−1)k+1akx
k.

The interchange of the different summations is justified by the absolute con-
vergence of the series, which can be proved by arguments similar to those in
Lemma 2.2. Combining (3.2) and (3.3), we get

logP
(
s
(2m)
N τN1,m > r

)
= −q(q − 1)

2
· r2m

q2m(m!)q +
∞∑

k=2m+1

(−1)k+1akr
kq−k

∑
i

(
ψ

(2m)
Ni

)k
,

since
∑

i (ψ
(2m)
Ni )2m = 1. Finally, (ψ

(2m)
Ni )k → (ψ

(2m)
i )k for k > 2m, and using ab-

solute convergence, limN→∞ logP(s
(2m)
N τN1,m > t) simplifies to

−βmt2m +∑
i

{
hm

(
ψ

(2m)
i t

q

)q−1[
q − (q − 1)hm

(
ψ

(2m)
i t

q

)]}
,

where βm is as defined (3.1). This completes the proof of the result. �

4. Generalizing the urn model: Proof of Theorem 1.3. The proof of Theo-
rem 1.3 presented below is similar to that of Theorem 1.1 but requires more careful
calculations. To this end, recall the urn model from Definition 1.3 with nonuniform
color and nonuniform urn selection probabilities. As before, the collision time TN1
is the first time that there exist two balls with different colors in the same urn.

4.1. Proof of Theorem 1.3. Let PN be a ranked discrete distribution and
c = (c1, c2, . . . , cq) be the coloring distribution as in Definition 1.3. Let P be a
homogeneous Poisson process on S := [0,∞) × [0,1] of rate 1 per unit area,
with points {(S1,W1), (S2,W2), . . .}, where 0 < S1 < S2 < · · · are the points of a
homogeneous Poisson process on [0,∞) of rate 1 per unit length, and W1,W2, . . .

are i.i.d. Unif(0,1). Let Rt = [0, t]× [0,1] and P(t) be the restriction of P to Rt .
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• Color the points in P independently with one of q colors, {1,2, . . . , q} as fol-
lows:

P
(
(Si,Wi) ∈ P has color a ∈ [q])= ca,

independently over the points in P . For a ∈ [q], denote by Pa the subsets of P
colored a ∈ [q]. By the marking theorem [34], P1,P2, . . . ,Pq are independent
Poisson process with rates ca on R, respectively.

• For each a ∈ [q] and N ≥ 1, partition [0,1] into intervals JN1,a , JN2,a, . . . , such
that the length of JNi,a is pNi,a . For t ≥ 0, let

Pa
Ni = Pa ∩ [0,∞) × JNi,a.(4.1)

Clearly, Pa
N1,Pa

N2, . . . are independent Poisson processes with rates capN1,

capN2, . . . , respectively.

Recall the definition of the first collision time TN1 for the urn model in Def-
inition 1.3. It can be described in terms of the above process as follows: let Cj

be the color of the point (Sj ,Wj ) and ZNj =∑
i i1{Wj ∈ JNi,Cj

}. The sequence
{(Cj ,ZNj )}j≥1 in the discrete time model corresponds to the color of the j th ball
and the urn to which the j th ball is assigned. In particular, the first collision time
TN1 is

inf
{
j ∈N : ∃n ∈ N with ZNj = ZNj ′ = n and Cj ′ �= Cj , for some j ′ < j

}
.

LEMMA 4.1. Let τN1 = inf{t : |P(t)| ≥ TN1}. Then TN1
τN1

P→ 1, whenever
limN→∞ maxi pNi,a = 0, for all a ∈ [q].

PROOF. By the strong law of large numbers, |P(t)|/t converges almost surely
to 1 as t → ∞. Therefore, it suffices to show τN1 converges in probability to
infinity as N → ∞, since |P(τN1)| = TN1.

By definition, τN1 is

inf
{
t ≥ 0 : ∃i ∈ N with

∣∣Pα
Ni(t)

∣∣> 0,
∣∣Pβ

Ni(t)
∣∣> 0, for some α �= β ∈ [q]},

where Pa
Nj (t) is the restriction of Pa

Nj [defined in (4.1)] to Rt , for a ∈ [q]. This
implies that

P(τN1 > t) =∏
i

( q∑
a=1

(
1 − e−pNi,acat ) ∏

b �=a

e−pNi,bcbt +
q∏

a=1

e−pNi,acat

)

=∏
i

( q∑
a=1

e−cat
∑

b �=a pNi,b − (q − 1)e−t
∑q

a=1 pNi,aca

)
(4.2)

= e−t
∑

i

∑q
a=1 capNi,a

∏
i

(
1 +

q∑
a=1

epNi,acat − q

)
.
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As maxi pNi,a → 0, choose N > N(t, a) so that pNi,a < 1
cat

log(1 + 1
q
) for all

i ∈ N. Therefore, for N ≥ maxa N(t, a) and some constant C > 0

logP(τN1 > t)

≥∑
i

{
−t

q∑
a=1

pNi,aca +
( q∑

a=1

epNi,acat − q

)
− 1

2

( q∑
a=1

epNi,acat − q

)2}

≥ t2

2

∑
i

∑
a

c2
ap

2
Ni,a − Ct2

2

∑
i

(∑
a

capNi,a

)2

.

The first inequality uses log(1 + x) ≥ x − x2

2 , for |x| < 1, and the second uses:

(a) ex ≥ 1 + x + x2

2 on the first exponential term and (b) ex ≤ 1 + Cx, for some
constant C := C(q) when |x| ≤ log(1 + 1/q) on the second exponential term.

Now, as
∑

i pNi,b = 1, for all b ∈ [q],
∑
i

(∑
a

pNi,a

)2

≤
(

max
i∈N

∑
a

pNi,a

)∑
a

∑
i

pNi,a = q max
i∈N

∑
a

pNi,a.

Therefore,

∣∣logP(τN1 > t)
∣∣ ≤ Ct2

2

∑
i

(∑
a

capNi,a

)2

≤ Ct2

2
max
a∈[q] c

2
a

∑
i

(∑
a

pNi,a

)2

≤ Cqt2

2
max
a∈[q] c

2
a max

i∈N
∑
a

pNi,a

→ 0,

and the result follows.
�

With sN = (
∑

i (
∑q

a=1 capNi,a)
2)

1
2 , ψNi,a as defined in the statement of the the-

orem, and (4.2),

logP(sNTN1 > r) = ∑
i

log

{
e−r

∑
i

∑q
a=1 caψNi,a

(
1 +

q∑
a=1

ercaψNi,a − q

)}

(4.3)
:= g(r,ψ

N,1
, . . . ,ψ

N,q
),

where ψ
N,a

= (ψN1,a,ψN2,a, . . .), for a ∈ [q] and the function g is defined
in (A.1).

As
∑

i ψ
2
Ni,a < ∞ and limN→∞ ψNi,a = ψi,a exists for all i and a ∈ [q], by

Fatou’s lemma
∑

i ψ
2
i,a < ∞. Therefore, for a ∈ [q], limi ψi,a = 0, and for r > 0

there exists N(r), j (r) such that

ψNj(r),a <
1

r
log(1 + 1/q) for all N > N(r).
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Let A and B be the functions defined in Lemma A.3. Define

� =
∞⋃

k=1

{
(γ1, γ2, . . . , γk) ∈ N

k :
k∑

b=1

γb ≥ 3

}
.

For (γ1, γ2, . . . , γk) ∈ � and i > j (r),

k∏
b=1

q∑
a=1

cγb
a ψ

γb

Ni,a ≤
( q∑

a=1

caψNi,a

)∑a
b=1 γb

≤
(

max
a∈[q] max

i>j (r)
caψNi,a

)∑a
b=1 γb−2

( q∑
a=1

caψNi,a

)2

.

Using this and Lemma A.3, it follows that

lim
N→∞A(r,ψ

N,a
,ψ

N,a
, . . . ,ψ

N,q
) = A(r,ψ

1
,ψ

2
, . . . ,ψ

q
),

(4.4)
lim

N→∞B(r,ψ
N,a

,ψ
N,a

, . . . ,ψ
N,q

) = B(r,ψ
1
,ψ

2
, . . . ,ψ

q
).

Finally, by assumption limN→∞
∑

i ψ
2
Ni,a = φa exists for all a ∈ [q], and hence,

as N → ∞,(∑
i

( q∑
a=1

caψNi,a

)2

−
q∑

a=1

c2
a

∑
i

ψ2
Ni,a

)
→ 1 −

q∑
a=1

c2
a

(
lim

N→∞
∑
i

ψ2
Ni,a

)
(4.5)

= 1 −
q∑

a=1

c2
aφa.

Combining equations (4.4) and (4.5) and using Lemma A.3, the result follows.

4.2. Useful corollaries and examples continued. A special case of Theo-
rem 1.3 is to consider the case where pNi,a = pNi , for all a ∈ [q], and a general
coloring distribution c = (c1, c2, . . . , cq). This simplifies (1.4) to the following.

COROLLARY 4.1. For a ∈ [q], and N, i ∈ N, let s2
N = ∑

i p
2
Ni, and ψni =

pNi

sN
. Suppose that limN→∞ pN1 = 0 and ψi = limn→∞ ψNi exists, for each i ∈ N.

Then, as N → ∞,

P(sNTN1 > r) → e− 1
2 (1−∑i ψ2

i )(1−∑q
a=1 c2

a)r2 ∏
i

e−rψi

(
1 +

q∑
a=1

eψicar − q

)
.

The main application of Theorem 1.3 is in deriving the limiting distributions of
the running times of algorithms for the discrete logarithm problem (DLP) in an
interval. To this end, assume q = 2 colors and consider 2 discrete ranked distri-
butions pN1 ≥ pN2 ≥ · · · and qN1 ≥ qN2 ≥ · · ·; where at each step one of the two
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colors is chosen with probability 1/2. If color 1 is chosen then a ball of color 1 is
put in the ith urn with probability pNi , otherwise a ball of color 2 is put in the ith
urn with probability qNi .

COROLLARY 4.2. For a ∈ [q], and N, i ∈N, let

sN = 1

2

(∑
i

(pNi + qNi)
2
) 1

2
, ψNi = pNi

sN
and θNi = qNi

sN
.(4.6)

Suppose pN1 → 0, qN1 → 0, as N → ∞, and limN→∞ ψNi = limN→∞ θNi = 0,
for all i ∈ N, and φ1 = limN→∞

∑
i ψ

2
Ni , φ2 = limN→∞

∑
i θ

2
Ni exists. Then

lim
N→∞P(sNTN1 > r) = e−(1− 1

4
∑2

a=1 φa) r2
2 .(4.7)

The setup of Theorem 1.3 is very general and it can be used in various ap-
plications. However, when the urn selection distribution depends on the color of
the ball, sometimes the scaling in Theorem 1.3 may not give a nontrivial limiting
distribution as indicated in the following example.

EXAMPLE 4.1. Let pN1 ≥ pN2 ≥ · · · be the probability distribution (2.13),
and consider the following process: Every time choose one of two colors indepen-
dently with probability 1/2; if color 1 is chosen, then with probability pNi a ball
colored 1 goes to the ith urn, otherwise color 2 is chosen and a ball with that color
goes to the ith urn with probability 1

N+1 . Let TN1 be the first collision time. In
this case, sN logN → 1, where sN is as defined in (4.6), and Theorem 1.3 gives
sNTN = TN/ logN converges to infinity in probability. However, in this case, it
can be easily shown that

lim
N→∞P(TN/

√
N ≥ r) = e− r2

4 ,

the Rayleigh distribution with parameter
√

2.

5. Algorithms for the discrete logarithm problem: Limiting distribution of
running times. The central idea of the Gaudry–Schost (GS) algorithm, as well
as, the kangaroo algorithm of Pollard is based on the collision time of 2 indepen-
dent pseudo-random walks. Let g and h be the DLP instance, with h = ga for
some integer −N/2 ≤ a ≤ N/2, where N is the size of the interval. The cyclic
group G generated by g will often be described in terms of the exponent space.
Define the tame set T = [−N/2,N/2] and the wild set W = a + T = {a + b : b ∈
[−N/2,N/2]}. A tame walk is a sequence of points {gai }i≥1 where ai ∈ T and
a wild walk is a sequence of points gbi = hgai with bi ∈ W . Each walk proceeds
until a distinguished point is hit. This distinguished point is then stored on a server,
together with the corresponding exponent and a flag indicating which sort of walk
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it was. When the same distinguished point is visited by two different types of walk,
there is a tame-wild collision giving an equation of the form gai = hgbj , and the
DLP is solved as h = gai−bj .

The actual GS algorithm is much more complicated and although the starting
point of the pseudo-random walk will be random, inherently the rest of the steps
are not random, and only a heuristic running time can be derived. Experimental
evidence show that the pseudo-random walks get close enough to a random selec-
tion. Therefore, it is standard in the literature to assume that when N is sufficiently
large the pseudo-random walks performed by the algorithm is sufficiently random,
and the running time can be analyzed by an idealized birthday problem involving
the tame-wild collision. Throughout the paper, we work with this assumption, and
refer to the running times of these algorithms as idealized running times. Then,
identifying the tame walks as being color 1 and the wild walks as being color 2,
and the group elements as urns, the idealized running time of the GS algorithm is
precisely when two balls of different colors are placed in the same urn.

Generally, only the expectation of the collision time is used to quantify the per-
formance of these algorithms, using the birthday problem. In the following theo-
rem, the limiting distribution of the idealized running time of the GS algorithm for
any problem instance is determined. It is assumed that the elements from T and
W are sampled with probability 1/2 each, which means that at each step the two
colors are chosen with probability 1/2 each. This is quite a realistic assumption
as in practice one often considers distributed or parallel implementations of the
algorithm [22, 24].

THEOREM 5.1. Given an instance (g,h) of the DLP with h = gxN , where
x ∈ [−1/2,1/2], the limiting distribution of the idealized running time T

(x)
N of the

GS algorithm is

lim
N→∞P

(
T

(x)
N > r

√
N
)= e−( 1−|x|

2
) r2

2 .

PROOF. By symmetry, it suffices to consider 0 ≤ x < 1/2. This implies that
|T ∩ W | = (1 − x)N . Define pNi = 1/N , for i ∈ T , and qNi = 1/N , for i ∈ W .
Then by (4.6)

sN =
√

1 − x/2

N
and lim

N→∞ψNi = lim
N→∞ θNi = 0.

Moreover, φ1 = φ2 = limN

∑
i ψ

2
Ni = limN→∞

∑
i θ

2
Ni = 1

1−x/2 . Therefore, apply-
ing Theorem 1.3 the result follows. �

REMARK 5.1. Theorem 5.1 shows T
(x)
N /

√
N converges to a Rayleigh dis-

tribution with parameter ( 2
1−x

)
1
2 . Therefore, it is expected that in the limit
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E(T
(x)
N )/

√
N → (1 − x)− 1

2
√

π . (This can be made rigorous by showing the uni-

form integrability of the sequence T
(x)
N /

√
N , for example, by arguing that the sec-

ond moment of T
(x)
N /

√
N is bounded.) Assuming x is uniformly distributed over

[−1/2,1/2] gives, 2
∫ 1

2
0 (1−x)− 1

2
√

πN = (4−2
√

2)
√

πN ≈ 2.08
√

N . This is the
leading term of the expected heuristic running time of the GS algorithm averaged
over all problem instances, which was proved earlier in [24], Theorem 2, using the
birthday paradox.

5.1. Accelerated Gaudry–Schost (AGS) algorithm. In groups where comput-
ing h−1 for any group element h is much faster than a general group operation,
the GS algorithm can be greatly accelerated by performing random walks in sets
of equivalence classes corresponding to the tame and wild sets. As before, let N,g

and h be given such that 4|N , h = ga and −N/2 ≤ a ≤ N/2. Define the tame and
wild sets (as sets of equivalence classes) by

T̃ = {{b,−b} : b ∈ [−N/2,N/2]},
W̃ = {{

a + b,−(a + b)
} : b ∈ [−N/4,N/4]}.

Note that |T̃ | = 1 + N/2 ≈ N/2. The algorithm samples alternately from T̃ and
W̃ with probability 1/2.

THEOREM 5.2. Given an instance (g,h) of the DLP with h = gxN , where
x ∈ [−1/2,1/2], the limiting distribution of the idealized running time T

(x)
N of the

AGS algorithm of Galbraith and Ruprai [24] is

lim
N→∞P

(
T

(x)
N > r

√
N
)=

⎧⎨
⎩ e− r2

2 , if |x| < 1/4,

e−(3−4|x|) r2
4 , if 1/4 ≤ |x| ≤ 1/2.

(5.1)

PROOF. Let (g,h) be the DLP instance with h = gxN , and T
(x)
N the idealized

running time of the AGS algorithm of Galbraith and Ruprai [24]. The analysis has
two cases:

Case 1. 0 ≤ x < 1/4. In this case W̃ ⊆ T̃ and the algorithm samples from T̃

and W̃ alternately and uniformly. This is equivalent to sampling uniformly from
[0,N/2] with probability 1/2, and sampling an element b from [0,N/2] with
probability 4/N , for 0 ≤ b < N/4−|x|N , and probability 2/N , for N/4−|x|N ≤
b ≤ |x|N + N/4, with probability 1/2. In this case,

sN =
√

10 − 8x

4N
and lim

N→∞ψNi = lim
N→∞ θNi = 0.
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Moreover, φ1 = 8
10−8x

and φ2 = 4(4−8x)
10−8x

. Therefore, applying Theorem 1.3 it fol-
lows

lim
N→∞P

(
TN > r

√
4N

10 − 8x

)
= e−( 1

5−4x
)r2

.

Case 2. 1/4 ≤ x ≤ 1/2. In this case, |T̃ ∩ W̃ | = N(3/4 − |x|) (here |T̃ ∩ W̃ |
refers to the number of equivalence classes in the intersection). The algorithm
samples uniformly between the two sets T̃ and W̃ , where |T̃ | = |W̃ | ≈ N/2, and
as in the proof of Theorem 5.1 the limiting distribution of the idealized running
time can be obtained. �

REMARK 5.2. Note that the limit (5.1) is a distribution function for every x ∈
[−1/2,1/2], where x is the unknown exponent in the DLP problem. Generally, x

is assumed to be uniformly distributed over [−1/2,1/2] and the expected running
time (as in Remark 5.1, to make this rigorous, one has to argue that the sequence
T

(x)
N /

√
N is uniformly integrable) will be

2
√

N

(∫ 1/4

0

∫ ∞
0

e− r2
2 dr dx +

∫ 1/2

1/4

∫ ∞
0

e−(3−4|x|) r2
4 dr dx

)

= (5
√

2/4 − 1)
√

πN ≈ 1.36
√

N.

This is the leading term of the expected heuristic running time of the AGS algo-
rithm averaged over all problem instances, which was proved by Galbraith and
Ruprai (Theorem 4, [24]). Assuming the walks are truly random, Theorem 5.2
gives the idealized asymptotic hazard rate of the AGS algorithm as 1 − F(r, x) =
limn→∞P(T

(x)
N /

√
N > r), quantifying which problem instances are easier/harder.

Figure 2(a) shows the asymptotic hazard rate for the AGS algorithm for various

FIG. 2. (a) Limiting idealized hazard rate of the AGS algorithm for various problem instances,
(b) comparing limiting idealized hazard rates of GS and the AGS algorithms.
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values x ∈ [−1/2,1/2]. It is observed that as x approaches 1/2, the idealized run-
ning time of the AGS algorithm increases, which is expected as the intersection
between the tame and wild sets decrease. Moreover, assuming that x uniformly
distributed over [−1/2,1/2], the performance of the different variants of the GS
algorithms can be compared using the limiting idealized hazard rates averaged
over all problem instances

1 − F(r) =
∫ 1/2

−1/2

(
1 − F(r, x)

)
dx.

Figure 2(b) shows the limiting idealized hazard rates of the GS and AGS algo-
rithms averaged over all problem instances. It shows that the limiting idealized
running time of the GS algorithm stochastically dominates the AGS algorithm,
that is, it is better than the GS algorithm not only in expectation but also for all
values r ≥ 0.

6. Collision times in sequential graph coloring using Stein’s method. In
this section, Stein’s method for Poisson approximation is used to determine the
limiting distributions of the collision times for the preferential attachment model
and the infinite path. To this end, recall the following version of Stein’s method
based on dependency graph.

THEOREM 6.1 (Chatterjee et al. [13]). Suppose {Xi}i∈I is a finite collection
of binary random variables with dependency graph (I ,E ), that is, (Xi,Xj ) ∈
E , whenever Xi,Xj are dependent. Let W = ∑

i∈I Xi , pi = P(Xi = 1), pij =
P(Xi = Xj = 1), and λ =∑

i∈I pi . Then4

∥∥W − Pois(λ)
∥∥≤ min

{
1,

1

λ

}( ∑
i∈I

j∈N(i)\{i}

pij + ∑
i∈I

j∈N(i)

pipj

)
.

6.1. Preferential attachment models: Proof of Theorem 1.4. Recall the defini-
tion of the PA(m) model and the graph sequence (Gt

m)t≥1 from Section 1.2. De-
note by S(Gt

m) the underlying simple graph associated with Gt
m. Let G = (Gt

m)t≥1

and consider the coloring scheme described in Section 1.2. Let T
PA(m)
N1 be the first

time there is a monochromatic edge in a sequential coloring of G.
For t ≥ 1 (possibly depending on N ), let X1,t ,X2,t , . . . be i.i.d. PN [Xi,t corre-

sponds to the color of the vertex i in S(Gt
m)]. For (i, j) ∈ E(S(Gt

m)), define

Z
(t)
(i,j) = 1{Xi,t = Xj,t },

4Note that ||W − Pois(λ)|| = 1
2
∑

i |P(W = i) − e−λλi

i! | is the total variation distance between W

and the Poisson distribution with mean λ.
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and Wt =∑
(i,j)∈E(S(Gt

m)) Z
(t)
(i,j), which is the number of monochromatic edges in

S(Gt
m). Let λt := E(Wt) = |E(S(Gt

m))|∑i p
2
Ni = (mt − o(t))

∑
i p

2
Ni .

For two distinct edges e1 = (i1, j1) and e2 = (i2, j2),

P
(
Z(t)

e1
= Z(t)

e2
= 1

)=
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∑
i

p2
Ni

)2

, if e1 ∩ e2 =∅,

∑
i

p3
Ni, otherwise,

since the random variables Z
(t)
e1 and Z

(t)
e2 are independent whenever the edges e1 ∩

e2 = ∅, the dependency graph associated with the random variables
{Z(t)

(i,j)}(i,j)∈E(S(Gt
m) can be constructed by putting an edge between Z

(t)
e1 and Z

(t)
e2

whenever e1 and e2 share a vertex. Then the error term in (6.1) becomes

∣∣∣∣P(Wt = k|Gt) − e−λt
λk

t

k!
∣∣∣∣≤ Ct2

∣∣T (S(Gt
m

))∣∣(∑
i

p3
Ni +

(∑
i

p2
Ni

)2)
(6.1)

+ 2Ct

∣∣E(S(Gt
m

))∣∣(∑
i

p2
Ni

)2

,

where Ct = min(1, λ−1
t ) and T (S(Gt

m)) is the number of 2-stars (the bipartite
graph K1,2) in S(Gt

m).
If t = t (N) is such that limN→∞ t

∑
i p

2
Ni = λ > 0 for some λ > 0, then

λt → mλ, and |E(S(Gt
m))|(∑i p

2
Ni)

2 ≤ pN1λt → 0. Moreover, Bollobás [11],
Theorem 16, shows that

(1 − ε)

(
m + 1

2

)
t log t ≤ ∣∣S(Gt

m

)∣∣≤ (1 + ε)

(
m + 1

2

)
t log t,

with high probability as t → ∞. Now, if limN→∞ pN1 log t = 0, then with high
probability

lim
N→∞ lim

t→∞
∣∣T (S(Gt

m

))∣∣∑
i

p3
Ni ≤ λ(1 + ε)

(
m + 1

2

)
lim

N→∞ lim
t→∞pN1 log t = 0.

Therefore, the RHS goes to zero at N → ∞ and by dominated convergence theo-
rem, the number of monochromatic edges Wt converges in distribution to Pois(λ).

Thus, taking t = � r

s2
N

�, we get

lim
N→∞P

(
s2
NT

PA(m)
N > r

)= lim
N→∞P(W� r

s2
N

� = 0) = e−mr,

completing the proof of Theorem 1.4.
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6.2. The infinite path. Define TN,m to be the first time there exists a monochro-
matic path of length m in a sequential coloring of the infinite path Z with the prob-
ability distribution PN . This problem can be re-formulated as follows: {Xi}i≥1 be
an i.i.d. PN sequence, and

TN,m = inf{t ≥ m : Xt = · · · = Xt−m+1}.(6.2)

Similar to the proof of Theorem 1.4, using the Stein method based on dependency
graph, the limiting distribution of TN,m can be determined.

THEOREM 6.2. Let sN,m := (
∑

i p
m
Ni)

1
m and suppose limN→∞ pN1 = 0. Then

for r ≥ 0,

lim
N→∞P

(
sm
N,mTN,m > r

)= e−r .(6.3)

PROOF. For t ≥ m, and s ∈ [1, t − m + 1], define

Zs,t = 1{Xs = Xs+1 = · · · = Xs+m−1},
and Wt =∑t−m+1

s=1 Zs,t . Note that Wt counts the number of monochromatic paths
with m vertices in the path spanned by the vertices {1,2, . . . , t}. Note that λt :=
E(Wt) = (t − m + 1)

∑
i p

m
Ni and

P(Zs1,t = Zs2,t = 1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(∑
i

pm
Ni

)2

, if |s2 − s1| ≥ m,

∑
i

p
m−|s2−s1|
Ni , otherwise.

Since Zs1,t and Zs2,t are independent if |s2 − s1| ≥ m, the dependency graph
associated with the variables {Zs,t }s≥1 has an edge between Zs1,t and Zs2,t if
|s2 − s1| < m. Then the error term in (6.1) becomes

∥∥Wi − Pois(λi)
∥∥

TV ≤ 4m(t − m + 1)(
∑m−1

b=0
∑

i p
m−b
Ni + (

∑
i p

m
Ni)

2)

(t − m + 1)
∑

i p
m
Ni

.

The error term in the RHS goes to 0 if t = t (N) is such that λt = (t − m +
1)
∑

i p
m
Ni → λ > 0, as N → ∞.

For r > 0, let t = � r
sm
N,m

�. Then

P
(
sm
N,mTN,m > r

)= P(W� r
sm
N,m

� = 0) → e−r ,

completing the proof of the result. �
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APPENDIX: VERIFYING ABSOLUTE CONVERGENCE

For every a ∈ [q], let ψ
a

= (ψ1,a,ψ2,a, . . .) and
∑

i (
∑q

a=1 caψi,a)
2 < ∞. De-

fine

g(r,ψ
1
,ψ

2
, . . . ,ψ

q
)

(A.1)

=∑
i

{
−r

q∑
a=1

caψi,a + log

(
1 +

q∑
a=1

ercaψi,a − q

)}
.

Also, let Qi(z) =∑∞
s=1 γi,s

zs

s! and γi,s =∑q
a=1 cs

aψ
s
i,a . By standard rearrangement

identities [20], for s ≥ 1,

Qs
i (z) = ∑

j1,j2,...,js

jt≥1,∀t∈[s]

z
∑s

b=1 jb

(
s∏

b=1

∑q
a=1 c

jb
a ψ

jb

i,a

jb!
)
.(A.2)

LEMMA A.3. Let
∑

i (
∑q

a=1 caψi,a)
2 := C < ∞, and define ψmax =

maxa∈[q] maxi∈[n] ψi,a . Then for r ∈ R = {r ∈ R
+ : ψmaxr < log(1 + 1/q)},

g(r,ψ
1
,ψ

2
, . . . ,ψ

q
)

= −r2

2

∑
i

((∑
a

caψi,a

)2

−
q∑

a=1

c2
aψ

2
i,a

)
(A.3)

+ A(r,ψ
1
,ψ

2
, . . . ,ψ

q
) + B(r,ψ

1
,ψ

2
, . . . ,ψ

q
),

where

A(r,ψ
1
,ψ

2
, . . . ,ψ

q
)

= ∑
j1≥3

rj1

j1!
∑
i

q∑
a=1

cj1
a ψ

j1
i,a − 1

2

∑
j1≥1,j2≥1,

j1+j2≥3

r
∑2

b=1 jb
∑
i

( 2∏
b=1

∑q
a=1 c

jb
a ψ

jb

i,a

jb!
)
,

and

B(r,ψ
1
,ψ

2
, . . . ,ψ

q
) =

∞∑
s=3

(−1)s+1

s
Qs

i (z).

Moreover, the series (A.3) is absolutely convergent for r ∈ R.

PROOF. For r ∈ R, ψi,a < 1
rca

log(1 + 1/q), for all a ∈ [q] and i ∈ N, and

|∑q
a=1 ercaψi,a − q| < 1. Thus, using the expansion of log(1 + z), for |z| < 1, and
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the expansion of e−z, for all z ∈ R,

g(r,ψ
1
, . . . ,ψ

q
) =∑

i

{
−r

q∑
a=1

caψi,a +
∞∑

s=1

(−1)s+1

s

( q∑
a=1

ercaψi,a − q

)s}

=∑
i

{
−r

q∑
a=1

caψi,a +
∞∑

s=1

(−1)s+1

s

( q∑
a=1

∞∑
t=1

rt ct
aψ

t
i,a

t !
)s}

(A.4)

=∑
i

{
−r

q∑
a=1

caψi,a +
∞∑

s=1

(−1)s+1

s
Qi(r)

s

}
.

Note that Qi(r) = r
∑q

a=1 caψi,a +∑∞
j1=2

rj1

j1! (
∑q

a=1 c
j1
a ψ

j1
i,a). Thus, (A.4) im-

plies

g(r,ψ
1
,ψ

2
, . . . ,ψ

q
) =∑

i

{ ∞∑
j1=2

rj1

j1!
( q∑

a=1

cj1
a ψ

j1
i,a

)
+

∞∑
s=2

(−1)s+1

s
Qs

i (r)

}
.(A.5)

Define

S :=∑
i

{ ∞∑
j1=2

rj1

j1!
( q∑

a=1

cj1
a ψ

j1
i,a

)
+

∞∑
s=2

Qs
i (r)

s

}
.

To show the series g(r,ψ
1
,ψ

2
, . . . ,ψ

q
) is absolutely convergent for r ∈ R, it suf-

fices to show S < ∞. To this end,

S ≤
∞∑

j1=2

rj1
∑
i

q∑
a=1

cj1
a ψ

j1
i,a +

∞∑
s=2

∑
i

Qs
i (r).(A.6)

Note that, for r ∈ R,

∞∑
j1=2

rj1
∑
i

q∑
a=1

cj1
a ψ

j1
i,a ≤

∞∑
j1=2

rj1
∑
i

( q∑
a=1

caψi,a

)j1

≤ C

∞∑
j1=2

rj1ψj1−2
max

≤ Cr2

(1 − rψmax)
.

Similarly, recalling (A.2), it can shown that
∑∞

s=2
∑

i Q
s
i (r) < ∞, for r ∈ R. This

implies that the series in the RHS of (A.6) is finite, and g(r,ψ
1
, . . . ,ψ

q
) is abso-

lutely convergent.
The result now follows by interchanging the order of the summations and rear-

ranging the terms. �
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