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In this paper, we develop a new approach to studying the asymp-
totic behavior of fluid model solutions for critically loaded processor
sharing queues. For this, we introduce a notion of relative entropy
associated with measure-valued fluid model solutions. In contrast to
the approach used in [12], which does not readily generalize to net-
works of processor sharing queues, we expect the approach developed
in this paper to be more robust. Indeed, we anticipate that similar no-
tions involving relative entropy may be helpful for understanding the
asymptotic behavior of critical fluid model solutions for stochastic
networks operating under various resource sharing protocols natu-
rally described by measure-valued processes.

1. Introduction. In the context of multiclass queueing networks op-
erating under head-of-the-line (HL) service disciplines, Bramson [1] and
Williams [15] have developed a modular approach for establishing heavy
traffic diffusion approximations to such networks. In particular, they have
given sufficient conditions under which asymptotic behavior of critical fluid
model solutions can be used to prove state space collapse and thereby a
heavy traffic limit theorem justifying a diffusion approximation. Although
the HL assumption covers a wide variety of service disciplines, including first-
in-first-out (FIFO) and static priorities, it requires that service for a given
job class is concentrated on the job at the head-of-the-line. Consequently,
it does not cover some disciplines that arise naturally in applications, such
as the processor sharing discipline. While it is desirable to have a modular
approach to proving diffusion approximations for stochastic networks with
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non-HL disciplines, the development of such an approach is only in its early
stages. Following the general idea of such an approach, Gromoll et al. [5, 6]
established a diffusion approximation for a measure-valued descriptor of a
single server processor sharing queue. A key ingredient in that work was
an analysis of the long time behavior of the measure-valued solutions of
a critical fluid model. This analysis was performed in Puha and Williams
[12] using coupling and renewal theory, which also provided a rate of con-
vergence under suitable moment conditions. The results of [12] were then
used by Gromoll [5] to prove state space collapse and the desired diffusion
approximation for the single server processor sharing queue.

We are interested in developing the modular approach further, for pro-
cessor sharing networks and for other stochastic networks having measure-
valued state descriptors. While some aspects of the approach generalize
readily, interactions between nodes may manifest complex behaviors not
analyzable via the coupling and renewal methodology used in [12]. In this
paper, we develop an alternative approach to that in [12] which employs a
notion of relative entropy. We use this to derive the asymptotic behavior
of the measure-valued solutions of a critical fluid model for a single server
processor sharing queue. While we limit our analysis to this case for the
moment, we believe that our notion of relative entropy is a natural one for
studying the dynamic behavior of critical fluid models with measure-valued
solutions. We expect it will be helpful for proving diffusion approximations
for networks of processor sharing queues and some other stochastic networks
having measure-valued state descriptors.

We now elaborate on the contents of this paper. We consider a critical
fluid model for a single server processor sharing queue. This model was first
introduced in [6] where it was shown that critical fluid model solutions arise
as functional law of large numbers limits of measure-valued processes used
to track the residual service times of jobs in heavily loaded processor shar-
ing queues. The critical fluid model has one parameter, a Borel probability
measure ν on R+ = [0,∞) that does not charge the origin and that has
a finite positive mean 1/α, where α ∈ (0,∞). The measure ν corresponds
to the weak limit of the service time distributions for a sequence of heavily
loaded processor sharing queues. The reciprocal α of its mean corresponds
to the limiting average rate at which jobs arrive to the queue.

Let M denote the set of finite, nonnegative Borel measures on R+. A
solution of the critical fluid model is a function μ : [0,∞) → M that satisfies
conditions (C.1)–(C.4) in Section 2 of this paper. For t ∈ [0,∞), we shall
denote μ(t) by μt for convenience, and we refer to μt as the state at time t.
We shall call μ0 the initial state for μ, or equivalently the initial condition
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for μ. It was shown in [6] that if ξ ∈ M is continuous, i.e., it does not
charge singletons, then there exists a unique fluid model solution μ such
that μ0 = ξ. Here we shall focus on fluid model solutions with continuous
initial conditions. In [12], it was shown that the critical fluid model has
associated with it a collection I of invariant states given by

I = {βνe : β ∈ R+}.

Here νe is the so-called excess lifetime distribution associated with ν. It
is the Borel probability measure on R+ that is absolutely continuous with
respect to Lebesgue measure and that has density function

ne(x) = αν((x,∞)), x ∈ R+.

In [12], renewal theory arguments were used to show that, if ξ ∈ M is con-
tinuous and has a finite first moment, then the time t value μt of a critical
fluid model solution μ converges weakly as t → ∞ to an invariant state βνe,
for some β ∈ R+ [12, Theorem 1.2]. Under additional moment conditions
on both ν and the initial state ξ, a rate of convergence was obtained using
coupling techniques [12, Theorem 1.3]. In this paper, we develop an alterna-
tive approach to prove results of this nature that employs a relative entropy
functional. Using this relative entropy approach, we are able to prove a uni-
form convergence result for initial states lying in certain relatively compact
sets (see (9)) that holds under a finite second moment assumption on ν with-
out appealing to renewal theoretic arguments. The latter condition is less
restrictive than the strictly greater than two moments condition assumed in
[12, Theorem 1.3]. We do this with an eye toward developing a technique
that might apply to more general network models with interactions between
network nodes.

A natural candidate for a relative entropy functional is the relative en-
tropy of the time t value μt of a fluid model solution μ with respect to an ap-
propriate invariant state βνe. However, since invariant states are absolutely
continuous with respect to Lebesgue measure and fluid model solutions do
not necessarily satisfy this property, it is possible for such a function to be
infinite for all time. We circumvent this issue by using an alternative relative
entropy. Instead we use the relative entropy of the excess lifetime distribu-
tion (μt)e associated with μt with respect to the excess lifetime distribution
(νe)e associated with νe. Indeed, we give sufficient conditions for this rela-
tive entropy to converge to zero as t → ∞, uniformly for all initial states
lying in certain relatively compact sets (see Theorem 3.2). Theorem 3.2 is
one of two main results proved in this paper. Its proof is due to an absolute
continuity in time property satisfied by our choice of relative entropy when
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applied to a fluid model solution. Indeed, we find an explicit representa-
tion for the almost everywhere defined time derivative that we work with
to prove Theorem 3.2 (see Theorem 7.1). From Theorem 3.2, it is immedi-
ate that (μt)e converges weakly to (νe)e as t → ∞, uniformly for all initial
states lying in certain relatively compact sets. This uniform convergence of
“shapes” of the excess lifetime distributions does not immediately imply the
weak convergence of μt to an invariant state as t → ∞. However, we are
able to use this convergence of shapes, in conjunction with other properties
of fluid model solutions, to establish the desired uniform weak convergence
of μt in Theorem 3.1 and Corollary 3.1.

Theorem 3.1 is the other main result proved in this paper. This theorem
provides sufficient conditions for μt to be uniformly close to I for all t suf-
ficiently large and all initial states lying in suitable relatively compact sets.
Theorem 3.1 almost follows from Theorem 3.2 by using a continuity prop-
erty of the relative entropy functional and a compact containment property
of fluid model solutions. The qualifier “almost” is due to the fact that the
relative entropy functional takes the value zero for some measures that are
not in I, which we address separately to complete the proof of Theorem 3.1.

The paper is organized as follows. Section 2 contains the definition of a
critical fluid model solution and a summary of its properties proved in [6].
Following that, in Section 3, the relative entropy functional is introduced
and the main results of the paper, Theorems 3.1 and 3.2, and Corollary 3.1,
are stated. In Section 4, we more fully develop the relative entropy functional
as a measure of distance and specify its properties. In Section 5, we develop
additional properties of fluid model solutions used in the relative entropy
arguments given here. In Section 6, we prove that Theorem 3.1 follows from
a combination of Theorem 3.2, properties of the relative entropy functional
developed in Section 4, and properties of fluid model solutions developed in
Section 5. In that section, we also develop some additional consequences of
Theorem 3.2. The remainder of the paper is devoted to proving Theorem
3.2. In Section 7, we develop properties of the relative entropy functional as
a function of time along fluid model solutions. These properties, along with
properties of the relative entropy functional and of fluid model solutions,
obtained in Sections 4 and 5, are used in Section 8 to prove Theorem 3.2.

1.1. Notation. The following notation will be used throughout the paper.
Let Z denote the set of integers, Z+ denote the set of nonnegative integers
and N denote the set of strictly positive integers. Let R denote the set of real
numbers. For x, y ∈ R, we write x ∨ y for the maximum of x and y and we
write x∧y for the minimum of x and y. Then, for x ∈ R, we let x+ denote the
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positive part of x and |x| denote the absolute value of x, i.e., x+ = 0∨x and
|x| = x ∨ (−x). The set of nonnegative real numbers [0,∞) will be denoted
by R+. For a Borel set B ⊂ R+, we denote the indicator function of the set
B by 1B. We also define the real-valued function χ(x) = x, for x ∈ R+.

Let Cb(R+) denote the set of bounded continuous functions from R+ to
R and C1

b(R+) denote the set of functions in Cb(R+) that are once differen-
tiable with derivative in Cb(R+). Given a nonnegative Borel measure ζ on
R+, let L

1(ζ) denote the set of Borel measurable functions from R+ to R that
are integrable with respect to ζ. For g ∈ L1(ζ), we let 〈g, ζ〉 =

∫
R+

g(x)ζ(dx).

We occasionally use this notation also if g ≥ 0, in which case 〈g, ζ〉 may take
the value infinity. When ζ is Lebesgue measure, we simply write L1 for L1(ζ).

As mentioned in the introduction, we let M denote the set of finite, non-
negative Borel measures on R+. We denote the zero measure in M by 0 and
the point mass at x ∈ R+ by δx. The set M is endowed with the topology
of weak convergence. With this topology, M is a Polish space [13], and for
ζn, ζ ∈ M, n ∈ N, we have ζn

w→ ζ as n → ∞ if and only if 〈g, ζn〉 → 〈g, ζ〉
as n → ∞, for all g ∈ Cb(R+), where

w→ denotes weak convergence. We note
that C1

b(R+) is convergence determining for this topology, i.e., if

(1) 〈g, ζn〉 → 〈g, ζ〉 as n → ∞, for all g ∈ C1
b(R+),

then ζn
w→ ζ as n → ∞. To see this note that g ≡ 1 ∈ C1

b(R+) so that (1)

implies limn→∞ 〈1, ζn〉 = 〈1, ζ〉. If (1) holds and 〈1, ζ〉 = 0, then ζn
w→ 0 as

n → ∞. If (1) holds and 〈1, ζ〉 > 0, then without loss of generality we may
assume that 〈1, ζn〉 > 0 for all n ∈ N. By applying [2, Exercise 10 on Page
151] to the sequence {ζn/ 〈1, ζn〉}n∈N and ζ/ 〈1, ζ〉, it follows that ζn w→ ζ as
n → ∞.

A particular metric that induces the topology of weak convergence on M
and under which M is a Polish space is the Prokhorov metric. For this, given
a Borel set B ⊂ R+ and ε > 0, let

Bε = {y ∈ R+ : inf
x∈B

|x− y| < ε}.

For ζ, η ∈ M, let

d(ζ, η) = inf{ε > 0 : ζ(B) ≤ η(Bε) + ε and η(B) ≤ ζ(Bε) + ε,

for all closed sets B ⊂ R+}.

Then d(·, ·) is the Prokhorov metric. Given a subset B ⊂ R+ and ζ ∈ M
with slight abuse of notation, we further define

d(ζ,B) = inf
η∈B

d(ζ, η).
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Let K denote the elements of M that are continuous, i.e., that do not
charge singletons and let A denote the elements of M that are absolutely
continuous with respect to Lebesgue measure. Additionally, let P denote
the set of measures in M that are probability measures. We let M+ denote
those elements of M with support intersecting (0,∞), i.e., M+ = M\{aδ0 :
a ∈ R+}. We also let K+ = M+ ∩K and A+ = M+ ∩A and remark that
K+ = K \ {0} and A+ = A \ {0} since a continuous measure is nonzero
if and only if it has support intersecting (0,∞). For k ∈ N, we say that a
measure ζ ∈ M has a finite kth moment if

〈
χk, ζ

〉
< ∞ and we let Mk

denote the set of all such measures. Let M† = M+∩M1, K† = M†∩K, and
A† = M†∩A. For ζ ∈ M†, there is an associated excess lifetime distribution
ζe ∈ P ∩A that has density function pζ , where for each x ∈ R+,

(2) pζ(x) =

〈
1(x,∞), ζ

〉
〈χ, ζ〉 .

Note that pζ is well defined since ζ ∈ M† implies that 0 < 〈χ, ζ〉 < ∞. The
mapping that takes ζ ∈ M† to ζe ∈ P∩A will play an important role in our
analysis.

2. Critical fluid model. Here we recall the notion of a critical fluid
model solution and some basic properties of such solutions that were devel-
oped in [6] and [12].

We begin by introducing the model parameters. Fix ν ∈ P such that ν
does not charge the origin and has finite mean 〈χ, ν〉, which is necessarily
strictly positive. Let α = 1/ 〈χ, ν〉. The pair (α, ν) is referred to as critical
fluid model data or simply critical data. The adjective “critical” refers to
the fact that α 〈χ, ν〉 = 1, signifying that the rate at which work is arriving
is equal to the rate at which it can be processed. Throughout this paper, we
further assume that the critical data satisfies

(3)
〈
χ2, ν

〉
< ∞,

i.e., ν ∈ M2. For x ∈ R+, let

N(x) =
〈
1[0,x], ν

〉
and N(x) = 1−N(x).

Then N and N denote the cumulative distribution function (cdf) and com-
plementary cdf, respectively, associated with ν. Let

(4) xν = inf{x ∈ R+ : N(x) = 0},
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which is taken to be infinity if the set is empty. If xν is finite, then N(xν) = 0
by the right continuity of N . Note that xν > 0 since ν is nonzero and does
not charge the origin. Since (α, ν) is critical data, i.e., since 〈χ, ν〉 = 1/α,
the probability density function pν for the excess lifetime distribution νe is
given by

pν(x) = αN(x), for x ∈ R+.

For convenience, we let ne = pν . By (4), ne(x) is strictly positive for x < xν
and zero for x ≥ xν . Furthermore, since xν > 0, νe ∈ A+. For x ∈ R+, set

Ne(x) =
〈
1[0,x], νe

〉
and N e(x) = 1−Ne(x).

A simple use of Fubini’s theorem gives that 〈χ, νe〉 = α
2

〈
χ2, ν

〉
< ∞, and so

νe ∈ A† ⊂ M†. For convenience, we set

(5) αe =
1

〈χ, νe〉
.

Then the excess lifetime distribution (νe)e for νe is well defined with density

pνe(x) = αeN e(x), for x ∈ R+.

Next we define what it means to be a fluid model solution. For this, let

C = {g ∈ C1
b(R+) : g(0) = 0, g′(0) = 0}.

A fluid model solution for the critical data (α, ν) is a function μ : [0,∞) → M
that satisfies the following four conditions. As mentioned in the introduction,
we write μt for the time t state μ(t).

(C.1) The function μ is continuous.
(C.2) For each t ≥ 0,

〈
1{0}, μt

〉
= 0.

(C.3) For each g ∈ C, μ satisfies

(6) 〈g, μt〉 = 〈g, μ0〉 −
∫ t

0

〈g′, μr〉
〈1, μr〉

dr + αt 〈g, ν〉 ,

for all 0 ≤ t < t∗ = inf{r ≥ 0 : 〈1, μr〉 = 0}.
(C.4) For all t ≥ t∗, 〈1, μt〉 = 0.

Among conditions (C.1)–(C.4), condition (C.3) is perhaps the least intuitive.
It arises by passing to the limit in a fluid scaled version of a certain prelimit
equation describing the dynamics of a processor sharing queue (see [6, Equa-
tion (2.13) and Theorem 3.2]). The first and third terms on the righthand
side of (6) respectively correspond to the initial distribution of fluid and the
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distribution of fluid upon arrival to the system. Then, the second term on
the righthand side of (6) is purely due to processing, and the minus sign
reflects this. To understand the form if this term intuitively, suppose that μt

has a differentiable density, ht(·), with respect to Lebesgue measure. Then,
since processing by the server at time t corresponds to shifting “mass” to
the left at rate 1/ 〈1, μt〉, the change in ht(·) due to processing over a small
time interval of length δ satisfies, for each x ∈ R+,

ht+δ(x)− ht(x) ≈ ht(x+ δ/ 〈1, μt〉)− ht(x) ≈ h′t(x)
δ

〈1, μt〉
.

Then the change in 〈g, μt〉 over this time interval due to processing is ap-
proximately ∫

R+

g(x)h′t(x)
δ

〈1, μt〉
dx.

For any compactly supported g in C, integration by parts yields that the
change in 〈g, μt〉 due to processing is approximately

−
∫
R+

g′(x)ht(x)
δ

〈1, μt〉
dx = −δ 〈g′, μt〉

〈1, μt〉
.

Upon dividing by δ and letting δ → 0, one obtains the time derivative of the
negative term in (6). Even when μt does not have a density, the “processing
term” can be shown to be of this form. See [6, Section 3.1] for a more detailed
interpretation of (C.1)–(C.4) in terms of the dynamics of a processor sharing
queue.

Finally, we summarize the properties of fluid model solutions developed in
[6] and [12] that are relevant to the work in this paper. For each ξ ∈ K there
is a unique fluid model solution μ satisfying μ0 = ξ (see [6, Theorem 3.1]).
For clarity, we sometimes denote such a fluid model solution by μξ. If ξ = 0,
then μξ

t = 0 for all t ∈ [0,∞). If ξ ∈ K+ = K \ {0}, then μξ
t �= 0 for any

t ∈ [0,∞) and the associated t∗ is infinity (see [6, Lemma 4.4]). In addition,

if ξ ∈ K+, then μξ
t has no atoms for all t ∈ [0,∞) (see [6, Proposition 4.6]).

Hence, ξ ∈ K+ implies μξ
t ∈ K+ for all t ∈ [0,∞).

Next we define some related functionals of μξ for ξ ∈ K+ and summarize
their properties. Fix a fluid model solution μ such that μ0 ∈ K+. For each
t ∈ [0,∞), let

qt = 〈1, μt〉 .
Since μ is a continuous function, so is q, and since μt �= 0 for all t ∈ [0,∞),
qt �= 0 for all t ∈ [0,∞). For t ∈ [0,∞), let

st =

∫ t

0

1

qr
dr.
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The function s is continuous, strictly increasing, and continuously differen-
tiable with

d

dt
st =

1

qt
, for all t ∈ [0,∞).

Furthermore, limt→∞ st = ∞ (see [6, Lemma 4.4]). Hence the inverse τ
exists, and is continuous, strictly increasing, and continuously differentiable.
In particular, for x ∈ R+,

τ(x) = inf{t ∈ [0,∞) : st ≥ x},(7)

d

dx
τ(x) = qτ(x).(8)

For each t ∈ [0,∞), let
wt = 〈χ, μt〉 .

Since μt ∈ K+ for all t ∈ [0,∞), it follows that wt �= 0 for all t ∈ [0,∞).
Also, since (α, ν) is critical data, wt = w0 for all t ∈ [0,∞) (see [6, Theorem
3.1]). Note that w0 is the first moment of μ0, which is finite if and only if
μ0 ∈ K†. Therefore, either w0 = ∞ and so wt = ∞ for all t ∈ [0,∞), or
w0 < ∞ and so wt < ∞ for all t ∈ [0,∞). Hence, if μ0 �∈ K†, then μt �∈ K†

for any t ∈ [0,∞). Otherwise, μ0 ∈ K† and μt ∈ K† for all t ∈ [0,∞). For
each t ∈ [0,∞) and x ∈ R+, let

Mt(x) =
〈
1[0,x], μt

〉
and M t(x) =

〈
1(x,∞), μt

〉
.

If μ0 ∈ K†, then the excess lifetime distribution (μt)e associated with μt is
well defined for each t ∈ [0,∞) with density function pμt given by

pμt(x) =
M t(x)

w0
, for x ∈ R+,

where we have used the fact that wt = w0 for all t ∈ [0,∞).
A measure ξ ∈ K is said to be an invariant state for the fluid model with

critical data (α, ν) if the unique fluid model solution μ with initial state
μ0 = ξ satisfies μt = ξ for all t ∈ [0,∞). By [12, Theorem 1.1], the set of
such invariant states I is given by

I = {βνe : β ∈ R+}.

Our interest will be in nonzero invariant states, and so we define

I+ = {βνe : β ∈ (0,∞)}.
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3. Main results. Having introduced fluid model solutions and summa-
rized some of their properties, we are now ready to state the main results
of this paper. The first result is Theorem 3.1. This theorem focuses on fluid
model solutions for which the initial condition lies in a member of a cer-
tain family of relatively compact sets. It states that the Prokhorov distance
between the state at time t of any such fluid model solution and the set
of invariant states tends to zero as time approaches infinity, uniformly with
respect to all initial conditions lying in the relatively compact set containing
the initial condition. To define the family of relatively compact sets, given
ζ ∈ M, let Zζ(x) =

〈
1[0,x], ζ

〉
and Zζ(x) =

〈
1(x,∞), ζ

〉
, for x ∈ R+. Note

that 〈χ, ζ〉 =
∫ ∞
0 Zζ(x)dx. Given u > 0, let

Ku =
{
ξ ∈ K : Zξ(x) ≤ uN e(x) for all x ∈ R+

}
.

Then, if ξ ∈ Ku for some u > 0, it follows that the tail of ξ is controlled
from above by the constant u times the tail of νe. In particular, if xν < ∞
and ξ ∈ Ku for some u > 0, then Zξ(xν) = 0 since N e(xν) = 0. To illustrate
how initial conditions in Ku might arise, consider initial conditions that are
constant multiples of conditional (residual) lifetime distributions associated
with ν. By conditional lifetime distributions associated with ν, we mean
probability measures of the form νy, y ∈ [0, xν), such that νy(A) = ν(A +
y)/ν(y,∞) for all Borel sets A ⊂ R+. For certain choices of ν, there exists
uν > 0 such that each conditional lifetime distribution associated with ν is in
Kuν . For example, if ν has a hyperexponential distribution, or if ν ∈ A and
ν has a bounded, increasing hazard rate, then this property holds. Hence,
for such ν and for all c > 0, cνy ∈ Kcuν for all y ∈ [0, xν).

For each u > 0, Ku is relatively compact as a subset of M under the
topology of weak convergence since

sup
ξ∈Ku

〈1, ξ〉 ≤ u and sup
ξ∈Ku

〈χ, ξ〉 ≤ u 〈χ, νe〉 ,

(cf. [8, Lemma 15.7.5]). Observe that for u > 0, the zero measure is in Ku

so that Ku �⊂ K†. We wish to exclude the zero measure in order to use (2).
Therefore, for u, l > 0, we define

(9) Ku,l = Ku ∩ {ξ ∈ K : 〈χ, ξ〉 ≥ l},

which is a subset of the relatively compact set Ku, and is therefore relatively
compact. One can verify that the zero measure is not in the closure of Ku,l

(see Lemma 4.6). Furthermore, note that if ξ ∈ Ku for some u > 0 and
ξ �= 0, then ξ ∈ Ku,〈χ,ξ〉.

For the statement of Theorem 3.1 below, we recall that the unique fluid
model solution with initial state ξ ∈ K is denoted by μξ.
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Theorem 3.1. Let u, l > 0. Then

(10) lim
t→∞

sup
ξ∈Ku,l

d(μξ
t , I) = 0.

Furthermore, given ε > 0, there exists δ > 0 such that

(11) sup
ξ∈Kδ

u,l

sup
t∈[0,∞)

d(μξ
t , I) < ε,

where Kδ
u,l = {ζ ∈ Ku,l : d(ζ, I) < δ}.

Theorem 3.1 is proved in Section 6, assuming Theorem 3.2 below holds.
The result in Theorem 3.1 provides sufficient conditions for fluid model
solutions with initial conditions lying in certain relatively compact sets to
be uniformly close to the invariant manifold I. The particular element of I to
which the time t value of a given fluid model solution with initial condition
in such a relatively compact set is close to is not identified in Theorem 3.1.
However, this identification is not necessary in order to carry out the kinds
of state space collapse arguments that contribute to proving diffusion limit
results. Indeed, a careful examination of the arguments in [5] demonstrates
that uniform proximity to I is all that is needed.

Even so, it is natural to ask about identifying the specific limit point. It
turns out that we can use Theorem 3.1, together with properties of fluid
model solutions, to obtain the following corollary, proved in Section 6 as
well. For this recall that αe = 1/ 〈χ, νe〉 (see (5)).

Corollary 3.1. Let u, l > 0. Then

(12) lim
t→∞

sup
ξ∈Ku,l

d(μξ
t , αew0νe) = 0.

In particular, for each ξ ∈ Ku, as t → ∞,

(13) μξ
t

w→ αew0νe.

Furthermore, given ε > 0, there exists δ > 0 such that

(14) sup
ξ∈Kδ

u,l

sup
t∈[0,∞)

d(μξ
t , αew0νe) < ε.

The results in Corollary 3.1 are similar to those in [12, Theorems 1.2
and 1.3]. The result in [12, Theorem 1.2] states that (13) holds under the
condition 〈χ, ν〉 < ∞ and 〈χ, ξ〉 < ∞, i.e., (3) does not necessarily need to
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hold (in which case αe = 0) and ξ ∈ Ku for some u > 0 is not required.
However, [12, Theorem 1.2] does not imply the uniform convergence that is
needed for the proofs of state space collapse given in [5]. The results in [12,
Theorem 1.3] are slightly stronger than the uniform convergence in (12),
since they provide rates of convergence and therefore suffice for the state
space collapse arguments given in [5]. However, the results in [12, Theorem
1.3] also require the more restrictive condition of finite 2+ε moments on the
service time distribution ν for some ε > 0, rather than just the finite second
moment condition needed for (12) to hold. The proof in [12, Theorem 1.3]
depends on renewal theory arguments, which aren’t likely to generalize to
the networks setting. We have included Corollary 3.1 to demonstrate how
one obtains a result similar to the one in [12, Theorem 1.3] as a consequence
of Theorem 3.1.

Theorem 3.1 is proved in Section 6 using a result (Theorem 3.2 below)
about the convergence to zero of a certain relative entropy function. This
relative entropy function has some similarities with cumulative residual en-
tropy, which is introduced in [14] as an alternative to Shannon entropy, in
that it is defined in terms of the tail mass Zζ for ζ ∈ M†. For the description
of our relative entropy function, note that for any ζ ∈ M†, one can compute
the relative entropy of ζe with respect to (νe)e. This is so because ζ ∈ M†

implies that 0 < 〈χ, ζ〉 < ∞, which in turn implies that ζe is well-defined
(see (2)). Then ζe and (νe)e are both Borel probability measures that are
absolutely continuous with respect to Lebesgue measure. Our idea is to first
measure the proximity of a measure ζ ∈ M† to the set I in terms of the
relative entropy of ζe with respect to (νe)e. For this, let h : R+ → R be
given by

h(x) = x lnx, for x ∈ R+,

where h(0) is interpreted to be 0. Notice that h is continuous, strictly convex
and bounded below on R+ with minimum value −e−1 at e−1. Furthermore,
limx→∞ h(x) = ∞. Recall that for a measure ζ ∈ M†, pζ denotes the density
function of ζe. In particular, pνe denotes the density function of (νe)e. Let
H : M† → [0,∞] be given by

(15) H(ζ) =

∫
R+

h

(
pζ(x)

pνe(x)

)
pνe(x)dx, for ζ ∈ M†.

Here, the convention is that the integrand takes the value zero for all x ∈ R+

such that pζ(x) = 0 and infinity for all x ∈ R+ such that pζ(x) > 0 and
pνe(x) = 0. In particular, H(ζ) = ∞ whenever

〈
1(xν ,∞), ζ

〉
> 0. For each

ζ ∈ M†, H(ζ) denotes the relative entropy of ζe with respect to (νe)e.
Hence, it provides a kind of distance between these two probability measures.
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In fact, one can regard H(ζ) as a measure of the distance between the
“normalized shapes” of ζ and νe, as we will see. In Lemma 4.7, we show
that H(ζ) < ∞ if ζ ∈ Ku,l for some u, l > 0.

In order to prove Theorem 3.1, we exploit the behavior of H along fluid
model solutions. More specifically, given ξ ∈ K†, we analyze the behavior of
H(μξ

t ) as a function of t ∈ [0,∞). To simplify the notation, for each ξ ∈ K†

and t ∈ [0,∞), we let

(16) Hξ(t) = H(μξ
t ).

We establish the following theorem, which concerns the asymptotic behavior
of Hξ as time tends to infinity.

Theorem 3.2. Let u, l > 0. Then, for each ξ ∈ Ku,l, Hξ is monotone
nonincreasing. Furthermore,

lim
t→∞

sup
ξ∈Ku,l

Hξ(t) = 0.

Theorem 3.2 is the other main result proved in this paper. It implies
the uniform weak convergence of the excess lifetime distributions associated
with the time t states of a particular collection of fluid model solutions to
the unique excess lifetime distribution associated with the set of invariant
states. It is a uniform convergence of “normalized shapes” of sorts and it
provides a significant step toward proving Theorem 3.1. But, Theorem 3.1
does not follow as an immediate consequence of Theorem 3.2. Properties
of the function H restricted to certain compact sets, as well as properties
of fluid model solutions with initial states in Ku,l for some u, l > 0, play
important roles in its proof as well, as we will see in Section 6.

Sections 7 and 8 are devoted to proving Theorem 3.2. An important step
in the proof of Theorem 3.2 is to develop an absolute continuity property for
Hξ as a function of time for each ξ ∈ Ku,l and u, l > 0. This is done in Section
7 (see Theorem 7.1). In Theorem 7.1, an explicit formula is obtained for the
density ofHξ as a function of time for each ξ ∈ Ku,l and u, l > 0. This density
is non-positive for all time, which immediately implies the nonincreasing
property asserted in Theorem 3.2. In the proof of Theorem 7.1, the specifics
of our notion of relative entropy are used to directly compute the density
of Hξ for each absolutely continuous ξ ∈ Ku,l and u, l > 0 (see Lemma 7.8
and its proof). The reader interested in such details will want to make note
of the differential equation (65) satisfied by M t(x) =

〈
1(x,∞), μt

〉
, t ≥ 0, for

each fixed x ∈ R+ when the initial state μ0 of the fluid model solution μ
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is nonzero and is absolutely continuous with respect to Lebesgue measure,
and the role that (65) plays in the proof of Lemma 7.8.

The remainder of the paper is organized as follows. Assuming Theorem 3.2
holds, Theorem 3.1 and Corollary 3.1 are proved in Section 6 after developing
the necessary properties of the function H in Section 4 and the necessary
properties of fluid model solutions with initial states in Ku,l for some u, l > 0
in Section 5. Following that, Theorem 7.1 is proved in Section 7. Finally
Theorem 3.2 is proved in Section 8, as a consequence of Theorem 7.1 and
additional properties of the density of Hξ as a function of time established
in Section 7.

4. Properties of the relative entropy function H. Given ζ ∈ M†,
H(ζ), as defined in (15), denotes the relative entropy of ζe with respect
to (νe)e. Relative entropy, regarded as an extended real-valued function on
the space of pairs of Borel probability measures on R+ that are absolutely
continuous with respect to Lebesgue measure, has proved to be a useful
non-metric distance measure. It is non-metric in the sense that it is not
symmetric, and doesn’t satisfy the triangle inequality. Even so, it provides
a measure of distance in the sense that it is nonnegative and takes the
value zero if and only if the two probability measures are the same. In this
section, we develop properties of the function H. The treatment here is self-
contained. However, we refer the interested reader to [3, Chapter 15.1] for a
more general development of relative entropy and its properties.

Let ψ : R+ → R be given by

ψ(x) = 1− x+ h(x), x ∈ R+.

Then ψ is nonnegative and strictly convex with a minimum value of zero
when its argument equals one. In addition, for all ζ ∈ M† such that 〈1(xν ,∞),
ζ〉 = 0, we have

(17) H(ζ) =

∫ xν

0
h

(
pζ(x)

pνe(x)

)
pνe(x)dx =

∫ xν

0
ψ

(
pζ(x)

pνe(x)

)
pνe(x)dx.

This has two immediate consequences. For this, let

J = {ζ ∈ M : ζ = aδ0 + βνe for some a, β ∈ R+},(18)

J+ = {ζ ∈ J : ζ = aδ0 + βνe for some a ∈ R+ and β > 0}.(19)

Lemma 4.1. For each ζ ∈ M†,

(i) H(ζ) ∈ [0,∞];
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(ii) H(ζ) = 0 if and only if ζ ∈ J+.

Proof. To verify (i), note that if ζ ∈ M† satisfies H(ζ) = ∞, then
the result holds trivially. Otherwise, H(ζ) < ∞ and

〈
1(xν ,∞), ζ

〉
= 0. Then

by (17) and nonnegativity of ψ and pνe it follows that H(ζ) ∈ [0,∞]. For
the proof of (ii), fix ζ ∈ M†. If ζ ∈ J+, then pζ = pνe and so H(ζ) = 0.
Conversely, if H(ζ) = 0, then

〈
1(xν ,∞), ζ

〉
= 0. Hence, by (17), nonneg-

ativity of ψ and positivity and monotonicity of pνe on [0, xν), it follows
that ψ (pζ(x)/pνe(x)) = 0 for Lebesgue almost every x ∈ [0, xν). Thus, for
Lebesgue almost every x ∈ [0, xν), pζ(x) = pνe(x). But then, for Lebesgue
almost every x ∈ R+,

〈
1(x,∞), ζ

〉
=

〈χ, ζ〉N e(x)

〈χ, νe〉
.

Indeed, since both sides are right continuous in x, the above equality holds
for all x ∈ R+. This together with the fact that ζ ∈ M† implies that ζ ∈
J+.

For each ζ ∈ M† as noted in [4], we have the following relationship be-
tween H(ζ) and the Prokhorov distance between ζe and (νe)e:

(20) d(ζe, (νe)e) ≤
√

H(ζ)

2
.

This inequality is actually a combination of two results. Firstly, the Prokho-
rov distance is bounded above by the total variation distance (see [7, page
34] for example). Secondly, the total variation distance is bounded above by
the square root of one half of the relative entropy distance (see [9]). Hence,
if {ζn}n∈N ⊂ M† is such that limn→∞H(ζn) = 0, then (ζn)e

w→ (νe)e as
n → ∞.

This raises the question as to whether or not {ζn}n∈N ⊂ M† and
limn→∞H(ζn) = 0 implies that for some ζ ∈ J+,

(21) ζn
w→ ζ as n → ∞.

We provide some sufficient conditions for this in Lemma 4.3, but first we
record Lemma 4.2, which more generally relates weak convergence of excess
lifetime distributions to weak convergence of the original measures.

Lemma 4.2. Suppose that {ζn}n∈N ⊂ M†, ζ ∈ M†, and (ζn)e
w→ ζe as

n → ∞. If

lim
n→∞

〈1, ζn〉 = 〈1, ζ〉 and lim
n→∞

〈χ, ζn〉 = 〈χ, ζ〉 ,
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then, as n → ∞,
ζn

w→ ζ.

Proof. Since (ζn)e
w→ ζe as n → ∞, it follows that for all g ∈ C1

b(R+),

lim
n→∞

〈
g′, (ζn)e

〉
=

〈
g′, ζe

〉
.

Using integration by parts, we obtain that for each g ∈ C1
b(R+) and n ∈ N,

〈
g′, (ζn)e

〉
=

−g(0) 〈1, ζn〉
〈χ, ζn〉

+
〈g, ζn〉
〈χ, ζn〉

,

〈
g′, ζe

〉
=

−g(0) 〈1, ζ〉
〈χ, ζ〉 +

〈g, ζ〉
〈χ, ζ〉 .

Hence,

lim
n→∞

〈g, ζn〉 = lim
n→∞

[
〈χ, ζn〉

〈
g′, (ζn)e

〉
+ g(0) 〈1, ζn〉

]
= 〈χ, ζ〉

〈
g′, ζe

〉
+ g(0) 〈1, ζ〉

= 〈g, ζ〉 .

Then, since C1
b(R+) is convergence determining for measures in M†, the

desired result holds.

Lemma 4.3. Suppose that {ζn}n∈N ⊂ M† and limn→∞H(ζn) = 0. Fur-
ther suppose that there exist a ∈ R+ and β > 0 such that

lim
n→∞

〈1, ζn〉 = a+ β and lim
n→∞

〈χ, ζn〉 = β 〈χ, νe〉 .

Then, as n → ∞,
ζn

w→ ζ = aδ0 + βνe ∈ J+.

Proof. By (20), we have that (ζn)e
w→ (νe)e as n → ∞. Set ζ = aδ0 +

βνe ∈ J+ ⊂ M†. Then 〈1, ζ〉 = a + β, 〈χ, ζ〉 = β 〈χ, νe〉, and ζe = (νe)e. So
the result follows from Lemma 4.2.

Note that in Lemma 4.3 the limit is in J+ rather than I+. The following
result bounds the Prokhorov distance to I in terms of the Prokhorov distance
to J and the size of the atom at the origin.

Lemma 4.4. Suppose that ζ ∈ M, η ∈ J, ε > 0, and d(ζ, η) ≤ ε. Then
d(ζ, βνe) ≤ ε + a, where η = aδ0 + βνe for some a ∈ R+ and β > 0.
Furthermore, a ≤ ζ([0, ε)) + ε so that

d(ζ, I) ≤ ζ([0, ε)) + 2ε.
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Proof. For any closed set A ⊂ R+, we have that

ζ(A) ≤ η(Aε) + ε ≤ a+ βνe(A
ε) + ε ≤ βνe(A

ε+a) + ε+ a,

βνe(A) ≤ η(A) ≤ ζ(Aε) + ε ≤ ζ(Aε+a) + ε+ a.

Hence, d(ζ, βνe) ≤ ε+a. By considering A = {0}, we obtain Aε = [0, ε) and
so

a = η({0}) ≤ ζ([0, ε)) + ε.

Since βνe ∈ I, the result follows.

Finally, one might wonder if {ζn}n∈N ⊂ M†, ζ ∈ J+, and ζn
w→ ζ as

n → ∞ implies limn→∞H(ζn) = 0. Note that the inequality in (20) is not
helpful in this regard. While we have the following sufficient condition for
lower semicontinuity of H, it is really continuity of H that we require. We
provide a sufficient condition for this further below.

Lemma 4.5. Suppose that {ζn}n∈N ⊂ M†, ζ ∈ M†, and ζn
w→ ζ and

〈χ, ζn〉 → 〈χ, ζ〉 as n → ∞. Then

(22) lim inf
n→∞

H(ζn) ≥ H(ζ).

Proof. The assumptions imply that, for almost all x ∈ R+,

(23) lim
n→∞

pζn(x) = pζ(x).

If there exists x > xν such that pζ(x) > 0, then H(ζ) = ∞. We may
suppose that x is such that (23) holds at x. Then, for all n sufficiently large,
pζn(x) > 0 and so H(ζn) = ∞. Hence, (22) holds. Otherwise, pζ(x) = 0
for all x > xν and then by right continuity of pζ , pζ(xν) = 0. Since h is
continuous, for almost all x ∈ [0, xν),

lim
n→∞

h

(
pζn(x)

pνe(x)

)
= h

(
pζ(x)

pνe(x)

)
.

This together with (17) and Fatou’s lemma implies (22).

If we restrict the domain of H, we can verify that H is continuous on this
restricted domain. To describe this, given ζ ∈ M, recall that for x ∈ R+,
Zζ(x) =

〈
1[0,x], ζ

〉
and Zζ(x) =

〈
1(x,∞), ζ

〉
. Then, given u, l > 0, define

Mu = {ζ ∈ M : 〈1, ζ〉 ≤ u and Zζ(x) ≤ uN e(x) for all x ∈ R+},(24)

Mu,l = {ζ ∈ Mu : l ≤ 〈χ, ζ〉}.(25)
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Note that for all u, l > 0, Ku,l ⊂ Mu,l ⊂ M†. In addition, note that if
u, l > 0 are such that Mu,l �= ∅, then

(26) l ≤ u 〈χ, νe〉 .

Sets of the form Mu,l for u, l > 0 are natural in our context for several
reasons. For one, they are compact (see Lemma 4.6 below). In addition,
we will show that given u, l > 0, there exist u∗, l∗ > 0 such that for all
ξ ∈ Ku,l, μ

ξ
t ∈ Ku∗,l∗ for all t ∈ [0,∞) (see Corollary 5.1). In particular fluid

model solutions starting in a compact set of this form, remain in a (possibly
enlarged) compact set of this form for all time. Finally, on sets of this form,
one may invoke bounded convergence in order to demonstrate that H is
continuous on this restricted domain (see Lemma 4.8 and its proof). The
combination of these properties will be important for the relative entropy
arguments given here.

We begin by verifying compactness.

Lemma 4.6. Given u, l > 0, Mu and Mu,l are compact.

Proof. Fix u, l > 0. For all ζ ∈ Mu, we have that 〈1, ζ〉 ≤ u and
〈χ, ζ〉 ≤ u 〈χ, νe〉. Hence, Mu and Mu,l are relatively compact (cf. [8, Lemma
15.7.5]). Therefore, it suffices to show that Mu and Mu,l are closed. First

suppose that {ζn}n∈N ⊂ Mu and ζn
w→ ζ ∈ M as n → ∞. We must show

that ζ ∈ Mu. We have that limn→∞ 〈1, ζn〉 = 〈1, ζ〉, and so 〈1, ζ〉 ≤ u.
Furthermore, for all ζ-continuity points x ∈ R+,

Zζ(x) = lim
n→∞

Zζn(x) ≤ uN e(x).

Since the continuity points are dense and using right continuity of both sides
above, we have for all x ∈ R+,

Zζ(x) ≤ uN e(x).

Then ζ ∈ Mu and so Mu is compact. Next suppose that {ζn}n∈N ⊂ Mu,l

and ζn
w→ ζ ∈ M as n → ∞. Since Mu,l ⊂ Mu and Mu is compact, ζ ∈ Mu.

We must show that ζ ∈ Mu,l. For this, note that for any ξ ∈ M,

(27)
〈
χ1(x,∞), ξ

〉
= xZξ(x) +

∫ ∞

x
Zξ(y)dy.

This together with ζn ∈ Mu,l for all n ∈ N implies that, for all x ∈ R+,

sup
n∈N

〈
χ1(x,∞), ζn

〉
≤ u

〈
χ1(x,∞), νe

〉
.
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Combining this with the facts that ζn
w→ ζ as n → ∞ and 〈χ, νe〉 < ∞, we

can conclude that
lim
n→∞

〈χ, ζn〉 = 〈χ, ζ〉 .

Therefore, l ≤ 〈χ, ζ〉 ≤ u 〈χ, νe〉 < ∞. Thus, ζ ∈ Mu,l.

The bounds stated in the next proposition are used to verify continuity
of H on Mu,l for u, l > 0.

Lemma 4.7. For u, l > 0, ζ ∈ Mu,l, and x ∈ [0, xν),

(28)

∣∣∣∣h
(

pζ(x)

pνe(x)

)∣∣∣∣ ≤ max

(
e−1, h

(
u 〈χ, νe〉

l

))
,

and

(29) H(ζ) ≤ h

(
u 〈χ, νe〉

l

)
.

In particular, H(ζ) < ∞ for all ζ ∈ Mu,l.

Proof. Fix u, l > 0. Given ζ ∈ Mu,l, we have Zζ(xν) = 0 if xν < ∞.
Therefore, given ζ ∈ Mu,l,

H(ζ) =

∫ xν

0
h

(
pζ(x)

pνe(x)

)
pνe(x)dx.

Then, given ζ ∈ Mu,l, for all x ∈ [0, xν),

0 ≤ pζ(x)

pνe(x)
=

Zζ(x) 〈χ, νe〉
〈χ, ζ〉N e(x)

≤ u 〈χ, νe〉
〈χ, ζ〉 ≤ u 〈χ, νe〉

l
.

Since h is nonpositive and bounded below by −e−1 on [0, 1] and is nonneg-
ative and increasing on [1,∞), it follows that (28) holds. In addition, (29)
follows by combining the inequality above with the fact that u 〈χ, νe〉 /l ≥ 1
by (26).

Lemma 4.8. Given u, l > 0, H is continuous on Mu,l.

Proof. Suppose that {ζn}n∈N ⊂ Mu,l and ζn
w→ ζ ∈ M as n → ∞.

Then, by Lemma 4.6, ζ ∈ Mu,l. As demonstrated in the proof of Lemma
4.6, for all ζ-continuity points x ∈ R+,

lim
n→∞

Zζn(x) = Zζ(x) and lim
n→∞

〈χ, ζn〉 = 〈χ, ζ〉 .
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Since 0 < l ≤ 〈χ, ζ〉, it follows that for all but countably many x ∈ R+,

lim
n→∞

pζn(x) = pζ(x).

Therefore, since h is continuous, for all but countably many x ∈ [0, xν),

lim
n→∞

h

(
pζn(x)

pνe(x)

)
= h

(
pζ(x)

pνe(x)

)
.

This together with (28) and the bounded convergence theorem implies that
limn→∞H(ζn) = H(ζ).

5. Bounds for fluid model solutions. Here we develop several bounds
satisfied by fluid model solutions. In particular, we prove two compact con-
tainment properties of fluid model solutions that will be used in the proofs
of Theorems 3.1 and 3.2 (see Corollaries 5.1 and 5.4). We will also obtain
an upper bound on the mass near the origin that will be used in the proof
of Theorem 3.1 (see Lemma 5.2 and Corollary 5.2).

Let μ be a fluid model solution with μ0 ∈ K†. Recall the notation associ-
ated with such a fluid model solution, which is introduced in Section 2. In
particular, ne is the density for νe. As a consequence of [6, Lemma 4.3] and
the fact that μt �= 0 for all t ∈ [0,∞), for all t ∈ [0,∞) and x ∈ R+,

(30) M t(x) = M0(x+ st) +

∫ t

0
ne(x+ st − sv)dv.

Given 0 ≤ r ≤ t < ∞ and x ∈ R+, consider (30) with r in place of t and
x+ st − sr in place of x. Subtract this from (30) as stated. Then, it follows
that for all 0 ≤ r ≤ t < ∞ and x ∈ R+,

(31) M t(x) = M r(x+ st − sr) +

∫ t

r
ne(x+ st − sv)dv.

Setting x = 0 in (31), using property (C.2) of fluid model solutions and
using the fact that the integrand is bounded above by α yields that for all
0 ≤ r ≤ t < ∞,

(32) qt ≤ M r(st − sr) + α(t− r).

Lemma 5.1. Let μ be a fluid model solution with μ0 ∈ K†. Set

(33) u0 =
3max(q0, 6αw0)

2
.

Then qt ≤ u0 for all t ∈ [0,∞).
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Proof. Fix a fluid model solution μ with μ0 ∈ K†. Let f(x) = x2 −
6w0αx+w2

0α
2 for x ∈ R. This quadratic has two distinct positive roots. Let

r denote the larger of those two roots and note that f(x) ≥ 0 for all x ≥ r.
Also note that 3αw0 < r < 6αw0. Set

a = max(q0, r), � =
a− αw0

2α
, and b = a+ α� =

3a

2
− αw0

2
.

Then a ≥ r, which implies that � > 0 and f(a) ≥ 0. Since b ≤ 3a/2 ≤ u0, to
prove the lemma, it suffices to show that qt ≤ b for all t ∈ [0,∞). To prove
this, we will prove by induction that for each n = 0, 1, 2, . . .

(34) qn� ≤ a and qt ≤ b for all t ∈ [n�, (n+ 1)�].

We begin with the base case, n = 0. By definition of a, q0 ≤ a. By (32)
for t ∈ [0, �], we have

qt ≤ q0 + α� ≤ a+ α� = b.

Hence, (34) holds for n = 0.
For the induction step, fix m ∈ N and assume that (34) holds for n =

0, . . . ,m − 1. We wish to show that (34) holds for n = m. By (32), the
generalization of Markov’s inequality to finite measures, and the fact that
wt = w0 for all t ∈ [0,∞), we have

qm� ≤ M (m−1)�

(
sm� − s(m−1)�

)
+ α� ≤ w0

sm� − s(m−1)�
+ α�.

By the definition of s and the induction hypothesis,

sm� − s(m−1)� =

∫ m�

(m−1)�

1

qv
dv ≥ �

b
.

Hence,

qm� ≤
w0b

�
+ α� =

w0a2α

a− w0α
+

a

2
+

w0α

2
.

In order to show that qm� ≤ a, it suffices to show that

2w0αa

a− w0α
+

a

2
+

w0α

2
≤ a.

This holds if and only if

0 ≤ (a− w0α)
2 − 4w0αa.
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The righthand side is equal to f(a), and it is true that 0 ≤ f(a). Hence,
qm� ≤ a. This together with (32) implies that for t ∈ [m�, (n+ 1)�],

qt ≤ qm� + α� ≤ a+ α� = b.

Hence, (34) holds for n = m. Therefore, by the principle of mathematical
induction, (34) holds for each n = 0, 1, 2, . . . .

Given u > 0, let
K+

u = Ku \ {0}.

Lemma 5.1 implies that the total mass of any fluid model solution in K+
u

is uniformly bounded above for all time. From this, we obtain the following
corollary.

Corollary 5.1. Let u, l > 0. Set

(35) u∗ =
3umax(1, 6α 〈χ, νe〉)

2
and l∗ = l.

Then, for all fluid model solutions μ with μ0 ∈ K+
u , μt ∈ K+

u∗ for all t ∈
[0,∞). Moreover, for all fluid model solutions μ with μ0 ∈ Ku,l, μt ∈ Ku∗,l∗

for all t ∈ [0,∞).

Proof. Fix u > 0 and a fluid model solution μ with μ0 ∈ K+
u . Let u

∗ be
given by (35). We must show that M t(x) ≤ u∗N e(x) for all t ∈ [0,∞) and
x ∈ R+. Since μ0 ∈ K+

u , q0 ≤ u and w0 ≤ u 〈χ, νe〉. Hence, by Lemma 5.1,
qt ≤ u∗ for all t ∈ [0,∞). Then, for each t ∈ [0,∞) and x ∈ R+,∫ t

0
ne(x+ st − sv)dv =

∫ t

0
ne(x+ st − sv)

qv
qv

dv ≤ u∗
∫ t

0
ne(x+ st − sv)

1

qv
dv.

Therefore, for each t ∈ [0,∞) and x ∈ R+, using the change of variables
y = x+ st − sv gives,

(36)

∫ t

0
ne(x+ st − sv)dv ≤ u∗

∫ x+st

x
ne(y)dy = u∗(N e(x)−N e(x+ st)).

This together with (30), the definition of K+
u , and the fact that u ≤ u∗

implies that for all t ∈ [0,∞) and x ∈ R+

M t(x) ≤ uN e(x+ st) + u∗
(
N e(x)−N e(x+ st)

)
≤ u∗N e(x).

Hence, μt ∈ K+
u∗ for all t ∈ [0,∞).
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Lastly, fix u, l > 0 and a fluid model solution μ with μ0 ∈ Ku,l. Let u
∗, l∗

be given by (35). Since μ0 ∈ Ku,l, μ0 ∈ K+
u . Then, by what was proved

above, μt ∈ K+
u∗ for all t ∈ [0,∞). This, together with the fact that the fluid

analog of the workload process is constant for critical data, implies that
wt = w0 ≥ l = l∗ for all t ∈ [0,∞). Then μt ∈ Ku∗,l∗ for all t ∈ [0,∞).

Next, we obtain upper bounds on the mass that fluid model solutions
have in neighborhoods of the origin.

Lemma 5.2. Let u > 0 and let u∗ be given by (35). For all fluid model
solutions μ with μ0 ∈ K+

u , t ∈ [0,∞), and x ∈ R+,

Mt(x) ≤ M0(st)−M0(st + x) + αu∗x.

Proof. Fix u > 0 and a fluid model solution μ with μ0 ∈ K+
u , t ∈ [0,∞),

and x ∈ R+. Let u∗ be given by (35). By property (C.2) of fluid model
solutions and (30), we have that

Mt(x) = M t(0)−M t(x)

= M0(st)−M0(x+ st) +

∫ t

0
(ne(st − sv)− ne(x+ st − sv)) dv.

With the change of variables, r = sv, by (7) we have τ(r) = v. Then, from
(8), it follows that,

Mt(x) = M0(st)−M0(x+ st) +

∫ st

0
(ne(st − r)− ne(x+ st − r)) qτ(r)dr.

Hence,

Mt(x) = M0(st)−M0(x+ st) + α

∫ st

0

〈
1(st−r,x+st−r], ν

〉
qτ(r)dr.

Therefore, by Corollary 5.1,

Mt(x) ≤ M0(st)−M0(x+ st) + u∗α

∫ st

0

〈
1(st−r,x+st−r], ν

〉
dr.

Then, using the change of variables y = st − r, we obtain

(37) Mt(x) ≤ M0(st)−M0(x+ st) + u∗α

∫ st

0

〈
1(y,x+y], ν

〉
dy.

If st ≤ x, then the result follows since
〈
1(y,x+y], ν

〉
≤ 1 for all y ∈ R+.

Otherwise, st > x. Then, by splitting the integrand on the righthand side
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of (37) into a difference, distributing the integral sign and using a change of
variables in the first integral, canceling the common portion of the two inte-
grals that result, and dropping the remaining portion of the second integral
since it is negative, and finally using the fact that the integrand is bounded
above by one, we obtain

Mt(x) ≤ M0(st)−M0(x+ st) + u∗α

∫ st

0

(〈
1[0,x+y], ν

〉
−

〈
1[0,y], ν

〉)
dy

= M0(st)−M0(x+ st) + u∗α

(∫ x+st

x

〈
1[0,y], ν

〉
dy −

∫ st

0

〈
1[0,y], ν

〉
dy

)

= M0(st)−M0(x+ st) + u∗α

(∫ x+st

st

〈
1[0,y], ν

〉
dy −

∫ x

0

〈
1[0,y], ν

〉
dy

)

≤ M0(st)−M0(x+ st) + u∗α

∫ x+st

st

〈
1[0,y], ν

〉
dy

≤ M0(st)−M0(x+ st) + u∗αx.

So the result holds.

An immediate consequence of Lemma 5.2 is the following corollary, which
yields an upper bound on the mass near the origin that is uniform over
initial conditions in K+

u , for u > 0.

Corollary 5.2. Let u > 0 and let u∗ be given by (35). For all fluid
model solutions μ with μ0 ∈ K+

u , t ∈ [0,∞), and x ∈ R+,

(38) Mt(x) ≤ u∗
(
N e(t/u

∗) + αx
)
.

Furthermore, given ε > 0, there exists δ, x∗ > 0 such that if μ is a fluid
model solution satisfying μ0 ∈ K+

u and d(μ0, I) < δ, then

(39) sup
0≤x≤x∗

sup
t∈[0,∞)

Mt(x) < ε.

Proof. Fix u > 0 and a fluid model solution μ with μ0 ∈ K+
u , t ∈ [0,∞),

and x ∈ R+. Let u
∗ be given by (35).

First we verify (38). By Corollary 5.1, μt ∈ K+
u∗ for t ∈ [0,∞). Hence, for

t ∈ [0,∞), 0 < qt ≤ u∗ and so

st =

∫ t

0

1

qv
dv ≥ t

u∗
.

This yields that for t ∈ [0,∞), M0(st) ≤ M0(t/u
∗) ≤ u∗N e(t/u

∗). Then
(38) follows from Lemma 5.2.
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Next we verify (39). For this, fix ε > 0. Since νe is continuous, N e is
uniformly continuous and so there exists h > 0 such that

(40) sup
y∈R+

(
N e(y)−N e(y + h)

)
<

ε

6u
.

Fix δ ∈ (0, h/2 ∧ ε/6) and further assume that d(μ0, I) < δ. Then there
exists β < u+ δ such that d(μ0, βνe) < δ. Hence, using the definition of the
Prokhorov distance d(·, ·), the continuity of μ0 and νe, and (40), we have,
for all y ≤ h− 2δ,

M0(st)−M0(st + y) =
〈
1(st,st+y], μ0

〉
=

〈
1[st,st+y], μ0

〉
≤ β

〈
1((st−δ)+,st+y+δ), νe

〉
+ δ

= β
〈
1((st−δ)+,st+y+δ], νe

〉
+ δ

= β
(
N e((st − δ)+)−N e (st + y + δ)

)
+ δ

≤ (u+ δ)
(
N e((st − δ)+)−N e(st + y + δ)

)
+ δ

≤ u
(
N e((st − δ)+)−N e(st + y + δ)

)
+ 2δ

≤ u
(
N e((st − δ)+)−N e(st + h− δ)

)
+ 2δ

<
ε

6
+

2ε

6
=

ε

2
.

This together with Lemma 5.2 implies that for y ≤ x∗=min(h−2δ, ε/(3u∗α)),
we have that Mt(y) < 5ε/6. Hence, (39) holds.

Next, we turn our attention to lower bounds. One can obtain a lower
bound on the total mass that holds for all time, but it is not uniform over
initial conditions inK+

u for any u > 0. One should not expect a uniform lower
bound since the zero measure is a limit point of K+

u for any u > 0. However,
if one considers initial conditions in sets of the form Ku,l for u, l > 0, the
total mass is uniformly bounded away from zero due to relative compactness.
Indeed, given u, l > 0, since Ku,l ⊂ Mu,l, where the latter is compact and
0 �∈ Mu,l,

(41) λ = inf{〈1, ζ〉 : ζ ∈ Mu,l},

is strictly positive. Similarly, for u∗, l∗ given by (35),

(42) λ∗ = inf{〈1, ζ〉 : ζ ∈ Mu∗,l∗},

is strictly positive. This together with Corollary 5.1 implies the following
corollary.
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Corollary 5.3. Let u, l > 0. Let u∗, l∗, λ∗ > 0 be given by (35) and
(42). If μ is a fluid model solution such that μ0 ∈ Ku,l, then λ∗ ≤ qt for all
t ∈ [0,∞).

Lastly, we would like to know if, given u, l > 0, there exists l∗ > 0 such
that l∗N e(x) ≤ M t(x) for all x ∈ R+ , t ∈ [0,∞), and fluid model solutions
μ with initial state in Ku,l. Such a condition is not true at time zero unless
it is imposed, and we wish to avoid such restrictions if possible. Instead, in
what follows, we obtain a lower bound that is asymptotically of the desired
form (see (43) and recall that limt→∞ st = ∞).

Lemma 5.3. Let u, l > 0 and let u∗, l∗, λ∗ > 0 be given by (35) and (42).
Given a fluid model solution μ such that μ0 ∈ Ku,l, for t ∈ [0,∞), and
x ∈ R+,

(43) M t(x) ≥ λ∗ (
N e(x)−N e(x+ st)

)
.

Proof. Fix u, l > 0 and let u∗, l∗, λ∗ > 0 be given by (35) and (42). Fix a
fluid model solution μ such that μ0 ∈ Ku,l and t ∈ [0,∞). By Corollary 5.1,
μt ∈ Ku∗,l∗ for all t ∈ [0,∞). Then, by (30) and (42), given t ∈ [0,∞) and
x ∈ R+,

M t(x) ≥
∫ t

0
ne(x+ st − sv)dv ≥ λ∗

∫ t

0
ne(x+ st − sv)

1

qv
dv

= λ∗
∫ x+st

x
ne(y)dy = λ∗ (

N e(x)−N e(x+ st)
)
.

The result in Lemma 5.3 motivates the following definition. For u, l, θ > 0,
let λ be given by (41) and set

Mu,l,θ =
{
ζ ∈ Mu,l : Zζ(x) ≥ λ

(
N e(x)−N e(x+ θ)

)}
,(44)

Ku,l,θ = Mu,l,θ ∩K.(45)

Lemma 5.4. Given u, l, θ > 0, Mu,l,θ is compact.

Proof. Fix u, l, θ > 0. SinceMu,l,θ ⊂ Mu,Mu,l,θ is relatively compact. Hence,
it suffices to show that Mu,l,θ is closed. Suppose that {ζn}n∈N ⊂ Mu,l,θ and

ζn
w→ ζ ∈ M as n → ∞. We must show that ζ ∈ Mu,l,θ. Since Mu,l,θ ⊂ Mu,l,

Lemma 4.6 implies ζ ∈ Mu,l. Therefore, it suffices to show that for all
x ∈ R+,

(46) Zζ(x) ≥ λ
(
N e(x)−N e(x+ θ)

)
.
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For all ζ-continuity points x ∈ R+,

lim
n→∞

Zζn(x) = Zζ(x).

Therefore, (46) holds for all ζ-continuity points x ∈ R+. The set of ζ-
discontinuity points is countable, Zζ is right continuous, and N e is con-
tinuous. Therefore, (46) holds for all x ∈ R+.

The following corollary implies that, given u, l, θ > 0, any fluid model
solution with initial value in Ku,l necessarily enters Ku∗,l∗,θ∗ by a uniform
time T ∗ and stays in Ku∗,l∗,θ∗ thereafter, where u∗, l∗, λ∗ are given by (35)
and (42) and θ∗ = θ.

Corollary 5.4. Let u, l, θ > 0. Let u∗, l∗, λ∗ > 0 be given by (35) and
(42) and set θ∗ = θ and T ∗ = θ∗u∗. If μ is a fluid model solution such that
μ0 ∈ Ku,l, then μt ∈ Ku∗,l∗,θ∗ for all t ≥ T ∗.

Proof. Fix u, l, θ > 0. Let u∗, l∗, λ∗ > 0 be the constants given by (35)
and (42) and set θ∗ = θ and T ∗ = θ∗u∗. Fix a fluid model solution μ such
that μ0 ∈ Ku,l. Then, for any t > 0, st > 0 and by Corollary 5.1 and
Lemma 5.3, μt ∈ Ku∗,l∗,st for all t > 0. For t ≥ T ∗, st ≥ sT ∗ ≥ θ∗ and so
Ku∗,l∗,st ⊂ Ku∗,l∗,θ∗ .

6. Proof of Theorem 3.1 via relative entropy. In this section, we
assume that Theorem 3.2 holds and we obtain some consequences of it, in-
cluding using it to prove Theorem 3.1. First we use it to prove Corollary 6.1,
stated below. The statement of Corollary 6.1 is similar to that of Theorem
3.1. The distinction is that the set J appears in Corollary 6.1 rather than
the set I. To obtain the full result in Theorem 3.1, we use Corollary 6.1 in
conjunction with Lemma 4.4 and Corollary 5.2. This is done following the
proof of Corollary 6.1. Corollary 3.1 is proved as a consequence of Theorem
3.1 at the end of this section.

Recall that given u, l, δ > 0, Kδ
u,l = {ζ ∈ Ku,l : d(ζ, I) < δ} and J is

given by (18).

Corollary 6.1. Let u, l > 0. Then,

(47) lim
t→∞

sup
ξ∈Ku,l

d(μξ
t ,J) = 0.

Furthermore, given ε > 0, there exists δ > 0 such that

(48) sup
ξ∈Kδ

u,l

sup
t∈[0,∞)

d(μξ
t ,J) < ε.
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Proof. Fix u, l > 0. Let u∗, l∗ > 0 be given by (35). Then, by Corollary

5.1, μξ
t ∈ Ku∗,l∗ for all ξ ∈ Ku,l and t ∈ [0,∞). Given x ∈ R+, let

Dx = {ζ ∈ Mu∗,l∗ : d(ζ,J) ≥ x} and Hx = {ζ ∈ Mu∗,l∗ : H(ζ) ≥ x}.

For any given x ∈ R+, Dx is a closed subset of a compact set and is therefore
compact. Furthermore, for x > 0,Dx∩J = ∅. Then, by Lemma 4.1,H(ζ) > 0
for all ζ ∈ Dx and x > 0. Since H is continuous on Dx ⊂ Mu∗,l∗ (see Lemma
4.8) and a continuous function on a compact set achieves its minimum value,
it follows that for any given x > 0, there exists y > 0 such that H(ζ) ≥ y
for all ζ ∈ Dx. Fix ε > 0 and let γ > 0 be such that

Dε ⊂ Hγ .

We begin by verifying (47). By Theorem 3.2, there exists T > 0 such that

Hξ(t) < γ for all t ≥ T and ξ ∈ Ku,l. Hence, μξ
t �∈ Hγ for all t ≥ T and

ξ ∈ Ku,l. Therefore, μ
ξ
t �∈ Dε for all t ≥ T and ξ ∈ Ku,l. But μξ

t ∈ Mu∗,l∗

for all t ∈ [0,∞) and ξ ∈ Ku,l. Therefore, it follows that d(μ
ξ
t ,J) < ε for all

t ≥ T and ξ ∈ Ku,l. Since ε > 0 was arbitrary, (47) holds.
Next we verify (48). By Lemmas 4.1, 4.6, and 4.8, H is uniformly con-

tinuous on Mu,l and, for ζ ∈ Mu,l, H(ζ) = 0 if and only if ζ ∈ J+. There-
fore, there exists δ > 0 such that H(ζ) < γ for all ζ ∈ Mu,l satisfying
d(ζ,J+) < δ. Observe that Kδ

u,l ⊂ Mu,l, I
+ ⊂ J+ and d(ζ, I) < δ implies

d(ζ, I+) < δ. Therefore, d(ξ,J+) < δ for all ξ ∈ Kδ
u,l. Hence, ξ ∈ Kδ

u,l im-
plies that Hξ(0) = H(ξ) < γ. By the monotonicity asserted in Theorem 3.2,
it follows that for all ξ ∈ Kδ

u,l and t ∈ [0,∞),

H(μξ
t ) = Hξ(t) ≤ Hξ(0) = H(ξ) < γ.

Hence, μξ
t �∈ Hγ for all ξ ∈ Kδ

u,l and t ∈ [0,∞). Therefore, μξ
t �∈ Dε for all

ξ ∈ Kδ
u,l and t ∈ [0,∞). But, μξ

t ∈ Ku∗,l∗ for all ξ ∈ Kδ
u,l and t ∈ [0,∞).

Consequently, d(μξ
t ,J) < ε for all ξ ∈ Kδ

u,l and t ∈ [0,∞).

Proof of Theorem 3.1. Fix u, l, ε > 0 and let u∗, l∗ be given by (35).
We will show that there exists T, δ > 0 such that if either ξ ∈ Ku,l and
t ≥ T or ξ ∈ Kδ

u,l and t ∈ [0,∞), then

d(μξ
t , I) < ε.

Suppose that κ, T, δ > 0 are such that if either ξ ∈ Ku,l and t ≥ T or
ξ ∈ Kδ

u,l and t ∈ [0,∞), then

d(μξ
t ,J) < κ.
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Then, by Lemma 4.4, if either ξ ∈ Ku,l and t ≥ T or ξ ∈ Kδ
u,l and t ∈ [0,∞),

then
d(μξ

t , I) <
〈
1[0,κ), μ

ξ
t

〉
+ 2κ.

Hence it suffices to find 0 < κ ≤ ε/3 and T, δ > 0 such that if either ξ ∈ Ku,l

and t ≥ T or ξ ∈ Kδ
u,l and t ∈ [0,∞), then

(49) d(μξ
t ,J) < κ and

〈
1[0,κ), μ

ξ
t

〉
≤ ε

3
.

We will find such a κ, T, δ > 0.
To begin, let θ > 0 be such that u∗N e(θ) < ε/6 and set T ′ = u∗θ. Then,

for all t ≥ T ′, u∗N e(t/u
∗) < ε/6. Next, let x′ > 0 be such that u∗αx′ ≤ ε/6.

Then, by Corollary 5.2, there exists δ′ > 0 and 0 < κ < min(x′, ε/3) such
that if either ξ ∈ Ku,l and t ≥ T ′ or ξ ∈ Kδ

u,l for any 0 < δ ≤ δ′ and
t ∈ [0,∞), then 〈

1[0,κ), μ
ξ
t

〉
≤ ε

3
.

By Corollary 6.1, there exists T ≥ T ′ and 0 < δ ≤ δ′ such that if either
ξ ∈ Ku,l and t ≥ T or ξ ∈ Kδ

u,l and t ∈ [0,∞), then

d(μξ
t ,J) < κ.

Hence (49) holds.

Proof of Corollary 3.1. Fix u, l, ε > 0 and let u∗, l∗ be given by
(35). We begin by verifying (12). In particular, we will show that there
exists T > 0 such that if ξ ∈ Ku,l and t ≥ T , then

(50) d(μξ
t , αew0νe) < ε.

Fix x∗ > 0 such that

(51)

∫ ∞

x∗
N e(x)dx <

ε

3αe (2u∗ + 1)
.

Also fix 0 < κ < ε
12αex∗ ∧ ε

3 ∧ 1 such that

(52) sup
x∈R+

νe(x, x+ 3κ) <
ε

12αe(u∗ + 1)x∗
.

By Theorem 3.1, there exists T > 0 such that for each ξ ∈ Ku,l and each
T ≥ t, there exists a nonnegative constant c(ξ, t) such that

(53) d(μξ
t , c(ξ, t)νe) < κ.
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Fix such a T > 0 and a collection {c(ξ, t) : ξ ∈ Ku,l, t ≥ T} of nonnegative
constants satisfying (53). Then for each ξ ∈ Ku,l and t ≥ T ,

(54) d(μξ
t , αew0νe) ≤ d(μξ

t , c(ξ, t)νe) + d(c(ξ, t)νe, αew0νe).

For each ξ ∈ Ku,l and t ≥ T , w0 =
〈
χ, μξ

t

〉
and, since νe is a probability

measure,

d(c(ξ, t)νe, αew0νe) ≤ |c(ξ, t)− αew0| = αe

∣∣∣〈χ, c(ξ, t)νe〉 − 〈
χ, μξ

t

〉∣∣∣
= αe

∣∣∣∣
∫ ∞

0
c(ξ, t)N e(x)dx−

∫ ∞

0
M

ξ
t (x)dx

∣∣∣∣
≤ αe

∣∣∣∣∣
∫ x∗

0
c(ξ, t)N e(x)dx−

∫ x∗

0
M

ξ
t (x)dx

∣∣∣∣∣
+αe

∫ ∞

x∗
c(ξ, t)N e(x)dx+ αe

∫ ∞

x∗
M

ξ
t (x)dx.

Since μξ
t ∈ Ku∗,l∗ for all ξ ∈ Ku,l and t ≥ 0, it follows that for each ξ ∈ Ku,l

and t ≥ T ,

d(c(ξ, t)νe, αew0νe) ≤ αe

∣∣∣∣∣
∫ x∗

0
c(ξ, t)Ne(x)dx−

∫ x∗

0
M

ξ
t (x)dx

∣∣∣∣∣
+αe(c(ξ, t) + u∗)

∫ ∞

x∗
N e(x)dx.

By (53) and the choice of κ, c(ξ, t) ≤ u∗ + κ < u∗ + 1 for each ξ ∈ Ku,l and
t ≥ T . This together with (51) yields that, for each ξ ∈ Ku,l and t ≥ T ,

d(c(ξ, t)νe, αew0νe) < αe

∫ x∗

0

∣∣∣c(ξ, t)N e(x)−M
ξ
t (x)

∣∣∣ dx+
ε

3
.

Combining this with (54), (53) and the choice of κ yields that for each
ξ ∈ Ku,l and t ≥ T ,

d(μξ
t , αew0νe) <

2ε

3
+ αe

∫ x∗

0

∣∣∣c(ξ, t)N e(x)−M
ξ
t (x)

∣∣∣ dx.
By applying (53) twice, recalling that c(ξ, t) ≤ u∗ + 1 for each ξ ∈ Ku,l and
t ≥ T , applying (52), and appealing to the choice of κ, it follows that for
each ξ ∈ Ku,l, t ≥ T , and x ∈ [0, x∗],∣∣∣c(ξ, t)N e(x)−M

ξ
t (x)

∣∣∣ ≤ c(ξ, t)
〈
1((x−κ)+,x), νe

〉
+

〈
1((x−κ)+,x), μ

ξ
t

〉
+ κ
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≤ c(ξ, t)
〈
1((x−κ)+,x), νe

〉
+c(ξ, t)

〈
1((x−2κ)+,x+κ), νe

〉
+ 2κ

≤ 2(u∗ + 1)
〈
1((x−2κ)+,x+κ), νe

〉
+ 2κ

<
ε

3αex∗
.

Combining the previous two displays yields (50). Hence, (12) holds. The
verification of (14) follows a similar line of reasoning. To see that (13) holds,
fix u > 0 and ξ ∈ Ku. If ξ = 0, then μξ ≡ 0 and the result holds trivially. If
ξ �= 0, then ξ ∈ Ku,〈χ,ξ〉 and the result follows from (12).

7. Relative entropy along fluid paths. In this section, we develop
properties of the relative entropy functional H as a function of time along
fluid model solutions. In particular, given ξ ∈ K†, we analyze the behavior
of Hξ. A main result developed in this section is Theorem 7.1, which is an
absolute continuity property satisfied by Hξ for ξ ∈ Ku,l for u, l > 0. This
absolute continuity property implies a monotonicity property for Hξ. The
proof of Theorem 3.2, given in Section 8, exploits this absolutely continuity
property of Hξ, as well as the resulting monotonicity property.

In order to state Theorem 7.1, we introduce some notation. Let u, l > 0.
In Theorem 7.1 we establish that for each fluid model solution μξ with initial
state ξ ∈ Ku,l,Hξ is absolutely continuous with respect to Lebesgue measure
on [0,∞) and that the density function is nonpositive. In fact, we obtain an
explicit representation of the density function. For this, for x ∈ (0,∞), let

k(x) = x− 1− lnx.

We further define k(0) = ∞ so that k : R+ → [0,∞] is continuous. Given a
fluid model solution μξ with initial state ξ ∈ K† and t ∈ [0,∞), let

(55) Kξ(t) =

∫ xν

0
k

(
M t(x)

qtN e(x)

)
ne(x)dx.

In this section, we show that Hξ is absolutely continuous with respect to
Lebesgue measure with density function equal to a strictly negative constant
multiple of Kξ for ξ ∈ Ku,l. In particular, we prove the following theorem.

Theorem 7.1. Let u, l > 0 and ξ ∈ Ku,l. The function Hξ is absolutely
continuous on [0,∞), with respect to Lebesgue meaure, with density function
κξ given by

(56) κξ(t) =
−1

w0
Kξ(t), for all t ∈ (0,∞).
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In particular, Hξ is nonincreasing on [0,∞).

In order to prove Theorem 7.1, we first establish an absolute continuity
result for initial states that are absolutely continuous (see Lemma 7.8). For
this, recall (24), (25), and (44) and given u, l, θ > 0 let

Au = A ∩Mu, Au,l = A ∩Mu,l, and Au,l,θ = A ∩Mu,l,θ.

Then, in Section 7.4, we use an approximation argument to extend this
result to include certain continuous initial states, and thereby complete the
proof of Theorem 7.1.

7.1. The function K. Recall that given ξ ∈ K†, Hξ(t) = H(μξ
t ) for all

t ∈ [0,∞), where H is given by (15). Similarly for K : M \ 0 → [0,∞]
defined by

(57) K(ζ) =

∫ xν

0
k

(
Zζ(x)

〈1, ζ〉N e(x)

)
ne(x)dx,

we have that Kξ(t) = K(μξ
t ) for all t ∈ [0,∞) and ξ ∈ K†. We now develop

some properties of K.

Lemma 7.1. For ζ ∈ M \ 0, K(ζ) = 0 if and only if ζ ∈ I+.

Proof. Fix ζ ∈ M \ 0. If ζ ∈ I+, then ζ = βνe for some β ∈ (0,∞).
Then, since k(1) = 0, it is immediate that K(ζ) = 0. On the other hand,
given ζ ∈ M\0 such that K(ζ) = 0, since k ≥ 0, it follows that for Lebesgue
almost every x ∈ [0, xν),

k

(
Zζ(x)

〈1, ζ〉N e(x)

)
= 0.

But k is finite and positive on (0, 1) ∪ (1,∞) and infinity at 0. Hence, for
Lebesgue almost every x ∈ [0, xν),

Zζ(x)

〈1, ζ〉 N̄e(x)
= 1.

Since both the numerator and denominator are right continuous in x, the
above equality holds for all x ∈ [0, xν). This together with ζ ∈ M\0 implies
that ζ ∈ J+. By taking x = 0, it also implies that Zζ(0) = 〈1, ζ〉 so that
ζ({0}) = 0. Hence, ζ ∈ I+.
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Lemma 7.2. Suppose that {ζn}n∈N ⊂ M \ 0, ζ ∈ M \ 0, and ζn
w→ ζ as

n → ∞. Then

(58) lim inf
n→∞

K(ζn) ≥ K(ζ).

In particular, K is lower semicontinuous on M \ 0.

Proof. The assumptions imply that limn→∞ 〈1, ζn〉 = 〈1, ζ〉 > 0 and
that for almost all x ∈ R+,

lim
n→∞

Zζn(x) = Zζ(x).

Then, since k is continuous, for almost all x ∈ [0, xν),

lim
n→∞

k

(
Zζn(x)

〈1, ζn〉N e(x)

)
= k

(
Zζ(x)

〈1, ζ〉N e(x)

)
.

Further, since the range of k is contained in [0,∞], Fatou’s lemma implies
that lim infn→∞K(ζn) ≥ K(ζ).

Next we identify some conditions under which K is finite.

Lemma 7.3. For each u, l, θ > 0 and ζ ∈ Mu,l,θ, K(ζ) < ∞.

The proof of this lemma uses the results stated in the next two lemmas.

Lemma 7.4. Given a probability density function g : R+ → R+ with
associated cumulative distribution function G : R+ → [0, 1], let G(x) =
1−G(x) for all x ∈ R+ and set

y∗ = inf{x ∈ R+ : G(x) = 0}.

Then

−
∫ y∗

0
ln

(
G(x)

)
g(x)dx = 1.

Proof. Consider the change of variables y = − ln
(
G(x)

)
. For x = 0, y = 0

and for x = y∗, y = ∞. Also exp(−y) = G(x) and so exp(−y)dy = g(x)dx.
Therefore,

−
∫ y∗

0
ln

(
G(x)

)
g(x)dx =

∫ ∞

0
y exp(−y)dy = 1.
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Lemma 7.5. For each θ > 0, let

jθ(x) = − ln
(
N e(x)−N e(x+ θ)

)
, x ∈ [0, xν).

Then, for each θ > 0, jθ ≥ 0 and jθ ∈ L1(νe).

Proof. Fix θ > 0. Observe that for x ∈ [0, xν), 0 ≤ jθ(x) < ∞ since
0 < N e(x)−N e(x+ θ) ≤ 1. Also note that for such x,

djθ(x)

dx
=

ne(x)− ne(x+ θ)

N e(x)−N e(x+ θ)
> 0.

So jθ is nonnegative, finite and strictly increasing on [0, xν).
First consider the case xν < ∞. Then,

∫ xν

0
jθ(x)ne(x)dx =

∫ (xν−θ)+

0
jθ(x)ne(x)dx(59)

+

∫ xν

(xν−θ)+
ln

(
N e(x)

)
ne(x)dx.

The second integral on the righthand side of (59) converges by Lemma 7.4. If
xν ≤ θ, the first integral on the righthand side of (59) is zero and the result
follows. Otherwise, θ < xν < ∞. Then using the fact that jθ is strictly
increasing, we see that

∫ xν−θ

0
jθ(x)ne(x)dx ≤ α

∫ xν−θ

0
jθ(x)dx ≤ α(xν − θ)jθ(xν − θ) < ∞.

So the result holds if xν < ∞.
Next consider the case where xν = ∞. Then, we have that∫ ∞

0
jθ(x)ne(x)dx =

∫ ∞

0
jθ(x) (ne(x)− ne(x+ θ)) dx+

∫ ∞

0
jθ(x)ne(x+θ)dx.

In a manner similar to the proof of Lemma 7.4, we can use the change of
variables u = jθ(x) to demonstrate that∫ ∞

0
jθ(x) (ne(x)− ne(x+ θ)) dx ≤ 1.

Hence, it suffices to show that

(60)

∫ ∞

0
jθ(x)ne(x+ θ)dx < ∞.



RELATIVE ENTROPY FOR PS FLUID MODELS 285

Note that by the monotonicity of ne for all x ∈ R+,

N e(x)−N e(x+ θ) ≥ θne(x+ θ) = αθN(x+ θ).

Therefore,∫ ∞

0
jθ(x)ne(x+ θ)dx ≤ −

∫ ∞

0
ln

(
αθN(x+ θ)

)
ne(x+ θ)dx

= − ln (αθ)N e(θ)− α

∫ ∞

0
ln

(
N(x+ θ)

)
N(x+ θ)dx

= − ln (αθ)N e(θ)− α

∫ ∞

θ
ln

(
N(x)

)
N(x)dx

≤ − ln (αθ)N e(θ)− α

∫ ∞

0
ln

(
N(x)

)
N(x)dx.

Therefore, in order to verify (60), it suffices to show that

(61) −
∫ ∞

0
ln

(
N(x)

)
N(x)dx < ∞.

To verify (61) note that, for all γ ∈ [1/e, 1), elementary calculus can be
used to demonstrate that − ln(x) ≤ 1/xγ for all x ∈ (0, 1]. Hence, for all
γ ∈ [1/e, 1) and x ∈ [0, xν),

− ln
(
N(x)

)
≤

(
1

N(x)

)γ

.

Further, for all γ ∈ [1/e, 1/2), we have that 2(1−γ) > 1. Then, since xν = ∞,
it follows that for all γ ∈ [1/e, 1/2),

−
∫ ∞

0
ln

(
N(x)

)
N(x)dx ≤

∫ ∞

0

(
1

N(x)

)γ

N(x)dx

=

∫ 1

0
N(x)1−γdx+

∫ ∞

1
N(x)1−γdx

≤ 1 +

∫ ∞

1

(〈
χ2, ν

〉
x2

)1−γ

dx

< ∞.

Hence, the result holds if xν = ∞.

Proof of Lemma 7.3. Fix u, l, θ > 0 and ζ ∈ Mu,l,θ. Let λ be given by
(41). For x ∈ [0, xν),

0 < λ
(
N e(x)−N e(x+ θ)

)
≤ Zζ(x).
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Therefore, using the above for the lower bound and the fact that ζ ∈ Mu,l,θ

and the definition of λ for the upper bound, we have for x ∈ [0, xν),

0 <
Zζ(x)

〈1, ζ〉N e(x)
≤ u

λ
.

Hence, one only needs to be concerned with the integral of the natural
logarithm term, which could blow up if the ratio were to approach zero too
fast relative to the rate at which ne tends to zero as x increases to xν . By
Lemma 7.4,

∫ xν

0
ln

(
Zζ(x)

〈1, ζ〉N e(x)

)
ne(x)dx =

∫ xν

0
ln

(
Zζ(x)

〈1, ζ〉

)
ne(x)dx+ 1.

Since ζ ∈ Mu,l,θ,

−
∫ xν

0
ln

(
Zζ(x)

〈1, ζ〉

)
ne(x)dx ≤ −

∫ xν

0
ln

[
λ

u

(
N e(x)−N e(x+ θ)

)]
ne(x)dx.

By Lemma 7.5, the righthand side is finite. Hence, K(ζ) < ∞.

Having determined the zero set, verified lower semicontinuity, and given
sufficient conditions for finiteness of K, next we demonstrate that K is
continuous on certain compact sets.

Lemma 7.6. For each u, l, θ > 0, K is continuous on Mu,l,θ.

Proof. Fix u, l, θ > 0. As previously noted, Mu,l,θ is compact (see

Lemma 5.4). Fix {ζn}n∈N ⊂ Mu,l,θ such that ζn
w→ ζ as n → ∞. Then

ζ ∈ Mu,l,θ, limn→∞ 〈1, ζn〉 = 〈1, ζ〉, and for all ζ-continuity points x ∈ R+,

lim
n→∞

Zζn(x) = Zζ(x).

Hence, for almost all x ∈ [0, xν),

lim
n→∞

Zζn(x)

〈1, ζn〉N e(x)
=

Zζ(x)

〈1, ζ〉N e(x)
.

Since k is continuous, it follows that for almost all x ∈ [0, xν),

lim
n→∞

k

(
Zζn(x)

〈1, ζn〉N e(x)

)
= k

(
Zζ(x)

〈1, ζ〉N e(x)

)
.
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Note that by the definition of Mu,l,θ for all x ∈ [0, xν) and n ∈ N,

λ(Ne(x)−N e(x+ θ))

uN e(x)
≤ Zζn(x)

〈1, ζn〉N e(x)
≤ u

λ
.

Here the lower bound is positive and bounded above by one, and the upper
bound is greater than or equal to one. Furthermore, 0 ≤ k(x) ≤ max(x −
1,− lnx) for all x ∈ R+. Therefore, for all t ∈ [0,∞) and x ∈ [0, xν),

0 ≤ k

(
Zζn(x)

〈1, ζn〉N e(x)

)
≤ u

λ
− 1− ln

(
λ(N e(x)−N e(x+ θ))

uN e(x)

)
.

For x ∈ [0, xν), let

g(x) =
u

λ
− 1 + ln

(u

λ

)
+ ln

(
N e(x)

)
− ln

(
N e(x)−N e(x+ θ)

)
.

By Lemmas 7.4 and 7.5, g ∈ L1(νe). Hence, by the dominated convergence
theorem, limn→∞K(ζn) = K(ζ).

7.2. Finiteness and continuity of Hξ and Kξ. In preparation for proving
the absolute continuity results, we state and prove the following lemma.

Lemma 7.7. Let u, l > 0 and ξ ∈ Ku,l. The function Hξ is finite and
continuous on [0,∞) and the function Kξ is finite and continuous on (0,∞).

Proof. Fix u, l > 0 and ξ ∈ Ku,l. Let u
∗, l∗ > 0 be the constants given

by (35). By Corollary 5.1, μξ
t ∈ Ku∗,l∗ ⊂ Mu∗,l∗ , for all t ∈ [0,∞). For

t ∈ [0,∞), we have that Hξ(t) = H(μξ
t ). By Lemmas 4.7 and 4.8, H is finite

and continuous on Mu∗,l∗ . Thus, Hξ is finite. Further, by property (C.1) of
fluid model solutions, fluid model solutions are continuous functions of time.
Then Hξ is continuous since it is a composition of continuous functions.

Next we turn our attention to Kξ. It suffices to verify finiteness and con-
tinuity on (t,∞) for each t > 0. For this fix t > 0. Set θ = t/u∗. Let θ∗

and T ∗ be as in the statement of Corollary 5.4. Then T ∗ = t. Hence, by
Corollary 5.4, μξ

r ∈ Ku∗,l∗,θ∗ ⊂ Mu∗,l∗,θ∗ for all r ≥ t. For each r ∈ (t,∞),

Kξ(r) = K(μξ
r). The result follows from property (C.1) of fluid model solul-

tions and Lemmas 7.3 and 7.6.

7.3. Absolutely continuous initial states. In this section, we prove the
following lemma, which is a version of Theorem 7.1 for fluid model solutions
with absolutely continuous initial measures.
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Lemma 7.8. Let u, l > 0 and ξ ∈ Au,l. The function Hξ is absolutely
continuous with respect to Lebesgue measure on [0,∞) with density function
κξ given by

(62) κξ(t) =
−1

w0
Kξ(t), for all t ∈ (0,∞)

In particular, Hξ is nonincreasing on [0,∞).

The proof of Lemma 7.8 relies on absolute continuity properties in both
space and time satisfied by fluid model solutions having absolutely con-
tinuous initial conditions. These properties are developed in Section 7.3.1.
Following that, Lemma 7.8 is proved in Section 7.3.2.

7.3.1. Partial derivatives for fluid model solutions. In this section, we
develop a differential equation (see (65) below), which plays a key role in
proving Lemma 7.8. Throughout this section, we restrict attention to fluid
model solutions μ such that μ0 ∈ A. Here we show that all such fluid
model solutions remain in A for all time by developing a formula for the
density with respect to Lebesgue measure of μt for each fixed t ∈ [0,∞)
(see Lemma 7.9 below). This is used to show that for each fixed x ∈ R+,
M t(x) =

〈
1(x,∞), μt

〉
as a function of time is absolutely continuous with

respect to Lebesgue measure. In fact, we develop a formula for the associated
density in time, which gives rise to the differential equation (65) (see Lemma
7.10 below). The differential equation (65) suffices for the proof of Lemma
7.8 given in Section 7.3.2.

Moreover, when μ0 ∈ A has a continuous density and ν does not charge
points, the results in Lemmas 7.9 and 7.10 can be combined to showM t(x) =〈
1(x,∞), μt

〉
satisfies a certain partial differential equation (PDE) (see (66)).

This type of PDE is not new to the literature. Indeed, a version of this
PDE was used in [10] to study stability properties of subcritical bandwidth
sharing models. However, the authors of [10] assumed that their fluid model
solutions are absolutely continuous with respect to Lebesgue measure for all
time and that fluid model solutions are sufficiently smooth for their PDE
to be satisfied. Here, in Corollary 7.1, we provide a rigorous connection be-
tween our PDE and fluid model solutions. Specifically, we provide sufficient
conditions for M t(x) =

〈
1(x,∞), μt

〉
to satisfy (66).

Henceforth, we adopt the convention that when ξ = 0 so that μξ
t = 0 for

all t ∈ [0,∞), st ≡ 0 for all t ∈ [0,∞). This is needed for the statement of
Lemma 7.9.
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Lemma 7.9. Let μ be a fluid model solution with μ0 ∈ A. For each
t ∈ [0,∞), μt ∈ A. In particular, for each t ∈ [0,∞), the following is a
density (with respect to Lebesgue measure) for μt:

(63) mt(x) = m0(x+ st) + α
〈
1(x,x+st](·)qτ(x+st−·), ν

〉
, for all x ∈ R+,

where m0 denotes a density for μ0. In particular, for each t ∈ [0,∞),

(64)
∂M t(x)

∂x
= −mt(x), for all almost all x ∈ R+.

Furthermore, if ν does not charge atoms and m0 is continuous on R+, then
mt(x) is continuous as a function of x ∈ R+ for each t ∈ [0,∞) and contin-
uous as a function of t ∈ [0,∞) for each x ∈ R+, in which case (64) holds
for all t ∈ [0,∞) and x ∈ R+, where partial derivatives at t = 0 and x = 0
are from the right.

Proof. Fix a fluid model solution μ such that μ0 ∈ A. The result is
trivial if μ0 = 0 since 0 is an invariant state. Henceforth assume that μ0 ∈
A+. For t ∈ [0,∞) and x ∈ R+, let mt(x) be defined by (63). We will show
that for each t ∈ [0,∞),mt is integrable with respect to Lebesgue measure on
R+ and moreover that for each x ∈ R+,M t(x) =

〈
1(x,∞), μt

〉
=

∫ ∞
x mt(y)dy.

Fix t ∈ [0,∞) and x ∈ R+. We have∫ ∞

x
mt(y)dy =

∫
(x,∞)

m0(y + st)dy + α

∫
(x,∞)

〈
1(y,y+st](·)qτ(y+st−·), ν

〉
dy

= M0(x+ st) + α

∫
(x,∞)

∫
(y,y+st]

qτ(y+st−v)ν(dv)dy.

Interchanging the order of integration yields that∫ ∞

x
mt(y)dy = M0(x+ st) + α

∫
(x,x+st]

∫
(x,v)

qτ(y+st−v)dyν(dv)

+α

∫
(x+st,∞)

∫
[v−st,v)

qτ(y+st−v)dyν(dv).

Using the change of variables r = y + st − v in the interior integrals, we
obtain∫ ∞

x
mt(y)dy = M0(x+ st) + α

∫
(x,x+st]

∫
(x+st−v,st)

qτ(r)drν(dv)

+α

∫
(x+st,∞)

∫
[0,st)

qτ(r)drν(dv).
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Again interchanging the order of integration in both integrals gives∫ ∞

x
mt(y)dy = M0(x+ st) + α

∫
(0,st)

∫
(x+st−r,x+st]

ν(dv)qτ(r)dr

+α

∫
[0,st)

∫
(x+st,∞)

ν(dv)qτ(r)dr

= M0(x+ st) + α

∫
[0,st)

∫
(x+st−r,∞)

ν(dv)qτ(r)dr

= M0(x+ st) +

∫
[0,st)

ne(x+ st − r)qτ(r)dr.

Let v = τ(r). Then, by (8), for the last integral dv = qτ(r)dr and 0 ≤ v < t.
Hence, ∫ ∞

x
mt(y)dy = M0(x+ st) +

∫ t

0
ne(x+ st − sv)dv.

This together with (30) gives

M t(x) =

∫ ∞

x
mt(y)dy.

Since t ∈ [0,∞) and x ∈ R+ were arbitrary, the above holds for all such t
and x. Thus, (64) holds.

Finally assume that ν does not charge atoms and m0 is continuous on R+.
Fix t ∈ [0,∞) and x ∈ R+. Let {xn}n∈N ⊂ R+ be such that limn→∞ xn = x.
By Property (C.1) of fluid model solutions and the definition of τ (see (7)),
qτ(·) is a composition of functions that are continuous on R+ and is therefore
continuous on R+. Using this, it follows that for all y ∈ R+ such that
y �= x, x+ st,

lim
n→∞

1(xn,xn+st](y)qτ(xn+st−y) = 1(x,x+st](y)qτ(x+st−y).

Since qτ(·) is continuous on R+, qτ(·) is bounded on compact intervals. By
(63), the bounded convergence theorem, the fact that ν does not charge
atoms and that m0 is continuous, it follows that limn→∞mt(xn) = mt(x). A
similar argument demonstrates that limn→∞mtn(x) = mt(x) for {tn}n∈N ⊂
[0,∞) such that limn→∞ tn = t.

Lemma 7.10. Let μ be a fluid model solution with μ0 ∈ A+. For each
fixed x ∈ R+, the function M t(x) is absolutely continuous in time with
respect to Lebesgue measure and has density function

ne(x)−
mt(x)

qt
, t ∈ [0,∞).
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Consequently, for each x ∈ R+, for Lebesgue almost every t ∈ [0,∞),

(65)
∂M t(x)

∂t
= ne(x)−

mt(x)

qt
.

Furthermore, if ν does not charge atoms and μ0 has a continuous density
m0, then (65) holds for all x ∈ R+ and t ∈ [0,∞).

Together Lemmas 7.9 and 7.10 imply that M t(x) satisfies a partial differ-
ential equation (see (66) below) for (t, x) ∈ (0,∞)×(0,∞) in the weak sense.
In the next corollary, we specify conditions under which M t(x) satisfies (66)
(in the strong sense). While we do not use either property to prove Lemma
7.8, this may be of independent interest.

Corollary 7.1. Suppose that ν does not charge atoms. Let μ be a fluid
model solution with μ0 ∈ A+ such that μ0 has a continuous density m0. For
every t ∈ [0,∞) and x ∈ R+,

(66)
∂M t(x)

∂t
= ne(x) +

1

qt

∂M t(x)

∂x
.

Proof of Lemma 7.10. Fix a fluid model solution μ such that μ0 ∈ A+.
Fix t ∈ [0,∞) and x ∈ R+. We have

(67)

∫ t

0

(
ne(x)−

mv(x)

qv

)
dv = tne(x)−

∫ t

0

mv(x)

qv
dv.

By (63),

(68)

∫ t

0

mv(x)

qv
dv =

∫ t

0

m0(x+ sv)

qv
dv+

∫ t

0

α
〈
1(x,x+sv](·)qτ(x+sv−·), ν

〉
qv

dv.

Using the change of variables y = x+ sv, we obtain

(69)

∫ t

0

m0(x+ sv)

qv
dv =

∫ x+st

x
m0(y)dy = M0(x)−M0(x+ st).

Also, after interchanging the order of integration,

∫ t

0

α
〈
1(x,x+sv](·)qτ(x+sv−·), ν

〉
qv

dv = α

∫ t

0

∫
(x,x+sv]

qτ(x+sv−y)

qv
ν(dy)dv

= α

∫
(x,x+st]

∫ t

τ(y−x)

qτ(x+sv−y)

qv
dvν(dy).
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So then, using the change of variables r = τ(x + sv − y) in the interior
integral and (8) gives dr =

qτ(x+sv−y)

qv
dv. Hence,

∫ t

0

α
〈
1(x,x+sv](·)qτ(x+sv−·), ν

〉
qv

dv = α

∫
(x,x+st]

∫ τ(x+st−y)

0
drν(dy).

Then after interchanging the order of integration yet again

∫ t

0

α
〈
1(x,x+sv](·)qτ(x+sv−·), ν

〉
qv

dv = α

∫ t

0

∫
(x,x+st−sr]

ν(dy)dr

= α

∫ t

0
[N(x+ st − sr)−N(x)] dr

=

∫ t

0
[ne(x)− ne(x+ st − sr)] dr

= tne(x)−
∫ t

0
ne(x+ st − sr)dr.(70)

Combining (67)–(70), and then using (30) gives

∫ t

0

(
ne(x)−

mv(x)

qv

)
dv = M0(x+ st)−M0(x) +

∫ t

0
ne(x+ st − sv)dv

= M t(x)−M0(x),

from which (65) follows. The last part of the lemma holds since for each x ∈
R+ the righthand side of (65) is continuous under the given conditions.

7.3.2. Proof of Lemma 7.8. Lemma 7.8 is proved in this section. For this,
the following fact is needed.

Lemma 7.11. Let u, l > 0 and μ be a fluid model solution with μ0 ∈ Ku,l.
For all t ≥ 0,

(71) lim
x↗xν

M t(x) ln

(
M t(x)

N e(x)

)
= 0.

Proof. Fix u, l > 0 and μ a fluid model solution with μ0 ∈ Ku,l. Note
that |h| is bounded above on any closed interval of the form [0, y] for each
y ∈ R+. Hence, for each t ∈ [0,∞), Corollary 5.1 implies that

(72) lim sup
x↗xν

∣∣∣∣h
(
M t(x)

N e(x)

)∣∣∣∣ < ∞.
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For each t ∈ [0,∞) and x ∈ [0, xν),

(73) M t(x) ln

(
M t(x)

N e(x)

)
= N e(x)h

(
M t(x)

N e(x)

)
.

Since limx→xν N e(x) = 0, (72) and (73) imply (71).

Proof of Lemma 7.8. Fix u, l > 0 and ξ ∈ Au,l. Let u∗, l∗, λ∗ > 0 be
the constants given by (35) and (42). The proof of (62) proceeds in two main
steps. For this, for each t ∈ [0,∞), let

Vt(x) =
Mt(x)

qt
−Ne(x), for x ∈ R+.

Then for each fixed t ∈ [0,∞), Vt is continuous and of bounded variation.
Hence, for each t ∈ [0,∞), dVt corresponds to a finite signed Borel measure
on R+. The first step is to show that for each t ∈ (0,∞),

(74) Kξ(t) =

∫ xν

0
h′

(
pμt(x)

pνe(x)

)
dVt(x).

The second step is to integrate this expression in order to show that for each
0 < r ≤ t < ∞

(75)

∫ t

r
Kξ(v)dv = −w0 (Hξ(t)−Hξ(r)) .

ThenHξ is absolutely continuous on (0,∞). By Lemma 7.7,Hξ is continuous
on [0,∞). Hence, letting r ↘ 0 in (75) completes the proof of (62).

First we show that (75) holds when (74) holds. For this, fix 0 < r ≤ t < ∞.
By integrating (74) and using (63) and Fubini’s theorem and (65), we obtain
that ∫ t

r
Kξ(v)dv =

∫ t

r

∫ xν

0
h′

(
pμv(x)

pνe(x)

) (
mv(x)

qv
− ne(x)

)
dxdv

=

∫ xν

0

∫ t

r
h′

(
pμv(x)

pνe(x)

) (
mv(x)

qv
− ne(x)

)
dvdx

= −
∫ xν

0

∫ t

r
h′

(
pμv(x)

pνe(x)

)
∂

∂v
Mv(x)dvdx.

Note that for each x ∈ [0, xν) and v ∈ [0,∞), Mv(x) = w0pμv(x) and w0 is
a constant. Hence,∫ t

r
Kξ(v)dv = −w0

∫ xν

0

∫ t

r
h′

(
pμv(x)

pνe(x)

) (
∂
∂vpμv(x)

pνe(x)

)
dv pνe(x)dx
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= −w0

∫ xν

0

[
h

(
pμt(x)

pνe(x)

)
− h

(
pμr(x)

pνe(x)

)]
pνe(x)dx

= −w0 (Hξ(t)−Hξ(r)) .

So (75) holds if (74) holds.
Next we verify (74). Again fix t ∈ (0,∞). We have

Kξ(t) =

∫ xν

0
k

(
M t(x)

qtN e(x)

)
ne(x)dx

=

∫ xν

0

(
M t(x)

qtN e(x)
− ln

(
M t(x)

qtN e(x)

)
− 1

)
ne(x)dx

=

∫ xν

0

(
M t(x)

qtN e(x)
− ln

(
M t(x)

qtN e(x)

))
ne(x)dx− 1.(76)

As a consequence of integration by parts and Lemma 7.11, we have∫ xν

0

M t(x)

qtN e(x)
ne(x)dx = −

∫ xν

0

−ne(x)

N e(x)

M t(x)

qt
dx

= lim
y↗xν

(
− ln

(
N e(y)

) M t(y)

qt
+

∫ y

0
ln

(
N e(x)

) dM t(x)

qt

)

=

∫ xν

0
ln

(
N e(x)

) dM t(x)

qt

= −
∫ xν

0
ln

(
N e(x)

) dMt(x)

qt
.

By Lemma 7.4 with g(x) = mt(x)/qt for x ∈ R+,

−1 =

∫ xν

0
ln

(
M t(x)

qt

)
dMt(x)

qt
.

So we obtain that

(77)

∫ xν

0

M t(x)

qtN e(x)
ne(x)dx− 1 =

∫ xν

0
ln

(
M t(x)

qtN e(x)

)
dMt(x)

qt
.

Hence, by (76) and (77),

Kξ(t) =

∫ xν

0
ln

(
M t(x)

qtN e(x)

)
dVt(x).

Note that ∫ xν

0
dVt(x) =

∫ xν

0

dMt(x)

qt
−

∫ xν

0
dNe(x) = 1− 1 = 0.
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Therefore,

Kξ(t) =

∫ xν

0

[
ln

(
M t(x)

qtN e(x)

)
+ ln

(
qt 〈χ, νe〉

w0

)
+ 1

]
dVt(x)

=

∫ xν

0

[
ln

(
pμt(x)

pνe(x)

)
+ 1

]
dVt(x),

which implies (74). Hence, (62) holds.

7.4. Extension to continuous initial states. In this section, we use an
approximation argument to prove Theorem 7.1. We prepare for this by
stating and proving three lemmas related to this approximation. For this,
given n ∈ N, let ϕn ∈ Cc(R) be such that ϕn ≥ 0, ϕn(x) = 0 for all
x ∈ (−∞,−1/n] ∪ [1/n,∞) and

∫
R
ϕn(x)dx = 1. Given ξ ∈ K and n ∈

N, set ξn = ϕn ∗ ξ. Here ∗ denotes the convolution operator. In particu-
lar, for each n ∈ N, ξn is the nonnegative Borel measure on R+ that is
absolutely continuous with respect to Lebesgue measure and has density
dn(x) =

∫
R+

ϕn(y−x)ξ(dy) for x ∈ R+. Then, given n ∈ N and f ∈ Cb(R+),
by Fubini’s theorem,

〈f, ξn〉 =
∫
R+

f(x)

∫
R+

ϕn(y − x)ξ(dy)dx = 〈f ∗ ϕn, ξ〉 .

Given ξ ∈ K, we refer to {ξn}n∈N as the approximating sequence.

Lemma 7.12. Let ξ ∈ K†. For each n ∈ N and x ∈ R+,〈
1(x+1/n,∞), ξ

〉
≤

〈
1(x,∞), ξn

〉
≤

〈
1((x−1/n)+,∞), ξ

〉
,(78)

〈χ, ξ〉 − 〈1, ξ〉
n

≤ 〈χ, ξn〉 ≤ 〈χ, ξ〉+ 〈1, ξ〉
n

.(79)

In particular, ξn ∈ A† for each n ∈ N and as n → ∞,

(80) ξn
w→ ξ and 〈χ, ξn〉 → 〈χ, ξ〉 .

Proof. Fix ξ ∈ K† and x ∈ R+. By Fubini’s theorem, for n ∈ N,

〈
1(x,∞), ξn

〉
=

∫ ∞

x

∫
R+

ϕn(v − y)ξ(dv)dy

=

∫
R+

∫ ∞

x
ϕn(v − y)dyξ(dv)

=

∫
R+

∫ v+1/n

(v−1/n)∨x
ϕn(v − y)dyξ(dv)
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=

∫ ∞

(x−1/n)+

∫ v+1/n

(v−1/n)∨x
ϕn(v − y)dyξ(dv).

Then, (78) follows since
∫ v+1/n
(v−1/n)∨x ϕn(v − y)dy ≤ 1 for all v > (x − 1/n)+,

and
∫ v+1/n
(v−1/n)∨x ϕn(v−y)dy = 1 for all v > x+1/n. Similarly, for each n ∈ N,

〈χ, ξn〉 =
∫
R+

∫ v+1/n

(v−1/n)+
yϕn(v − y)dyξ(dv).

So then replacing the factor of y in the integrand of the interior integral
above with v + 1/n or v − 1/n, (79) follows.

Given ξ ∈ K and n ∈ N, let {μn
t }t≥0 denote the unique fluid model

solution such that μn
0 = ξn and let μ denote the unique fluid model solution

such that μ0 = ξ .

Lemma 7.13. Let ξ ∈ K†. For each t ∈ [0,∞), as n → ∞,

(81) μn
t

w→ μt.

Proof. Fix ξ ∈ K†. By [6, Lemma 4.9], it suffices to show that ξn
w→ ξ

as n → ∞, which follows from Lemma 7.12.

Lemma 7.14. Let u, l > 0. Given T > 0, there exist positive constants
ũ, l̃, and θ̃, and N ∈ N such that μn

t ∈ Aũ,l̃,θ̃ for each ξ ∈ Ku,l, n ≥ N and

t ≥ T , where λ̃ = inf{〈1, ζ〉 : ζ ∈ Mũ,l̃} is used to define Aũ,l̃,θ̃.

Proof. Fix u, l, T > 0 and ξ ∈ Ku,l. By Lemma 7.12, for all n ∈ N,
〈1, ξn〉 ≤ 〈1, ξ〉 ≤ u and

〈χ, ξn〉 ≤ 〈χ, ξ〉+ 〈1, ξ〉
n

≤ u 〈χ, νe〉+
u

n
≤ u (〈χ, νe〉+ 1) .

Let

u0 =
3max(u, 6αu (〈χ, νe〉+ 1))

2
.

By Lemma 5.1, it follows that qnt ≤ u0 for all t ∈ [0,∞) and n ∈ N. From this,
it follows that snt ≥ t/u0 for all n ∈ N. FixN ′ such that (T/2u0)−(1/N ′) > 0.
Then, for n ≥ N ′,

snT/2 −
1

n
≥ T

2u0
− 1

n
≥ T

2u0
− 1

N ′ > 0.



RELATIVE ENTROPY FOR PS FLUID MODELS 297

In addition, by Lemma 7.12, for all n ∈ N and x ∈ R+,

M
n
0 (x) =

〈
1(x,∞), ξn

〉
≤

〈
1((x−1/n)+,∞), ξ

〉
= M0((x− 1/n)+).

Therefore, for all x ∈ R+ and n ≥ N ′,

M
n
0 (x+ snT/2) ≤ M0(x+ snT/2 − 1/n) ≤ M0(x) ≤ uN e(x) ≤ u0N e(x).

This together with (30) and (36) (with u0 in place of u∗) gives that for all
x ∈ R+ and n ≥ N ′,

M
n
T/2(x) = M

n
0 (x+ snT/2) +

∫ T/2

0
ne

(
x+ snT/2 − snv

)
dv

≤ u0N e(x) + u0

(
N e(x)−N e(x+ snT/2)

)
≤ 2u0N e(x).

Hence, μn
T/2 ∈ A2u0 for all n ≥ N ′.

For n ≥ N ′ and t ∈ [0,∞), set

μ̃n
t = μn

T/2+t.

Then, for all n ≥ N ′, μ̃n is a fluid model solution such that μ̃n
0 ∈ A2u0 . Let

ũ =
3max(2u0, 12αu0 〈χ, νe〉)

2
= 3max(u0, 6αu0 〈χ, νe〉).

Then, by Corollary 5.1, for all n ≥ N ′, μ̃n
t ∈ Aũ for all t ∈ [0,∞). Fur-

thermore, for n ≥ N ′, since the first moment of any fluid model solution is
constant, Lemma 7.12 implies that

〈χ, μ̃n
0 〉 =

〈
χ, μn

T/2

〉
= 〈χ, ξn〉 ≥ 〈χ, ξ〉 − 〈1, ξ〉

n
≥ l − u

n
.

LetN be such thatN ≥ N ′ and l−u/n > 0 for all n ≥ N and set l̃ = l−u/N .
Since 〈χ, μ̃n

t 〉 = 〈χ, μ̃n
0 〉 for all t ∈ [0,∞) and n ≥ N ′, it follows that μ̃n

t ∈ Aũ,l̃

for all t ∈ [0,∞) and n ≥ N . Set θ̃ = T/2ũ. Then, by Corollary 5.4, it follows
that for all n ≥ N , μ̃n

t ∈ Aũ,l̃,θ̃ for all t ≥ T/2. But, given n ≥ N and t ≥ T ,
we have t− T/2 ≥ T/2 and μn

t = μ̃n
t−T/2 ∈ Aũ,l̃,θ̃.

Proof of Theorem 7.1. Fix u, l > 0 and ξ ∈ Ku,l. It suffices to show
that for all 0 < r < t < ∞,

(82) Hξ(t)−Hξ(r) =
−1

w0

∫ t

r
Kξ(v)dv.
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ThenHξ is absolutely continuous on (0,∞). By Lemma 7.7,Hξ is continuous
on [0,∞). Hence, once (82) is established, absolute continuity on [0,∞)
follows by letting r ↘ 0 in (82).

In order to verify (82), fix 0 < r < t < ∞. By Lemma 7.14, there exist
positive constants ũ, l̃, θ̃, and N such that μn

v ∈ Aũ,l̃,θ̃ for all v ≥ r and
n ≥ N . For n ≥ N and v ∈ [0,∞), let

μ̃n
v = μn

v+r.

Then μ̃n is the unique fluid model solution such that μ̃n
0 = μn

r ∈ Aũ,l̃,θ̃ for
all n ≥ N . Therefore, by Lemma 7.8, for all n ≥ N and t ≥ r,

Hμ̃n
0
(t− r)−Hμ̃n

0
(0) =

−1

〈χ, μ̃n
0 〉

∫ t−r

0
Kμ̃n

0
(v)dv.

Then, by the definition of μ̃n, Hξn , Kξn and the fact that 〈χ, μ̃n
0 〉 = 〈χ, μn

r 〉 =
〈χ, μn

0 〉, for n ≥ N and t ≥ r, we obtain

(83) Hξn(t)−Hξn(r) =
−1

〈χ, μn
0 〉

∫ t

r
Kξn(v)dv.

Since μn
v ∈ Aũ,l̃,θ̃ ⊂ Mũ,l̃,θ̃ for all v ≥ r and n ≥ N , Lemmas 4.8, 7.6, and

7.13 imply that for each v ≥ r,

(84) lim
n→∞

Hξn(v) = Hξ(v) and lim
n→∞

Kξn(v) = Kξ(v).

Since μn
v ∈ Mũ,l̃,θ̃ for all v ≥ r and n ≥ N , compactness of Mũ,l̃,θ̃ and

Lemma 7.6 imply that
sup

n≥N,v≥r
Kξn(v) < ∞.

This together with the bounded convergence theorem, (83), and (84) imply
(82).

8. Uniform convergence of relative entropy to zero. Theorem
7.1 is now used in conjunction with compactness of Mu,l and Mu,l,θ for
u, l, θ > 0 and continuity properties Hξ and Kξ for ξ ∈ Mu,l for u, l > 0 to
prove Theorem 3.2.

Proof of Theorem 3.2. Fix u, l > 0 such that Ku,l �= ∅. The asserted
monotonicity is an immediate consequence of Theorem 7.1. Therefore, it
suffices to show that for each ε > 0, there exists T > 0 such that for all
ξ ∈ Ku,l and t ≥ T , Hξ(t) < ε.
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Let u∗, l∗, λ∗ > 0 be the constants given by (35) and (42). For θ > 0, set

θ∗ = θ and T ∗ = θ∗u∗. By Corollary 5.4, μξ
t ∈ Ku∗,l∗,θ∗ for all t ≥ T ∗ and

ξ ∈ Ku,l. In particular, Ku∗,l∗,θ∗ �= ∅. Let

H′
ε = {ζ ∈ Mu∗,l∗,θ∗ : H(ζ) ≥ ε}.

We wish to show that there exists T > T ∗ such that for all ξ ∈ Ku,l and

t ≥ T , μξ
t �∈ H′

ε. Then it follows that Hξ(t) = H(μξ
t ) < ε for all ξ ∈ Ku,l and

t ≥ T . Since Hξ is monotone nonincreasing, it suffices to show that there
exists T > T ∗ such that for each ξ ∈ Ku,l, there exists t ∈ [0, T ] such that

μξ
t �∈ H′

ε.
Note thatH′

ε is relatively compact since it is contained inMu∗,l∗,θ∗ . Hence,

its closure H
′
ε is compact and contained in Mu∗,l∗,θ∗ . Since H is continuous

on Mu∗,l∗ , it follows that ζ ∈ H
′
ε satisfies H(ζ) ≥ ε. Therefore, by Lemma

4.1, any ζ ∈ H
′
ε satisfies ζ �∈ J. Then, by Lemma 7.1,K(ζ) > 0 for all ζ ∈ H

′
ε.

But K is lower semicontinuous, and any lower semicontinuous function on
a compact set achieves its minimum. Hence, there exists δ > 0 such that
K(ζ) ≥ δ for all ζ ∈ H

′
ε. Let

T = T ∗ +
u∗ 〈χ, νe〉

δ
h

(
u∗ 〈χ, νe〉

l∗

)
.

To complete the proof, we show that for each ξ ∈ Ku,l, there exists t ∈ [0, T ]

such that μξ
t �∈ H′

ε.

Suppose that ξ ∈ Ku,l and t ≥ T ∗ are such that μξ
r ∈ H′

ε for all r ∈ [T ∗, t].

It suffices to show that t < T . Since μξ
r ∈ H′

ε for each r ∈ [T ∗, t], K(μξ
r) ≥ δ

for each r ∈ [T ∗, t]. Then, for each r ∈ [T ∗, t],

(85) κξ(r) =
−1

w0
Kξ(r) =

−1

w0
K(μξ

r) ≤
−δ

u∗ 〈χ, νe〉
.

This together with Theorem 7.1 and (29) implies that

ε ≤ Hξ(t)

≤ −δ

u∗ 〈χ, νe〉
(t− T ∗) +Hξ(T

∗)

≤ −δ

u∗ 〈χ, νe〉
(t− T ∗) + h

(
u∗ 〈χ, νe〉

l∗

)

=
δ

u∗ 〈χ, νe〉
(T − t).

Hence, 0 < T − t, and so t < T .
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