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The goal of the lectures in Scotland (in the summer of 2003) for which the
present notes were initially written was to give a self-contained sketchy survey
of the recent results concerning conformal restriction, that were initiated in our
joint work with Greg Lawler and Oded Schramm [37, 36], and further investi-
gated in the papers [21, 56, 40, 13]. It also finds some of its roots in the earlier
“pre-SLE” paper [39]. If the reader wants full proofs and cleaner statements,
(s)he is advised to consult these original papers. We will also not go into the
details of the construction of the Schramm-Loewner Evolution (SLE), referring
the motivated and interested reader to [55, 29] and the references therein for
more details. These notes can be viewed as complementary to my Saint-Flour
notes [55] (one can read either of them before the other), and are maybe aimed
at a less probabilistic audience.

The papers dealing with the restriction property all take the existence and
properties of SLE for granted, and are therefore maybe difficult to read if one
is not already acquainted to the SLE background. We will try in these lectures
to conversely use the intuition and ideas building on the restriction properties
and self-avoiding walks to shed some light onto some of the properties of SLE,
and its relation to some ideas from conformal field theory. We hope that this
can be useful in the theoretical physics community as well.

Almost all results in these notes are borrowed from the existing above-
mentioned papers, but there are a few new ones, such as for instance the con-
struction of the one-sided restriction measures via Poissonian clouds of Brownian
excursions.

∗This is an original survey paper.
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1. Introduction

1.1. Generalities

One of the main issues in probability theory and statistical physics is to un-
derstand the large scale behaviour of random systems, that are often defined
in the discrete setting. For instance, one has a well-defined probability measure
on a finite state-space, and one lets the size of the state-space go to infinity,
and tries to understand the asymptotic behaviour of some observables. In many
cases, the asymptotic behaviour is deterministic, but it can also happen to be
random. The existence of the scaling limit is usually justified heuristically via
a renormalization (or fixed point) argument. But, in the generic case, a further
mathematical description is out of reach. The complexity of the system can
make it impossible to encode the randomness in a proper mathematical way.
In some exceptional cases, an additional (combinatorial, algebraic, analytical)
feature can be shown to hold. This extra structure can then be used to show pin
down this scaling limit and to encode this complexity. It can give rise to unusual
random processes (where for instance the noise in the sense of Tsirelson [51] is
not necessarily white), but that can be (precisely because of this additional
mathematical structure) related and of interest to other areas of mathematics.

Two-dimensional critical systems are believed to belong to this class. The
additional structure (that has been proved to hold in some cases [50, 36]) is
conformal invariance. This had been recognized long ago by theoretical physi-
cists (see e.g. [8]) and gave rise to an intense activity for instance in conformal
field theory. More recently, the SLE (SLE stands for Schramm-Loewner Evo-
lutions) approach did provide a simple mathematical new perspective to these
systems. In the present lectures, we will focus on one rather specific aspect of
these random systems that we initially thought of because of the problems of
self-avoiding walks, but turned out in the end to be relevant to all these systems.
The global idea, which recalls some considerations of conformal field theory, is
basically to see how the law of these random curves behave when one changes
(or perturbs infinitesimally) the domain it is defined in.

1.2. Brownian motion, conformal invariance

Suppose that we are looking for a “uniform” probability measure on the space of
d-dimensional continuous curves. The state-space is infinite, so that this notion
is rather vague, but it is easy to see that the natural candidate for such a
measure is d-dimensional Brownian motion. One standard way to proceed is
to start with a discretization of the state-space: For any finite N , the uniform
measure on the set of paths of length N on a given lattice and fixed starting
point is just the law of simple random walk on that lattice. The continuous limit
of simple random walk is (under mild conditions) Brownian motion, regardless
of the precise lattice that one starts with.

It is also possible to restrict the class of paths. For instance, one can consider
a finite domain D, a point O in its interior, and try to construct a measure
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on the set of paths from O to the boundary of the domain. Let us consider
the measure on Brownian paths, that are started from O and stopped at their
first exist of D. Note that, even though this measure is closely related to the
previous “uniform measure”, it is not “uniformly distributed” among the family
of paths from the origin to ∂D: In the discrete case (on the square lattice in two
dimensions, say), if one considers the law of random walk started from O and
stopped at its first hitting of the boundary of the domain, it assigns a probability
of 4−n to each admissible path of n steps, and n is varying from one path to
another. One “penalizes” the mass of a path according to its length.

As pointed out by Paul Lévy [42], planar Brownian motion is conformally
invariant. This means that if one considers a planar Brownian Z started from
O and stopped at its first exit time T of a simply connected domain D, and
if Φ denotes a conformal map from D onto some other domain D̃ (i.e. a one-
to-one map that preserves angles), then the law of Φ(Z) is that of a Brownian
motion started from Φ(O) and stopped at its first exit of D̃. Actually, this is
not completely true, because one has to reparametrize time in a proper way. In
fact, the rigorous statement is that

Φ(Zt) = Z̃∫ t
0
|Φ′(Zs)|2ds,

for all t ≤ T , where Z̃ is a Brownian motion started from Φ(O), that is stopped

at T̃ =
∫ T

0 |Φ′(Zs)|2ds, which is its exit time of D̃. For instance, if Φ(z) = 2z,
then one has to speed up time by a factor of 4, so that 2Zt is in fact Brownian
motion running at speed 4t.

This shows that in general, the image of a Brownian path of fixed prescribed
time-length under a conformal transformation is not a Brownian path with fixed
and prescribed time-length. The “uniform” distribution is not fully preserved
under conformal transformation. In this respect, it is more natural to deal with
the law of Brownian motion with given endpoints or stopped at stopping times.
For instance, if PD,O denotes the law of Brownian motion started from O and
stopped at its first exit of D, we see that modulo time-reparametrization, Φ ◦
PD,O (which means the image measure of PD,O under the mapping Z 7→ Φ(Z))
is identical to PΦ(D),Φ(O).

One could work with such paths from an inner point to the boundary of a
domain (and this would give rise to the “radial restriction” theory), but we
will here only speak about paths from one boundary point to another boundary
point of a domain. It is possible to define the natural Brownian measure on paths
from one point A of the boundary of D to another point B on the boundary of
the domain D. In the discrete case on the square lattice, the mass of a path is
again proportional to 4−n, where the renormalizing constant corresponds to the
conditioning of the random walk by the event that it exits D at B when starting
from A. In the scaling limit, this process can be understood as Brownian motion
started from A and conditioned to exit D at B. Even if this conditioning does
a priori not make sense (since A ∈ ∂D, it is an event of zero probability), it is
not difficult to make this rigorous (for instance, using an h-process, or by letting
the starting point tend to A from the inside of the domain, and condition the
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Brownian motion to exit in a neighbourhood ofB). We will call PD,A,B = PBMD,A,B
the law of this process (and drop the superscript when there is no ambiguity).
Conformal invariance then also holds for these processes:

Proposition 1 If Φ is a conformal transformation from D onto another do-
main D̃, and if the law of Z is PD,A,B, then the law of Φ(Z) is PΦ(D),Φ(A),Φ(B),
modulo increasing reparametrization of the path.

1.3. Restriction

Suppose that D′ ⊂ D are simply connected (and D 6= C), and that A,B ∈
∂D ∩ ∂D′. In the discrete case, consider the law PD (respectively PD′) of a
simple random walk ω started from A and conditioned to exit D at B (resp. to
exit D′ at B). Clearly, if ω is sampled according to PD, but conditioned on the
event that {ω ⊂ D′}, then the resulting law is exactly PD′ . This is basically due
to the fact that the probability of the path ω is proportional to 4−n, whether it
lives in D or D′. The “energy” of the path (n log 4 here, so that the probability
is proportional to exp(−energy) ) is depending only on ω itself, and not on the
space of paths one considers. This property still holds in the scaling limit: For
any D′ ⊂ D, for any A and B on ∂D ∩ ∂D′,

PBMD,A,B | {Z ⊂ D′} = PBMD′,A,B .

We call this the restriction property.
Note that if we know PBMD,A,B , we have now two ways to get PBMD′,A,B for

free. The first one is by conditioning, the second one by conformal invariance
(choosing a conformal map Φ from D onto D′ that leaves A and B invariant –
such maps exist by Riemann’s mapping theorem). A priori, one might wonder
whether it is at all possible to find a measure on paths PD,A,B such that these
two ways coincide (for all D′ ⊂ D), but we have just seen that the Brownian
measure does the job. On the other hand, this condition seems quite strong, so
that one can ask if there exist other measures on paths that also satisfy it. This
will be one of the main issues in these lectures.

This leads to the following abstract definition: Assume that a family of mea-
sures PD,A,B on curves ω from A to B in D (that is indexed by (D,A,B))
satisfies:

• For all open D′ ⊂ D, and A 6= B on ∂D ∩ ∂D′: The measure PD,A,B
conditioned on {ω ⊂ D′} is the probability measure PD′,A,B.
• For any conformal transformation Φ on D, the image of PD,A,B under Φ

is PΦ(D),Φ(A),Φ(B) (modulo time-change).

We then say that this family satisfies conformal restriction. Let us again insist
on the fact that this is a rather strong condition: Conformal invariance basically
shows that all PD,A,B are defined from just one of them (for instance PH,0,∞).
Restriction then gives an additional relation between all these measures.
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An alternative rephrasing of the conformal restriction in terms of one measure
PD,A,B (here PH,0,∞) goes as follows: Suppose that the family PD,A,B satisfies
conformal restriction, then let γ be a random path with law PH,0,∞. Then:

1. For any λ > 0, the law of λγ is equal to the law of γ (modulo time-
reparametrization).

2. For any H ⊂ H that has the origin and infinity on its boundary (we can
in fact also assume for convenience that H \H is bounded and bounded
away from infinity), define the conformal map ΦH from H onto H that
preserves the origin and such that ΦH(z) ∼ z when z → ∞ (this map
exists and is unique, by Riemann’s mapping Theorem). Then, the law of
γ conditioned on {γ ⊂ H} is identical to the law of Φ−1

H (γ). In words, this
means that the law of γ conditioned to remain in H is identical to the law
of the conformal image Φ−1

H (H) of the curve.

The first fact follows from the fact that z 7→ λz is a conformal transformation
from H onto itself.

Conversely, if a random curve γ from the origin to infinity in H satisfies these
two conditions, then one can define for all (D,A,B), the law PD,A,B of Φ(γ),
where Φ is a conformal transformation from H onto D with Φ(O) = A and
Φ(∞) = B, and check that this family of laws satisfies conformal restriction.
Therefore if these two conditions hold, we will sometimes say that the law of γ
satisfies conformal restriction.

1.4. Motivation from self-avoiding walks

One of our initial motivations was to reach a better understanding of self-
avoiding walks. In the discrete case, this is the uniform measure on the set
of paths of length N with a given starting point on a given lattice.

When N grows to infinity, it is easy by sub-multiplicativity, to see that the
number aN of such self-avoiding walks of length N on a given lattice grows
at first order exponentially with N . More precisely, since aN+M ≤ aNaM and
aN ≥ 2N (see e.g. [43]), there exists a lattice-dependent positive constant µ such

that a
1/N
N converges to µ (recall that without the self-avoiding constraint, the

number of walks of length N on the square lattice is 4N ) when N → ∞. For
the same reasons as before, in order to exploit conformal invariance, it will be
convenient to fix the endpoints of the curve instead of its length. The natural
attempt is therefore to consider the discrete measure on paths from A to B in D
(on a discrete lattice) that puts a weight proportional to µ−n to a self-avoiding
path from A to B in D with n steps, and to try to understand the limiting object,
when the mesh-size of the lattice goes to zero. Again, this gives an “intrinsic”
measure on paths, such that if one conditions PD′ to those curves that stay in
D, one obtains PD . But, as opposed to the random walk/Brownian case, the
existence of the limit when the mesh-size vanishes is still an open problem.

While there are basically no rigorous mathematical results concerning long
self-avoiding curves, various striking predictions have been formulated by theo-
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retical physics. Their arguments often invoke conformal field theory, and are at
present not well-understood on a rigorous mathematical level. We hope that the
results surveyed in the present notes gives to these predictions a clearer status.
Let us briefly mention one of their conjectures (see Nienhuis [45]):

When the mesh-size vanishes, the appropriately rescaled random self-avoiding
curve should look like continuous curves with fractal dimension 4/3. This can
be also formulated in the following weaker form: The typical diameter of a self-
avoiding walk with N steps is of the order of N 3/4 (in the same way as the
typical diameter of a simple random walk with N steps is roughly N 1/2 because
of the central limit theorem). This exponent 3/4 had first been proposed by
Flory, in the 1940’s [19].

Note that the notion of conformal invariance itself (that is implicitly used
in conformal field theory) has to our knowledge not be given a clean precise
meaning in the theoretical physics literature. Here, in our setting with fixed
endpoints, it can formulated as follows:

Conjecture 1 The scaling limits P SAWD,A,B of the measures on self-avoiding curves

from A to B in D (that puts weight proportional to µ−n(ω) to each such walk
ω, where n(ω) is its number of steps) exist. Furthermore, there are conformally
invariant in the sense that they are satisfy Proposition 1.

Note that, just as the measures on simple random walks do, the discrete
measures on self-avoiding curves satisfy restriction as well. This property should
clearly be preserved in this scaling limit. Hence, if the previous conjecture holds,
then clearly, the family P SAWD,A,B should also satisfy conformal restriction.

This has to be compared with the following theorem from [37] (see [33] for
the dimension) that we shall discuss in these lectures:

Theorem 2 There exists a unique probability measure on continuous paths
without double points, that satisfies conformal restriction. It is the chordal Schramm-
Loewner Evolution (SLE) with parameter 8/3, and it is supported on curves with
fractal dimension 4/3.

This of course leads to:

Conjecture 2 The scaling limit of the measure on self-avoiding curves exists
and it is this SLE8/3.

It is easy to construct other measures on curves that are “intrinsic”. For
instance, one can consider a measure on paths with double points but no triple
points, or no self-crossings. Or measures that penalize paths according to their
number of self-intersections (these are often called weakly self-avoiding walks in
the literature). For each model (and each lattice), there exists a lattice dependent
constant µ (that can be viewed as a critical value) such that the law of the
limiting model should exist and exhibit interesting features. If the limit exist
and is conformally invariant (which is not always the case), then it should satisfy
conformal restriction, and be related to the measures that we will be discussing
in these lectures.
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Fig 1. Sample (courtesy of Tom Kennedy) of the beginning of an infinite half-plane walk
(conjectured to converge to chordal SLE8/3).

1.5. Remarks on the half-plane measures

If one wishes to define the measure PBMH,0,∞, one can not use the same discrete

approximation as before because the paths are infinite (so that 4−n = 0 etc.). In
the discrete square lattice (if one considers a continuous time Markov chain), one
can describe the corresponding random walk as follows: The real coordinate X
jumps like ordinary random walk (there is no conditioning), while the imaginary
part Y is random walk “conditioned to never hit zero”. In other words, if Yt = y,
then at the next vertical jump, the walk moves up with probability 1 + 1/y and
down with probability 1− 1/y. The scaling limit of Y is the three-dimensional
Bessel process, which can be interpreted as Brownian motion conditioned to
remain forever positive (and for this reason, this process tends almost surely to
infinity when time grows to infinity), see e.g. [47]. Note that (both in the discrete
and continuous picture), the law of the two-dimensional process Zt = (Xt, Yt)
in the upper half-plane can be understood as follows: For any fixed t, the law
of (Zs, s ≤ t) is the limit of that of the restriction to the time-interval [0, t] of
a planar Brownian motion (or simple random walk) of length T conditioned to
remain in the upper half-plane on the whole time-interval [0, T ], when T →∞.
In this sense, PBMH,0,∞ can be viewed as a uniform measure. This last remark also

holds for the measures PH,0,∞, where H ⊂ H is a simply connected subset of H
such that H \H is bounded and bounded away from the origin (in the sequel,
when we use the notation H , we will implicitly mean such sets).

It is also possible to define rigorously the measure on infinite discrete self-
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Fig 2. Beginning of a sample of a discrete approximation of PBMH,0,∞.

avoiding paths in the upper half-plane: One can consider the uniform measure
on self-avoiding walks S of length N on Z2 started from the origin, and that
stay in the upper-half plane. Then, when n is fixed and N tends to infinity, the
law of S(0), . . . , S(n) can be proved to converge [36], building on arguments of
Kesten and Madras-Slade [26, 43]. Since this holds for all n, this defines a law
on infinite self-avoiding walks S from 0 to infinity in the upper half-plane, that
can be heuristically understood as the uniform measure on infinite self-avoiding
walks from the origin to infinity in the upper half-plane. In this case, the scaling
limit problem is the existence of the limit of the law of the path of δS when
δ → 0 (corresponding to the walk on the lattice δZ2).

2. The restriction exponent

2.1. The exponent for the Brownian measure

Let us first focus on the Brownian measure P = PBMH,0,∞. The following descrip-

tion of P will be useful: Consider a Brownian path Z that is started from iε,
and that is conditioned to hit the line {=z = R} before the real line. When
ε→ 0 and R→∞ (regardless of the order of the limits), the law of Z converges
to P in some appropriate sense. Note that the probability that a Brownian mo-
tion started from iε hits the line {=z = R} before the real line is exactly ε/R
(because =Z is a martingale, i.e. its mean-value is constant). This corresponds
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to start Z very very close to 0 and to reach a “neighbourhood” of the boundary
point at infinity.

Suppose that the law of Z is P . Suppose that ε is very small, R is very large.
The law of Z is close to R/ε times the law of a Brownian motion started from
iε, restricted to the event that it hits {=(z) = R} before the real line. What is
the probability that Z also stays in H? The previous description shows that it
is close to R/ε times the probability that a Brownian motion started from iε
hits {=(z) = R} before exiting H .

We now consider the image of this Brownian motion under the mapping ΦH

that is defined as follows: ΦH is the unique conformal map from H onto H such
that

ΦH(0) = 0 and ΦH(z) ∼ z when z →∞
(by Riemann’s mapping Theorem, this mapping exists and is unique). We will
use this definition of ΦH throughout the paper. If one looks at the image of this
Brownian motion under the mapping ΦH , one sees that this is R/ε times the
probability that a Brownian motion started (near) from iΦ′(0)ε hits =(z) = R
(since Φ(z) ∼ z at infinity, this is close to =(Φ−1(z)) = R) before the real line.
In other words, this probability is close to Φ′H(0)ε/R× (R/ε) = Φ′H(0). In the
limit when ε→ 0 and R→∞, we see that [53, 37] for all H ,

P [γ ⊂ H ] = Φ′H(0). (1)

Here (and in the sequel), when we write γ ⊂ H , we will implicitly mean that
γ ⊂ H ∪ {0}.

2.2. Restriction exponent

As we shall now see, the fact that this probability in (1) is a power of Φ′H(0) is
in fact a general feature of conformal restriction. This power (1, in the Brownian
case) will be called the restriction exponent.

Suppose that a random curve γ from the origin to infinity in the upper
half-plane satisfies conformal restriction. Note that it implies that its law is
scale-invariant (because z 7→ λz is a conformal transformation that maps H
onto itself). One can view the probability P [γ ⊂ H ] as a function f(ΦH) of ΦH .
Recall that the law of ΦH(γ), when γ is conditioned to stay in H , is identical
to the law of γ itself, so that the probability that it stays in some other set H ′

is f(ΦH′). Hence,

f(ΦH′ ◦ ΦH) = P [γ ⊂ Φ−1
H ◦ Φ−1

H′ (H)]

= P [γ ⊂ Φ−1
H ◦ Φ−1

H′ (H) | γ ⊂ H ]P [γ ⊂ H ]

= f(ΦH)× f(ΦH′).

In other words, the function f is a homomorphism from the semi-group of
conformal mappings ΦH onto the multiplicative semi-group [0, 1]. We will now
briefly and heuristically justify that it implies in fact that f(ΦH) = Φ′H(0)α for
some exponent α:
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Loewner’s theory (and we will come back to this later) shows that there exists
a one-parameter family ϕt of mappings (in fact ϕt = ΦH\η[0,t] for a well-defined

curve η) such that
ϕt+s = ϕt ◦ ϕs

for all t, s. It follows immediately that for some constants c and α,

(ϕt)′(0) = exp(−ct) and f(ϕt) = exp(−cαt) = (ϕt)′(0)α.

If we define for any positive real x, ϕtx(z) = xϕt(z/x), we see immediately
that (ϕtx)′(0) = (ϕt)′(0), and the scale-invariance of γ implies that f(ϕtx) =
f(ϕt). Similarly, one can see that f (and the derivative at 0) are invariant under
conjugation with respect to the symmetry σ with respect to the imaginary axis.

But Loewner’s theory (e.g. [18]) shows that it is fact possible to approximate
any mapping ΦH by the iteration of many conformal maps φ1, . . . , φn such that
each φj is a conformal map of the type ϕtx (or σ ◦ ϕtx ◦ σ). It follows that

f(ΦH) ∼ f(φ1 ◦ · · · ◦ φn)

= f(φ1)× · · · × f(φn)

= φ′1(0)α × · · · × φ′n(0)α

= (φ1 ◦ · · · ◦ φn)′(0)α

∼ Φ′H(0)α.

We have just indicated a rough justification of the fact that:

Proposition 3 If the path γ satisfies conformal restriction, then there exists a
constant α > 0 such that for all H,

P [γ ⊂ H ] = Φ′H(0)α. (2)

We call α the restriction exponent of γ.

2.3. Characterization of the filling by the exponent

Suppose for a moment that γ is a random simple curve (i.e. with no double
points) from the origin to infinity in the upper half-plane that satisfies conformal
restriction. We have just seen that there exists a positive constant α such that
for all H , (2) holds. Furthermore, since γ is a simple curve, it is in fact not
difficult to see that the knowledge of P [γ ⊂ H ] for all H characterizes the law
of γ (modulo time-reparametrization). Hence, this reduces the possible laws of
such random curves γ to a one-dimensional family indexed by the parameter
α. We shall later see that in fact, only one value of α gives rise to the law of a
random simple curve.

Let us now see what the formula (2) tells about the law of γ, if we do not
assume a priori that γ is a simple curve. Define the filling F(γ) of a curve γ as
the set of points in H\γ that are not in the connected components of H\γ that
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Fig 3. A curve

Fig 4. Its filling

have (0,∞) and (−∞, 0) on their boundaries. If γ is a continuous curve from
0 to infinity in H, then F(γ) is a closed connected subset of H, and H \ F(γ)
consists of two unbounded connected components: C+(γ) and C−(γ) that have
respectively R+ and R− as parts of their boundaries. When γ is a simple curve,
then F(γ) = γ.

More generally, one can define fillings of other sets than curves: Fillings of
the union of two curves, fillings of the union of fillings of curves etc.

It is easy to see that the law of the filling F(γ) of a random curve is char-
acterized by the knowledge of the probabilities of the events F(γ) ⊂ H . But
(recall that the H ’s are simply connected), this is the same event as γ ⊂ H . In
particular, we see that the law of the filling F(γ) of curves that satisfy conformal
restriction is fully determined by the restriction exponent α.

This leads to the following definitions:

• We say that a closed connected set F connecting the origin to infinity in
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the upper half-plane is a filled if F(F ) = F . This is for instance the case
if F is the filling of a curve γ.
• We say that the random filled set F satisfies conformal restriction, if its

law is scale-inavriant (i.e. λF and F have the same law) and if for all H ,
the law of F given F ⊂ H is identical to the law of Φ−1

H (H).

The same arguments as before show that if a random filled set F satisfies con-
formal restriction, then there exists a positive exponent α such that for all H ,

P [F ⊂ H ] = Φ′H(0)α. (3)

And, conversely, for each positive α, there exists at most one law of a random
filled set F satisfying (3) for all H . If it holds, then (and we leave this as an
exercise), it follows that F satisfies conformal restriction. We call the law of F
the restriction measure with exponent α if it exists. We know that when α = 1,
this law exists: It is that of the filling of the conditioned Brownian motion.

Intuitively, the larger the exponent α is, the bigger the (possible) correspond-
ing random filled set F should be (because then, P [F ⊂ H ] decreases with α).
For instance, suppose that F1 and F2 are two independent filled sets with re-
spective exponents α1 and α2. Then, define F = F(F1 ∪ F2). Clearly, F ⊂ H if
and only if both F1 and F2 stay in H . Hence,

P [F ⊂ H ] = Φ′H(0)α1Φ′H(0)α2

and the random filled set F satisfies conformal restriction with exponent α1+α2.
This shows that for all positive integer n, the law of a random filled set

satisfying conformal restriction with exponent n exists: It can be constructed as
the filling of the union of n independent Brownian motions.

Also, suppose that there exists an exponent α0 such that the corresponding
law of a filled set satisfying conformal restriction exists, and is supported on
simple curves: Then, by filling unions of independent samples of this law and of
Brownian motions, one can construct the laws with exponents n +mα0 for all
integers n ≥ 0 and m ≥ 1. All these measures (except when n = 0 and m = 1
of course) can not be supported on simple curves (if n ≥ 1, it already contains
a Brownian motion with plenty of double points, if m ≥ 2 it contains the union
of two different simple curves). All this seems to indicate that when α is large,
the corresponding restriction measure is not supported on simple curves.

On the other hand, it is not difficult to see that when α is too small, the
corresponding restriction measure does not exist. The reason is that the random
set F has to connect the origin to infinity. In particular, it has to intersect the
unit circle (or more precisely, the intersection of the unit circle and the upper
half-plane). Hence, if K1 = {exp(iθ) : θ ∈ (0, π/2]} and K2 = {exp(iθ) : θ ∈
[π/2, π)}, then

P [F ∩K1 6= ∅] + P [F ∩K2 6= ∅] ≥ 1.

Hence,
2Φ′H\K1

(0)α ≥ 1,
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which gives a lower bound to the admissible values of α.
We shall see that in fact, things are indeed as one might guess at this point:

Theorem 4 There exists a critical value α0 such that:

• If α < α0, there is no random filled set satisfying conformal restriction
with exponent α.
• There exists a random simple curve satisfying conformal restriction with

exponent α0

• For all α > α0, there exists a random filled set satisfying restriction with
exponent α, and it is almost surely not a simple curve.

This theorem partially generalizes Theorem 2 and its proof will proceed in sev-
eral steps. As we shall see, the critical value is α0 = 5/8 and corresponds to
SLE8/3. The scaling exponent 5/8 for the boundary behaviour of self-avoiding
walks appeared first in the theoretical physics literature in a (slightly) different
context in Cardy’s paper [10].

It is worth stressing that this theorem gives a complete description of what
the scaling limit of self-avoiding walks should be, assuming that it exists and
is conformally invariant, because the formula P [γ ⊂ H ] = Φ′H(0)5/8 (for all H)
gives the law of γ. It is possible (but not trivial) to simulate very long self-
avoiding walks in a half-plane, using a modified version of the pivot algorithm
(basically, one has to find a Markov chains with the proper invariant measure,
and let it run a sufficiently long time so that it reaches its stationary state).
This procedure is explained in detail in [23, 24]. This makes it possible to test
numerically the conjecture that for very long rescaled self-avoiding walks in
the half-plane, P [γ ⊂ H ] is close to Φ′H(0)5/8 by a Monte-Carlo procedure.
The results [24] are very accurate, and to our knowledge, they are the most
convincing evidence so far of the fact that the scaling limit of self-avoiding
walks exist and are conformally invariant.

3. The continuous intrinsic self-avoiding curve

3.1. Introduction to SLE via SAW

Suppose that the discrete measure on self-avoiding curves that was described
in the introduction indeed has a conformally invariant limit. We have already
heuristically argued that it should then satisfy conformal restriction. But, the
discrete measure has an additional property that we shall now exploit. It is
worthwhile stressing that this additional property is not shared by the condi-
tioned random walk/Brownian motion.

If one knows the first m steps of the walk, what is the law of the remaining
steps? In the case of the upper half-plane, one can heuristically argue as follows:
The law of γ is uniform. If one conditions the uniform measure, one obtains the
uniform measure on the smaller set. In particular, the law of S(m), S(m+1), . . .
will be the uniform measure on the self-avoiding walks from S(m) to infinity
that stay in H \ {S(0), . . . , S(m)}. In the scaling limit, assuming its existence
and conformal invariance, this property would become:
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(P): Given γ[0, t], the conditional law of γ[t,∞) is identical to the law of f−1(γ̃),
where γ̃ is an independent copy of γ and f is a conformal map from H \ γ[0, t]
onto H such that f(γt) = 0 and f(∞) =∞.

In the case of a finite domain D, the discrete property is even clearer. Recall
that the mass of a walk ω of length n from A to B in D is proportional to xn

for some well-chosen and lattice-dependent x. If one conditions on the first m
steps of ω, then the mass of the future will be proportional to xn−m and the
conditional measure is supported on the self-avoiding walks from S(m) to B in
D \ S[0,m].

Hence, one would like to find a random continuous curve γ satisfying (P).
Also, the curve γ should be symmetric with respect to the imaginary axis (the
law of the image of γ under this symmetry is identical to the law of γ). These
two conditions are exactly those that did lead Oded Schramm [49] to define SLE,
in the context of loop-erased random walks (see [49], or [28, 29, 55] for a survey
and introduction on SLE). Here is a very brief outline of how one constructs
SLE building on this idea:

The first observation is that if γ is a random simple curve from 0 to infinity
in the upper half-plane, then it will be natural and useful to parametrize it in
such a way that for each t, there exists a conformal map gt from H \ γ[0, t] that
satisfies:

gt(z) = z +
2t

z
+ o(

1

z
)

when z →∞. This can be thought of as a way to (re)-parametrize the curve in
such a way that “seen from infinity” it grows at constant speed. Then, one can
define Wt = gt(γt). The previous property shows that (for the random curve
that we are looking for), the law of gt(γ[t,∞)) given γ[0, t] is identical to the
scaling limit of a self-avoiding walk from Wt to infinity in H. In other words,
the conditional law of gt(γ[t,∞))−Wt is identical to the law of γ.

When s is very small, it is not difficult to see that for each fixed z ∈ H

gs(z) = z +
2s

z
+ o(s).

This is due to the fact that when s is small, seen from z and infinity, γ[0, s]
looks like a straight slit [0, 2i

√
s] at first order. Recall that for a straight slit,

one would have
gs(z) =

√
z2 + 4s.

Hence, this implies that (for general γ) at t = 0, the time-derivative of gt(z) is
2/z.

Similarly, when t > 0 is fixed and s is small, gt(γ[t, t+s]) looks like a straight
slit growing near Wt, and

gt+s(z) = gt(z) +
2s

gt(z)−Wt
+ o(s).
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Hence,

∂tgt(z) =
2

gt(z)−Wt
. (4)

This equation is interesting, because it shows that it is in fact possible to
recover the curve γ from the real-valued continuous function W : For each z,
it suffices to solve the ordinary differential equation (4) with g0(z) = z. This
constructs the mappings gt, and γ then follows since g−1

t (H) = H \ γ[0, t].
Hence, in order to construct a random simple curve γ, it suffices to construct
the corresponding random function t 7→Wt.

Property (P) implies exactly that given W [0, t], the law of (W (t + s) −
W (t), s ≥ 0) is identical to the law of an independent copy of W . In other
words, W is a continuous Markov process with independent increments. Sym-
metry shows that W and −W have the same law. Hence, the only possibility is
that W is real Brownian motion. More precisely, there exists a constant variance
κ ≥ 0 such that Wt/

√
κ is a standard Brownian motion B.

To sum up things, we have just seen that if the (simple) scaling limit of
the self-avoiding curves exist and are conformally invariant, then they can be
constructed as follows, for some given constant κ: Define Wt = Bκt where B is
ordinary real-valued Brownian motion. Then, solve for each fixed z the equation
(4) with initial data g0(z) = z. This defines the mappings t 7→ gt(z). Since one
can do this for each z, this procedure defines the conformal maps z 7→ gt(z) for
each fixed t. Then, γ is constructed by γ(0, t] = H \ g−1

t (H), or more precisely
by

γ(t) = g−1
t (Wt)

if g−1
t extends continuously to Wt (and it turns out to be almost surely the case).

The curve γ is called the Schramm-Loewner evolution (SLE) with parameter
κ. Actually, it is called chordal SLE to indicate that it goes from one point of
the boundary to another boundary point of the domain (H here), as opposed to
other versions (radial, whole-plane), but since chordal SLE will be the only one
that we will study in these notes, we just call it SLE.

For a general definition/introduction to SLE, see for instance [55, 29], or the
original paper [49]. The following results can be proved, but they are not easy.
The purpose of these lectures is not to focus on them, so we just list them,
without further justification (see [48] for the original proofs):

• For all κ ≤ 4, this procedure does indeed (almost surely) construct a
simple curve γ ([48]).
• For all κ > 4, this procedure does (almost surely) construct a continuous

curve γ, but this curve is not simple. It has double points.
• For all κ ≥ 8, this procedure does almost surely construct a continuous

space-filling curve γ.

Also, it can be shown (except in the case where κ = 4, which is still open), that
the Hausdorff dimension of γ is almost surely 1 + κ/8 when κ ≤ 8. See [6] for
the general case.
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3.2. Conformal restriction for SLE8/3

We are now going to combine this with conformal restriction, that the random
simple curve γ (that would be the scaling limit of the infinite half-plane self-
avoiding walk) should also satisfy: Let us fix an H . We know that for some
exponent α,

P [γ ⊂ H ] = Φ′H(0)α.

If we know γ[0, t], what is the conditional probability that γ ⊂ H when γ is an
SLE? Of course, this question is non-trivial only if γ[0, t] ⊂ H . Let us map the
future of γ by the uniformizing map gt. The conditional law of gt(γ[t,∞))−Wt

is the same as the law of γ. In particular, for any H ′,

P [gt(γ[t,∞))−Wt ⊂ H ′ | γ[0, t]] = Φ′H′(0)α.

Note that γ[t,∞) ⊂ H means that gt(γ[t,∞)) ⊂ gt(H). Hence,

P [γ ⊂ H | γ[0, t]] = Φ′gt(H)−Wt
(0)α = Φ′gt(H)(Wt)

α.

This means that this last quantity must be a martingale, and this has to hold
for any H .

It so happens that this only holds for one specific choice of κ. Namely κ =
8/3 and the corresponding value of α is then 5/8. Let us now outline how the
computation goes. It can be performed directly and rigorously for macroscopic
H \H (we will mention this proof later on), but at least on the heuristic level,
one can also focus on the case where H = H \ [x, x + iδ] for an infinitesimally
small δ. Recall that the conformal map ΦH in this case is

ΦH(z) =
√

(z − x)2 + δ2 −
√
x2 + δ2.

The probability to avoid the infinitesimal slit is therefore roughly

Φ′H(0)α = (1 +
δ2

x2
)−α/2 = 1− α

2x2
δ2 + o(δ2)

when δ → 0.
After a small time t, let us look what the conditional probability to hit this

infinitesimal slit becomes: After mapping by the map gt, it is the probability
that an SLE started from Wt hits gt([x, x+ iδ]) that (at first order) is the same
as the infinitesimal slit [gt(x), gt(x) + iδg′t(x)]. The value of this quantity is (by
the same computation as before)

1− αg′t(x)2

2(gt(x)−Wt)2
+ o(δ2).

In other words, we need
g′t(x)2/(gt(x)−Wt)

2
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to be a (local) martingale. Recall that Wt =
√
κBt, that gt(x) and g′t(x) (by

formal differentiation with respect to x) are C1 functions of time:

∂tgt(x) =
2

gt(x)−Wt
and ∂tg

′
t(x) =

−2g′t(x)

(gt(x)−Wt)2
.

Itô’s formula (loosely speaking, Taylor’s expansion using the fact that the mean
value of W 2

t is κt) shows that the drift term of g′t(x)2/(gt(x) −Wt)
2 (i.e. the

mean first term in t when t→ 0) is

−4g′t(x)2

(gt(x) −Wt)4
+

−4g′t(x)2

(gt(x) −Wt)4
+
κ

2
× 2× 3× g′t(x)2

(gt(x)−Wt)4

= (−8 + 3κ)
g′t(x)2

(gt(x) −Wt)4

that vanishes only when κ = 8/3.
The value of α can then determined by inspection of the higher-order terms.

This infinitesimal approach was shown in [21] to be related to highest-weight
representations of the algebra of polynomial vector fields on the unit circle (these
representations were those used in the theoretical physics literature to predict
the value of critical exponents). We will come back to this later.

4. One-sided restriction

4.1. Definition

Suppose now that a random curve (or filled set) F from the origin to infinity
in the upper half-plane H satisfies the following weaker form of conformal re-
striction: For any simply connected H+ ⊂ H such that H \H+ is bounded, and
bounded away from the whole negative half-line, the conditional law of ΦH+(F )
given F ⊂ H+ is identical to the law of F . We then say that F satisfies one-sided
restriction.

The difference is that we impose that H+ has the negative half-line on its
boundary. In doing that, we break the σ-symmetry with respect to the imaginary
line. In the sequel, when we use the notation H+, we will always implicitly mean
for such sets.

Of course, if F satisfies restriction then it satisfies also one-sided restriction.
Conversely, if F satisfies one-sided restriction, then, the same arguments as in
the two-sided case end up showing that there exists α > 0 such that for all H+,

P [F ⊂ H+] = Φ′H+
(0)α. (5)

As before, this relation does not fully characterize the law of F . It does char-
acterize the law of “its right-boundary”. This can be defined in terms of its
one-sided filling, i.e. the set of points in H that are separated from R+ by F .
The boundary of this one-sided filling consists of R− and of a curve γ+(F ), that
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Fig 5. A curve

Fig 6. Its one-sided filling

we call the right-boundary of F . It is easy to see that the relation (5) charac-
terizes the law of γ+(F ). Note that it is a priori not clear that γ+ is a curve,
even less that it is a simple curve, but it will turn out that it is indeed the case.
We call it (if it exists) a one-sided restriction curve with exponent α.

We shall see that for all α ≥ 5/8, the two-sided restriction measure with
exponent α exists. Hence, the one-sided restriction curve with the same exponent
exists too (just take the right-boundary of the sample of the two-sided measure).
Recall that the non-existence of the (two-sided) restriction measure for small
α was based on a symmetry argument. This does not apply to the one-sided
case. In fact, we shall see that the one-sided restriction curve exist for all α and
we will show four very different ways to construct these one-sided restriction
measures.
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4.2. Reflected Brownian excursions

We start with the example of the Brownian motion, that it started from the
origin, reflected orthogonally on the negative half-axis (so that it stays in H)
and conditioned never to hit the positive half-line (this will, as before, imply
that the motion is transient and tends to infinity). It is in fact convenient to
use a reflection and conformal invariance argument to construct this process
starting from a sample B of PBMH,0,∞. Modulo time-change, the law of the path

B2 (the path of the square of the complex-valued process B) is PBMC\R+,0,∞
. We

now define Z by reflection of B2 with respect to the real axis: The real part
of Z is the real part of B2, and the imaginary part of Z is the absolute value
of the imaginary part of B2. The path of Z is (modulo time-change) that of a
Brownian motion in the upper half-plane, that is orthogonally reflected on the
negative half-line, and conditioned not to hit the positive half-line.

Because B satisfies restriction, it is easy to see that Z satisfies one-sided
restriction. For each H+, conditioning Z to stay in H+ means to condition B to
stay in some set H (and does not change the law, modulo conformal invariance).
Furthermore, it is easy (and left to the reader) to see that the obtained one-sided
exponent is 1/2. More generally, this procedure can be applied to any two-sided
restriction measure, and produces the one-sided restriction measure with half
its exponent.

This has the following rather surprising consequence: The right-boundary of
the union of two copies of Z (conditioned reflected Brownian motion) has the
same law as the right-boundary of B (conditioned Brownian motion). We shall
see plenty of such identities in law between the right-boundaries of sets that are
constructed in very different ways.

It is interesting to note that the process Z is a scale-invariant Markov process.
Reflected Brownian motion is conformally invariant, so that, just as for the or-
dinary Brownian motion, one can a priori argue that this conditioned reflected
Brownian motion does satisfy one-sided conformal restriction. The same argu-
ment applies also even when the reflection is not orthogonal. We will not describe
non-orthogonal reflection in detail here (see e.g. [52]) but we mention that for
each θ ∈ (0, π), there exists a Brownian motion in the upper half-plane that is
reflected on the real line with an angle θ (i.e. the push when it hits the real
line is proportional to exp(iθ)). If one starts this process from the origin and
(appropriately) conditions it never to hit the positive real axis, then one obtains
a random path from the origin to infinity that hits the negative half-line, but
not the positive half-line. It is then possible (and not difficult) to see that:

Theorem 5 The right-boundary of reflected Brownian motion (with angle θ on
the negative half-axis) conditioned to never hit the positive half-axis satisfies
one-sided restriction with exponent α = 1− θ/π.

When θ is close to 0, then the reflection pushes the motion very strongly to-
wards the origin (and therefore towards the positive half-line, which the motion
tries to avoid because of the conditioning), so that in the limit where θ = 0, one
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obtains simply Brownian motion conditioned to avoid the whole real line and
the restriction measure with exponent 1. Similarly, it is not difficult to see that
for all H+, in the limit where θ → π, the probability that B stays on H+ goes
to one (and the limiting exponent is 0).

Note that the right-boundary of the union of independent sets satisfying one-
sided restriction does also satisfy one-sided restriction, and (as in the two-sided
case), the corresponding exponent is the sum of the exponents. In particular,
for all α > 0, it is possible to find α1, . . . , αn in (0, 1) such that α1 + · · ·+αn =
α, and therefore to construct a set satisfying one-sided conformal restriction
with exponent α, as the right-boundary of the union of n conditioned reflected
Brownian motions. This also implies that this right-boundary is almost surely
a path (because planar Brownian motion can be proved to have no double cut-
points, see [9]).

Corollary 6 For all α > 0, the one-sided restriction path with exponent α does
exist and it is a simple path.

We can now already use this to prove the following result on two-sided re-
striction measures:

Corollary 7 For all α < 5/8, the two-sided restriction measure with exponent
α does not exist.

Proof. Suppose that γ+ is the right boundary of a two-sided restriction measure
with exponent α < 5/8. By symmetry, the probability that it passes to the
right of i (i.e. that it separates i from the positive half-line in H) is at least
1/2. By adding an independent conditioned reflected Brownian motion (with
appropriately chosen angle) and taking the right-boundary of the union, one
obtains the right-boundary of a one-sided restriction sample with exponent 5/8,
and the probability that it passes “to the right of i” is then strictly larger than
1/2. But we know that the right-boundary of the two-sided restriction measure
with exponent 5/8 can be realized as an SLE8/3 curve itself (we know it is
a simple curve, so it is its own right boundary), and by symmetry, it has a
probability 1/2 to pass to the right of i. This leads to a contradiction.

4.3. Poisson clouds of Brownian excursions

We now describe another way to construct the one-sided restriction measures
with exponent α. It is in fact related to the previous one, and corresponds to
the limiting case where one decomposes α in n times α/n, so that the restriction
sample is constructed as the union of a lot of independent conditioned reflected
Brownian motions with a very steep angle (here, close to π).

For each real x, there is a natural infinite measure on Brownian paths started
from x in the upper half-plane:

µH,x =

∫

R
dy

y2
PBMH,x,x+y

.
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This is simply the rescaled limit when ε → 0, of the law of Brownian motion
started from x + iε, and killed at its first exit of H (the previous integral cor-
responds simply to a decomposition according to the location of the exit point
y).

We now construct a measure µH with non-prescribed starting point by in-
tegrating the starting point according to the Lebesgue measure on R: µH =∫
R dxµH,x. This is the Brownian excursion measure, as constructed in [39]. Fi-

nally, we restrict this measure to the set of paths that start and end on the
negative half-line. We call µ− the obtained measure. In other words:

µ− =

∫

R−
dx

∫ −x

−∞

dy

y2
PH,x,x+y.

Suppose now that the set H+ is given, and define µ−H+
to be µ− restricted

to those paths that stay in H+. Then, one can take the image of this measure
under ΦH+ . It is a simple exercise (using the fact that PH,x,x+y satisfy restriction

with exponent 1), to see that this image measure is identical to µ− itself. The
point is that the Φ′(x)dx term due to the map Φ is balanced out exactly by
conformal restriction. The measure µ− therefore satisfies some generalization of
one-sided conformal restriction (it is not exactly the same property as before
though, because it is an infinite measure, so that conditioning does not make
sense anymore).

For each (even infinite) measure µ on a state-space S, one can construct a
Poissonian realization of µ. This is a random countable (or finite) collection
(xj , j ∈ J) of elements of S. Its law is characterized by the following two facts:

• For any disjoint measurable subsets A and A′ of S, the events {∃j ∈ J :
xj ∈ A} and {∃j ∈ J : xj ∈ A′} are independent.
• For any measurable A, the number of j’s such that xj ∈ A is a Poisson

random variable with mean µ(A).

Hence, for each β > 0, one can define a random Poissonian realization (γj) of
βµ−. Since the measure µ− is infinite, this is an random infinite collection of
Brownian curves that start and end on the negative half-line. For each disjoint
compact intervals I and I ′, the number of curves that start in I and end in
I ′ is almost surely finite. But the number of curves that start and end in I is
almost surely infinite. There are only finitely many “macroscopic” curves, and
infinitely many microscopic ones. We call Qβ the law of this random collection.

Not that the definition of the Poissonian realization implies immediately that
the union of two independent realizations ofQβ andQβ

′
is a realization ofQβ+β′ .

Suppose now that (βj , j ∈ J) is a realization of Qβ . One can consider the
right-boundary γ+ of ∪jγj .
Theorem 8 The right-boundary γ+ of ∪jγj satisfies one-sided conformal re-
striction with exponent cβ (for some given constant c).

Proof. It suffices in fact to check that γ+ satisfies conformal restriction (the
relation between the exponent and β then follows from the above-mentioned
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additivity property), and this follows rather readily from the “conformal re-
striction” property of µ−.

Note that Corollaries 6 and 7 can also be deduced from this alternative con-
struction of one-sided restriction measures.

4.4. Some remarks

We have now seen three different but equivalent constructions of this SLE8/3

curve:

• The SLE construction, via Loewner’s equation.
• The right boundary of a reflected Brownian motion with angle θ = 3π/8

on the negative half-line, conditioned not to intersect the positive half-line.
• The right-boundary of a Poisson cloud of Brownian excursions attached

to the negative half-line.

While in the first case, it is clear that this produces a random object that is
symmetric with respect to the imaginary half-axis, it can seem quite amazing
that the two latter constructions do. In particular, this shows for instance that
in the second construction if one sees only the outer boundary, one cannot
tell whether it has been generated as the right boundary of a Brownian motion
reflected on the negative half-axis, or as the left boundary of a Brownian motion
reflected on the positive half-axis. This shows that “the outer boundary of planar
Brownian motion is locally symmetric”: If one only sees a piece of this boundary,
one cannot tell on which side the Brownian motion is. A similar observation
follows from the fact (that only uses two-sided restriction) that the filling of the
union of eight independent SLE8/3 has the same law as the filling of the union
of 5 independent conditioned Brownian motions (they both satisfy conformal
restriction with exponent 5).

In any case, this shows that:

Corollary 9 If the random simple curve γ satisfies one-sided restriction, then
its Hausdorff dimension is almost surely 4/3. If a random filled set satisfies two-
sided restriction, then the Hausdorff dimension of its outer boundary is almost
surely 4/3.

Let us also note that the construction of one-sided restriction measures via
Poisson clouds of excursions show that it is possible to construct on the same
probability space an increasing family (Fα)α>0 of right-filled sets such that for
each fixed α, Fα satisfies one-sided restriction with exponent α (the point is
that it is an increasing family). In the two-sided case, (to my knowledge) the
corresponding problem is open:

Question 1 Is it possible to define an INCREASING family of filled sets (Fα)α≥5/8

satisfying two-sided restriction with respective exponents α?
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5. Restriction defect when κ 6= 8/3

5.1. The martingale

As we have already seen, when κ 6= 8/3, SLE does not satisfy conformal restric-
tion. Let us start with analytic considerations, and let us see what goes wrong
with the “global” proof of conformal restriction as soon as κ 6= 8/3.

Suppose that H is fixed, and that γ is an SLEκ. Define the maps gt as before.
Also, define

ht = Φgt(H).

This means that ht ◦ gt is a conformal map from H \ γ[0, t] onto H. When
κ = 8/3, let us look at the conditional probability that γ ⊂ H given γ[0, t].
When γ[0, t] ⊂ H , this means that gt(γ[t,∞)) ⊂ gt(H). In other words, this
conditional probability is equal to h′t(Wt)

α, where α = 5/8.
The actual proof of this fact proceeds as follows. First, one has to note that

the mapping (t, z) 7→ h′t(z) is C1 with respect to t and analytic with respect to
z. One works out the derivative with respect to time of h′t(z) in terms of the
mapping ht. A simple computation based (almost) only on the expression of the
derivative of the composition of maps shows that

∂tht(z) =
2h′t(Wt)

2

ht(z)− ht(Wt)
− 2h′t(z)

z −Wt
.

One can formally differentiate with repect to z, and get the expression for
∂th
′
t(z). In the limit where z →Wt, we then get that

(∂tht)(Wt) = −3h′′t (Wt) and (∂th
′
t)(Wt) =

h′′t (Wt)
2

2h′t(Wt)
− 4h′′′t (Wt)

3
.

If one looks at d(h′t(Wt)), one has to use a slightly extended version of Itô’s
formula (i.e. Taylor’s expansion using the fact that (dWt)

2 = κdt):

d(h′t(Wt)) = h′′t (Wt)dWt + (∂th
′
t)(Wt)dt+

κ

2
h′′′t (Wt)dt.

Similarly, if one looks at the variation of h′t(Wt)
α, one gets that

d(h′t(Wt)
α) = αh′t(Wt)

α−1h′′t (Wt)dWt

+
(α(α− 1)

2
h′t(Wt)

α−2h′′t (Wt)
2 + αh′t(Wt)

α−1h′′′t (Wt)
)

(dWt)
2

+αh′t(Wt)
α−1∂th

′
t(Wt)dt.

Hence, one ends up with the fact that

d(h′t(Wt))
α

αh′t(Wt)α
=

h′′t (Wt)

h′t(Wt)
dWt

+
((α− 1)κ+ 1

2

h′′t (Wt)
2

h′t(Wt)2

+(
κ

2
− 4

3
)
h′′′t (Wt)

h′t(Wt)

)
dt.
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In the special case where α = 5/8 and κ = 8/3, this is indeed a (local) martin-
gale, because the dt term vanishes. This gives the direct analytical proof of the
fact that SLE8/3 satisfies conformal restriction with exponent 5/8.

When κ 6= 8/3, there is no choice of α and κ that turns h′t(Wt)
α into a local

martingale. But it is natural to define

α(κ) =
6− κ

2κ
.

For this value,

d(h′t(Wt)
α) = αh′t(Wt)

α

(
h′′t (Wt)

h′t(Wt)
dWt + (

κ

2
− 4

3
)Sht(Wt)dt

)
. (6)

Here and in the sequel, Sf stands for the Schwarzian derivative of a map f
defined by

Sf =
f ′′′

f ′
− 3(f ′′)2

2(f ′)2
.

This is a well-known quantity in the theory of conformal maps. In our context,
we will only use it for conformal maps ht and at a boundary point. Recall that
ht is a conformal map (normalized) at infinity that removes H \ gt(H) (i.e. it
is a map from gt(H) onto H). One can think of −Sht(z) when z is on the real
line, as a (conformally invariant) way to measure the size of this removed set,
seen from z (this will be clear with the Brownian loops interpretation that we
will give a little later). In particular, Sht(Wt) is a negative quantity.

Equation (6) shows immediately that

Mt = h′t(Wt)
α exp(

λ

6

∫ t

0

Shs(Ws)ds) (7)

is a local martingale where

λ(κ) = (8− 3κ)α =
(8− 3κ)(6− κ)

2κ
.

This is simply due to the fact that

dMt = d(h′t(Wt)
α) exp(

λ

6

∫ t

0

Shs(Ws)ds) +
λ

6
Sht(Wt)Mtdt.

Since Sht(Wt) is negative, the local martingale M is positive and bounded
by one if κ ∈ [0, 8/3]. This implies that it converges in L1, and therefore that
Mt is the conditional expectation of some random variable M∞ given γ[0, t].

5.2. The κ = 2 case

It is useful to focus on the case where κ = 2 (note that in this case, the mar-
tingale is bounded). SLE2 is one of the few special cases where it has now been
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Fig 7. Beginning of a simple random walk and its loop-erasure

rigorously established that it is the scaling limit of a discrete model from statisti-
cal physics: SLE2 is the scaling limit of loop-erased random walk. More precisely,
the proofs in [35] can be adapted to show that if one erases chronologically the
loops of the random walk in a lattice (say, the square lattice) conditioned to
remain forever in the upper half-plane (the path that converges to the con-
ditioned Brownian motion) and considers the scaling limit of this loop-erased
random walk, one obtains chordal SLE2. The loop-erasing procedure is chrono-
logical in the sense that if (Zn, n ≥ 0) is the conditioned random walk, then
the loop-erased path (Lp, p ≥ 0) is defined by L0 = 0, and for each p ≥ 0,
np = sup{n : Zn = Lp}, and

Lp+1 = Znp+1

(all the loops from Lp back to itself have been erased).
In the discrete setting, it is therefore possible to couple a loop-erased random

walk together with the (conditioned) random that was used to construct it. It
is in fact not difficult to understand the conditional law of Z if one knows L:
One has to add random loops back on the top of L in some appropriate way.

In the scaling limit, this should remain valid: It is possible to couple an SLE2

with a conditioned Brownian motion, in such a way that in some sense, the SLE2

is the loop erasure of the Brownian motion (here, we avoid some subtle open
questions such as: Is this “loop-erasure” deterministic in the scaling limit?).
Conversely, if one adds the Brownian loops back on top of the SLE2 curves,
then one constructs exactly the conditioned Brownian motion. It is possible to
describe fully and rigorously this procedure to put Brownian loops back on top
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of a curve. This construction may seem somewhat complicated at first sight,
but it is in fact the direct generalization of the discrete case, that makes use of
conformal invariance.

One starts with an infinite measure on paths ν from 0 to 0 in the upper half-
space. It is a renormalized version of PBMH,0,0. Then, one considers the measure

dt ⊗ ν where dt is the Lebesgue measure on R+, and a Poissonian realization
((tj , ηj), j ∈ J) of dt ⊗ ν. One can view this realization as a random family of
Brownian loops (ηt, t ≥ 0) such that for all but countably many t’s, ηt = ∅,
whereas ηt = ηj when t = tj for j ∈ J . On each finite time-interval, there are
countably many loops, but only finitely many macroscopic ones (of diameter
larger than one, say).

Then, if (γt, t ≥ 0) is the SLE2, and gt the corresponding conformal maps,
one adds to the SLE the loops ltj = g−1

tj (Wtj + ηj). One transforms conformally
the loop ηj (that is a loop from 0 to 0 in H) into a loop from γtj to γtj in
H \ γ[0, tj ].

Since (SLE2 + the loops) should form a conditioned Brownian motion, the
obtained path satisfies conformal restriction with exponent 1. In particular, the
probability that neither the SLE nor the loops exit a given H is Φ′H(0). Let EH
denote this event. Let us now try to understand the conditional probability of
EH given γ[0, t]. Note that we do not have the knowledge of the loops (even for
tj ≤ t) here. There are two contributions:

First, it means that none of the loops that have been added before time t does
exit H . The probability that one adds a loop in the time-interval [t, t+ dt] that
exits H is −dtSht(Wt)/3 (this is not really surprising, −Sht(Wt) is a quantity
that measures the “size” of h−1

t (H) seen from Wt in H). Hence, because of the
Poissonian procedure, the probability that none of the loops that have been
added before t exits H is simply

exp(

∫ t

0

Shs(Ws)ds/3).

Second, there is the probability that in the future, the SLE + loops do stay
in H . This is exactly the probability that the Brownian motion started from γt
and conditioned to stay forever in H\γ[0, t] stays also in H (recall the definition
of loop-erased random walk). By conformal invariance, this is exactly h′t(Wt).

These two contributions are conditionally independent (because of the Pois-
sonian procedure, and the Markov property of the conditioned Brownian mo-
tion), so that in the end:

P [EH | γ[0, t]] = h′t(Wt) exp(

∫ t

0

Shs(Ws)ds/3).

This is exactly the martingale Mt when κ = 2. When t → ∞, the limit is
P [EH | γ[0,∞]]. When γ exits H , this quantity is zero. When γ ⊂ H , then it is
the probability that no added loop to this specific γ exits H .
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5.3. The general case

When κ ∈ (0, 8/3), one can interpret the martingale Mt in a very similar way
to the κ = 2 case. One adds to SLEκ a certain Poissonian cloud of Brownian
loops exactly as before, except that one changes the value of the parameter λ
(doubling λ means for instance to take the union of two independent clouds
corresponding to λ) into (6− κ)(8− 3κ)/2κ.

Then, and this can seem surprising, the obtained path satisfies conformal
restriction. The restriction exponent is α = (6− κ)/2κ. The martingale Mt can
then still be interpreted as

Mt = P [EH | γ[0, t]],

where EH is the event that (SLE+loops) stays in H .
When κ is close to 8/3, the density λ of the cloud vanishes, and the exponent

is close to 5/8 (from above), which is not surprising since when κ = 8/3, the SLE
itself (without extra loops) satisfies conformal restriction. When κ gets smaller,
one has to add more loops, and the exponent of the obtained restriction measure
gets larger. In the limit where κ is very small, then λ and α both go infinity.
This is not surprising as when κ is very small the SLE is very close to a straight
line, and therefore very far from a set satisfying conformal restriction.

Note that for each α ≥ 5/8, there exists a value κ ≤ 8/3 such that α(κ) = α.
The conformal restriction measure with exponent α can therefore be constructed
by this loop-adding procedure and proves that:

Theorem 10 For each α ≥ 5/8, the (two-sided) conformal restriction measure
with exponent α exists. Furthermore (because of the loops), when α > 5/8, the
two-sided conformal restriction measure is not supported on the set of simple
curves.

This concludes the proof of the list of results announced at the end of Sec-
tion 2.

Note for instance that for a given value κ (in fact κ = 6/5), one constructs
the two-sided restriction measure with exponent 2. So “from outside”, it is the
same as the union of two Brownian excursions, but they are constructed very
differently (in one case, SLE6/5 + loops can be viewed as a path, and in the
other case, one has the union of two paths).

When κ ∈ (8/3, 4], there is the problem that λ becomes negative. In other
words, there is no interpretation in terms of cloud of loops, and the martingale
Mt is not a priori bounded anymore. In particular, it can not be a conditional
probability (conditional probabilities are anyway bounded by one). The likely
scenario is that even though Mt is not bounded, the martingale still converges
in L1. In particular, when γ itself exits H , the derivative term (that goes to
zero) beats the exponential term (that goes to infinity). The case κ = 4 is
then critical, in the sense, that if one would add a little more loops, then the
exponential term would win instead. Anyway, the corresponding exponent α is
smaller than 5/8 when κ ∈ (8/3, 4] and it does therefore not correspond to a
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(two-sided) conformal restriction measure anymore since it does not exist for
these values of α.

6. The Brownian loop-soup

6.1. Definition

The Brownian loop-soup in the plane is a Poissonian realization of Brownian
loops (with non-prescribed length and non-prescribed starting points) in the
plane. In fact, it is a random family of unrooted loops (i.e. loops without special
marked points on it that can be viewed as its origin). More precisely, we call
an unrooted loop with time-length T a continuous mapping l from TS1 onto C,
where different loops obtained by shifting time are identified (i.e. l(T exp(i·))
and l(T exp(i(θ + ·))) are the same unrooted loop).

Define the law Px,T on Brownian loops starting and ending at x with time-
length T . This is simply Brownian motion started from x and properly condi-
tioned to be at x at time T . It is possible to view this as a probability measure
on unrooted loops. Then, we use non-deterministic starting points and time.
More precisely, we define the infinite measure on unrooted loops by

ν =

∫

C
dz2

∫ ∞

0

dT

T 2
Pz,T .

Finally, we define νD to be the measure ν restricted to those loops that stay
inside a given domain D.

This definition of νD has some very nice properties that recall conformal
restriction:

• If D ⊂ D′, then νD is equal to νD′ restricted to those loops that stay in
D (this is obvious from the definitions).
• If Φ is a conformal transformation from D onto D′, then the image of the

measure νD under the transformation Φ is νD′ .

This second property is quite strong, but it is easy to prove. Let us stress that
in order for this property to hold, it is important to work with unrooted loops.

The Brownian loop-soup with intensity λ is a Poissonian realization of λν (or
λνD): It is a random countable family of unrooted Brownian loops. It inherits
the properties of the measure ν:

• If (lj , j ∈ J ′) is a Brownian loop-soup in D′, and if J = {j ∈ J ′ : lj ⊂ D}
for some D ⊂ D′, then (lj , j ∈ J) is a Brownian loop-soup in D′.
• If (lj , j ∈ J) is a Brownian loop-soup in D and if Φ : D → D′ is a

conformal transformation, then (Φ(lj), j ∈ J) is a Brownian loop-soup in
D′ (modulo time-changing the loops).
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6.2. Relation between loops

Throughout this paragraph, the “intensity” λ will be fixed. Suppose that γ is
a path from zero to infinity in the upper half-plane (we do not have to assume
that it is a simple path, it could as well be a path that bounces on its own past
i.e. a path with double points but no “self-crossings”, or even just a Loewner
chain). Suppose that it is parametrized in the way that we described for Loewner
chains. We have already described one way to attach Brownian loops to γ (the
generalization to the intensity λ of the way that one would attach Brownian
loops to SLE2 in order to recover a Brownian excursion). This definition is
“dynamic”: For each time t, one tries to add a Brownian loop in H \ γ[0, t] that
starts and ends at γt.

Let us now define another way. Suppose that one has a random Brownian
loop soup (lj , j ∈ J) in the upper half-plane (with intensity λ). For each loop in
the soup, either it is hit by γ or not. For each loop lj that is hit by γ, we attach
it to γ (at the first time tj at which it hits lj).

These two procedures are a priori different, but:

Theorem 11 These two procedures to add randomly add loops to γ are identi-
cal.

This has a number of rather unexpected consequences:

• In the second construction, the right-boundary of the set obtained by
adding the loops to γ is identical to the set obtained to adding to γ only
those loops that do intersect the right-boundary of γ (this remark is non-
trivial only when γ is not a simple curve). Hence, it shows that adding
the loops dynamically to γ, or to its right-boundary also creates (in law)
the same right-boundary. This will be important in the discussion of the
“duality” conjectures.
• Adding loops dynamically to γ or to the time-reversal of γ (i.e. to view γ

as a path from infinity to the origin) is the same (even if a loop does not
appear at the same “time” in both cases). This will be important in the
discussion of the “reversibility” conjectures.
• In the previous section, we have seen that when κ ≥ 8/3 adding loops to

an SLEκ (and filling) creates a two-sided restriction measure. Hence we
have a formula for the probability that there exists a loop in the loop-soup
that intersects both the SLE and the complement of H (this probability
is Φ′H(0)α). This probability is clearly the same as that of the event that
the SLE does not hit the set formed by the complement of H and all the
loops in the loop-soup that intersect the complement of H . In other words,
Φ′H(0)α represents the probability that the SLE does avoid a random set
(one attaches the loops to the complement of H instead of to the SLE).
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7. SLE(κ, ρ) processes

7.1. Bessel processes

Let us first recall a few elementary facts on a special class of one-dimensional
Markov processes: The Bessel processes. Suppose that we are looking for a non-
negative one-dimensional Markov process X started from the origin that has
the same scaling properties as Brownian motion (i.e. multiplying time by K2 is
the same in law as multiplying space by K). Under mild conditions, X will be
solution of a stochastic differential equation:

dXt = σ(Xt)dBt + b(Xt)dt.

Scaling indicates that σ should be constant, and that b should be of the type
cst/x. One can scale out the constant σ by changing X into X/σ, so that one
is left with the SDE dXt = dBt + cdt/Xt. The solution to this SDE is called
the Bessel process with dimension d = 1 + 2c. Examples are for instance the
modulus of d-dimensional Brownian motion (that is obviously a Markov process
with the right scaling), when d is a positive integer. It is easy to see that:

• These processes are well-defined and exist if d > 1. They satisfy for all
t ≥ 0

Xt = Bt +

∫ t

0

d− 1

2Xs
ds (8)

(when d ≤ 1, this last equation cannot hold, one has to introduce an
additional local time push when X hits the origin).
• When d ≥ 2, the process never hits the origin for positive times. It does

hit the origin infinitely often if d < 2, but (8) still holds as long as d > 1.

Bessel processes appear in various settings, as soon as a scaling property
is combined with a Markov property (for instance for the so-called Ray-Knight
Theorems, see e.g. [47], where a detailed study of Bessel processes can be found).

In fact, one can view SLE as a two-dimensional version of the flow generated
by the stochastic differential equation (8). If gt’s are the conformal mappings
associated to an SLEκ, then define

Xz
t =

gt(z)−Wt√
κ

.

It satisfies

dXz
t = −dBt +

2

κXz
t

dt.

So, Xz
t can be viewed as the complex flow of the Bessel process of dimension

1 + (4/κ). The phase transition for SLE at κ = 4 corresponds to the phase
transition for Bessel processed at d = 2: When κ ≤ 4, the SLE is almost surely
a simple path with no double points, while when κ > 4 it is a path with many
double points (and it hits the real line infinitely often, which corresponds to the
fact that Xz

t hits almost surely zero for all real z).
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7.2. Definition

One motivation of what follows is to try understand the law of the (simple)
right-boundary of a restriction measure. When α = 5/8, we know that is it
SLE8/3, but what happens when α > 5/8? By scale-invariance of the restriction
measure, the right-boundary should be also scale-invariant. Recall that the right-
boundary should be a simple curve from the origin to infinity. Hence, it can be
viewed as obtained from a random continuous real-valued driving function Wt

via Loewner’s equation just as SLE8/3 is obtained from
√

8/3 times Brownian
motion. The question is therefore to understand the law of this random driving
function Wt. The right-boundary γ is then defined by

∂tgt(z) =
2

gt(z)−Wt

and γ(t) = g−1
t (Wt).

This process W is a priori not Markovian, and does not have stationary
increments. But it should have the same scaling property as Brownian motion
has. Also, it is rather natural to assume that if Ot is the image of the origin (more
precisely the “left” image of the origin) under gt, then the law of gt(γ[t,∞))
depends on the past only via the location of the two points Ot and Wt. Recall
that

Ot =

∫ t

0

2ds

Os −Ws
,

because Ot = gt(0) by Loewner’s equation. It therefore also satisfies the same
Brownian scaling as W . Hence, we are led to conclude that W − O is Markov
and satisfies the Brownian scaling property. It should therefore be (the multiple
of a) Bessel process.

Suppose that κ > 0 and ρ > −2 are fixed. We now define X as a Bessel
process of dimension 1 + 2(ρ+ 2)/κ, started from the origin. We will want that
the
√
κX = W −O. We therefore define

Ot = −2
√
κ

∫ t

0

dsXs

and
Wt = Ot +

√
κXt.

Then,

dWt =
ρ

Wt −Ot
dt+

√
κdBt.

in other words, the driving process is just as for SLEκ, but it gets an additional
(scale-invariant) push from the left-image of the origin. This push is repulsive or
attractive depending on the sign of ρ. We call the (two-dimensional) path that
is generated by this random driving function an SLE(κ, ρ). When ρ = 0, it is
ordinary SLEκ. The construction of SLE(κ, ρ) shows that it is scale-invariant.
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7.3. SLE(κ, ρ) and restriction

It turns out that the previous heuristic guess holds and indeed produces the
right boundaries of the conformal restriction measures:

Theorem 12 The right-boundary of the one-sided conformal restriction mea-
sure of exponent α is SLE(8/3, ρ), where

ρ =
−8 + 2

√
24α+ 1

3

(or equivalently, α = (3ρ+ 10)(2 + ρ)/32).

This is not really surprising; the dimension of the right-boundaries had to
be 4/3 and this already forces κ to be equal to 8/3. Then, one is left with
the one-dimensional family of SLE(8/3, ρ)’s that are the unique scale-invariant
candidates for the one-dimensional family of right-boundaries of restriction mea-
sures. In order to prove this Theorem rigorously, one proceeds roughly as in the
ρ = 0 case: One just has to find the correct martingales using Itô’s formula. It
turns out that the martingale is here

Mt = h′t(Wt)
5/8h′t(Ot)

b

(
ht(Wt)− ht(Ot)

Wt −Ot

)c

for well-chosen b and c (it is b = ρ(4 + 3ρ)/32 and c = 3ρ+ 8), and studying the
asymptotic behaviour of this martingale shows that it is indeed the conditional
probability of {γ ⊂ H} given γ[0, t], and that γ therefore satisfies conformal
restriction with exponent 5/8 + b+ c = α because

P[γ ⊂ H ] = E[M0] = Φ′H(0)5/8+b+c.

Recall that a Bessel process of dimension d hits the origin almost surely if and
only if d < 2. Here, it is not difficult to see that the process X hits the origin if
and only if the SLE(8/3, ρ) curve hits the negative half-line. Hence:

Proposition 13 Suppose that the simple curve γ satisfies one-sided restriction
with exponent α. Then, it does not intersect the negative half-line (almost surely)
if and only if α ≥ 1/3.

This was not obvious at all in the “reflected and conditioned Brownian motion
construction” or in the “Poissonian cloud of excursions construction” of these
curves γ.

7.4. Interpretation in terms of non-intersection

The previous martingale can be interpreted via non-intersection between inde-
pendent samples of restriction measures. We will here just give the hand-waving
interpretation. Suppose that one is considering an SLE8/3 (from the origin to
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infinity), and an independent one-sided filled restriction sample A with expo-
nent b > 0, started also from the origin, and that we condition γ and A not to
intersect. Of course, this is an event of probability zero, but it is possible to give
to this a rigorous meaning by an appropriate asymptotic procedure.

Then, one gets a “conditional” joint law for (A, γ). The marginal law of γ is
then that of an SLE(8/3, ρ), where ρ(4 + 3ρ)/32 = b. In other words, one can
interpret the repulsive push in the definition of SLE(8/3, ρ) as a conditioning
(not to intersect another independent restriction measure). With this interpre-
tation, it is not surprising that the SLE(8/3, ρ) satisfies one-sided restriction
(the non-intersection property is also “restriction-invariant”).

We therefore get the following interpretation of the exponents b, c and α:

• If one considers an SLE8/3 and a one-sided restriction measure, the expo-
nent that measures how unlikely it is that they do not intersect is c (for
instance, the probability that if they start at ε apart, they reach distance
one without intersecting is of the order εc).
• The exponent of the conditioned SLE (not to intersect the one-sided re-

striction measure of exponent b) is 5/8 + b+ c = α. This is the exponent
called ξ̃(5/8, b) in the papers [39, 30].
• The law of the conditioned SLE is SLE(8/3, ρ).

For instance, when b = 5/8, then one gets the law of two SLE8/3’s condi-
tioned not to intersect. We see that α = 2. Hence, the law of two SLE8/3’s
conditioned not to intersect is the same as the filling of the union of two in-
dependent Brownian excursions. Note that the fact that this exponent should
be α = 2 can be heuristically understood without using SLE just working with
self-avoiding walks (see [36]).

One can then iterate this: Condition two SLE8/3’s that are already condi-
tioned not intersect each other, not to intersect a third one. This leads to another
exponent, and to the description of these conditioned paths. This gives the half-
plane intersection exponents that had been predicted by Duplantier and Saleur
[17] for self-avoiding walks in a half-space (i.e. surface exponent polymers). Note
that this approach does not only provide the value of the exponents, but also
the precise description of the laws of the conditioned paths.

More generally, we see that all half-space critical exponents that had been
derived (via SLE) or predicted in theoretical physics (via conformal field theory,
Coulomb gas methods or the KPZ quantum gravity functions), seem to fit in
the present “conformal restriction” framework. In the special case κ = 2, one
for instance recovers the exponents derived by Rick Kenyon [25] for loop-erased
random walks and uniform spanning trees (these exponents had been predicted
in [15]) using the link with tiling enumerations. The other (full-plane) exponents
can be similarly worked out using “radial restriction”.

When κ 6= 8/3, one can still define SLE(κ, ρ) in the same way. In this case, the
martingale M involves an additional term with the exponential of the integral
of the Schwarzian derivatives. This shows that for κ < 8/3, (SLE(κ, ρ) + loops)
still satisfies (one-sided) restriction, with an exponent that depends on the two
parameters κ and ρ.
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It is worth emphasizing that the “KPZ function” proposed by Knizhnik,
Polyakov and Zamolodchikov [27] and used by Bertrand Duplantier [16] to pre-
dict the exact values of these exponents can be interpreted in a simple way in
the present setup. Basically, the function U (or U−1 depending on the conven-
tions used) associated to the exponent b in the complex plane is the value ρ
such that the SLE(κ, ρ) is SLE conditioned to avoid a restriction measure of
exponent b. Recall from [38] that the existence of the function U can also be
derived by simple considerations based on restriction-type considerations.

7.5. Another construction of the two-sided measure

We have seen that the right-boundary of a filled set satisfying two-sided restric-
tion with exponent α is an SLE(8/3, ρ) (because it satisfies one-sided restric-
tion). This raises naturally the question whether it is possible to construct the
left boundary, if one conditions on the knowledge of this right boundary.

Suppose for a moment that α ≥ 2. The previous interpretation of the mar-
tingale M shows that the sample of the two-sided restriction measure with
exponent α can be viewed as the filling of the union of two independent samples
γ and F0 of two-sided restriction measures with respective exponents 5/8 and α0

(which is a well-chosen function of α), that are conditioned not to intersect (and
F0 is to the left of γ). The conditional law of the SLE8/3 becomes SLE(8/3, ρ)
(the law of the right-boundary of F ). But conditionally on this SLE, F0 is sim-
ply the random set F0, conditioned to avoid γ. As F0 satisfies restriction, we
get (heuristically, but this can be made rigorous, even when α ∈ [5/8, 2]) the
following construction of the two-sided restriction measure:

• Define an SLE(8/3, ρ) curve γ with ρ = ρ(α). This will be the right-
boundary of F . Let Γ denote the connected component of H \ γ that has
R− on its boundary.
• Let γ0 denote an SLE(8/3, ρ0) curve, where ρ0 = ρ(α0) in H. Let σ(γ0)

denote its symmetric image with respect to the imaginary axis (so that
it satisfies left-restriction). Finally, let γ− denote the conformal image of
σ(γ0) under a (conformal) map from H onto Γ that preserves the origin
and infinity.

Proposition 14 The set F that has γ as its right boundary, and γ− as its left
boundary, is a random filled set that satisfies two-sided restriction with exponent
α.

Recall that a one-sided restriction path hits the real line almost surely if and
only if its exponent is smaller than 1/3. Hence, we see that γ− hits γ if and only
if α0 < 1/3. This shows that:

Corollary 15 A two-sided restriction sample has cut points if and only if α <
35/24.

Again, this was far from obvious with the SLE+loops construction of this
two-sided restriction measure.
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Recall that it is known that the conditioned Brownian motion has cut points,
and [9] that the restriction measure with exponent 2 doesn’t (it is the union of
two Brownian paths). It should in fact in be possible to determine the Hausdorff
dimension of the set of cut points, and show that it is 2−ξ(α, α) in the notation
of [31], when α ≤ 35/24.

Recall also the fact that for all κ < 8, the SLE curve has (local) cut points,
see Beffara [5].

8. Relation with reversibility and duality conjectures

8.1. Reversibility

It is expected that if one looks at (chordal) SLE from the origin to infinity
in the upper half-plane, or at an SLE from infinity to the origin in the upper
half-plane, they trace (in law) the same path modulo time-reversal. This should
clearly hold if they are the scaling limits of the discrete models from statistical
physics that they are supposed to correspond to (e.g. [48] for these conjectures).
More precisely:

Conjecture 3 Suppose that γ is the path of chordal SLEκ in H for some fixed
κ ≤ 8. Then, the law of (time-reversed, and time-changed) −1/γ is identical to
the law of γ.

In some cases (where we know that SLE is the scaling limit of the discrete
model), we know that this reversibility conjecture holds: κ = 6, κ = 2 and κ = 8.
For κ = 8/3, we also know that it holds (it is a consequence of Theorem 2).
But for all other κ’s, this is still an open problem. It is known (Oded Schramm,
private communication) that for κ > 8, it does not hold.

The relation between SLE and conformal restriction gives a partial result
in this direction: For instance, if κ < 8/3, if one adds a Brownian loop soup
cloud with intensity λ to γ or to −1/γ, then one gets a sample of the same
conformal restriction measure with exponent α (which is unique). Adding the
same loop-soup produces the same set (in law), which advocates in favor of the
conjecture.

8.2. Conditioned Bessel processes

In this subsection, we recall some relevant fact concerning Bessel processes. It
is well-known that the three-dimensional Bessel process can be viewed as a one-
dimensional Bessel process conditioned to remain positive, see e.g. [47]. This
statement can be formulated precisely in different ways:

• If one considers a Brownian motion started from x ∈ (0, y) and conditioned
to hit y before 0, then it has the same law as a three-dimensional Bessel
process started from x and stopped at its first hitting time of y (recall
that a three-dimensional Bessel process never hits the origin).
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• If one considers a Brownian motionW started from x > 0, and conditioned
not to hit the origin before time T , then the law of W [0, t] (for fixed t)
converges to that of a three-dimensional Bessel process started from x (on
the time-interval [0, t]) when T →∞.

In both these cases, one can then let x → 0 to say that the three-dimensional
Bessel process (started from the origin) is Brownian motion (started from the
origin) and conditioned to remain forever positive. It is also possible (using the
Ornstein-Uhlenbeck process e−t/2W (t)) to view the scaled Bessel process (scaled
in the same way) as the stationary process (corresponding to the first eigenvalue
of the corresponding Dirichlet operator) which is the Ornstein-Uhlenbeck con-
ditioned to remain forever positive.

Just in the very same way, one can say that if d < 2, the d-dimensional
Bessel process conditioned to remain forever positive is the (4− d)-dimensional
Bessel process. It is of course not surprising that this conditioned process is a
Bessel process, as it is a continuous Markov process, and the Brownian scaling
is preserved by the conditioning.

Similarly, the interpretation of SLE(κ, ρ) as SLEκ conditioned not to not
intersect the sample of a one-sided restriction measure α that we have described
should be understood in a similar fashion. The relation between Bessel processes
that corresponds to this conditioning is easily worked out via the Girsanov
theorem (that shows in general how weighting the paths in a certain way is
equivalent to an explicit change of measure), see [56].

8.3. Duality

Recall that when κ > 4, the SLEκ curve is not simple anymore. In fact, most
points of the curve γ[0, t] are not on the boundary of the unbounded connected
component of H\ γ[0, t], i.e. g−1

t (H). At time t, one can define a right-boundary
(resp. left-boundary), as the part of the boundary of the unbounded connected
component of H \ γ[0, t] that is between γ(t) and R+ (resp. γ(t) and R−). The
duality conjecture proposed e.g. by Duplantier [16] states that in some sense,
this boundary has similar statistical properties as SLEκ′ , where κ′ = 16/κ. Of
course, it can not be really SLEκ′ because it is not a path from the origin to
infinity, but a path between some random point on R+ (the last one that γ did
visit before time t) and the random point γ(t).

There is some evidence for this given by dimension estimates. The probability
that a given point z ∈ H is in the ε-neighbourhood (for some large and fixed
given time) of this right-boundary decays like ε1−2/κ i.e. like the probability that
z is on the ε-neighbourhood of SLEκ′ (Beffara, private communication). Note
that in order to conclude the the dimension of the outer boundary of SLEκ is
1+2/κ for κ ≥ 4, one would need second-moment estimates that are not proved
at this point.

In order to derive an even stronger relation, one would like to find an exact
identity in law between the outer boundary of a process related to SLEκ and
a process related to SLEκ′ . It turns out that the SLE(κ, ρ) are useful in this
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respect. More precisely, the value ρ = κ− 4 is of very special interest: It can be
proved that (in some appropriate sense), when κ ≥ 4, SLE(κ, κ− 4) is exactly
SLEκ conditioned to never hit the negative half line (this is an event of zero
probability, but it is however possible to make sense of this). This is due to the
fact that for some d, the process Wt − gt(0) is a Bessel process of dimension d
for an SLEκ. The conditioning means that this Bessel process never hits zero; it
therefore becomes a (4−d)-dimensional Bessel process; the corresponding curve
is the SLE(κ, κ− 4) and (of course), it does not hit the negative half-line. Also,
it is not difficult to see that it is a transient curve.

It will be in fact convenient to define SLEσ(κ, ρ) as the symmetric image of
an SLE (κ, ρ) with respect to the imaginary axis. Hence, SLEσ (κ, κ − 4) can
be viewed as SLEκ conditioned not to hit the positive half-axis. Define its right
boundary. It is a random curve from zero to infinity in the upper half-plane,
and it is clearly scale-invariant (in law). Dubédat [13], based on the restriction
properties of the SLE(κ, ρ) processes that we will briefly discuss immediately,
has proposed the following:

Conjecture 4 The right boundary of an SLEσ(κ, κ − 4) when κ ≥ 4 is an
SLE(κ′, (κ′ − 4)/2).

This result is known to hold for κ = 6 (see [37], we will come back to this
in next subsection), it is obvious for κ = 4, and for κ = 8, it may follow from
[35], via Wilson’s algorithm [57]. Note that the SLEσ is an SLE “repelled from
the right” by the positive half-line, while the second one is an SLEκ′ that is
attracted from the left (because κ′ − 4 < 0).

One reason to propose this conjecture is the following result derived in [13]:
Let us fix κ ≥ 6, and let γ̃ denote a SLE(κ′, (κ′ − 4)/2). Consider a Brownian
loop-soup with intensity λ(κ). Define the right-boundary of the set obtained by
adding the loops in the loop-soup that it intersects to the SLEσ(κ, κ− 4) γ. It
has the same law as the one that one obtains by adding the same loop-soup to
γ̃.

Note that even though the reversibility conjecture fails to be true for κ > 8,
the duality conjecture should hold even for these values of κ. It may in fact be
the case, that some “conditioned” versions of SLEκ when κ > 8 (for instance
“conditioned not to hit the real line”) do satisfy reversibility.

This leads of course to the following question. The question is interesting on
its own, but a positive answer would also solve (at least for κ ≤ 8/3) both the
duality and reversibility conjecture:

Question 2 Suppose that γ1 and γ2 are two random simple curves from the
origin to infinity in the upper half-plane. Suppose that λ ≥ 0 is fixed and define
the right-boundary γ1

+ (respectively γ2
+) of the union of γ1 (resp. γ2) and the

loops lj in a loop-soup of intensity λ that it does intersect. Assume that the law
of γ1

+ and γ2
+ are identical. Are the laws of γ1 and γ2 necessarily identical too?

For related considerations, see [13]. Note that reversibility (and duality)
would for instance also follow if one can prove that these SLE are scaling limits
of discrete models for which these facts are satisfied.
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8.4. SLE6 and SLE8/3, locality and restriction.

The random process SLE6 is the unique possible conformally invariant scaling
limit of critical percolation cluster interfaces (see e.g. [55]), and this has been
proved by Smirnov [50] to hold in the case of critical site percolation on the
triangular lattice. By construction, it is clear that this is not a simple curve. It
has (many) double points, and it hits the real axis a lot. In particular, it can
not satisfy restriction.

However, one can (in the same way as before) construct an SLE6 that is
“conditioned not to hit the positive real axis”. This is the SLEσ(6,2). But, in
the discrete case of percolation, it is not difficult to see that if one further
conditions the interface not to exit a domain H , one just has the conditioned
percolation path conditioned not to intersect the “positive” part of the boundary
of H . Hence, in the scaling limit, this conditioned SLE6 path should satisfy
conformal restriction. It is therefore not surprising that its right-boundary is an
SLE(8/3, ρ) for some ρ. Note also that the corresponding discrete measure is
also an intrinsic measure; the weight of a path depends only on its number of
neighbours.

Actually, one can also work out another relation between SLE6 and reflected
Brownian motion with angle θ = 2π/3 (see [54, 37]), based on their “locality
property”. This shows that the (one-sided) restriction exponent of SLEσ(6, 2)
is 1/3. We will not go into this locality property here, but we just mention that
locality is related to restriction in that if a process satisfies locality, then this
process appropriately conditioned not to hit the boundary satisfies restriction.

One can in fact also condition the SLE6 to hit neither the left boundary, nor
the right boundary. For the same reasons (due to locality of SLE6), one sees
that the obtained path should satisfy two-sided restriction. In fact, it is possible
to a priori argue that the restriction exponent of the obtained path must be one
(see the a priori estimates in [34]).

9. Conformal restriction and representations

9.1. Algebraic background

Define the algebra A generated by the vectors (ln)n∈Z satisfying the commuta-
tion relations

[ln, lm] = (n−m)ln+m.

Because of these relations, it is easy to see that a basis of this algebra is given
by the family of vectors of the type ln1 ln2 . . . lnp for n1 ≤ n2 ≤ · · · ≤ np. This
algebra is often called the algebra of polynomial vector fields on the unit circle,
because it can be realized as ln = −zn+1d/dz.

Suppose that there exists a vector space V on which the algebra A acts i.e.,
one view A as a subalgebra of the set of endomorphisms of V . If it happens that
for some vector v ∈ V , lnv = 0 for all n > 0 and l0v = hv for some real h, then
we say that this is a highest-weight representation of A. It is then possible to
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say that A acts only on the vector space generated by v and its “descendants”
of the type ln1 . . . lnpv, where n1 ≤ · · · ≤ np < 0 (because lnv = 0 as soon as
n > 0).

In fact, such representations can be constructed for all values of the highest
weight h. The vector space is “naturally” graded i.e. it can be decomposed as
the direct sum of Vn’s for non-positive n’s, where Vn consists of all vectors w in
V such that l−nw is co-linear to v. For instance, V−1 is generated by l−1v, V2 is
generated by l−2v and l2−1v, and more generally, Vn is generated by the family
Fn of vectors ln1 . . . lnpv, where n1 ≤ · · · ≤ np < 0 and n1 + · · ·+np = n. Then,
each lm maps Vn onto Vn+m.

The representation is said to be degenerate at level n, if in fact the vectors
of F−n are not independent. For instance, it is degenerate at level 2 if l2−1v and
l−2v are in fact co-linear. Suppose for instance that for some κ,

κl2−1v = 4l−2v.

Then, applying l2 to both sides, and applying the commutation relations, we
see that

κ× 3× 2× l0v = 4× 4× l0v
Hence, if we assume that h 6= 0, we see that κ has to be equal to 8/3. If we
apply l1 to both sides instead of l2, we get that

κ(2l0l−1 + l−1l1l−1)v = κ(2l−1hv + 2l−1v + l−12hv) = 12l−1v

so that (unless l−1v = 0), h = 5/8. It is in fact indeed possible to construct such
a representation that is degenerate at level two (with κ = 8/3 and h = 5/8).

9.2. Relation with restriction

Suppose that γ is a one-sided restriction curve with exponent α. It is in fact
possible to construct a highest-weight representation of A associated to γ, and
the corresponding highest-weight h is just the exponent α. One proceeds as
follows: Define for all positive x1, . . . , xN the renormalized probability the the
curve γ passes in the neighbourhood of these N points. More precisely,

BN (x1, . . . , xN ) = lim
ε→0

ε−2NP [γ ∩ [xj , xj + iε] 6= ∅, j = 1, . . . , N ].

The fact that γ satisfies one-sided restriction implies a certain relation between
BN and BN+1: Suppose that one considers anN+1-th infinitesimal slit [x, x+iε].
Then, either the path γ hits it also (and this probability is given by BN+1) or it
avoids it (and the probability that it hits the N other ones is now given in terms
of BN and the conformal mapping from H \ [x, x+ iε] onto H. This relation can
be written as:

BN+1(x, x1, . . . , xN ) =
α

x2
BN (x1, . . . , xN ) +

∑

n≥1

xn−2L−nBN (x1, . . . , xN )
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for some operators LN . This equation can then be rephrased in terms of a
highest-weight representation of A with highest-weight α, see [21] for details.
Basically, one shows that these Ln’s, when defined on appropriate functions, do
satisfy the same commutation relation as the ln.

If one supposes that the curve γ satisfies also (P). Then, this leads to some
martingales that describe the conditional (renormalized) probability to hit the
infinitesimal slits. After a very small time t, the new conditional probability is
roughly

g′t(x1)2 . . . g′t(xN )2BN (gt(x1)−Wt, . . . , gt(xN )−Wt)

(the derivative terms are due to the fact that the sizes of the slits vary). Hence,
by Itô’s formula, one sees readily that for the above-mentioned representation

κ/2l2−1v − 2l−2v = 0

i.e. that it is degenerate at level two. This explains why the same values κ = 8/3
and h = α = 5/8 show up.

A more involved study can be applied to the case where the right-boundary γ
is constructed via an SLE to which one adds loops, as described before. Again, it
is possible to recover the relation between the density of loops λ, the parameter
κ and the highest-weight (or exponent) α from algebraic considerations. This
relation is the same as the one, that one obtains when studying highest-weight
representation of the Virasoro algebra (the central extension of V ) that are
degenerate at level 2. The quantity −λ is then interpreted as the central charge
of this representation. See [21] for more details.

Note that in this setup, one ends up with highest-weight representations of A
itself rather than with degenerate highest-weight representations (at level two)
of the Virasoro algebra, but there is a simple correspondence between them.

The fact that the Virasoro Algebra’s degenerate highest-weight representa-
tions are related to two-dimensional systems lies at the roots of conformal field
theory, see e.g. [7, 8, 10, 11, 12], and has been one of the ideas that led to the
prediction of the exact values of the relevant critical exponents in last decades.
In the recent series of papers [1, 2, 3, 4], Michel Bauer and Denis Bernard
have been studying various aspects of the interplay between the conformal field
theory and SLE. In particular, they exhibited relations between SLE and such
representations in this setup. In their approach, it also turns out [4] that as in
[20, 21, 22], an instrumental role is played by the local martingale M defined
in (7).

10. Remarks

What other discrete measures? One can ask the question whether other
intrinsic simple discrete measures on paths, will be conformally invariant in their
scaling limit. A first example goes as follows: Consider the law of simple random
walk from A to B in D (the same as the one used to define PBMD,A,B for bounded
D) but conditioned to have no cut point. It is reasonable to believe that the
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limiting measure in the scaling limit will in some sense be PBMD,A,B conditioned
to have no cut-point, which should therefore be conformally invariant (“having
no cut-points” is a conformally invariant property). It is possible (at least on
heuristic level) to see [56] that the restriction exponent of the limiting measure
will be 2 (this is also related to Bálint Virág’s [53] Brownian beads exponent,
and to Beffara’s cut time exponents [5]).

What happens if one considers the measure on discrete random walks, but
this time conditioned to have no triple points. Will it degenerate? Possibly, one
will have to take another penalization (than 4−n) in order to have a non-trivial
limit. It is likely to be related to a two-sided restriction measure. Similarly, what
happens if one allows no point of multiplicity k instead for k > 3?

If one penalizes the energy according to the number of double points, does
one indeed destroy conformal invariance as one might at first sight think? Note
that the (conditioned) critical percolation interface can be viewed as a measure
on paths with double but no triple points with a well-chosen intrinsic way of
weighting paths.

All is Brownian. In some sense, the conformal restriction approach shows that
it is probably possible to characterize completely SLE (at least for κ ≤ 8/3) in
terms of planar Brownian motion. The restriction measures can be constructed
using Brownian motions (conditioned (reflected or not) Brownian motions, for
instance). Adding Brownian loops to a path is in some sense the unique con-
formally invariant way to enlarge a given path. And SLEs are (probably) the
unique measures on simple paths, such that if one adds Brownian loops, one
gets a (Brownian) restriction measure.

While the definition of SLE via iterations of independent identically distrib-
uted conformal mappings is difficult to generalize to define interfaces on Rie-
mann surfaces, this “Brownian” approach seems well-suited (recall that it is no
problem to define Brownian motions on surfaces). See [14, 22, 58] for progress
in this direction.
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[13] J. Dubédat (2005), SLE(κ, ρ) martingales and duality, Ann. Probab. 33,
223-243. MR2118865
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bilee of Benôıt Mandelbrot, Proc. Symp. Pure Math. 72, vol. II, 339-364.
MR2112127

[37] G.F. Lawler, O. Schramm, W. Werner (2003), Conformal restriction prop-
erties. The chordal case, J. Amer. Math. Soc., 16, 917-955. MR1992830

[38] G.F. Lawler, W. Werner (1999), Intersection exponents for planar Brownian
motion, Ann. Probab. 27, 1601-1642. MR1742883

[39] G.F. Lawler, W. Werner (2000), Universality for conformally invariant in-
tersection exponents, J. Europ. Math. Soc. 2, 291-328. MR1796962

[40] G.F. Lawler, W. Werner (2004), The Brownian loop-soup, Probab. Theory
Rel. Fields Probab. Th. Rel. Fields 128, 565-588. MR2045953

[41] J.F. Le Gall (1992), Some properties of planar Brownian motion, Ecole d’été
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MR1197356

[44] B.B. Mandelbrot, The Fractal Geometry of Nature, Freeman, 1982.
MR665254

[45] B. Nienhuis (1982), Exact critical exponents for the O(n) models in two
dimensions, Phys. Rev. Lett. 49, 1062-1065. MR675241

[46] A.M. Polyakov (1974), A non-Hamiltonian approach to conformal field the-
ory, Sov. Phys. JETP 39, 10-18. MR395598

http://www.ams.org/mathscinet-getitem?mr=947880
http://www.ams.org/mathscinet-getitem?mr=2087784
http://www.ams.org/mathscinet-getitem?mr=2129588
http://www.ams.org/mathscinet-getitem?mr=1879850
http://www.ams.org/mathscinet-getitem?mr=1879851
http://www.ams.org/mathscinet-getitem?mr=1899232
http://www.ams.org/mathscinet-getitem?mr=1849257
http://www.ams.org/mathscinet-getitem?mr=1887622
http://www.ams.org/mathscinet-getitem?mr=2044671
http://www.ams.org/mathscinet-getitem?mr=2112127
http://www.ams.org/mathscinet-getitem?mr=1992830
http://www.ams.org/mathscinet-getitem?mr=1742883
http://www.ams.org/mathscinet-getitem?mr=1796962
http://www.ams.org/mathscinet-getitem?mr=2045953
http://www.ams.org/mathscinet-getitem?mr=1229519
http://www.ams.org/mathscinet-getitem?mr=29120
http://www.ams.org/mathscinet-getitem?mr=1197356
http://www.ams.org/mathscinet-getitem?mr=665254
http://www.ams.org/mathscinet-getitem?mr=675241
http://www.ams.org/mathscinet-getitem?mr=395598


Wendelin Werner/Conformal restriction and related questions 190

[47] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion,
Springer-Verlag, 1991. MR1083357

[48] S. Rohde, O. Schramm (2005), Basic properties of SLE, Ann. Math. 161,
879-920. MR2112631

[49] O. Schramm (2000), Scaling limits of loop-erased random walks and uni-
form spanning trees, Israel J. Math. 118, 221-288. MR1776084

[50] S. Smirnov (2001), Critical percolation in the plane: conformal invariance,
Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sr. I Math. 333,
239-244.

[51] B. Tsirelson (2004), Scaling limit, noise, stability, Lecture notes from
the 2002 St-Flour summer school, L.N. Math. 1840, pp. 1-106, Springer.
MR2079671

[52] S.R. Varadhan, R. Williams (1985), Brownian motion in a wedge with
oblique reflection, Comm. Pure Appl. Math. 38, 405-443. MR792398

[53] B. Virág (2003), Brownian beads, Probab. Th. Rel. Fields 127, 367-387
MR2018921

[54] W. Werner (2001), Critical exponents, conformal invariance and planar
Brownian motion, in Proceedings of the 4th ECM Barcelona 2000, Prog.
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