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INTRODUCTION

We congratulate the authors for their considerable
effort to collect and synthesize all of the information
contained in this review paper. Given the breadth of
models, we were particularly inspired by the idea of
how a practitioner would choose among them. We de-
fine some general criteria of flexibility that should be
considered when choosing between different multivari-
ate covariance models, and we apply these criteria in
the comparison between the bivariate linear model of
coregionalization (LMC) and the bivariate multivariate
Matérn.

Which Model Is the Most Flexible?

Since most of the contributions listed by the authors
refer to parametric models of multivariate covariances,
we seek to answer the question, “which parametric
model is more flexible?” We propose to define flexi-
bility with respect to the following:

(A) the colocated correlation coefficient, and
(B) the strength of spatial dependence. For instance,

how different can the scales of the cross-covariances
and the marginal covariances between the two models
be.

As far as (A) is concerned, ideally the colocated cor-
relation coefficient should be defined over the interval
[−1,1]. Let us consider models of the type

C(h) = [
σiσjρijR(h; θ ij )

]2
i,j=1, h ∈R

d,(1)
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with R(·) being a parametric univariate correlation
model in R

d and θ ij ∈ A ⊂ R
q being parameter vec-

tors. Here σ 2
i > 0, i = 1,2 are the marginal variances,

and ρ12 is the colocated parameter describing the cor-
relation between the components of the bivariate ran-
dom field at h = 0. The bivariate Matérn [2] and Wend-
land [1] models are special cases of equation (1).

For the bivariate Matérn case, the validity bound for
ρ12 is given in Theorem 3 of [2], and in general it
depends on the smoothness parameters, ν = (ν11, ν22,

ν12)
′, and the scale parameters, α = (α11, α22, α12)

′.
For instance, assuming a constant smoothness parame-
ter, and α12 < min(α11, α22), a necessary and sufficient
condition for the validity of the bivariate Matérn be-

comes |ρ12| ≤ α2
12

α22α11
≤ 1. In the case where the scale

and smoothness parameters are pairwise equal (i.e., the
separable case), then |ρ12| ≤ 1, and there are no re-
strictions on the colocated parameter. These features
are also present in the bivariate Wendland construction
in [1], where the elements of the matrix-valued covari-
ance are parameterized in the same way as the bivariate
Matérn. As the difference between the parameters α11
and α22 increases, the bound on ρ12 becomes tighter,
as shown in Figure 1.

The linear model of coregionalization (LMC) does
not necessarily share this limitation on the colocated
correlation coefficient. In order to illustrate this, we
start with a simple example: for the following, we write
R(·) := C(·)/C(0), for C some univariate covariance
function in R

d . Then, the bivariate LMC correlation
model R(h) = [Rij (h)]2

i,j=1, h ∈ R
d , can be written

as

R11(h) = a2
11R1(h) + a2

12R2(h),

R22(h) = a2
21R1(h) + a2

22R2(h), and

R12(h) = a11a21R1(h) + a12a22R2(h).

The 2 × 2 matrix A = {aij } has rank 2. Here we fo-
cus, without loss of generality, only on positive cor-

167

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/15-STS516
http://dx.doi.org/10.1214/14-STS487
http://www.imstat.org
mailto:moreno.bevilacqua@uv.cl
mailto:ahering@mines.edu
mailto:emilio.porcu@usm.cl


168 M. BEVILACQUA, A. S. HERING AND E. PORCU

FIG. 1. The upper bound on ρ12 as a function of α12 for various
values of α11 and α22. Note that for the colored lines, α11 = 5.

relations between the components, and, in order to
do that, we consider aij > 0 for i, j = 1,2. Let us
now consider the special case a12 = a21. Since Rii(0)

must be identically equal to one, we get, as neces-
sary conditions, that a2

11 + a2
12 = 1 = a2

22 + a2
12, which

in turn implies that necessarily a11 = a22 =: a. Then
the previous system of equations can be rewritten
as

R11(h) = a2R1(h) + (
1 − a2)

R2(h),

R22(h) = (
1 − a2)

R1(h) + a2R2(h), and

R12(h) = a

√
1 − a2

(
R1(h) + R2(h)

)
.

In this case the colocated correlation coefficient is
identically equal to ρ12 := R12(0) = 2a

√
1 − a2 ∈

[0,1] since a ∈ [0,1]. Thus, the LMC seems to be more
flexible than the bivariate Matérn with respect to issue
(A) since its colocated correlation coefficient is free
to vary through the maximum extent of its possible
range, regardless of the form of the marginal covari-
ances.

Issue (B) is clearly more critical to address, since it
is not directly interpretable from the parameterization.
In particular, it would be nice to have models that allow
for different levels of strength of spatial correlation,
which is directly related to the scales. Clearly, the con-
ditions on the bivariate Matérn as well as those on the
bivariate Wendland indicate that we have an ill-posed
problem because the colocated correlation coefficient’s
upper bound is related to the scales. Thus, we analyze
issue (B) for a fixed value of ρ12. In particular, we try to
address the question: “which model allows for bigger
differences with respect to the strength of spatial cor-

relation for a given colocated correlation coefficient?”
We introduce here two multivariate measures that once
again we illustrate for the bivariate case for ease of ex-
position.

[(B.1)] Since we are dealing with isotropic models,
we shall write R(t) instead of R(‖h‖) for h ∈ R

d . For
a given multivariate covariance model x, we define

Dx
i,j,k := max

t

∣∣Rii(t) − Rkj (t)
∣∣, t := ‖h‖ > 0,(2)

where k ∈ {i, j}. When k = j �= i, Dx
i,j,j = Dx

j,i,i is

a measure of the maximum difference between the
correlation of the ith and j th components; while for
k = i, Dx

i,j,i = Dx
i,i,j reflects the maximum difference

between the cross correlation Rij and the correlation
of the ith component. According to this criterion, for
two given models x and y, with a common (fixed)
colocated correlation coefficient ρx

12 = ρ
y
12, if Dx

i,k,j <

Dy
i,k,j , then model y is preferable.
The computation of the indicator above can be te-

dious, depending on the functional forms of the in-
volved marginal and cross correlations. For instance,
for the bivariate Matérn model, obtained when fixing
the parameters ν11, ν22 and ν12 to be identically equal
to 0.5, the general form of the bivariate correlation
function can be written as 0 ≤ t 	→ Rij (t) = ρij e

−tαij ,
αij > 0, ρii = 1. In this case, inspection of equation (2)
directly relates to finding the stationary solution of the
problem

G(a,b,ρ) := max
t≥0

∣∣f (t, a, b, ρ)
∣∣,

where f (t, a, b, ρ) = e−at − ρe−bt , with a, b > 0, and
ρ could be a function of a and b but is fixed here and
belongs to the interval [−1,1]. The case ρ < 0 is triv-
ial since the maximum is attained at t = 0, so we focus
on the case ρ > 0. The problem has the following so-
lutions:

G(a,b,ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(−f

(
t∗, a, b, ρ

)
,1 − ρ

)
,

if b < a,

f
(
t∗, a, b, ρ

)
,

if b > a, logρ + log(b/a) > 0,

1 − ρ,

if b > a, logρ + log(b/a) < 0,

(3)

where t∗ = logρ+log(b/a)
b−a

. For b = a, G(a,b,ρ) =
1 − ρ. For the bivariate exponential model, we can
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compute

DExp
1,2,2 = G(α11, α22,1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, α11 = α22,

−f

(
log(α22/α11)

α22 − α11
, α11, α22,1

)
,

if α22 < α11,

f

(
log(α22/α11)

α22 − α11
, α11, α22,1

)
,

if α22 > α11.

Similarly, DExp
1,2,1 and DExp

2,2,1 can be computed using
equation (3) as G(α11, α12, ρ12) and G(α22, α12, ρ12).
Note that DExp

1,2,2 does not depend on the colocated
correlation coefficient and that, for this example, 0 ≤
DExp

1,2,2 ≤ 1, and, similarly, we have 0 ≤ DExp
1,2,1 ≤ 1.

Let us now analyze a special case of the LMC model
as illustrated through issue (A), supposing that R1(t) =
exp(−αt) and R2(t) = exp(−βt), for α and β posi-
tive. Direct inspection shows that in this case DLMC

1,2,2 =
k|2a2 − 1|, where k = G(α,β,1). Now, we note that
ρ12 = 2a

√
1 − a2 for 0 < a < 1 and, as shown before,

ρ12 can belong to any value inside the interval [0,1].
Since a = [1±

√
1−ρ2

12
2 ]0.5, then DLMC

1,2,2 = k
√

1 − ρ2
12 ≤√

1 − ρ2
12, with equality if and only if ρ12 = 0. Sim-

ilarly, it can be shown that DLMC
1,2,1 ≤ 1 − ρ12 and

DLMC
2,2,1 ≤ 1 − ρ12.
Comparing the index between the bivariate LMC

and exponential model, when ρ12 → 1, then DLMC
1,2,2 <

DExp
1,2,2. Thus, it seems that more flexibility is offered

by the bivariate exponential at least for the marginal
correlations R11 and R22.

[(B.2)] As a second indicator for a given multivariate
covariance model x, we propose

D̃x
i,k,j :=

∣∣∣∣
∫ ∞

0

(
Rii(t) − Rkj (t)

)
dt

∣∣∣∣.(4)

For instance, let us consider the case of the radial part
of a bivariate Matérn model, so that

Rij (t) = ρij (αij t)
νijKνij

(αij t), t ≥ 0,

for which direct inspection shows that

D̃Mat
1,1,2 =

∣∣∣∣√π

(
�(ν11 + (1/2))

α11�(ν11)

− ρ12�(ν12 + (1/2))

α12�(ν12)

)∣∣∣∣.

Observe that in a bivariate exponential model, we eas-
ily get D̃Exp

1,1,2 = |α−1
11 − ρ12α

−1
12 |, and D̃Exp

1,2,2 = |α−1
11 −

α−1
22 | does not depend on the colocated correlation co-

efficient (as in the previous index). For the LMC model

we easily get that D̃LMC
1,2,2 =

√
1 − ρ2

12|α−1 − β−1| for
the exponentials as assumed earlier. As with the first in-
dex when ρ12 → 1, D̃LMC

1,2,2 < D̃Exp
1,2,2. Again the bivari-

ate exponential model seems to be more flexible with
respect to LMC, at least when comparing the marginal
correlations R11 and R22.

CONCLUSION

Comparing multivariate covariance models from a
flexibility point of view is an important issue, since it
can be helpful when choosing between the set of para-
metric models described in this review paper. In this
discussion we have proposed two possible criteria in
order to define the flexibility of a multivariate covari-
ance model. Using the criteria proposed, we compare
the flexibility of the LMC with the multivariate Matérn
in the bivariate case. There is a clear trade-off between
the two models. In particular, the LMC is more flex-
ible in terms of the allowable interval for the colo-
cated correlation coefficient, which varies freely over
the interval [−1,1]. Instead, the bivariate Matérn has
restrictions on the permissible range of the colocated
correlation for given spatial scales and smoothness pa-
rameters. On the other hand, the two indices highlight
that if the colocated correlation is the same for the two
models, the bivariate Matérn has more flexibility as the
colocated correlation tends to 1.

In conclusion, we believe that more work should be
done in order to compare multivariate models from a
flexibility viewpoint. In this discussion, we have of-
fered some instruments that might be useful in this di-
rection.
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