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A Population Background for
Nonparametric Density-Based Clustering
José E. Chacón

Abstract. Despite its popularity, it is widely recognized that the investi-
gation of some theoretical aspects of clustering has been relatively sparse.
One of the main reasons for this lack of theoretical results is surely the fact
that, whereas for other statistical problems the theoretical population goal is
clearly defined (as in regression or classification), for some of the clustering
methodologies it is difficult to specify the population goal to which the data-
based clustering algorithms should try to get close. This paper aims to pro-
vide some insight into the theoretical foundations of clustering by focusing
on two main objectives: to provide an explicit formulation for the ideal popu-
lation goal of the modal clustering methodology, which understands clusters
as regions of high density; and to present two new loss functions, applica-
ble in fact to any clustering methodology, to evaluate the performance of a
data-based clustering algorithm with respect to the ideal population goal. In
particular, it is shown that only mild conditions on a sequence of density esti-
mators are needed to ensure that the sequence of modal clusterings that they
induce is consistent.

Key words and phrases: Clustering consistency, distance in measure, Haus-
dorff distance, modal clustering, Morse theory.

1. INTRODUCTION

Clustering is one of the branches of Statistics with
more research activity in recent years. As noted by
Meilă (2007), “clustering is a young domain of re-
search, where rigorous methodology is still striving
to emerge.” Indeed, some authors have recently ex-
pressed their concerns about the lack of theoretical or
formal developments for clustering, as, for instance,
von Luxburg and Ben-David (2005), Ben-David, von
Luxburg and Pál (2006), Ackerman and Ben-David
(2009), Zadeh and Ben-David (2009). This paper aims
to contribute to this regularization (or, say, rigorousiza-
tion).

Stated in its most simple form, cluster analysis con-
sists in “partitioning a data set into groups so that the
points in one group are similar to each other and are as
different as possible from the points in other groups”
(Hand, Mannila and Smyth, 2001, page 293). Posed as
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such, the problem does not even seem to have a sta-
tistical meaning. In fact, in concordance with Li, Ray
and Lindsay (2007), it is possible to roughly classify
clustering methods into three categories, depending on
the amount of statistical information that they involve.
These categories are very basically depicted in the fol-
lowing three paragraphs.

Some clustering techniques are solely based on the
distances between the observations. Close observations
are joined together to form a group, and extending
the notion of inter-point distance to distance between
groups, the resulting groups are gradually merged un-
til all the initial observations are contained into a sin-
gle group. This represents, of course, the notion of
agglomerative hierarchical clustering (Izenman, 2008,
Section 12.3). The graphical outcome depicting the
successive agglomeration of data points up to a single
group is the well-known dendrogram, and depending
on the notion of inter-group distance used along the
merging process, the most common procedures of this
type are known as single linkage, complete linkage or
average linkage (see also Hastie, Tibshirani and Fried-
man, 2009, page 523).
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A first statistical flavor is noticed when dealing with
those clustering methodologies that represent each
cluster by a central point, such as the mean, the median
or, more generally, a trimmed mean. This class of tech-
niques is usually referred to as partitioning methods,
and surely the most popular of its representatives is
K-means (MacQueen, 1967). For a prespecified num-
ber K of groups, these algorithms seek for K centers
with the goal of optimizing a certain score function
representing the quality of the clustering (Everitt et al.,
2011, Chapter 5).

When a more extended set of features of the data-
generating probability distribution is used to determine
the clustering procedure, it is usual to refer to these
techniques as distribution-based clustering or, for the
common case of continuous distributions, as density-
based clustering. This approach is strongly supported
by some authors, like Carlsson and Mémoli (2013),
who explicitly state that “density needs to be incorpo-
rated in the clustering procedures.”

As with all the statistical procedures, there ex-
ist parametric and nonparametric methodologies for
density-based clustering. Surely the gold standard
of parametric density-based clustering is achieved
through mixture modeling, as clearly described in
Fraley and Raftery (2002). It is assumed that the distri-
bution generating the data is a mixture of simple para-
metric distributions, for example, multivariate normal
distributions, and each component of the mixture is
associated to a different population cluster. Maximum
likelihood is used to fit a mixture model and then each
data point is assigned to the most likely component
using the Bayes rule.

The nonparametric methodology is based on identi-
fying clusters as regions of high density separated from
each other by regions of lower density (Wishart, 1969,
Hartigan, 1975). Thus, a cluster is seen as a zone of
concentration of probability mass. In this sense, popu-
lation clusters are naturally associated with the modes
(i.e., local maxima) of the probability density func-
tion, and this nonparametric approach is denominated
mode-based clustering or modal clustering (Li, Ray
and Lindsay, 2007). Precisely, each cluster is usually
understood as the “domain of attraction” of a mode
(Stuetzle, 2003).

The concept of domain of attraction is not that sim-
ple to specify, and providing a precise definition for
that is one of the main goals of this paper. The first
attempt to make the goal of modal clustering pre-
cise was introduced through the notion of level sets
(Hartigan, 1975). If the distribution of the data has a

FIG. 1. Univariate trimodal density for which it is not possible to
capture its whole cluster structure using a level set analysis based
on a single level.

density f , given λ ≥ 0, the λ-level set of f is defined as
L(λ) = {x:f (x) ≥ λ}. Then, population λ-clusters are
defined as the connected components of L(λ), a defini-
tion that clearly captures the notion of groups having a
high density. An extensive account of the usefulness of
level sets in applications is given in Mason and Polonik
(2009).

One of the advantages of clustering based on level
sets is that the population target is clearly identified
(the connected components of the λ-level set). How-
ever, the main drawback of this approach is perhaps the
fact that the notion of population cluster depends on the
level λ, as recognized by Stuetzle (2003). Nevertheless,
other authors, like Cuevas, Febrero and Fraiman (2001)
or Cadre, Pelletier and Pudlo (2013), affirm that the
choice of λ is only a matter of resolution level of the
analysis.

Still, it is easy to think of many examples in which
it is impossible to observe the whole cluster struc-
ture on the basis of a single level λ. Essentially as in
Rinaldo et al. (2012), page 906, Figure 1 shows a sim-
ple univariate example of this phenomenon: three dif-
ferent modal groups are visually identifiable, yet none
of the level sets of the density has three connected
components. To amend this, the usual recommenda-
tion is to analyze the cluster structure for several val-
ues of the level λ. Graphical tools oriented to this goal
are the cluster tree (Stuetzle, 2003) or the mode func-
tion (Azzalini and Torelli, 2007, Menardi and Azzalini,
2014). Both graphics are useful to show how the clus-
ters emerge as a function of λ. See Section 3 for a more
detailed explanation.

Finally, the idea of examining the evolution of the
cluster structure as the density level varies is closely
related with the topic of persistent homology, a tool
from Computational Topology that, since its relatively
recent introduction, has attracted a great deal of inter-
est for its applications in Topological Data Analysis;
see Edelsbrunner and Harer (2008), Carlsson (2009) or
Chazal et al. (2013). This tool allows to quantify which
topological aspects of an object are most persistent as
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the resolution level evolves, thus leading to the iden-
tification of the most important features of the object.
In the context of data-based clustering based on level
sets, it can be very useful to distinguish which of the
discovered clusters are real and which of them are spu-
rious (Fasy et al., 2014).

The rest of this paper is structured as follows: in Sec-
tion 2 we introduce the concept of whole-space cluster-
ing as the type of object of interest in cluster analysis,
and we point out the difference with the more usual
notion of a clustering of the data. Later, it is explained
that the population whole-space clustering depends on
the adopted definition of cluster for each of the cluster-
ing methodologies. Section 3 expands on the first main
contribution of the paper by providing a precise defini-
tion of the population goal of modal clustering, making
use of Morse theory, leading to an equivalent yet sim-
pler formulation (in a sense) as with the cluster tree.
Once a population background for clustering has been
set up, Section 4 contains the second main contribution
of the paper, a proposal of two new loss functions to
measure the similarity of two whole-space clusterings.
These distance functions are not limited to modal clus-
tering nor even to density-based clustering, they are ap-
plicable to any clustering methodology having a clearly
identified population goal. As such, they can be used
to define a notion of clustering consistency, and for the
particular case of modal clustering it is shown that mild
conditions are needed so that the data-based clustering
constructed from a sequence of density estimators is
consistent in this sense.

2. POPULATION CLUSTERINGS

Many different notions of cluster are possible, but no
matter which one is used, it is necessary to have a clear
idea of the type of object that clustering methods pur-
sue from a population point of view. That object will
be called a clustering.

Since the empirical formulation of the clustering
task comprises partitioning a data set into groups, it
suggests that its population analogue should involve
a partition of the whole space or, at least, of the
support of the distribution. Hence, a clustering of a
probability distribution P on R

d , or a whole-space
P -clustering, should be understood as an essential
partition of Rd into mutually disjoint measurable com-
ponents, each with positive probability content (Ben-
David, von Luxburg and Pál, 2006). More specifically,
a whole-space P -clustering (or, simply, a clustering) is
defined as a class of measurable sets C = {C1, . . . ,Cr}
such that:

1. P(Ci) > 0 for all i = 1, . . . , r ,
2. P(Ci ∩ Cj) = 0 for i �= j , and
3. P(C1 ∪ · · · ∪ Cr) = 1.

The components C1, . . . ,Cr of such a partition are
called clusters. Thus, two clusterings C and D are iden-
tified to be the same if they have the same number of
clusters and, up to a permutation of the cluster labels,
every cluster in C and its most similar match in D dif-
fer in a null-probability set (more details on this are
elaborated in Section 4).

At this point it is worth distinguishing between two
different, although closely related, concepts. When the
probability distribution P is unknown, and a sample
drawn from P is given, any procedure to obtain a
data-based (essential) partition Ĉ = {Ĉ1, . . . , Ĉr} will
be called a data-based clustering. This simply means
that

∫
Ĉi

dP > 0 for all i = 1, . . . , r ,
∫
Ĉi∩Ĉj

dP = 0
for i �= j and

∫
Ĉ1∪···∪Ĉr

dP = 1. However, when data
are available most clustering procedures focus on par-
titioning the data set, and, indeed, many of them do not
even induce a clustering of the probability distribution.
This will be referred to henceforth as a clustering of
the data. Notice that, clearly, any data-based clustering
Ĉ = {Ĉ1, . . . , Ĉr} immediately results in a clustering
of the data, by assigning the same group to data points
belonging to the same component in Ĉ.

2.1 The Ideal Population Clustering

The definition of (whole-space) clustering represents
the type of population object that clustering methods
should try to get close in general, but it is the particular
employed notion of cluster that makes the theoretical
goal of clustering methodologies change, focusing on
different concepts of ideal population clustering.

For some clustering techniques, this ideal population
clustering is well established. For instance, it is well
known that the population clustering induced by the
optimal set of K-means is a Voronoi tessellation. To be
precise, let μ∗

1, . . . ,μ
∗
K ∈ R

d be a solution to the pop-
ulation K-means problem, in the sense that they mini-
mize

R(μ1, . . . ,μK) =
∫

min
k=1,...,K

‖x − μk‖dP (x),

where ‖·‖ denotes the usual Euclidean norm. Then, the
K-means algorithm assigns an arbitrary point in R

d to
the group whose center is closer, so that the ideal pop-
ulation clustering is given by C = {C1, . . . ,CK}, where

Ck = {
x ∈ R

d :
∥∥x − μ∗

k

∥∥ ≤ ∥∥x − μ∗
j

∥∥ for all j �= k
}
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is the Voronoi cell corresponding to μ∗
k , for k =

1, . . . ,K (see Graf and Luschgy, 2000, Chapter 4).
The ideal population clustering for mixture model

clustering can be derived in a similar way. Assume that
the underlying density is a mixture f (x) = ∑K

k=1 πk ·
fk(x), where πk denotes the prior probability of the kth
mixture component (with πk > 0 and

∑K
k=1 πk = 1),

and fk(x) is the density of the kth component. In this
setup, assuming also that the mixture model is iden-
tifiable, a point x ∈ R

d is assigned to the group k

for which the a posteriori probability πkfk(x)/f (x) is
maximum, so the ideal population clustering that f in-
duces has population clusters

Ck = {
x ∈ R

d :πkfk(x) ≥ πjfj (x) for all j �= k
}

for k = 1, . . . ,K .
For the modal approach to clustering, however, the

notion of ideal population clustering is not so straight-
forward to formulate. Informally, if the data-generating
density f has modes M1, . . . ,MK , then the popula-
tion cluster Ck is defined as the domain of attraction
of Mk , for k = 1, . . . ,K . Most modal clustering algo-
rithms are based on applying a mode-seeking numeri-
cal method to the sample points and assigning the same
cluster to those data that are iteratively shifted to the
same limit value. Examples of such procedures include
the mean shift algorithm (Fukunaga and Hostetler,
1975), CLUES (Wang, Qiu and Zamar, 2007) or the
modal EM of Li, Ray and Lindsay (2007), and further
alternatives are described in a previous unpublished

version of this paper (Chacón, 2012). Hence, from a
practical point of view, it is clear how a clustering of
the data is constructed on the basis of this notion of do-
main of attraction. The objective of the next section is
to describe in a precise way what is the population goal
that lies behind these algorithms. This aims to provide
an answer, in the case of modal clustering, to Ques-
tion 1 in von Luxburg and Ben-David (2005): “How
does a desirable clustering look if we have complete
knowledge about our data generating process?”

3. DESCRIBING THE POPULATION GOAL OF
MODAL CLUSTERING THROUGH MORSE THEORY

The ideal population goal for modal clustering
should reflect the notion of a partition into regions of
high density separated from each other by regions of
lower density. The following examples in one and two
dimensions are useful to illustrate the concept that we
aim to formalize.

In the one-dimensional case, it seems clear from
Figure 2 how this can be achieved. To begin with,
the level set methodology identifies the three clusters
in the density depicted in Figure 1 by computing the
cluster tree as described clearly in Nugent and Stuet-
zle (2010): starting from the 0-level set, which corre-
sponds to the whole real line in this example (hence,
it consists of a single connected component), λ is in-
creased until it reaches λ1, where two components for
the λ1-level set are found, G′

1 and G′
2, resulting in the

FIG. 2. Identification of clusters for the trimodal density example using the cluster tree. Panel (a): first split; (b) second split; (c) final
partition; (d) cluster tree.
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FIG. 3. Bidimensional example, with two groups clearly identifiable at an intuitive level.

cluster tree splitting into two different branches [see
Figure 2, panel (a)]. These two components G′

1 and
G′

2 are usually called cluster cores. They do not consti-
tute a clustering because there is some probability mass
outside G′

1 ∪G′
2. But the remaining parts F ′

1 and F ′
2, re-

ferred to as fluff in Nugent and Stuetzle (2010), can be
assigned to either the left or the right branch depend-
ing on whichever of them is closer. Thus, at level λ1
the partition R = C′

1 ∪ C′
2 is obtained. The point divid-

ing the line into these two components can be arbitrar-
ily assigned to either of them; this assignment makes
no difference because it leads to equivalent clusterings
since a singleton has null probability mass.

At level λ2 the left branch C′
1 is further divided into

two branches [see panel (b) of Figure 2]. Again, the two
cluster core components G′′

1 and G′′
2 do not form a par-

tition of the set C ′
1 associated with the previous node of

the tree, but it is clear how the fluff F ′′
1 and F ′′

2 can be
assigned to form a partition C′′

1 ∪ C′′
2 of C′

1. Since no
further splitting of the cluster tree is observed as λ in-
creases, the final population clustering is {C′′

1 ,C′′
2 ,C′

2},
renamed to {C1,C2,C3} in panel (c) of Figure 2.

It is immediate to observe that the levels at which
a connected component breaks into two different ones
correspond precisely to local minima of the density
function, so an equivalent formulation consists of
defining population clusters as the connected compo-
nents of R minus the points where a local minimum
is attained [the solid circles in panel (c) of Figure 2].
Notice that, unlike the cluster tree, this definition does
not involve the computation of level sets for a range
of levels, nor their cores and fluff, and in this sense it
constitutes a more straightforward approach to the very
same concept in the unidimensional setup.

To get an idea of how to generalize the previous ap-
proach to higher dimensions, consider the following
extremely simple bidimensional example: an equal-
proportion mixture of two normal distributions, each
with identity variance matrix and centered at μ1 =

(−3
2 ,0) and μ2 = −μ1, respectively. At an intuitive

level, it is clear from Figure 3 that the most natural
border to separate the two visible groups is the black
line. The problem is then: what is exactly that line?
Is it identifiable in terms of the features of the density
function in a precise, unequivocal way? A nice way to
answer these questions is by means of Morse theory.

Morse theory is a branch of Differential Topology
that provides tools for analyzing the topology of a
manifold M ⊆ R

d by studying the critical points of a
smooth enough function f :M → R. A classical ref-
erence book on this subject is Milnor (1963) and en-
joyable introductions to the topic can be found in
Matsumoto (2002) and Jost (2011), Chapter 7. A use-
ful application of Morse theory is for terrain analysis,
as nicely developed in Vitalli (2010). In terrain analy-
sis, a mountain range can be regarded as the graph of
a function f :M → R, representing the terrain eleva-
tion, over a terrain M ⊆ R

2, just as in the left graphic
of Figure 3. The goal of terrain analysis is to provide
a partition of M through watersheds indicating the dif-
ferent regions, or catchment basins, where water flows
under the effect of gravity.

The fundamentals of Morse theory can be extremely
summarized as follows. A smooth enough function
f :M → R is called a Morse function if all its critical
points are nondegenerate. Precisely, for our purposes,
f can be considered smooth enough if it is three times
continuously differentiable. Here, the critical points of
f are understood as those x0 ∈ M for which the gradi-
ent Df (x0) is null, and nondegeneracy means that the
determinant of the Hessian matrix Hf (x0) is not zero.
For such points the Morse index m(x0) is defined as the
number of negative eigenvalues of Hf (x0).

Morse functions can be expressed in a fairly simple
form in a neighborhood of a critical point x0, as the
result known as Morse lemma shows that it is possi-
ble to find local coordinates x1, . . . , xn such that f can
be written as f (x0) ± x2

1 ± · · · ± x2
d around x0, where
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FIG. 4. The three possible configurations around a critical point of a Morse function in the bidimensional case.

the number of minus signs in the previous expression
is precisely m(x0). For example, for d = 2 the three
possible configurations for a critical point are shown in
Figure 4, corresponding to a local minimum, a saddle
point and a local maximum (from left to right), with
Morse indexes 0, 1 and 2, respectively.

The decomposition of M suggested by Morse theory
is made in terms of the unstable and/or stable mani-
folds of the critical points of f as explained next. Con-
sider the initial value problem defined by the minus
gradient vector of a smooth enough function f . For a
given value of x ∈ M at time t = 0, the integral curve
νx:R → M of such an initial value problem is the one
satisfying

ν′
x(t) = −Df

(
νx(t)

)
, νx(0) = x(3.1)

and the set of all these integral curves is usually re-
ferred to as the negative gradient flow. Since the minus
gradient vector defines the direction of steepest descent
of f , these curves (or, properly speaking, their images
through f ) represent the trajectories of the water flow
subject to gravity.

With respect to the negative gradient flow, the unsta-
ble manifold of a critical point x0 is defined as the set
of points whose integral curve starts at x0, that is,

Wu−(x0) =
{
x ∈ M: lim

t→−∞νx(t) = x0

}
.

Analogously, the stable manifold of x0 is the set of
points whose integral curve finishes at x0, that is,
Ws−(x0) = {x ∈ M: limt→+∞ νx(t) = x0}. It was first
noted by Thom (1949) that the class formed by the un-
stable manifolds corresponding to all the critical points
of f provides a partition of M (the same is true for the
stable manifolds). Furthermore, the unstable manifold
Wu−(x0) has dimension m(x0).

The main contribution of this section is the definition
of the population modal clusters of a density f as the
unstable manifolds of the negative gradient flow corre-
sponding to local maxima of f . That is, if M1, . . . ,MK

denote the modes of f , then the ideal population goal
for modal clustering is C = {C1, . . . ,CK}, where Ck =
Wu−(Mk), for k = 1, . . . ,K . Or in a more prosaic way,
in terms of water flows, a modal cluster is just the re-
gion of the terrain that would be flooded by a fountain
emanating from a peak of the mountain range.

Although this is an admittedly cumbersome defini-
tion, going back to Figure 3, it is clear that it just de-
scribes the notion that we were looking for. The crit-
ical point x0 = (0,0) is a saddle point, thus having
Morse index 1, and the black line is precisely its asso-
ciated unstable manifold, Wu−(x0) = {0} ×R, which is
a manifold of dimension 1. The remaining two critical
points are local maxima, and their respective unstable
manifolds are Wu−(x1) = (−∞,0) × R and Wu−(x2) =
(0,∞) × R, manifolds of dimension 2 so that we can
partition R

2 = Wu−(x0) ∪ Wu−(x1) ∪ Wu−(x2), showing
Wu−(x1) and Wu−(x2) as two population clusters sepa-
rated by the border Wu−(x0), which is a null-probability
set.

Notice that this definition also applies to the previ-
ous univariate example in Figure 2: the clusters C1, C2
and C3 are just the unstable manifolds of the three lo-
cal maxima (they are manifolds of dimension 1), and
for the two local minima their unstable manifolds have
dimension 0, so they include only the respective points
of local minima.

Moreover, if we focus on the gradient flow, instead
of the negative gradient flow, then its integral curves
satisfy

γ ′
x(t) = Df

(
γ x(t)

)
, γ x(0) = x;

the unstable manifold for the negative gradient flow be-
comes the stable manifold for the gradient flow and
viceversa. Therefore, we could equivalently define the
cluster associated to a mode x0 of the density as its
stable manifold with respect to the gradient flow, that
is, Ws+(x0) = {x ∈ M: limt→∞ γ x(t) = x0} = Wu−(x0).
This is a precise formulation of the notion of domain
of attraction of the mode x0, since Ws+(x0) represents
the set of all the points that climb to x0 when they fol-
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FIG. 5. Ideal modal population clustering for some normal mixtures densities.

low the steepest ascent path defined by the gradient di-
rection. Moreover, estimating this path is precisely the
goal of the mean shift algorithm (see Arias-Castro, Ma-
son and Pelletier, 2013).

3.1 Examples

In Figure 5 we give further examples of how the ideal
population goal of modal clustering looks for three
of the bivariate normal mixture densities included in
Wand and Jones (1993), namely, with their terminol-
ogy, densities (H) Bimodal IV, (K) Trimodal III and (L)
Quadrimodal, plus the normal mixture #10 Fountain
from Chacón (2009). These densities have a number
of modes ranging from two to five, respectively, and
hence that is the true number of population clusters for
each of these models, in the sense of modal clustering.

Each graph contains a contour plot of the density
function; the location of the modes is marked with a tri-
angle pointing upward (�), the saddle points with a ro-
tated square (�), and the only local minimum, appear-
ing in the plot of the Quadrimodal density, is marked

with a triangle pointing downward (�). The thick lines
passing through the saddle points are their correspond-
ing unstable manifolds and represent the border be-
tween the different population clusters.

All these features have been computed numerically,
making use of some results from the thorough analy-
sis of normal mixture densities given in Ray and Lind-
say (2005). For instance, the Newton–Raphson method
has been used for the location of the modes by finding a
zero gradient point starting from the component means,
taking into account that both the location of the modes
and component means are different, but very close.
Next, the saddle points are searched along the ridgeline
that connects every two component means, since all
the critical points of the density must lie on this curve,
by Theorem 1 in Ray and Lindsay (2005). Finally, the
borders between the population clusters are obtained
by numerically solving the initial value problem (3.1),
starting from a point slightly shifted from each saddle
point, along the direction of the eigenvector of its Hes-
sian corresponding to a negative eigenvalue.
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4. COMPARING CLUSTERINGS

Whatever the notion of ideal population clustering
the researcher may use, in practice, this population goal
has to be approximated from the data. Therefore, to
evaluate the performance of a clustering method, it is
necessary to introduce a loss function to measure the
distance between a data-based clustering and the pop-
ulation goal or, more generally, to have a notion of
distance between two whole-space clusterings. In this
section, two proposals are derived by extending two
well-known notions of distance between sets to dis-
tances between clusterings.

Recall that some clustering methods do not produce
a partition of the whole feature space, but only a clus-
tering of the data. A good deal of measures to eval-
uate the distance between two clusterings of the data
have been proposed in the literature. The work of Meilă
(2007) provides both a comprehensive survey of the
most used existing measures as well as a deep technical
study of their main properties, and, for instance, Arabie
and Boorman (1973) or Day (1980/81) include further
alternatives. But it should be stressed that all these pro-
posals concern only partitions of a finite set. Here, on
the contrary, our interest lies on developing two new
notions of distance between whole-space clusterings.

Let C and D be two clusterings of a probability dis-
tribution P , and assume for the moment that both have
the same number of clusters, say, C = {C1, . . . ,Cr} and
D = {D1, . . . ,Dr}. The first step to introduce a dis-
tance between C and D is to consider a distance be-
tween sets. Surely the two distances between sets most
used in practice are the Hausdorff distance and the
distance in measure; see Cuevas and Fraiman (2010).
The Hausdorff distance is specially useful when deal-
ing with compact sets (it defines a metric in the space
of all compact sets of a metric space), as it tries to
capture the notion of physical proximity between two
sets (Rodríguez-Casal, 2003). In contrast, given a mea-
sure μ, the distance in μ-measure between two sets C

and D refers to μ(C�D), that is, to the content of their
symmetric difference C�D = (C ∩Dc)∪ (Cc ∩D). It
defines a metric on the set of all measurable subsets
of a measure space, once two sets differing in a null-
measure set are identified to be the same.

4.1 A Distance in Measure Between Clusterings

Although we will return to the Hausdorff distance
later, our first approach to the notion of distance be-
tween C and D relies primarily on the concept of dis-
tance in μ-measure, and the measure involved is pre-
cisely the probability measure P . From a practical

point of view, it does not seem so important that the
clusters of a data-based partition get physically close
to those of the ideal clustering. Instead, it is desir-
able that the points that are incorrectly assigned do not
represent a very significant portion of the distribution.
This corresponds to the idea of perceiving two clusters
C ∈ C and D ∈ D (resulting from different clusterings)
as close when P(C�D) is low. In this sense, the close-
ness between C and D is quantified by their distance
in μ-measure for the particular choice μ = P .

Therefore, for two clusterings C and D with the same
number of clusters, a sensible notion of distance is ob-
tained by adding up the contributions of the pairwise
distances between their components once they have
been relabeled, so that every cluster in C is compared
with its most similar counterpart in D. In mathematical
terms, the distance between C and D can be measured
by

d1(C,D) = min
σ∈Pr

r∑
i=1

P(Ci�Dσ(i)),(4.1)

where Pr denotes the set of permutations of {1,2, . . . ,

r}.
It can be shown that d1 defines a metric in the space

of all the partitions with the same number of compo-
nents, once two such partitions are identified to be the
same if they differ only in a relabeling of their com-
ponents. Moreover, the minimization problem in (4.1)
is usually known as the linear sum assignment prob-
lem in the literature of Combinatorial Optimization,
and it represents a particular case of the well-known
Monge–Kantorovich transportation problem. A com-
prehensive treatment of assignment problems can be
found in Burkard, Dell’Amico and Martello (2009).

If a partition is understood as a vector in the prod-
uct space of measurable sets, with the components as
its coordinates, then d1 resembles the L1 product dis-
tance, only adapted to take into account the possibil-
ity of relabeling the components. This seems a logi-
cal choice given the additive nature of measures, as it
adds up the contribution of each distance between the
partition components as described before. However, it
would be equally possible to consider any other Lp dis-
tance, leading to define

dp(C,D) = min
σ∈Pr

{
r∑

i=1

P(Ci�Dσ(i))
p

}1/p

for p ≥ 1 and also d∞(C,D) = minσ∈Pr max{P(Ci ·
�Dσ(i)): i = 1, . . . , r}. The minimization problem
defining d∞ is also well known under the name of the
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FIG. 6. When computing the distance d1 between the two clus-
terings C = {C1,C2} (black) and D = {D1,D2} (grey), it is found
that C1 ∩Dc

1 = Cc
2 ∩D2 and Cc

1 ∩D1 = C2 ∩Dc
2, so the content of

each of these two discrepancy regions is added twice in d1(C,D).

linear bottleneck assignment problem, and its objec-
tive function is usually employed if the interest is to
minimize the latest completion time in parallel com-
puting (see Burkard, Dell’Amico and Martello, 2009,
Section 6.2). Still, in the context of clustering, surely
the d1 distance seems the most natural choice among
all the dp possibilities, due to its clear interpretation.

Nevertheless, the definition of the d1 distance in-
volves some kind of redundancy, due to the fact that
C and D are (essential) partitions of R

d , because the
two disjoint sets that form every symmetric differ-
ence in fact appear twice in each of the sums in (4.1);
see Figure 6. More precisely, taking into account that
P(C�D) = P(C) + P(D) − 2P(C ∩ D), it follows
that for every σ ∈ Pr

r∑
i=1

P(Ci�Dσ(i)) = 2 − 2
r∑

i=1

P(Ci ∩ Dσ(i))

(4.2)

= 2P

({
r⋃

i=1

(Ci ∩ Dσ(i))

}c)
.

To avoid this redundancy, our eventual suggestion to
measure the distance between C and D, based on the
set distance in P -measure, is dP (C,D) = 1

2d1(C,D).
If the partitions C and D do not have the same

number of clusters, then as many empty set compo-
nents as needed are added so that both partitions in-
clude the same number of components, as in Charon
et al. (2006), and the distance between the extended
partitions is computed as before. Explicitly, if C =
{C1, . . . ,Cr} and D = {D1, . . . ,Ds} with r < s, then,
writing Ci =∅ for i = r + 1, . . . , s, we set

dP (C,D)

= 1

2
min
σ∈Ps

s∑
i=1

P(Ci�Dσ(i))

= 1

2
min
σ∈Ps

{
r∑

i=1

P(Ci�Dσ(i)) +
s∑

i=r+1

P(Dσ(i))

}
.

FIG. 7. Two partitions of the unit square that do not differ much
if A3 has low probability.

Thus, the term
∑s

i=r+1 P(Dσ(i)) can be interpreted as
a penalization for unmatched probability mass.

The idea is that two partitions such as those shown in
Figure 7 do not differ much if A3 has low probability,
even if they do not have the same number of clusters.
For the partitions in Figure 7, denote C = {C1,C2} and
D= {D1,D2,D3} with C1 = D1 = A1, C2 = A2 ∪A3,
D2 = A2, D3 = A3, and assume that P(A1) = 0.5,
P(A2) = 0.45 and P(A3) = 0.05. Then, it can be
shown that dP (C,D) = 0.05. In (4.1) every cluster of C
is matched to some cluster in D, depending on the per-
mutation for which the minimum is achieved. When C
has less clusters than D, some of the components of
D will be matched with the empty set, indicating that
they do not have an obvious match in Cs or that they are
unimportant. In the previous example, the minimum is
achieved when C1 is matched with D1, C2 with D2 and
D3 is matched with the empty set.

Indeed, if the existence of unmatched probability
mass is considered to be of greater concern, it is al-
ways possible to modify the distance in P -measure by
introducing a tuning parameter λ ≥ 0 to assign a dif-
ferent weight to the penalization, thus mimicking other
existing procedures as penalized regression or pruning
of decision trees. In this case, the distance would be
defined as
dP,λ(C,D)

= 1

2
min
σ∈Ps

{
r∑

i=1

P(Ci�Dσ(i)) + λ

s∑
i=r+1

P(Dσ(i))

}
,

so that dP (C,D) = dP,1(C,D).
It is interesting to note that dP (C,D) can be esti-

mated in a natural way by replacing P with the empir-
ical measure based on the data X1, . . . ,Xn, leading to

d̂P (C,D)

= 1

2n
min
σ∈Ps

{
r∑

i=1

n∑
j=1

ICi�Dσ(i)
(Xj )

+
s∑

i=r+1

n∑
j=1

IDσ(i)
(Xj )

}
,
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where IA denotes the indicator function of the set A.
When r = s, it follows from (4.2) that an alternative
expression for dP (C,D) is

dP (C,D) = 1 − max
σ∈Pr

r∑
i=1

P(Ci ∩ Dσ(i))

and, therefore, its sample analogue,

d̂P (C,D) = 1 − 1

n
max
σ∈Pr

r∑
i=1

n∑
j=1

ICi∩Dσ(i)
(Xj ),

coincides with the so-called classification distance be-
tween two clusterings of the data, whose properties are
explored in Meilă (2005, 2007, 2012). For r < s, how-
ever, d̂P differs from the classification distance (which
does not include the penalty term), but it corresponds
exactly with the transfer distance, studied in detail in
Charon et al. (2006) (see also Denœud, 2008). Extend-
ing the properties of the transfer distance to its popula-
tion counterpart suggests an interpretation of dP (C,D)

as the minimal probability mass that needs to be moved
to transform the partition C into D, hence the connec-
tion with the optimal transportation problem.

The above argument allows to recognize dP (C,D) as
the population version of some commonly used empiri-
cal distances between partitions of a data set. However,
it should be noted that the estimate d̂P (C,D) requires
the two clusterings to be fully known and, hence, it
may not be very useful if the goal is to approximate the
distance between the ideal population clustering and a
data-based clustering.

4.2 A Hausdorff Distance Between Clusterings

An alternative notion of distance between two clus-
terings based on the Hausdorff metric has been kindly
suggested by Professor Antonio Cuevas, noting that
precisely this distance was used in Pollard (1981) to
measure the discrepancy between the set of sample K-
means and the set of population K-means. If (X,ρ) is
a metric space and A,B ⊆ X are two nonempty sub-
sets of X, the Hausdorff distance between A and B is
defined as

dH (A,B) = max
{

sup
a∈A

inf
b∈B

ρ(a, b), sup
b∈B

inf
a∈A

ρ(a, b)
}

or, equivalently, as

dH (A,B) = inf
{
ε > 0:A ⊆ Bε and B ⊆ Aε},

where Aε = ⋃
a∈A{x ∈ X:ρ(x, a) ≤ ε}, and Bε is de-

fined analogously.
In the context of clustering, X can be taken to be the

metric space consisting of all the sets of Rd equipped

with the distance ρ(C,D) = P(C�D), once two sets
with P -null symmetric difference have been identi-
fied to be the same. Then any two clusterings C =
{C1, . . . ,Cr} and D = {D1, . . . ,Ds} can be viewed as
(finite) subsets of X and, therefore, the Hausdorff dis-
tance between C and D is defined as

dH (C,D)

= max
{

max
i=1,...,r

min
j=1,...,s

P (Ci�Dj),

max
j=1,...,s

min
i=1,...,r

P (Ci�Dj)
}

= inf
{
ε > 0:C⊆ Dε and D⊆ Cε}.

To express it in words, dH (C,D) ≤ ε whenever for
every Ci ∈ C there is some Dj ∈ D such that P(Ci ·
�Dj) ≤ ε and vice versa. Hence, as noted by Pollard
(1981), if ε is taken to be less than one half of the mini-
mum of distance between the clusters within C and also
less than one half of the minimum distance between
the clusters within D, then dH (C,D) ≤ ε implies that
C and D must necessarily have the same number of
clusters.

The Hausdorff distance can be regarded as a uniform
distance between sets. It is not hard to show, using stan-
dard techniques from the Theory of Normed Spaces,
that when r = s we have

dH (C,D) ≤ 2dP (C,D) ≤ rdH (C,D).

However, when r < s the distance dH can be more de-
manding than dP , meaning that both partitions have
to be really close so that their Hausdorff distance re-
sults in a small value. For instance, it can be checked
that for the two clusterings of the previous example,
shown in Figure 7, the Hausdorff distance between
them is dH (C,D) = 0.45, mainly due to the fact that
C2 and D3 are far from each other, since P(C2�D3) =
P(A2) = 0.45.

A clear picture of the difference between dH and
dP is obtained by arranging all the component-wise
distances P(Ci�Dj) into an r × s matrix. Then, the
Hausdorff distance is obtained by computing all the
row-wise and column-wise minima and taking the
maximum of all of them. In contrast, for the distance
in P -measure the first step when r < s is to add s − r

row copies of the vector (P (D1), . . . ,P (Ds)) to the
matrix of component-wise distances, and then compute
the distance in P -measure as half the minimum possi-
ble sum obtained by adding up a different element in
each row. As a further difference, note that the Haus-
dorff distance does not involve a matching problem;
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instead, this distance is solely determined by the two
components that are furthest from each other.

Obviously, a sample analogue is also obtained in this
case by replacing P for the empirical probability mea-
sure, leading to

d̂H (C,D)

= 1

n
max

{
max

i=1,...,r
min

j=1,...,s

n∑
k=1

ICi�Dj
(Xk),

max
j=1,...,s

min
i=1,...,r

n∑
k=1

ICi�Dj
(Xk)

}
,

which seems not to have been considered previously as
a distance between two clusterings of the data.

4.3 Consistency of Data-Based Clusterings

As indicated above, a data-based clustering is under-
stood as any procedure that induces a clustering Ĉn of
a probability distribution P based on the information
obtained from a sample X1, . . . ,Xn from P . Once a
clustering methodology has been chosen, and its ideal
population goal C0 is clearly identified, a data-based
clustering Ĉn can be said to be consistent if it gets
closer to C0 as the sample size increases. Formally, if
d(Ĉn,C0) → 0 as n → ∞ for some of the modes of
stochastic convergence (in probability, almost surely,
etc.), d represents one of the distances between clus-
terings defined above or any other sensible alternative.
Note that a different notion of consistency, specifically
intended for the cluster tree approach, is studied in
Chaudhuri and Dasgupta (2010).

For density-based clustering, a plug-in strategy to
obtain data-based clusterings would consist of replac-
ing the unknown density f with an estimator f̂n.
Obvious candidates for the role of f̂n include non-
parametric density estimators for modal clustering or
mixture model density estimators with parameters fit-
ted by maximum likelihood for mixture model clus-
tering. This is a very simple approach that involves to
some extent estimating the density function to solve the
clustering problem (unsupervised learning).

According to von Luxburg (2004), page 21, this
plug-in strategy may not be a good idea because den-
sity estimation is a very difficult problem, especially
in high dimensions. However, a similar situation is
found in the study of classification (supervised learn-
ing), where the optimal classifier, the Bayes rule, de-
pends on the regression function of the random labels
over the covariates. Here, even if classification can be

FIG. 8. Two density functions that are not close but induce exactly
the same clustering.

proved to be a problem easier than regression, never-
theless, regression-based algorithms for classification
play an important role in the development of super-
vised learning theory (see Devroye, Györfi and Lugosi,
1996, Chapter 6).

Along the same lines, Figure 8 illustrates why we
should not completely discard density estimation as an
intermediate step for clustering. Figure 8 shows a typ-
ical situation where the solid line is the true density
and the dashed line is a kernel density estimator, since
an expansion of its pointwise bias shows that, on av-
erage, the kernel estimator underestimates the maxima
and overestimates the minima (Wand and Jones, 1995,
page 21). But even if the two density functions are not
really close in any global sense, they produce exactly
the same clusterings of R.

In any case, the following result shows that the plug-
in strategy leads to consistent data-based modal clus-
terings as long as the first and second derivatives of the
sequence of density estimators converge uniformly to
their true density counterparts.

THEOREM 4.1. Let a Morse function f be the den-
sity of a univariate probability distribution P with com-
pact support, and denote by C0 the ideal modal cluster-
ing that it induces, as defined in Section 3. Let {f̂n} be
a sequence of density estimators such that f̂

(j)
n → f (j)

uniformly almost surely for j = 1,2, with (j) standing
for the j th derivative. Denote by Ĉn the modal cluster-
ing induced by f̂n. Then:

(a) #Ĉn → #C0 with probability one as n → ∞,
where #A denotes the number of elements in a set A.

(b) Both dP (Ĉn,C0) → 0 and dH (Ĉn,C0) → 0 with
probability one as n → ∞.

The proof of this result is shown in the Appendix.
The analysis of the proposed distances between cluster-
ings is greatly simplified in the univariate case since the
cluster boundaries are solely determined by the points
of local minima of the density. The extension of this
result for dimension d ≥ 2 seems quite a challenging
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open problem, since the cluster boundaries in dimen-
sion d are (d − 1)-dimensional manifolds which may
have very intricate forms.

Part (a) shows that the number of clusters in Ĉn

converges to the true number of clusters in C0 almost
surely. As indicated in Cuevas, Febrero and Fraiman
(2000), since #Ĉn and #C0 are integer-valued, this con-
vergence is equivalent to the fact that the event

{There exists n0 ∈ N such that

#Ĉn = #C0 for all n ≥ n0}
has probability one.

Note also that if f (2) is uniformly continuous and f̂n

are kernel estimators with bandwidth h = hn based on
a sufficiently regular kernel, Silverman (1978), Theo-
rem C, showed that a necessary and sufficient condition
for the uniform convergence condition in the previous
theorem to hold is just that h → 0 and nh5/ logn → ∞
as n → ∞ (see also Deheuvels, 1974 and Bertrand-
Retali, 1978).

4.4 Asymptotic Loss Approximations

The proof of Theorem 4.1 reveals that, for big
enough n, the distance in measure and the Hausdorff
distance between Ĉn and C0 can be written as

dP (Ĉn,C0) =
r−1∑
j=1

∣∣F(m̂n,j ) − F(mj )
∣∣ and

dH (Ĉn,C0) = max
j=1,...,r−1

∣∣F(m̂n,j ) − F(mj )
∣∣,

where F is the distribution function of P . Here,
m1, . . . ,mr−1 and m̂n,1, . . . , m̂n,r−1 denote the local
minima of f and f̂n, respectively (i.e., the cluster
boundaries of C0 and Ĉn). From these expressions the
L1 and L∞ nature of dP and dH is even more clear.

Furthermore, under the conditions of Theorem 4.1,
after two Taylor expansions it is possible to obtain the
approximations∣∣F(m̂n,j ) − F(mj )

∣∣ � f (mj )
∣∣m̂n,j − mj

∣∣
� f (mj )

f ′′(mj )

∣∣f̂ ′
n(mj )

∣∣.
This shows how not only the performance of Ĉn is
closely connected to the problem of first-derivative es-
timation, but also that modal clustering is more diffi-
cult, as the density at the cluster boundaries is higher
and/or flatter as the intuition dictates.

In the case of kernel estimators, Proposition 4.1 of
Romano (1988) provides a precise description of the

asymptotic behavior of f̂ ′
n(mj ). Precisely, under some

smoothness conditions it can be shown that assuming
that the bandwidth further satisfies nh7 → β2 with 0 ≤
β < ∞, then f̂ ′

n(mj ) admits the representation

f̂ ′
n(mj ) = (

nh3)−1/2
σZn + βμ

for some explicit constants σ > 0 and μ ∈ R, where
Zn is a sequence of asymptotically N(0,1) random
variables. This representation could be helpful as a
starting point to tackle the problem of optimal band-
width choice for kernel clustering, which has only been
treated briefly in the previous literature (e.g., Einbeck,
2011, Chacón and Duong, 2013, Chacón and Monfort,
2014) and surely deserves further investigation. How-
ever, we will not pursue this further here.

5. DISCUSSION

At the time of comparing different clustering proce-
dures, it is necessary to have a “ground truth,” or popu-
lation goal, that represents the ideal clustering to which
the clustering algorithms should try to get close. The
importance of having a clear population goal for clus-
tering is nicely highlighted in Klemelä (2009), Chap-
ter 8. Sometimes this ideal population clustering is not
so easy to specify, and of course it depends on the no-
tion of cluster in which the researcher is interested.

Whereas the population goal is clearly defined for
some clustering methods, like K-means clustering or
mixture model clustering, it remained less obvious for
modal clustering. Here, the ideal population goal of
modal clustering is accurately identified, making use
of some tools from Morse theory as the partition of the
space induced by the domains of attraction of the local
maxima of the density function.

This definition of the modal clusters needs the prob-
ability density to be smooth to a certain degree, specif-
ically it must be a 3-times continuously differentiable
Morse function. It would be appealing to extend this
notion to density functions that are not Morse func-
tions, meaning either that they are smooth but have de-
generate critical points or even that they are not differ-
entiable to such extent. To treat the first case, it might
be useful to resort to the theory of singularities of dif-
ferential mappings, which is exhaustively covered in
the book by Arnold et al. (1998), for instance. On the
other hand, the study of the nonsmooth case might start
from Agrachev, Pallaschke and Scholtes (1997), where
Morse theory for piecewise smooth functions is pre-
sented. Here, the key role would be played by the sub-
gradient, which generalizes the concept of the gradient
for nonsmooth functions.
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Alternatively, as in Donoho (1988), a nonsmooth
density f could be convolved with a mollifier φh to
obtain a smoother version φh ∗ f , so that the popula-
tion modal clustering Ch of φh ∗ f is determined as in
the smooth case, and then define the population modal
clustering of f as the limit (in some sense) of Ch as
h → 0. Of course, further investigation on how to prop-
erly formalize this notion would be required.

Once a clustering methodology with a clearly de-
fined population goal has been chosen, it is necessary
to have a distance to measure the accuracy of data-
based clusterings as approximations of the ideal goal.
A second contribution of this paper is the introduction
of two new loss functions for this aim, which are valid
for any clustering methodology. Particularly, when ap-
plied to modal clustering, it is shown that the plug-in
approach leads to clustering consistency under mild as-
sumptions.

A further interesting challenge for future research
consists of studying the choice of the parameters for
the density estimators (the bandwidth for kernel esti-
mators, the mixture parameters for mixture model es-
timators) that minimize the distance between the cor-
responding data-based clustering and the true popula-
tion clustering, as measured by any of the distances be-
tween clusterings discussed in Section 4. Or, maybe
even better, to develop methods aimed to perform
modal clustering that do not necessarily rely on a pilot
density estimate, perhaps by somehow adapting those
classification methods whose construction is not based
on a regression estimate.

APPENDIX: PROOF OF THE
CONSISTENCY THEOREM

The proof uses some arguments from Theorem 3
in Cuevas and González Manteiga (1991); see also
Lemma 3 in Genovese et al. (2015).

First, since f is a Morse function with compact sup-
port, it has only finitely many isolated critical points
(Matsumoto, 2002, Corollary 2.19). Assume that f has
r local maxima and let m1 < · · · < mr−1 denote the lo-
cal minima of f so that the modal population cluster-
ing induced by f is defined as C0 = {C1, . . . ,Cr} with
Cj = (mj−1,mj ) for j = 1, . . . , r , where m0 = −∞
and mr = ∞ (if f has no local minimum, then r = 1
and C0 = {C1} = {R}).

We claim the following: with probability one, there
exists n0 ∈ N such that f̂n has exactly r − 1 local min-
ima for all n ≥ n0; moreover, there exists ε > 0 such
that every f̂n with n ≥ n0 has exactly one local mini-
mum m̂n,j in [mj − ε,mj + ε] for all j = 1, . . . , r − 1.

To prove this claim, notice that since f ′′(mj ) > 0 for
all j , and f ′′ is continuous, it is possible to find some
ε > 0 such that f ′′(x) > 0 on [mj − ε,mj + ε], for
all j . The almost sure uniform convergence of f̂ ′′

n to f ′′
implies that there is some n0 ∈N such that, with a pos-
sibly smaller ε, all f̂ ′′

n with n ≥ n0 are strictly positive
on those intervals as well. On the other hand, on each
of these intervals f ′ is strictly increasing and since
f ′(mj ) = 0, it must go from negative to positive. But
the uniform convergence of f̂ ′

n to f ′ implies that also
f̂ ′

n must go from negative to positive (perhaps with a
smaller ε) for big enough n. Therefore, all of them
must have a critical point there, and since we previ-
ously showed that f̂ ′′

n > 0, this means both that the
critical point is a local minimum and that there can-
not be any more of them in such neighborhoods of the
local minima. A similar argument shows that, for big
enough n, all the f̂n with n ≥ n0 must also have a lo-
cal maximum in a small enough neighborhood around
the modes of f , and that there cannot be other critical
points of f̂n outside these neighborhoods.

Furthermore, using standard arguments in M-esti-
mation theory, under these conditions it follows that
also m̂n,j converges to mj as n → ∞: to show this,
notice that given an arbitrary η > 0, small enough
so that η < ε, the value of δ := inf{|f ′(x)|:η ≤ |x −
mj | ≤ ε} is strictly positive. Hence, from the almost
sure uniform convergence f̂ ′

n → f ′ it follows that,
with probability one, for all big enough n we have
|f̂ ′

n(x)| > δ/2 > 0 whenever η ≤ |x − mj | ≤ ε. Since
|m̂n,j − mj | ≤ ε and f̂ ′

n(m̂n,j ) = 0, this implies that
|m̂n,j − mj | < η.

In this situation, for the clustering Ĉn = {Ĉn1, . . . ,

Ĉn,r} induced by f̂n [with Ĉn,j = (m̂n,j−1, m̂n,j ),
m̂n,0 = −∞ and m̂n,r = ∞], taking a small enough ε,
the distance in P -measure and the Hausdorff distance
between Ĉn and C can be simply written as

dP (Ĉn,C0) =
r−1∑
j=1

∣∣F(m̂n,j ) − F(mj )
∣∣,

dH (Ĉn,C0) = max
j=1,...,r−1

∣∣F(m̂n,j ) − F(mj )
∣∣,

respectively, where F is the distribution function of P .
Therefore, the convergence of the estimated local min-
ima to the true local minima of f yields the result.
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