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1. Introduction

The study of M -estimation for certain parameters or functionals of interest has
a long history. Roughly speaking an M -estimator is the maximizer of a random
criterion function depending on the data and corresponding to the estimation
problem. Best known examples are maximum-likelihood estimators as well as
robust estimators of location, e.g. the sample median, and scatter. In basic
statistics courses it is shown that especially maximum-likelihood estimators are
asymptotically normal and efficient under quite weak assumptions, see e.g. the
graduate textbooks by Serfling (1980), Lehmann and Casella (1998) and van
der Vaart (1998). Specific M -estimators of one- and multidimensional parame-
ters can be shown to be asymptotically normal and quite efficient under even
weaker assumptions, see e.g. Huber (1964; 1973), thus providing an interesting
alternative to classical unbiased estimators.

In the present survey we consider M -estimates and functionals of multivari-
ate location and scatter. Our purpose is to provide a concise but self-contained
presentation of the main ideas and results in this context, the target audience
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being researchers and advanced graduate students. The basic setting is as fol-
lows: Let P be a probability distribution on Rq. Traditionally the center of P is
defined to be the mean vector

µ(P ) :=

∫
xP (dx),

assuming that
∫
‖x‖P (dx) < ∞. Assuming also that

∫
‖x‖2 P (dx) < ∞, the

covariance matrix of P is defined as

Σ(P ) :=

∫
(x− µ(P ))(x − µ(P ))⊤ P (dx),

where vectors are understood as column vectors and (·)⊤ denotes transposition.
Recall that for a random vector X with distribution P and any fixed vector
v ∈ Rq,

E(v⊤X) = v⊤µ(P ) and Var(v⊤X) = v⊤Σ(P )v.

Thus for a unit vector v ∈ Rq, the spread of P in direction v may be quantified
by

√
v⊤Σ(P )v, the standard deviation of v⊤X .

There are various good reasons to use different definitions of the center µ(P )
and scatter matrix Σ(P ) of the distribution P . For instance, suppose that P
has a unimodal density f and is elliptically symmetric with center µ ∈ Rq and
symmetric, positive definite scatter matrix Σ ∈ Rq×q. That means, f may be
written as

f(x) = f̃
(
(x− µ)⊤Σ−1(x− µ)

)

for some decreasing function f̃ : [0,∞) → [0,∞). Then it would be natural to
define the center of P to be µ(P ) := µ, and a scatter matrix Σ(P ) of P should
be equal or at least proportional to Σ, even if

∫
‖x‖P (dx) or

∫
‖x‖2 P (dx)

is infinite. A related issue is robustness: One would like µ(P ) and Σ(P ) to
change little if P is replaced with (1 − ǫ)P + ǫP ′ for some small number ǫ > 0
and an arbitrary distribution P ′ on Rq. Another way to define robustness is
weak continuity: It would be desirable that µ(P ′) → µ(P ) and Σ(P ′) → Σ(P )
whenever P ′ → P weakly.

Some people may feel overwhelmed by the diversity of scatter functionals
which are available. However, comparing two or more different scatter matrices
Σ(P ) allows one to find interesting structures in the distribution P . For an
explanation of this paradigm and examples we refer to Nordhausen et al. (2008),
Tyler et al. (2009) and the references cited therein.

A special class of location and scatter functionals are multivariate M -funct-
ionals. Introduced by Maronna (1976), their properties have been analyzed by
numerous authors, an incomplete list of references being Huber (1981), Hampel
et al. (1986), Tyler (1987a; 1987b), Kent and Tyler (1988; 1991) and Dudley
et al. (2009). In particular, Dudley et al. (2009) prove existence and uniqueness
of multivariate t-functionals of location and scatter, generalizing results of Kent
and Tyler (1988; 1991). Moreover, they provide an in-depth analysis of weak
continuity and differentiability of such functionals which implies consistency and
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asymptotic normality of the corresponding estimators. Similar considerations
have been made by Dümbgen (1998) for the special M -functional of scatter due
to Tyler (1987a). As to the robustness of multivariate t-functionals of location
and scatter in terms of so-called breakdown points, we refer to Dümbgen and
Tyler (2005) and the references therein.

In many settings the location parameter µ(P ) is merely a nuisance parameter
while the main interest lies on the scatter matrix Σ(P ). Moreover, often one
only needs to know Σ(P ) up to a positive scaling factor, e.g. when defining
principal components or correlations. On the other hand, a desirable feature
is the following block independence property: If P describes the distribution
of X = [X⊤

1 , X
⊤
2 ]⊤ with two stochastically independent random vectors X1 ∈

Rq(1), X2 ∈ Rq(2), then Σ(P ) should be block diagonal, i.e.

Σ(P ) =

[
Σ1(P ) 0

0 Σ2(P )

]

with Σi(P ) ∈ Rq(i)×q(i). Unfortunately, the M -functionals just mentioned do
not have this property. However, as explained later, any reasonableM -functional
of scatter has the block independence property when it is applied to the sym-
metrized distribution L(X − X ′) with independent random vectors X,X ′ ∼
P . (Here and throughout L(Y ) denotes the distribution of a random vari-
able Y , and Y ∼ Q is shorthand for “Y has distribution Q”.) Note also that
the symmetrized distribution L(X − X ′) is centered around 0 ∈ Rq, so we
may avoid the estimation of a location parameter and focus on estimation
of scatter only. This trick is used by many authors, e.g. Croux et al. (1994),
Dümbgen (1998), Sirkiä et al. (2007), Nordhausen et al. (2008) and Tyler et al.
(2009).

Applying the M -functionals µ(·) and Σ(·) to the empirical distribution P̂ of
independent random vectors X1, X2, . . . , Xn with distribution P yields M -esti-
mators µ̂ = µ(P̂ ) and Σ̂ = Σ(P̂ ).

The remainder of this survey is organized as follows: In Section 2 we review
the concepts of affine and linear equivariance and their main consequences.
In Section 3 we motivate M -functionals of location and scatter by various
maximum-likelihood and other estimation problems. After these introductory
sections, we start with the main results about existence, uniqueness, weak con-
tinuity and differentiability of the M -functionals.

The main part of our paper is devoted to scatter-only functionals, treated in
Sections 4, 5 and 6. This is done in a generalized framework with matrix-valued
random variables. By doing so we reveal a connection between Tyler’s (1987a)
M -functional of scatter and the estimation of proportional covariance matrices
as treated by Flury (1986), Eriksen (1987) and Jensen and Johansen (1987).
Moreover, this general framework allows us to treat a new class of scatter es-
timators, based on symmetrizations of arbitrary order. Part of this material is
new. Section 4 contains the main results about existence and uniqueness of the
scatter functionals. Section 5 provides analytical tools to derive the aforemen-
tioned and later results. As realized by Auderset et al. (2005) in the context
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of multivariate (real or complex) Cauchy distributions and by Wiesel (2012),
among others, working with matrix exponentials and logarithms in a suitable
way provides valuable new insights, and we are utilizing this approach, too. In
particular, the target functions to be minimized turn out to be (strictly) convex
in a certain sense which is essential for uniqueness. In our opinion, the resulting
proofs are more intuitive than some derivations in the original papers. Based
on the analytical results in Section 5, we discuss weak continuity and weak
differentiability of scatter functionals in Section 6.

Finally, in Section 7 we review a trick by Kent and Tyler (1991) to treat
location and scatter functionals based on multivariate t-distributions by means
of the scatter-only methods. This allows one to prove weak differentiability and
central limit theorems as in Dudley et al. (2009).

Various auxiliary results and most proofs are deferred to Section 8.

Notation Throughout this paper, the standard Euclidean norm of a vector
v ∈ Rd is denoted by ‖v‖ =

√
v⊤v. For matrices A,B ∈ Rq×d we use either the

operator or the Frobenius norm,

‖A‖ := max
v∈Rd\{0}

‖Av‖
‖v‖ = max

v∈Rd:‖v‖=1
‖Av‖,

‖A‖F :=
(∑

i,j

A2
ij

)1/2

= 〈A,A〉1/2,

where
〈A,B〉 :=

∑

i,j

AijBij = tr(A⊤B) = tr(AB⊤).

Note that 〈A,B〉 defines an inner product on Rq×d. If vec(A) and vec(B) denote
vectors in Rqd containing the columns of A and B, respectively, then 〈A,B〉 is
just the usual inner product vec(A)⊤vec(B). We shall consider the following
subsets of Rq×q:

R
q×q
ns :=

{
A ∈ R

q×q : A nonsingular
}
,

R
q×q
sym :=

{
A ∈ R

q×q : A = A⊤},
R

q×q
sym,≥0 :=

{
A ∈ R

q×q
sym : A positive semidefinite

}

=
{
A ∈ R

q×q
sym : λmin(A) ≥ 0

}
,

R
q×q
sym,>0 :=

{
A ∈ R

q×q
sym : A positive definite

}

=
{
A ∈ R

q×q
sym : λmin(A) > 0

}
.

With λmin(A) and λmax(A) we denote the smallest and largest real eigenvalue
of a square matrix A. If A ∈ Rq×q has only real eigenvalues (e.g. if A = A⊤),
then λ1(A) ≥ λ2(A) ≥ · · · ≥ λq(A) are its ordered eigenvalues. The identity
matrix in Rq×q is denoted by Iq.

In the sequel we will introduce further notation and various conditions. For
the reader’s convenience, these are listed once more at the very end of this paper.
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2. Affine and linear equivariance

Affine and linear equivariance are key concepts in connection with estimation
of location and scatter. In what follows, let P be a family of probability distri-
butions on Rq. For P ∈ P , a vector a ∈ Rq and a matrix B ∈ Rq×q

ns let

PB := L(BX) and P a,B := L(a+BX) where X ∼ P.

Definition 2.1 (Linear equivariance). Suppose that P is linear invariant in
the sense that PB ∈ P for arbitrary P ∈ P and B ∈ Rq×q

ns . A scatter functional
Σ : P → R

q×q
sym,≥0 is called linear equivariant if

Σ(PB) = BΣ(P )B⊤

for arbitrary P ∈ P and B ∈ Rq×q
ns .

Definition 2.2 (Affine equivariance). Suppose that P is affine invariant in the
sense that P a,B ∈ P for arbitrary P ∈ P , a ∈ Rq and B ∈ Rq×q

ns . Consider
a location functional µ : P → Rq and a scatter functional Σ : P → R

q×q
sym,≥0.

These functionals are called affine equivariant if

µ(P a,B) = a+Bµ(P ) and Σ(P a,B) = BΣ(P )B⊤

for arbitrary P ∈ P , a ∈ R
q and B ∈ R

q×q
ns .

These definitions are clearly motivated by the mean vector µ(P ) and covari-
ance matrix Σ(P ), where P consists of all distributions P with finite integral∫
‖x‖2 P (dx). Whenever we talk about affine or linear equivariant functionals

on a set P , we assume tacitly that P is affine or linear invariant.
Obviously, affine equivariance of a scatter functional Σ(·) implies its linear

equivariance. Equivariance properties of location and scatter functionals yield
various desirable properties which are summarized in two lemmas below. Let us
first recall two symmetry properties of a distribution P :

Definition 2.3 (Spherical and elliptical symmetry). Let X be a random vector
with distribution P on Rq.

(i) The distribution P is called spherically symmetric (around 0) if the distri-
butions of X and UX coincide for any orthogonal matrix U ∈ Rq×q.
(ii) The distribution P is called elliptically symmetric with center µ ∈ Rq and
scatter matrix Σ ∈ R

q×q
sym,>0, if the distribution of Σ−1/2(X − µ) is spherically

symmetric.

If the distribution P admits a density f , elliptical symmetry with center µ
and scatter matrix Σ means that f(x) is a function of the squared Mahalanobis
distance (x− µ)⊤Σ−1(x − µ) only. In particular, if P is spherically symmetric,
f(x) depends only on the norm ‖x‖.

Note that the scatter matrix Σ of an elliptically symmetric distribution is
not unique. One could replace Σ with cΣ for any c > 0.

Lemma 2.4 (Some consequences of linear equivariance). Let Σ : P → R
q×q
sym,≥0

be a linear equivariant functional of scatter, and let X be a random vector with

distribution P ∈ P.
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(i) Let J be a subset of {1, 2, . . . , q} with two or more elements. Suppose that the

distributions of X and (Xπ(i))
q
i=1 coincide for any permutation π of {1, 2, . . . , q}

such that π(i) = i whenever i 6∈ J . Then there exist numbers a = a(P ) and

b = b(P ) such that for arbitrary indices j, k ∈ J ,

Σ(P )jk =

{
a if j = k,

b if j 6= k.

(ii) Suppose that for a given sign vector s ∈ {−1, 1}q, the distributions of X
and (siXi)

q
i=1 coincide. Then

Σ(P )ij = 0 whenever si 6= sj.

(iii) If P is elliptically symmetric with center 0 ∈ Rq and scatter matrix

Σ ∈ R
q×q
sym,>0, then

Σ(P ) = c(P )Σ

for some number c(P ) ≥ 0.

Lemma 2.5 (Some consequences of affine equivariance). Let µ : P → Rq

and Σ : P → R
q×q
sym,≥0 be affine equivariant functionals of location and scatter,

respectively, and let X be a random vector with distribution P ∈ P.

(i) Suppose that for a given vector s ∈ {−1, 1}q, the distributions of X and

(siXi)
q
i=1 coincide. Then

µ(P )i = 0 whenever si = −1.

(ii) If P is elliptically symmetric with center µ ∈ Rq and scatter matrix Σ ∈
R

q×q
sym,>0, then

µ(P ) = µ and Σ(P ) = c(P )Σ

for some number c(P ) ≥ 0.

Remark 2.6 (Symmetrization and the block independence property). Suppose
thatX ∼ P may be written asX = [X⊤

1 , X
⊤
2 ]⊤ with two independent subvectors

Xi ∈ Rq(i), q(1) + q(2) = q. Let X ′ be an independent copy of X . If Σ : P →
R

q×q
sym,≥0 is a linear equivariant scatter functional, and if P̃ := L(X−X ′) belongs

to P ,

Σ(P̃ ) =

[
Σ1(P̃ ) 0

0 Σ2(P̃ )

]

with Σi(P̃ ) ∈ R
q(i)×q(i). This follows from Lemma 2.4 (ii), applied to X̃ ∼ P̃

in place of X ∼ P and si := 1[i≤q(1)] − 1[i>q(1)]. If P is even affine invariant

and µ : P → Rq an affine equivariant location functional, then µ(P̃ ) = 0 by
Lemma 2.5.

3. From maximum-likelihood estimation to M-functionals

In this section we describe various estimation problems and the M -functionals
which they lead to.
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3.1. Estimation in location-scatter families

Let X1, X2, . . . , Xn be independent random vectors with unknown distribu-
tion P . As a model for P we consider a location-scatter family constructed
as follows: Let f̃ : [0,∞) → [0,∞) satisfy

c̃ :=

∫

Rq

f̃(‖x‖2) dx ∈ (0,∞).

For any location parameter µ ∈ Rq and scatter parameter Σ ∈ R
q×q
sym,>0,

fµ,Σ(x) := c̃−1 det(Σ)−1/2f̃
(
(x− µ)⊤Σ−1(x− µ)

)

defines a probability density fµ,Σ on Rq. Assuming that P has a density be-
longing to this family (fµ,Σ)µ,Σ, a maximum-likelihood estimator of (µ,Σ) is a

maximizer (µ̂, Σ̂) of the likelihood function

(µ,Σ) 7→
n∏

i=1

fµ,Σ(Xi).

In other words, (µ̂, Σ̂) minimizes

L̂(µ,Σ) :=
1

n

n∑

i=1

ρ
(
(Xi − µ)⊤Σ−1(Xi − µ)

)
+ log det(Σ)

with
ρ(s) := −2 log f̃(s).

The expected value of L̂(µ,Σ) equals

L(µ,Σ, P ) :=

∫
ρ
(
(x− µ)⊤Σ−1(x− µ)

)
P (dx) + log det(Σ), (3.1)

provided this integral exists, and

L̂(µ,Σ) = L(µ,Σ, P̂ )

with P̂ denoting the empirical distribution n−1
∑n

i=1 δXi of the observationsXi.
Consequently we focus on L(µ,Σ, P ) for arbitrary distributions P , keeping in
mind that P could be a “true” or an empirical distribution.

Suppose that P has a density f which may but need not belong to the model
(fµ,Σ)µ,Σ and such that

∫
f(x) log f(x) dx exists in R. Then

L(µ,Σ, P )− 2 log c̃ = −2

∫
f(x) log fµ,Σ(x) dx

= −2

∫
f(x) log f(x) dx+ 2D(f, fµ,Σ)

with the Kullback-Leibler divergence

D(f, fµ,Σ) :=

∫
f(x) log

(
f(x)/fµ,Σ(x)

)
dx.
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It is well-known that D(f, fµ,Σ) ≥ 0 with equality if, and only if, f = fµ,Σ
almost everywhere. Thus minimizing L(µ,Σ, P ) w.r.t. (µ,Σ) may be viewed as
approximating P by one of the densities fµ,Σ in terms of the Kullback-Leibler
divergence.

Example 3.1 (Gaussian distributions). Multivariate (nondegenerate) Gaussian
distributions correspond to f̃(s) := exp(−s/2) and c̃ := (2π)q/2, i.e. ρ(s) := s.
Suppose that P has mean vector µ(P ), finite integral

∫
‖x‖2 P (dx) and nonsin-

gular covariance matrix Σ(P ). Then

L(µ,Σ, P ) =

∫
(x− µ)⊤Σ−1(x− µ)P (dx) + log det(Σ)

=

∫
(x− µ(P ))⊤Σ−1(x− µ(P ))P (dx) + log det(Σ)

+ (µ− µ(P ))⊤Σ−1(µ− µ(P )).

Hence for any fixed Σ, the unique minimizer of µ 7→ L(µ,Σ, P ) equals µ = µ(P ).
Moreover,

L(µ(P ),Σ, P ) = tr(Σ−1Σ(P )) + log det(Σ)

= tr(Σ−1Σ(P ))− log det(Σ−1Σ(P )) + log det(Σ(P )).

Note that tr(Σ−1Σ(P ))− log det(Σ−1Σ(P )) equals tr(B)− log det(B) with the
symmetric matrix B := Σ−1/2Σ(P )Σ−1/2. If λ1 ≥ λ2 ≥ · · · ≥ λq > 0 denote
the eigenvalues of B, then

tr(B)− log det(B) =

q∑

i=1

(λi − logλi) ≥ q

with equality if, and only if, all eigenvalues λi are equal to one, i.e. if Σ = Σ(P ).
Thus (µ(P ),Σ(P )) is the unique minimizer of L(·, ·, P ).

The range of distributions P for which L(µ,Σ, P ) is well-defined in R for
arbitrary (µ,Σ) may become larger if we replace the term ρ

(
(x−µ)⊤Σ−1(x−µ)

)

with a difference

ρ
(
(x− µ)⊤Σ−1(x− µ)

)
− ρ

(
(x− µo)

⊤Σ−1
o (x − µo)

)

for some (µo,Σo). The choice of the latter pair is irrelevant, so we use µo = 0
and Σo = Iq, where Iq denotes the unit matrix in Rq×q.

Definition 3.2 (M -functionals of location and scatter). Let ρ : [0,∞) → R be
some continuous function. Further let P be the set of all probability distributions
P on R

q such that

L(µ,Σ, P ) :=

∫ [
ρ
(
(x− µ)⊤Σ−1(x− µ)

)
− ρ(x⊤x)

]
P (dx) + log det(Σ) (3.2)

is well-defined in R for arbitrary (µ,Σ) ∈ R
q × R

q×q
sym,>0.

With Pρ we denote the set of all distributions P ∈ P such that L(·, ·, P ) has
a unique minimizer (µ(P ),Σ(P )). This defines an M -functional µ : Pρ → Rq

of location and an M -functional Σ : Pρ → R
q×q
sym,>0 of scatter.
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Affine equivariance The set P in Definition 3.2 is affine invariant. Indeed,
if X ∼ P ∈ P and X ′ := a + BX ∼ P a,B, then elementary calculations show
that

ρ
(
(X ′ − µ′)⊤Σ′−1

(X ′ − µ′)
)
− ρ(X ′⊤X ′)

=
[
ρ
(
(X − µ)⊤Σ−1(X − µ)

)
− ρ(X⊤X)

]

−
[
ρ
(
(X − µ′′)⊤Σ′′−1

(X − µ′′)
)
− ρ(X⊤X)

]
,

where µ′ := a + Bµ, Σ′ := BΣB⊤ and µ′′ := −B−1a, Σ′′ := (B⊤B)−1. Since
log det(Σ′) = log det(Σ)+2 log | det(B)| = log det(Σ)− log det(Σ′′), we arrive at
the key equation

L
(
a+Bµ,BΣB⊤, P a,B

)
= L(µ,Σ, P ) + c(a,B, P ) (3.3)

with c(a,B, P ) := −L
(
−B−1a, (B⊤B)−1, P

)
. In particular, the set Pρ is affine

invariant, and the M -functionals µ(·), Σ(·) are affine equivariant.

Example 3.3 (Multivariate t-distributions). The multivariate student-distrib-
utions are generated by f̃(s) := (ν+ s)−(ν+q)/2 for a fixed parameter ν > 0, the
“degrees of freedom”, and c̃ = ν−ν/2πq/2Γ(ν/2)/Γ((ν + q)/2). Here

ρ(s) = (ν + q) log(ν + s).

With this choice of ρ, definition (3.2) yields

Lν(µ,Σ, P )

= (ν + q)

∫
log

(ν + (x− µ)⊤Σ−1(x − µ)

ν + ‖x‖2
)
P (dx) + log det(Σ). (3.4)

Since the integrand is continuous and bounded on Rq for any fixed (µ,Σ), the
set P is just the set of all probability distributions on Rq. In later sections we
shall derive a precise description of the corresponding subset Pρ.

3.2. Tyler’s (1987) M-functional of scatter and more

A maximum-likelihood estimator for directional data Tyler (1987a;
1987b) introduced a particular M -estimator of scatter which may be motivated
as follows: Suppose that X1, X2, . . . , Xn are independent random vectors with
possibly different distributions P1, P2, . . . , Pn onRq. However, suppose that each
Pi satisfies Pi({0}) = 0 and is elliptically symmetric with center 0 and a common
scatter matrix Σ. This assumption means that Xi = RiBUi with B := Σ1/2

and 2n stochastically independent random variables R1, R2, . . . , Rn > 0 and
U1, U2, . . . , Un uniformly distributed on the unit sphere Sq−1 of Rq. In particular,
the directional vectors Vi := ‖Xi‖−1Xi = ‖BUi‖−1BUi are independent and
identically distributed random vectors. One can show that Vi possesses a so
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called angular central Gaussian distribution, i.e. its distribution is absolutely
continuous with respect to the uniform distribution on Sq−1 with density

gΣ(v) := det(Σ)−1/2(v⊤Σ−1v)−q/2,

see e.g. Watson (1983). Consequently, a maximum-likelihood estimator for Σ

is given by a maximizer of the target function L(Σ, P̂ ) over all matrices Σ ∈
R

q×q
sym,>0, where P̂ is again the empirical distribution of the Xi, and

L(Σ, P ) := q

∫
log

(x⊤Σ−1x

x⊤x

)
P (dx) + log det(Σ) (3.5)

for any distribution P on Rq with P ({0}) = 0. Note that L(Σ, P ) = L(cΣ, P )
for any c > 0. To achieve uniqueness of a minimizer, we have to impose an
additional constraint, e.g.

det(Σ)
!
= 1,

following Paindaveine’s (2008) advice.

Estimation of proportional covariance matrices Suppose that one ob-
serves independent random matrices S1, S2, . . . , SK ∈ R

q×q
sym,≥0, where Si has a

Wishart distribution Wq(ciΣ,mi). The degrees of freedom, m1,m2, . . . ,mK , are
given, while c1, c2, . . . , cK > 0 and Σ ∈ R

q×q
sym,>0 are unknown parameters.

As an explicit example, suppose that we observe independent random vectors
Xij ∈ Rq for 1 ≤ i ≤ K and 1 ≤ j ≤ ni, where ni = mi + 1 ≥ 2 and

Xij ∼ Nq(µi, ciΣ)

with unknown means µi ∈ Rq. With X̄i := n−1
i

∑ni

j=1Xij , the standard estima-
tor of µi, it is well-known that

Si :=

ni∑

j=1

(Xij − X̄i)(Xij − X̄i)
⊤ ∼ Wq(ciΣ,mi).

Recalling that Wq(Γ,m) stands for the distribution of
∑m

j=1 YiY
⊤
i with in-

dependent random vectors Y1, . . . , Ym ∼ Nq(0,Γ), the log-likelihood function
times −2 may be written as

K∑

i=1

(
c−1
i tr(Σ−1Si) + qmi log ci +mi log det(Σ)

)
. (3.6)

Minimization of this function was treated by Flury (1986), Eriksen (1987) and
Jensen and Johansen (1987). The proposed algorithms rely on the fact that
(3.6), as a function of the two arguments Σ and c = (ci)

K
i=1, is easily minimized

if one of the two arguments is fixed. For fixed Σ, the unique minimizer is

c(Σ) := q−1
(
m−1

i tr(Σ−1Si)
)K
i=1

,
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whereas for fixed c, the unique minimizer is

Σ(c) := m−1
+

K∑

i=1

c−1
i Si

with m+ :=
∑K

i=1mi. If focusing on the estimation of the matrix parameter Σ,
we may plug c(Σ) into (3.6) and try to minimize the resulting function of Σ. Up
to an additive term and a scaling factor m−1

+ , the latter function equals

q

K∑

i=1

mi

m+
log

( tr(Σ−1Si)

tr(Si)

)
+ log det(Σ). (3.7)

Again one should impose some constraint such as det(Σ)
!
= 1 to avoid non-

uniqueness of the minimizer.

A generalized setting Note the similarity between (3.5) and (3.7). Consider
the distribution Q of the random matrix XX⊤, where X ∼ P . Then L(Σ, P ) in
(3.5) may be rewritten as

q

∫
log

( tr(Σ−1M)

tr(M)

)
Q(dM) + log det(Σ),

where M corresponds to xx⊤ with x ∈ Rq. But (3.7) is also of this form, this
time with the random distribution

Q̂ :=

K∑

i=1

mi

m+
δSi

in place of Q. These considerations motivate the following definition.

Definition 3.4 (Generalized version of Tyler’s M -functional of scatter). For a
distribution Q on R

q×q
sym,≥0 \ {0} and Σ ∈ R

q×q
sym,>0 we define

L0(Σ, Q) := q

∫
log

(tr(Σ−1M)

tr(M)

)
Q(dM) + log det(Σ).

If L0(·, Q) has a unique minimizer Σ satisfying det(Σ) = 1, then we denote it
with Σ0(Q).

3.3. Symmetrizations of arbitrary order

For k ≥ 2 vectors x1, . . . , xk ∈ Rq we define their sample covariance matrix as

S(x1, . . . , xk) :=
1

k − 1

k∑

i=1

(xi − x̄)(xi − x̄)⊤

with x̄ := k−1
∑k

i=1 xi. If X1, X2, . . . , Xn are independent random vectors with
distribution P such that

∫
‖x‖2 P (dx) < ∞, then S(X1, X2, . . . , Xn) is an un-

biased estimator of the covariance matrix of P . Elementary calculations show
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that

S(X1, X2, . . . , Xn) =

(
n

2

)−1 ∑

1≤i<j≤n

2−1(Xi −Xj)(Xi −Xj)
⊤

=

(
n

2

)−1 ∑

1≤i<j≤n

S(Xi, Xj).

More generally, for 2 ≤ k ≤ n,

S(X1, X2, . . . , Xn) =

(
n

k

)−1 ∑

1≤i1<···<ik≤n

S(Xi1 , . . . , Xik).

Instead of taking the average of all sample covariance matrices S(Xi1 , . . . , Xik)
one could apply Tyler’s generalized M -functional of scatter (Definition 3.4) or
other functionals of scatter to the random distribution

(
n

k

)−1 ∑

1≤i1<···<ik≤n

δS(Xi1 ,...,Xik
)

on R
q×q
sym,≥0, a measure-valued U -statistic (cf. Hoeffding, 1948). For k = 2 this

approach was proposed by Dümbgen (1998). Apart from the higher computa-
tional complexity, trying k ≥ 3 is tempting.

3.4. Simultaneous symmetrization in several samples

Suppose we observe independent random vectorsXij ∈ Rq, where i = 1, 2, . . . ,K
and j = 1, 2, . . . , ni, ni ≥ 2. Suppose that Xij has an unknown elliptically
symmetric distribution Pi with center µi ∈ Rq and a common scatter matrix
Σ ∈ R

q×q
sym,>0. In case of Pi = Nq(µi,Σ) one could estimate Σ by the usual pooled

covariance matrix

Σ̂ =
1

n+ −K

K∑

i=1

(ni − 1)S(Xi1, Xi2, . . . , Xini)

=
2

n+ −K

K∑

i=1

1

ni

∑

1≤j<ℓ≤ni

S(Xij , Xiℓ).

Alternatively, one could estimate Σ by a minimizer of (3.7). But in case of po-
tentially heavy-tailed distributions Pi, it might be even better to apply Tyler’s
generalizedM -functional of scatter (Definition 3.4) or other functionals of scat-
ter to the random distribution

2

n+ −K

K∑

i=1

1

ni

∑

1≤j<ℓ≤ni

δS(Xij ,Xiℓ)

on R
q×q
sym,≥0.
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The resulting scatter estimator Σ̂ could be used, for instance, in the context
of nearest-neighbor classification to define a data-driven Mahalanobis distance
d̂(x, y) :=

∥∥Σ̂−1/2(x − y)
∥∥ between vectors x, y ∈ Rq.

4. M-functionals of scatter

In this section we consider M -functionals of scatter only. That means, when
thinking about a distribution on Rq, we assume that it has a given center µ = 0.
In view of the considerations in the preceding section, however, we consider
distributions Q on R

q×q
sym,≥0. Two particular examples for Q are

Q1(P ) := L(XX⊤) (4.1)

and

Qk(P ) := L
(
S(X1, X2, . . . , Xk)

)
, k ≥ 2, (4.2)

for independent, identically distributed random vectors X,X1, X2, . . . , Xk with
distribution P on R

q.

4.1. Definitions and basic properties

Definition 4.1 (A log-likelihood type criterion). For a given “loss function”
ρ : [0,∞) → R we define

Lρ(Σ, Q) :=

∫ [
ρ(tr(Σ−1M))− ρ(tr(M))

]
Q(dM) + log detΣ

for Σ ∈ R
q×q
sym,>0, provided that the integral exists in R.

Assumptions on ρ and Q Throughout we assume that ρ is continuously
differentiable on (0,∞) with derivative ρ′ > 0. Moreover, we assume that

ψ(s) := sρ′(s).

is non-decreasing in s > 0.

Case 0 For s > 0 let
ρ(s) := q log(s),

so ρ′(s) = q/s and ψ(s) = q. Here we assume that Q({0}) = 0.

Case 1 We assume that ψ is strictly increasing on (0,∞) with limits ψ(0) = 0
and ψ(∞) ∈ (q,∞]. Here we assume that

∫
ψ(λ tr(M))Q(dM) < ∞ for any λ ≥ 1, (4.3)

which is obviously true in case of ψ(∞) <∞.
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Remark 4.2. Note that Tyler’s generalized M -functional of scatter (Defini-
tion 3.4) corresponds to Case 0 above. In Case 1, if Q = Q1(P ) as in (4.1), then
Lρ(·, Q) corresponds to the log-likelihood function L(0,Σ, P ) for an elliptical

model with f̃(s) := exp(−ρ(s)/2). Note that for 0 < so < s,

ρ(s) = ρ(so) +

∫ s

so

ψ(t)t−1 dt

{
≤ ρ(so) + ψ(∞) log(s/so),

≥ ρ(so) + ψ(so) log(s/so).

This implies that
∫

Rq

exp
(
−ρ(‖x‖2)/2

)
dx = Cq

∫ ∞

0

exp
(
−ρ(s)/2 + (q/2− 1) log(s)

)
ds

is finite if, and only if, ψ(∞) > q.

Remark 4.3. Several authors require in addition ρ′ to be non-increasing on
(0,∞). Then

ψ(λs) = λsρ′(λs) ≤ λψ(s)

for any s > 0 and λ ≥ 1, whence (4.3) is equivalent to
∫
ψ(tr(M))Q(dM) < ∞.

Example 4.4 (Multivariate t-distributions). For ν ≥ 0 let

ρ(s) = ρν,q(s) := (ν + q) log(ν + s).

In case of ν > 0, Lρ(Σ, Q) in Definition 4.1 may be viewed as a generalization
of Lν(0,Σ, P ) in (3.4). Here ρ′(s) = (ν + q)/(ν + s) is strictly decreasing and
ψ(s) = (ν + q)s/(ν + s) is strictly increasing in s ≥ 0. Moreover, ψ(0) = 0 and
ψ(∞) = ν + q.

Example 4.5 (Multivariate elliptical Weibull-distributions). For a fixed γ > 0
and s ≥ 0 let ρ(s) := sγ . Then ρ′(s) = γsγ−1 and ψ(s) := γsγ . Here Lρ(Σ, Q)
corresponds to elliptically symmetric distributions with center 0 that are gen-
erated by f̃(s) := exp(−sγ/2). In this situation (4.3) means that

∫
tr(M)γ Q(dM) < ∞,

and in setting (4.1) this is equivalent to
∫

‖x‖2γ P (dx) < ∞.

Example 4.6. Another example, suggested to us by David Tyler, is given by

ρ(s) := (ν + q) log(1 + s2)/2

for s ≥ 0 with some parameter ν > 0. Here ρ′(s) = (ν + q)s/(1 + s2), and
ψ(s) = (ν + q)s2/(1 + s2) is strictly increasing in s ≥ 0 with ψ(0) = 0 and
ψ(∞) = ν + q.
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Existence of Lρ The functional Lρ(·, P ) : Rq×q
sym,>0 → R is well-defined in

Cases 0 and 1. This will be derived from the following two elementary inequal-
ities which will be used several times:

Lemma 4.7. For M ∈ R
q×q
sym,≥0 and A ∈ Rq×q

sym,

λmin(A) tr(M) ≤ tr(AM) ≤ λmax(A) tr(M).

Lemma 4.8. For arbitrary s, t > 0,

ψ(s) log(t/s) ≤ ρ(t)− ρ(s) ≤ ψ(t) log(t/s).

If ρ′ is non-increasing on (0,∞), then

ρ′(t)(t − s) ≤ ρ(t)− ρ(s) ≤ ρ′(s)(t− s).

It follows from Lemma 4.7 that for arbitrary M ∈ R
q×q
sym,≥0 and Σ ∈ R

q×q
sym,>0,

λmax(Σ)
−1 tr(M) ≤ tr(Σ−1M) ≤ λmin(Σ)

−1 tr(M).

Combining these inequalities in case of M 6= 0 with Lemma 4.8, applied to
{s, t} =

{
tr(M), tr(Σ−1M)

}
, yields the inequality

∣∣ρ(tr(Σ−1M))− ρ(tr(M))
∣∣ ≤ ψ

(
λ∗(Σ) tr(M)

)
log(λ∗(Σ))

with λ∗(Σ) = max
{
λmin(Σ)

−1, λmax(Σ)
}
, and the right hand side is integrable

with respect to Q by assumption (4.3).

Linear equivariance For a nonsingular matrix B ∈ R
q×q let

QB := L(BSB⊤) and QB := L(B−1SB−⊤) with S ∼ Q,

where B−⊤ := (B−1)⊤ = (B⊤)−1. Then one can easily verify that for arbitrary
Σ ∈ R

q×q
sym,>0,

Lρ(BΣB⊤, QB)− Lρ(BB
⊤, QB) = Lρ(Σ, Q),

Lρ(BΣB⊤, Q)− Lρ(BB
⊤, Q) = Lρ(Σ, QB). (4.4)

Let Qρ denote the set of all distributions Q as described in Cases 0 and 1 such
that Lρ(·, Q) has a unique minimizer in

{{
Σ ∈ R

q×q
sym,>0 : det(Σ) = 1

}
in Case 0,

R
q×q
sym,>0 in Case 1.

This minimizer is denoted by Σρ(Q). Then Qρ is linear invariant and Σρ is
linear equivariant in the sense that QB ∈ Qρ and

Σ(QB) =

{
det(BB⊤)−1/qBΣρ(Q)B⊤ in Case 0

BΣρ(Q)B⊤ in Case 1

for all Q ∈ Qρ and B ∈ Rq×q
ns .
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4.2. Existence and uniqueness of an optimizer

The question of existence and uniqueness of minimizers of Lρ(·, Q) is closely
related to the mass which Q puts on special linear subspaces of Rq×q

sym. We define

Vq := {V : V is a linear subspace of Rq}.
Then for V ∈ Vq, we consider

M(V) :=
{
M ∈ R

q×q
sym,≥0 :MR

q ⊂ V
}
,

a linear subspace of Rq×q
sym with dimension dim(M(V)) = dim(V)(dim(V) + 1)/2.

Another object of interest is the matrix

Ψρ(Σ, Q) :=

∫
ρ′(tr(Σ−1M))M Q(dM)

=

∫
ψ(tr(Σ−1M)) tr(Σ−1M)−1M Q(dM),

where the integrands are interpreted as 0 ∈ Rq×q if M = 0. It will turn out
that the following conditions play the key role for the existence of a unique
minimizer Σρ(Q).

Condition 0 We assume that

Q(M(V)) <
dim(V)

q
for all V ∈ Vq with 1 ≤ dim(V) < q. (4.5)

Condition 1 We assume that

Q(M(V)) <
ψ(∞)− q + dim(V)

ψ(∞)
for all V ∈ Vq with 0 ≤ dim(V) < q. (4.6)

In case of ψ(∞) = ∞ the fraction on the right hand side of (4.6) is interpreted
as 1.

Theorem 4.9. A matrix Σ ∈ R
q×q
sym,>0 minimizes Lρ(·, Q) if, and only if,

Ψρ(Σ, Q) = Σ. (4.7)

In Case 0, Lρ(·, Q) possesses a unique minimizer with determinant 1 if, and

only if, Condition 0 is satisfied.

In Case 1, Lρ(·, P ) possesses a unique minimizer if, and only if, Condition 1

is satisfied.

Our proof of Theorem 4.9 is based on an in-depth analysis of the mapping
Lρ(·, Q) in Section 5. In particular it will turn out that the fixed-point equation
(4.7) is equivalent to Lρ(·, Q) having gradient 0 at Σ. With Theorem 4.9 at hand
we may redefine the family Qρ as follows:

In Case 0, Qρ consists of all probability distributions Q on R
q×q
sym,≥0 satisfying

Condition 0 and Q({0}) = 0.

In Case 1, Qρ consists of all probability distributions Q on R
q×q
sym,≥0 satisfying

Condition 1 and
∫
ψ(λ tr(M))Q(dM) <∞ for any λ ≥ 1.



M-functionals of multivariate scatter 49

Let us comment now on these conditions in two special settings.

The setting (4.1) If Q = Q1(P ) = L(XX⊤) with a random vector X ∼ P ,
then Q({0}) = P ({0}), and

∫
ψ(λ tr(M))Q(dM) =

∫
ψ(λ‖x‖2)P (dx). More-

over,

Q(M(V)) = P (V).

Hence Conditions 0 and 1 coincide with the known conditions from the literature
on M -estimation of scatter. In particular, a unique minimizer Σρ(Q) is well-
defined if P is smooth in the sense that

P (V) = 0 for any V ∈ Vq with dim(V) < q (4.8)

and satisfies
∫
ψ(λ‖x‖2)P (dx) <∞ for any λ ≥ 1.

Now consider the empirical distribution

Q̂1 := n−1
n∑

i=1

δXiX
⊤

i

with n ≥ q independent random vectors X1, X2, . . . , Xn ∼ P . This is an un-
biased estimator of Q1(P ). In Section 8 we will apply Theorem 4.9 to Q̂1 and
prove the following result:

Lemma 4.10. Suppose that P is smooth in the sense of (4.8). Then Σ(Q̂1) is
well-defined with probability one, provided that

n ≥
{
q + 1 in Case 0,

q in Case 1.

This result is based on the fact that in case of (4.8), q independent random
vectors with distribution P are linearly independent almost surely.

The setting (4.2) Let Q = Qk(P ) = L
(
S(X1, X2, . . . , Xk)

)
with k ≥ 2 inde-

pendent random vectors X1, X2, . . . , Xk ∼ P . Here Q({0}) = 0 if, and only if,
P has no atoms, i.e.

P ({x}) = 0 for all x ∈ R
q.

Note also that tr(S(X1, X2, . . . , Xk)) ≤ (k − 1)−1
∑k

i=1 ‖Xi‖2, so

ψ
(
λ tr(S(X1, X2, . . . , Xk))

)
≤ ψ

(
λ(1− 1/k)−1 max

1≤i≤k
‖Xi‖2

)

≤
k∑

i=1

ψ
(
λ(1 − 1/k)−1‖Xi‖2

)

and ∫
ψ(λ tr(M))Q(dM) ≤ k

∫
ψ
(
λ(1 − 1/k)−1‖x‖2

)
P (dx). (4.9)
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Moreover, according to Lemma 8.1 in Section 8,

S(X1, X2, . . . , Xk)R
q = span(X2 −X1, . . . , Xk −X1).

Hence

Q(M(V)) = P
(
span(X2 −X1, . . . , Xk −X1) ⊂ V

)

= P(X2 −X1, . . . , Xk −X1 ∈ V)

=

∫
P (x+ V)k−1 P (dx)

=
∑

w∈V⊥

P (w + V)k.

In particular, Σρ(Q) is well-defined if P is smooth in the sense that

P (H) = 0 for any hyperplane H ⊂ R
q, (4.10)

and if
∫
ψ(λ‖x‖2)P (dx) <∞ for arbitrary λ ≥ 1. (A hyperplane is a set of the

form w + V with w ∈ Rq, V ∈ Vq, dim(V) = q − 1.)
Now consider the empirical distribution

Q̂k :=

(
n

k

)−1 ∑

1≤i1<···<ik≤n

δS(Xi1 ,...,Xik
)

for some k ≥ 2 and n ≥ k independent random vectors X1, X2, . . . , Xn ∼ P .
Note that Q̂k is an unbiased estimator of Qk(P ). In Section 8 we’ll prove the
following result:

Lemma 4.11. Suppose that P is smooth in the sense of (4.10). Then Σ(Q̂k)
is well-defined almost surely, provided that n ≥ q + 1.

Estimation of proportional covariance matrices As in Section 3.2 con-
sider

Q̂ =

K∑

i=1

mi

m+
δSi

with independent random matrices Si ∼ Wq(ciΣ,mi). Let Si = ci
∑mi

j=1 YijY
⊤
ij

with independent random vectors Yij ∼ Nq(0,Σ), 1 ≤ i ≤ K, 1 ≤ j ≤ mi. Then
one can easily show that

Si R
q = span(Yij : 1 ≤ j ≤ mi).

Thus with similar arguments as in the proof of Lemma 4.10 one can show that
with probability one,

Q̂(M(V)) ≤ 1

m+

K∑

i=1

mi∑

j=1

1[Yij∈V] ≤ dim(V)

m+

for arbitrary V ∈ Vq with dim(V) < q. Hence Σρ(Q̂) is well-defined in Case 0
almost surely, provided that

m+ ≥ q + 1.



M-functionals of multivariate scatter 51

4.3. A fixed-point algorithm

Suppose that ρ satisfies the additional constraint that ρ′ is non-increasing on
(0,∞). In this case one can use the fixed-point equation (4.7) to calculate
Σρ(Q) numerically. Recall that Σ∗ ∈ R

q×q
sym,>0 minimizes Lρ(·, Q) if, and only if,

Ψρ(Σ∗, Q) = Σ∗, according to Theorem 4.9. This fixed-point equation implies
that

Ψρ(Σ, Q) ∈ R
q×q
sym,>0 for arbitrary Σ ∈ R

q×q
sym,>0.

For otherwise we could find a vector v ∈ Rq \ {0} such that

0 = v⊤Ψρ(Σ, Q)v =

∫
ρ′(tr(Σ−1M))v⊤MvQ(dM).

But then v⊤Mv = 0 for almost all M w.r.t. Q, i.e. Q(M(v⊤)) = 1. This would
yield the contradiction 0 < v⊤Σ∗v = v⊤Ψρ(Σ∗, Q)v = 0. It would also contra-
dict Condition 0 and 1.

Iterating the mapping Ψρ(·, Q) yields a sequence converging to a positive
multiple of Σρ(Q) in Case 0 and to Σρ(Q) in Case 1:

Lemma 4.12 (Convergence of a fixed-point algorithm). Suppose that Q fulfills

Condition 0 in Case 0 and Condition 1 in Case 1, and let ρ′ be non-increasing

on (0,∞). For any starting point Σ0 ∈ R
q×q
sym,>0, define inductively

Σk := Ψρ(Σk−1, Q)

for k = 1, 2, 3, . . . . Then the sequence (Σk)k≥0 converges to a solution of the

fixed-point equation (4.7).

A key ingredient for proving this lemma is the following inequality. It may
be viewed as a special case of a wellkown inequality for the EM algorithm by
Dempster et al. (1977). For the precise connection between variations of the
present fixed-point algorithm and the EM algorithm we refer to Arslan et al.
(1995) and Arslan and Kent (1998).

Lemma 4.13. Suppose that ρ′ is non-increasing on (0,∞). Let Q be a proba-

bility distribution on R
q×q
sym,≥0 such that Q(M(v⊤)) < 1 for any v ∈ Rq \ {0} and∫

ψ(tr(M))Q(dM) <∞. Then for any Σ ∈ R
q×q
sym,>0,

Lρ(Ψρ(Σ, Q), Q) < Lρ(Σ, Q)

unless Ψρ(Σ, Q) = Σ.

5. Analytical properties of the criterion function

The results in the previous section can be derived from an in-depth analysis
of the function Lρ(·, Q). As mentioned in the introduction, we utilize matrix
exponentials which are reviewed in the next subsection. Then we derive differ-
entiability, a convexity property and coercivity of Lρ(·, Q) under certain condi-
tions. In the last subsection we derive second order Taylor expansions of Lρ(·, Q)
which are needed later on.
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5.1. The exponential transform of matrices

The exponential transform on Rq×q For an arbitrary matrix A ∈ Rq×q,
its exponential transform

exp(A) :=

∞∑

k=0

Ak

k!

is well-defined in Rq×q, satisfying the inequalities ‖ exp(A)‖ ≤ e‖A‖ and

∥∥∥
∞∑

k=ℓ

Ak

k!

∥∥∥ ≤ e‖A‖‖A‖ℓ/ℓ! for ℓ ≥ 1.

If A,B ∈ Rq×q are interchangeable in the sense that AB = BA, the familiar
equation exp(A+ B) = exp(A) exp(B) = exp(B) exp(A) is valid. In particular,
exp(A) is always nonsingular with inverse

exp(A)−1 = exp(−A).

In general the expansion of exp(A+B) is somewhat more complicated. From
the following result only the very first inequality is needed later, but the full
result may be of interest for curious readers and illustrates why treating Lρ(Σ, Q)
as a function of log(Σ) is not that straightforward.

Lemma 5.1 (Taylor expansions of exp(·)). For matrices A,∆ ∈ Rq×q,

exp(A+∆) = exp(A) +R0(A,∆)

= exp(A) +

∫ 1

0

exp((1− u)A)∆ exp(uA) du +R1(A,∆)

with

‖R0(A,∆)‖ ≤ e‖A‖+‖∆‖‖∆‖ and ‖R1(A,∆)‖ ≤ e‖A‖+‖∆‖‖∆‖2/2.

Moreover,

exp(A+∆) = exp(A) +
∞∑

k=1

1

k!
E
[
exp(Uk0A)∆ exp(Uk1A) · · ·∆exp(UkkA)

]
,

where Uk0 = 1−∑k
j=1 Ukj, and (Ukj)

k
j=1 is uniformly distributed on the convex

polytope
{
u ∈ [0, 1]k :

∑k
j=1 uj ≤ 1

}
.

The exponential transform on Rq×q
sym Any matrix A ∈ Rq×q

sym may be written
as

A =

q∑

i=1

λi(A)uiu
⊤
i = U diag

(
(λi(A))

q
i=1

)
U⊤
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with the ordered eigenvalues λi(A) of A, an orthonormal basis u1, u2, . . . , uq of
corresponding eigenvectors, and the orthogonal matrix U = [u1 u2 . . . uq]. Then
one can easily verify that

exp(A) =

q∑

i=1

exp(λi(A))uiu
⊤
i ∈ R

q×q
sym,>0.

As a mapping from Rq×q
sym to R

q×q
sym,>0, the exponential function is bijective with

inverse

log(A) :=

q∑

i=1

log(λi(A))uiu
⊤
i .

Moreover,
det(exp(A)) = exp(tr(A)).

Local parametrizations of Rq×q
sym,>0 Unfortunately, for Σ,Σ′ ∈ R

q×q
sym,>0, the

equation Σ′ = exp(log(Σ) + A) with A := log(Σ′) − log(Σ) is not very helpful,
because the Taylor expansion of exp(log(Σ) +A) is somewhat awkward, unless
log(Σ) and A are interchangeable. In view of our considerations on linear equiv-
ariance, we consider a different approach: Let Σ ∈ R

q×q
sym,>0, and fix an arbitrary

B ∈ R
q×q
ns such that

Σ = BB⊤,

e.g. B = Σ1/2. Then

R
q×q
sym,>0 =

{
B exp(A)B⊤ : A ∈ R

q×q
sym

}
.

Indeed, any matrix Σ′ ∈ R
q×q
sym,>0 may be written as B exp(A)B⊤ with A :=

log(B−1Σ′B−⊤). Note that the matrix A depends on both B and Σ′, but its
eigenvalues are simply λi(A) = logλi(Σ

−1Σ′). Moreover, if det(Σ) = 1, then

{
Σ′ ∈ R

q×q
sym,>0 : det(Σ′) = 1

}
=

{
B exp(A)B⊤ : A ∈ R

q×q
sym, tr(A) = 0

}
.

5.2. First-order smoothness of the criterion function

We start with an expansion of Lρ(·, Q) in small neighborhoods of Iq. To this
end we need the matrix

Ψρ(Q) := Ψρ(Iq , Q) =

∫
ρ′(tr(M))M Q(dM) ∈ R

q×q
sym.

Proposition 5.2 (1st order Taylor expansion). For A ∈ Rq×q
sym,

Lρ(exp(A), Q) = 〈A,Gρ(Q)〉+Rρ(A,Q)

with the gradient

Gρ(Q) := Iq −Ψρ(Q) ∈ R
q×q
sym



54 L. Dümbgen et al.

and a remainder Rρ(A,Q) satisfying the following inequalities:

∣∣〈A,Gρ(Q)〉
∣∣ ≤ (q + Jρ(Q))‖A‖,

|Rρ(A,Q)| ≤
(
Jρ(e

‖A‖, Q)− Jρ(e
−‖A‖, Q)

)
‖A‖+ Jρ(Q)‖A‖2/2,

where Jρ(Q) := Jρ(1, Q) and

Jρ(λ,Q) :=

∫
ψ(λ tr(M))Q(dM).

Note that Jρ(·, Q) ≡ q in Case 0. In Case 1, Jρ(λ,Q) is continuous and
monotone increasing in λ > 0 with values in [0, ψ(∞)). Thus in both cases,

|Rρ(A,Q)| = o(‖A‖) as A→ 0.

Proposition 5.2 carries over to expansions in other neighborhoods via linear
equivariance: For any fixed B ∈ R

q×q
ns and A ∈ R

q×q
sym we have by (4.4),

Lρ(B exp(A)B⊤, Q)− Lρ(BB
⊤, Q) = Lρ(exp(A), QB)

= 〈A,Gρ(QB)〉+Rρ(A,QB),

where
∣∣〈A,Gρ(QB)〉

∣∣ ≤ (q + Jρ(QB))‖A‖,
|Rρ(A,QB)| ≤

(
Jρ(e

‖A‖, QB)− Jρ(e
−‖A‖, QB)

)
‖A‖+ Jρ(QB)e

‖A‖‖A‖2/2.

Moreover, with Σ := BB⊤, Lemma 4.7 and monotonicity of ψ yield

Jρ(λ,QB) =

∫
ψ(λ tr(Σ−1M))Q(dM) ≤ Jρ(λ/λmin(Σ), Q). (5.1)

Note also that
Gρ(QB) = B−1

(
Σ−Ψρ(Σ, Q)

)
B−⊤,

so the fixed-point equation (4.7) in Theorem 4.9 is satisfied if, and only if,
Gρ(QB) = 0.

Proposition 5.2 implies also that Lρ(·, Q) is a continuously differentiable and
locally Lipschitz-continuous function on R

q×q
sym,>0 in the usual sense:

Corollary 5.3 (Smoothness). The function Lρ(·, Q) is continuously differen-

tiable on R
q×q
sym,>0 with gradient

∇Lρ(Σ, Q) = Σ−1 −
∫
ρ′(tr(Σ−1M))Σ−1MΣ−1Q(dM)

= B−1Gρ(QB)B
−1

with B := Σ1/2. Moreover, let K be a convex subset of R
q×q
sym,>0 with λmin(K) :=

infΣ∈K λmin(Σ) > 0. Then for Σ0,Σ1 ∈ K,

∣∣Lρ(Σ1, Q)− Lρ(Σ0, Q)
∣∣ ≤

(
q + Jρ(λmin(K)−1, Q)

)
λmin(K)−1‖Σ1 − Σ0‖.
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5.3. Convexity and coercivity

Theorem 4.9 follows essentially from the next two results. The first one provides
a surrogate for the simpler claim that Lρ(Σ, Q) is a convex function of log(Σ).
The second one deals with the behavior of Lρ(Σ, Q) as ‖ log(Σ)‖ → ∞.

Proposition 5.4 (Convexity). For any fixed B ∈ Rq×q
ns and A ∈ Rq×q

sym,

R ∋ t 7→ Lρ(B exp(tA)B⊤, Q)

is a convex function. This convexity is strict if, and only if,
{
Q
(⋃ℓ

i=1 M(BVi)
)
< 1 in Case 0,

Q
(
M(BV0)

)
< 1 in Case 1,

where V1, . . . ,Vℓ are the eigenspaces of A, and V0 := {x ∈ R
q : Ax = 0}.

Proposition 5.5 (Coercivity). Let B be an arbitrary fixed matrix in Rq×q
ns . In

Case 0,

lim
‖A‖→∞, tr(A)=0

Lρ(B exp(A)B⊤, Q) = ∞

if, and only if, Condition 0 is true. In Case 1,

lim
‖A‖→∞

Lρ(B exp(A)B⊤, Q) = ∞

if, and only if, Condition 1 is true.

The convexity property in Proposition 5.4 is sometimes called “geodesic con-
vexity” (cf. Wiesel, 2012). This name stems from the fact that for arbitrary
matrices Σ0 = BB⊤ and Σ1 = B exp(A)B⊤ in R

q×q
sym,>0, the path

[0, 1] ∋ t 7→ Γ(t) := B exp(tA)B⊤

minimizes the “length”
∫ 1

0

∥∥Γ(t)−1/2Γ′(t)Γ(t)−1/2
∥∥
F
dt

over all continuously differentiable functions Γ : [0, 1] → R
q×q
sym,>0 with Γ(0) = Σ0

and Γ(1) = Σ1; see Bhatia (2007, Chapter 6).

5.4. Second-order smoothness of the criterion function

In order to prove differentiability of Σρ(·), we need second order Taylor ex-
pansions of Lρ(·, Q). These are also useful to replace the fixed-point algorithm
described earlier by faster methods, see Dümbgen et al. (2013).

From now on we assume that ρ is twice continuously differentiable on (0,∞).
In addition to ψ(s) = sρ′(s) we consider

ψ2(s) := sψ′(s) = ψ(s) + s2ρ′′(s).

In Case 0, ψ ≡ q, so ψ′ ≡ ψ2 ≡ 0. Case 1 is modified as follows:
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Case 1’ We assume that ψ′ > 0 and that ψ has limits ψ(0) = 0 and ψ(∞) ∈
(q,∞]. Moreover we assume that

∫
ψ(tr(M))Q(dM) < ∞ (5.2)

and that there exists a constant κ > 0 such that

ψ2(s) ≤ κψ(s) for all s > 0. (5.3)

Remark 5.6. Inequality (5.3) is mainly for convenience and to avoid additional
integrability conditions for ψ2. It also allows to replace (4.3) with the simpler
condition (5.2), see Lemma 5.10 below. It follows from ψ2(s) = ψ(s) + s2ρ′′(s)
and ψ, ψ′ > 0 that s2ρ′′(s) = ψ2(s) − ψ(s) ∈

(
−ψ(s), ψ2(s)

)
. Hence inequality

(5.3) is equivalent to the existence of a constant κ̃ such that

s2|ρ′′(s)| ≤ κ̃ψ(s) for all s > 0. (5.4)

Remark 5.7. Suppose that ρ′ is non-increasing, i.e. ρ′′ ≤ 0. Then 0 < ψ2(s) ≤
ψ(s) and−ψ(s) < s2ρ′′(s) ≤ 0. Hence (5.3) and (5.4) are satisfied with κ = κ̃ = 1.

Example 5.8 (Multivariate elliptical Weibull-distributions). In case of ρ(s) :=
sγ for a constant γ > 0, we have ψ(s) = γsγ and

s2ρ′′(s) = (γ − 1)ψ(s), ψ2(s) = γψ(s),

so (5.3) and (5.4) are satisfied with κ = γ and κ̃ = |γ − 1|.
Example 5.9. In case of ρ(s) := (ν + q) log(1 + s2)/2 for a constant ν > 0, we
have ψ(s) = (ν + q)s2/(1 + s2) and

s2ρ′′(s) =
(
1− 2ψ(s)/ψ(∞)

)
ψ(s), ψ2(s) = 2

(
1− ψ(s)/ψ(∞)

)
ψ(s),

so (5.3) and (5.4) are satisfied with κ = 2 and κ̃ = 1.

Lemma 5.10. Let φ : (0,∞) → (0,∞) be a differentiable function. For any

κ ∈ R the following two statements are equivalent:

sφ′(s) ≤ κφ(s) for all s > 0; (5.5)

φ(λs) ≤ λκφ(s) for all s > 0 and λ > 1. (5.6)

Now we are ready to extend the expansion of Lρ(·, Q) around Iq from Propo-
sition 5.2:

Proposition 5.11 (2nd order Taylor expansion). In Case 0 and Case 1’, for

arbitrary A ∈ Rq×q
sym,

Lρ(exp(A), Q) = 〈A,Gρ(Q)〉+ 2−1Hρ(A,Q) +Rρ,2(A,Q) (5.7)
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with the gradient Gρ(Q) as in Proposition 5.2, the quadratic term

Hρ(A,Q) :=

∫ (
ρ′(tr(M)) tr(A2M) + ρ′′(tr(M)) tr(AM)2

)
Q(dM)

= tr(A2Ψρ(Q)) +

∫
ρ′′(tr(M)) tr(AM)2Q(dM)

and a remainder term Rρ,2(A,Q) satisfying the following inequalities:

Hρ(A,Q) ∈
[
0, (1 + κ)Jρ(Q)‖A‖2

]
, (5.8)

|Rρ,2(A,Q)| ≤ Ω(‖A‖, Q)‖A‖2/2 + (κ+ 1/7)Jρ(Q)‖A‖3 (5.9)

with

Ω(δ,Q) :=

∫
sup

z∈[−δ,δ]

∣∣ψ2(e
z tr(M))− ψ2(tr(M))

∣∣Q(dM).

Moreover,

Hρ(A,Q) > 0 if

{
Q
(⋃ℓ

i=1 M(Vi)
)
< 1 in Case 0,

Q(M(V0)) < 1 in Case 1’,
(5.10)

where V1, . . . ,Vℓ are the eigenspaces of A, and V0 := {x ∈ Rq : Ax = 0}.
Note that Ω(δ,Q) is continuous in δ ≥ 0 with Ω(0, Q) = 0. This follows from

the fact that
sup

z∈[−δ,δ]

∣∣ψ2(e
z tr(M))− ψ2(tr(M))

∣∣

is continuous in δ ≥ 0 and not greater than κψ(eδ tr(M)) ≤ κeκδψ(tr(M)). In
particular,

Rρ,2(A,Q) = o(‖A‖2) as A→ 0.

Again Proposition 5.11 carries over to expansions in other neighborhoods via
linear equivariance: For any fixed B ∈ Rq×q

ns and A ∈ Rq×q
sym,

Lρ(B exp(A)B⊤, Q)− Lρ(BB
⊤, Q)

= Lρ(exp(A), QB) = 〈A,Gρ(QB)〉+ 2−1Hρ(A,QB) +Rρ,2(A,QB),

where Rρ,2(A,QB) = o(‖A‖2) as A→ 0.

The Hessian operator The quadratic term Hρ(A,Q) in Proposition 5.11
may be written as

Hρ(A,Q) = 〈A,Hρ(Q)A〉
with the linear operator Hρ(Q) : Rq×q

sym → Rq×q
sym given by

Hρ(Q)A :=

∫ (
ρ′(tr(M))2−1(AM +MA) + ρ′′(tr(M)) tr(AM)M

)
Q(dM)

= 2−1
(
AΨρ(Q) + Ψρ(Q)A

)
+

∫
ρ′′(tr(M)) tr(AM)M Q(dM).

This operator is self-adjoint, that means, 〈A,Hρ(Q)B〉 = 〈B,Hρ(Q)A〉 for ar-
bitrary A,B ∈ Rq×q

sym.
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Invertibility in Case 1’ Under Condition 1 it follows from the last part of
Proposition 5.11 that Hρ(Q) is positive definite and thus invertible.

Invertibility in Case 0 The gradient Gρ(Q) = Iq − q
∫
tr(M)−1M Q(dM) is

contained in the linear subspace

W0 := {A ∈ R
q×q
sym : tr(A) = 0},

and for any A ∈ Rq×q
sym,

Hρ(Q)A = q

∫ (
tr(M)−12−1(AM +MA)− tr(M)−2 tr(AM)M

)
Q(dM)

belongs to W0, too. Hence we view Hρ(Q) as a linear operator from W0 to W0.
Under Condition 0, the last part of Proposition 5.11 implies that this operator
is positive definite und thus invertible.

6. Continuity, consistency and differentiability

In this section we derive various properties of Σρ(·) and related limit theorems.
The arguments we use are adaptations of standard arguments in the statistical
literature, e.g. the monographs mentioned in the introduction. Related are also
the papers by Haberman (1989) and Niemiro (1992) about M -estimation with
convex criterion functions.

Throughout this section let Q be a distribution in Qρ and define

Y :=

{
R

q×q
sym,≥0 \ {0} in Case 0,

R
q×q
sym,≥0 in Case 1.

Moreover we consider the linear space

W :=

{
{A ∈ Rq×q

sym : tr(A) = 0} in Case 0,

Rq×q
sym in Case 1.

Recall that in Case 1’, Hρ(Q) : W → W is an invertible linear operator.
Unless stated otherwise, all subsequent asymptotic statements refer to the

sequence index n tending to ∞. Furthermore, “→p” and “→w” stand for con-
vergence in probability and weak convergence, respectively.

6.1. Continuity

Our first result establishes a certain continuity property of Σρ(·).
Theorem 6.1 (Continuity I). Let (Qn)n be a sequence of probability distribu-

tions on Y converging weakly to Q. In Case 1 suppose in addition that all Qn

satisfy (4.3) and that
∫
ψ
(
λo tr(Σρ(Q)−1M)

)
Qn(dM) →

∫
ψ
(
λo tr(Σρ(Q)−1M)

)
Q(dM) (6.1)



M-functionals of multivariate scatter 59

for some λo > 1. Then Qn ∈ Qρ for sufficiently large n, and

Σρ(Qn) → Σ(Q).

Remark 6.2 (Weak Continuity). In case of ψ(∞) < ∞, Condition (6.1) is
satisfied for any Σo ∈ R

q×q
sym,>0 because Qn →w Q. Thus Theorem 6.1 shows

that the set Qρ is open in the topology of weak convergence of probability
measures on Y, and that the functional Σρ is weakly continuous on Qρ.

Our proof of Theorem 6.1 covers also the situation of random distributions
Q̂n in place of Qn. Indeed the following result is true:

Theorem 6.3 (Continuity II). Let Q̂1, Q̂2, Q̂3, . . . be random distributions on

Y such that for any bounded and continuous function f : Y → R,
∫
f dQ̂n →p

∫
f dQ. (6.2)

In Case 1 suppose further that Q̂n satisfies (4.3) almost surely and that
∫
ψ
(
λo tr(Σρ(Q)−1M)

)
Q̂n(dM) →p

∫
ψ
(
λo tr(Σρ(Q)−1M)

)
Q(dM) (6.3)

for some λo > 1. Then P(Q̂n ∈ Qρ) → 1 and

Σρ(Q̂n) →p Σρ(Q).

In case of ψ(∞) <∞, one could derive Theorem 6.3 easily from Theorem 6.1
by means of metrics for weak convergence as described in by Dudley (2002,
Section 11.3). In the general setting, however, it is easier to prove Theorem 6.3
directly and realize that Theorem 6.1 is just a special case of it.

6.2. Differentiability

In this subsection we refine Theorem 6.3 with an asymptotic linear expansion
of Σρ(·) in Cases 0 and 1’. By linear equivariance it suffices to consider the case

Σρ(Q) = Iq .

Theorem 6.4 (Differentiability). Let Q̂1, Q̂2, Q̂3, . . . be random distributions

on Y satisfying Condition (6.2). In Case 1’ suppose further that for all n,∫
ψ(tr(M)) Q̂n(dM) <∞ almost surely, and

∫
ψ(tr(M)) Q̂n(dM) →p

∫
ψ(tr(M))Q(dM). (6.4)

Then in Cases 0 and 1’,

Gρ(Q̂n) →p 0, and Hρ(Q̂n) →p Hρ(Q).

Moreover, P(Q̂n ∈ Qρ) → 1 and

log(Σρ(Q̂n)) = −Hρ(Q)−1Gρ(Q̂n) + op
(
‖Gρ(Q̂n)‖

)
. (6.5)
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Remark 6.5. Condition (6.4) seems to be weaker than (6.3) at first glance.
But in Case 1’,

ψ
(
λo tr(M)

)
≤ λκoψ(tr(M))

for any λo > 1 and M ∈ Y by Lemma 5.10. Consequently (6.3) follows from
(6.2) and (6.4) by virtue of Lemma 8.5 in Section 8.

Remark 6.6. Note that the asymptotic expansion (6.5) is equivalent to the
expansion

Σρ(Q̂n) = Iq −Hρ(Q)−1Gρ(Q̂n) + op
(
‖Gρ(Q̂n)‖

)
.

Remark 6.7 (Weak Differentiability). In Cases 0 and 1’ with ψ(∞) < ∞,
Theorem 6.4 shows that the functional Σρ is weakly differentiable on Qρ in
the following sense: Let Q ∈ Qρ and B := Σρ(Q)1/2. Further let (Qn)n be
a sequence of probability distributions in Qρ converging weakly to Q. Then
Gρ((Qn)B) → 0 and

log(B−1Σρ(Qn)B
−1) = −Hρ(QB)

−1Gρ((Qn)B) + o
(∥∥Gρ((Qn)B)

∥∥).

6.3. Orthogonally invariant distributions

The previous differentiability results involve the operator Hρ(Q). The latter
turns out to have a special structure under a certain symmetry condition on Q:

Definition 6.8 (Orthogonal symmetry). The distribution Q of a random ma-
trix M ∈ R

q×q
sym,≥0 is called orthogonally invariant if

L(V MV ⊤) = L(M) for any orthogonal matrix V ∈ R
q×q.

This property is closely related to spherically symmetric distributions on Rq.
For instance, let Q = L(XX⊤) with a random vector X with spherically sym-
metric distribution on Rq. Then Q is orthogonally invariant. Another example
is given by Q = L(S(X1, X2, . . . , Xk)) with independent, identically distributed
random vectors X1, X2, . . . , Xk ∈ Rq such that L(X1 − µ) is spherically sym-
metric for some µ ∈ Rq.

By linear equivariance of Σρ(·), orthogonal invariance of Q implies that
Σρ(Q) is a positive multiple of Iq. As shown in the subsequent lemma, the
operator Hρ(Q) has a rather simple form here. It will be convenient to decom-
pose Rq×q

sym as

R
q×q
sym = W0 +W1

with W0 = {A ∈ Rq×q
sym : tr(A) = 0} and W1 := {sIq : s ∈ R}. Any matrix

A ∈ Rq×q
sym has the unique decomposition

A = A0 +A1

with A0 := A− q−1 tr(A)Iq ∈ W0 and A1 := q−1 tr(A)Iq ∈ W1.



M-functionals of multivariate scatter 61

Lemma 6.9. Suppose that Q is orthogonally invariant, and let Σρ(Q) = Iq.
Then for A = A0 +A1 with A0 ∈ W0, A1 ∈ W1,

Hρ(Q)A = d0(Q)A0 + d1(Q)A1,

where

d0(Q) := 1 +
2

q(q + 2)

∫
ρ′′(tr(M))

(
‖M‖2F +

tr(M)2 − ‖M‖2F
q − 1

)
Q(dM),

d1(Q) := 1 +
1

q

∫
ρ′′(tr(M)) tr(M)2Q(dM).

Implications for rank one distributions Suppose that a random matrix
M ∼ Q satisfies rank(M) ≤ 1 almost surely. This is true in settings (4.1) and
(4.2) with k = 2. Then ‖M‖F = tr(M) almost surely, so

d0(Q) = 1 +
2

q(q + 2)

∫
ρ′′(tr(M)) tr(M)2Q(dM),

d1(Q) = 1 +
1

q

∫
ρ′′(tr(M)) tr(M)2Q(dM).

Implications for Case 0 Recall that in Case 0, ρ(s) = q log(s), so ρ′(s) = q/s
and ρ′′(s) = −q/s2. Thus d1(Q) = 0, and forA = A0+A1 with A0 ∈ V0, A1 ∈ V1,

Hρ(Q)A = d0(Q)A0

with

d0(Q) = 1− 2

q + 2

∫
(q − 2)‖M‖2F/ tr(M)2 + 1

q − 1
Q(dM).

In particular, if rank(M) = 1 almost surely, then

Hρ(Q)A =
q

q + 2
A0.

6.4. Consistency and Central Limit Theorems

In this section we apply the previous results to particular empirical distributions
related to Settings (4.1) and (4.2). For convenience we restrict our attention to
Cases 0 and 1’.

For some fixed integer k ≥ 1 and arbitrary integers n ≥ k we consider distri-
butions

Q := Qk(P ) and Qn := Qk(Pn)

in Qρ with distributions P, Pn on Rq such that

Σρ(Q) = Iq = Σρ(Qn) for all n ≥ k.

Recall that in Case 0, Q̃ = Qk(P̃ ) ∈ Qρ implies that
{
P̃ ({0}) = 0 if k = 1,

P̃ ({x}) = 0 for all x ∈ Rq if k ≥ 2.
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Additional assumptions We assume that

Pn →w P.

Further, for a certain exponent m ≥ 1 we assume that
∫
ψ(‖x‖2)m Pn(dx) →

∫
ψ(‖x‖2)m Pn(dx),

where all integrals on the left and right hand side are finite.

Note that for any exponent m ≥ 1, the second part of the additional assump-
tions is a consequence of the first part whenever ψ(∞) <∞.

Now we consider for n ≥ k independent random vectors Xn1, Xn2, . . . , Xnn

with distribution Pn and define

Q̂n :=





1

n

n∑

i=1

δXniX
⊤

ni
if k = 1,

(
n

k

)−1 ∑

1≤i1<···<ik≤n

δS(Xni1 ,...,Xnik
) if k ≥ 2.

Our first result proves consistency ofΣρ(Q̂n) as an estimator forΣρ(Qn) = Iq.
It is essentially a corollary to Theorem 6.3:

Theorem 6.10 (Consistency). In the setting just described, suppose that the

additional assumptions hold with m = 1. Then P(Q̂n ∈ Qρ) → 1 and

Σρ(Q̂n) →p Iq.

Our second result provides a precise linear expansion for Σρ(Q̂n) and is based
on Theorem 6.4:

Theorem 6.11 (Linear expansion). Let X := Rq \ {0} in Case 0 with k = 1,
and X := Rq otherwise. In the just described setting, suppose that the additional

assumptions hold with m = 2. Then P(Q̂n ∈ Qρ) → 1 and

√
n log(Σρ(Q̂n)) =

1√
n

n∑

i=1

(
Z(Xni)− EZ(Xn1)

)
+ op(1)

for some continuous function Z : X → Rq×q
sym depending only on P such that

sup
x∈X

‖Z(x)‖
1 + ψ(‖x‖2) < ∞ and

∫
Z dP = 0.

Precisely, if k = 1, then

Z(x) := Hρ(Q)−1
(
ρ′(‖x‖2)xx⊤ − Iq

)
and EZ(Xn1) = 0.

If k ≥ 2, then

Z(x) = kHρ(Q)−1
(
E
[
ρ′
(
tr(S(x,X2, . . . , Xk))

)
S(x,X2, . . . , Xk)

]
− Iq

)

with independent random vectors X2, . . . , Xk ∼ P .
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Remark 6.12 (Central Limit Theorem). By virtue of the multivariate version
of Lindeberg’s Central Limit Theorem, the expansion in Theorem 6.11 implies
a Central Limit Theorem for the estimator Σρ(Q̂n). Namely,

L
(√
n log(Σρ(Q̂n))

)
→w Nq×q

(
0,Cov(Z(X))

)

with X ∼ P . This means, that for any matrix A ∈ Rq×q
sym,

〈√
n log(Σρ(Q̂n)), A

〉
→w N

(
0,Var(〈Z(X), A〉)

)
.

Remark 6.13 (Spherical symmetry I). Let P be spherically symmetric around
0 ∈ Rq. Then the matrix-valued function Z in Theorem 6.11 may be written as

Z(x) = z0(‖x‖2)xx⊤ + z1(‖x‖2)Iq
with certain functions z0, z1 : [0,∞) → R, where z1(s) = −q−1sz0(s) in Case 0.

Remark 6.14 (Spherical symmetry II). Let P be spherically symmetric around
0 ∈ Rq, and let k = 1. Further let

ρ(s) = (ν + q) log(ν + s)

with ν = 0 (Case 0) or ν > 0 (Case 1’). For x ∈ Rq we write

xx⊤ = A0(x) + a(x)Iq + Iq

with a(x) := q−1‖x‖2 − 1, so that tr(A0(x)) = 0. Then the matrix-valued
function Z in Theorem 6.11 is given by

Z(x) = (ν + ‖x‖2)−1
(
c0A0(x) + c1a(x)Iq

)

with

c0 :=
(q + ν)(q + 2)

q + 2(1− β)ν/q
, c1 := 1[ν>0]

q

1− β

and

β = β(P, ν) :=

∫
(ν + q)ν

(ν + ‖x‖2)2 P (dx).

7. M-functionals of location and scatter

Now we return to the estimation of location and scatter as in Section 3.1. We
restrict our attention toM -functionals derived from multivariate t-distributions
with ν ≥ 1 degrees of freedom. That means, for an arbitrary distribution P on
Rq we consider

L(µ,Σ, P ) :=

∫ [
ρ
(
(x− µ)⊤Σ−1(x− µ)

)
− ρ(x⊤x)

]
P (dx) + log det(Σ)

as in (3.2), where

ρ(s) = ρν,q(s) := (ν + q) log(ν + s).
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The reason for the restriction to ρν,q with ν ≥ 1 is a nice trick by Kent
and Tyler (1991) to reduce the location-scatter problem in dimension q to the
scatter-only problem in dimension q + 1 with ν − 1 in place of ν. As shown by
Kent et al. (1994), the particular loss functions ρν,q are the only ones for which
this trick works.

For more details about and generalizations of multivariate t-distributions
we refer to Lange et al. (1989) and the monograph by Kotz and Nadarajah
(2004). An alternative approach to the location-scatter problem which is closely
related to Tyler’s (1987a) scatter functional is presented by Hettmansperger and
Randles (2002).

7.1. Existence and uniqueness

The first question is under what conditions on P the functional L(·, ·, P ) admits
a unique minimizer (µ(P ),Σ(P )). To this end let

y = y(x) :=

[
x
1

]
and Γ :=

[
Σ+ µµ⊤ µ
µ⊤ 1

]
=

[
Iq µ
0 1

] [
Σ 0
0 1

] [
Iq µ
0 1

]⊤

for x ∈ Rq and (µ,Σ) ∈ Rq × R
q×q
sym,>0. Then one can easily verify that

det(Γ) = det(Σ), Γ−1 =

[
Iq −µ
0 1

]⊤ [
Σ−1 0
0 1

] [
Iq −µ
0 1

]

and
y⊤Γ−1y = (x− µ)⊤Σ−1(x− µ) + 1.

Consequently, with
P̃ := L(y(X)), X ∼ P,

and
ρ̃(s) := ρ(s− 1) = ρν−1,q+1(s)

we may write

L(µ,Σ, P ) = L̃(Γ, P̃ ) :=

∫ [
ρ̃(y⊤Γ−1y)− ρ̃(y⊤y)

]
P̃ (dy) + log det(Γ).

If a matrix Γ ∈ R
(q+1)×(q+1)
sym,>0 minimizes L̃(·, P̃ ), and if

Γq+1,q+1 = 1,

then we may write

Γ =

[
Σ(P ) + µ(P )µ(P )⊤ µ(P )

µ(P )⊤ 1

]
,

and (µ(P ),Σ(P )) ∈ Rq × R
q×q
sym,>0 solves the original minimization problem. It

will turn out that the additional constraint Γq+1,q+1 = 1 poses no problem here.
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Concerning the minimization of L̃(·, P̃ ) over R
(q+1)×(q+1)
sym,>0 , one can deduce

from Theorem 4.9 that the following condition on P plays a crucial role:

P (a+ V) <
dim(V) + ν

q + ν
for arbitrary a ∈ R

q and linear (7.1)

subspaces V ⊂ R
q with 0 ≤ dim(V) < q.

Here is the main result:

Theorem 7.1. In case of ν = 1, the functional L̃(·, P̃ ) has a unique minimizer

Γ with Γq+1,q+1 = 1 if, and only if, (7.1) holds true. Moreover, if Γ̃ is some

minimizer of L̃(·, P̃ ), then Γ = (Γ̃q+1,q+1)
−1Γ̃.

In case of ν > 1, the functional L̃(·, P̃ ) has a unique minimizer Γ if, and only

if, (7.1) holds true. This minimizer satisfies automatically Γq+1,q+1 = 1.

Consequently, Condition (7.1) is both necessary and sufficient for L(·, ·, P )
to have a unique minimizer (µ(P ),Σ(P )). In that case, we have to minimize

L̃(·, P̃ ), which is equivalent to finding a solution Γ ∈ R
(q+1)×(q+1)
sym,>0 of the fixed

point equation

Γ =

∫
ρ′(‖y‖2 − 1) yy⊤ P̃ (dy) =

∫
ρ′(‖x‖2)y(x)y(x)⊤ P (dx).

If we write such a matrix Γ as

Γ =

[
A b
b⊤ c

]

with A ∈ Rq×q
sym, b ∈ Rq and c = Γq+1,q+1 > 0, then

µ(P ) = c−1b and Σ(P ) = c−1A− µ(P )µ(P )⊤.

Moreover, c = 1 in case of ν > 1.

7.2. Weak differentiability and linear expansions

The results for weak continuity and differentiability of scatter-only function-
als imply analogous results for the location-scatter problem. Let (Pn)n be a
sequence of probability distributions on Rq converging weakly to a distribu-
tion P such that (µ(P ),Σ(P )) is well-defined. Then for sufficiently large n,
(µ(Pn),Σ(Pn)) is well-defined, too, and

(µ(Pn),Σ(Pn)) → (µ(P ),Σ(P )).

(Again asymptotic statements are meant as n → ∞.) This follows from Theo-
rem 6.1, applied to Q(n) := L

(
y(X)y(X)⊤

)
, X ∼ P(n). Theorem 6.4 yields the

following expansion:

Theorem 7.2. Let P be a probability distribution on Rq such that µ(P ) = 0
and Σ(P ) = Iq. Then there exists a bounded and continuous function

Z̃ : Rq → R
(q+1)×(q+1)
sym
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depending only on P such that
∫
Z̃ dP = 0 with the following property: Let

P̂1, P̂2, P̂3, . . . be random distributions on Rq such that for any bounded and

continuous function f : Rq → R,
∫
f dP̂n →p

∫
f dP.

Then
(
µ(P̂n),Σ(P̂n)

)
is well-defined with asymptotic probability one, and

[
Σ(P̂n)− Iq µ(P̂n)

µ(P̂n)
⊤ 0

]
=

∫ (
Z̃ − Z̃q+1,q+1Iq+1

)
dP̂n + op

(∥∥∥
∫
Z̃ dP̂n

∥∥∥
)
.

The precise definition of Z̃ is

Z̃(x) := H̃(P )−1
(
ρ′(‖x‖2)y(x)y(x)⊤ − Iq+1

)
,

where H̃(P ) : M̃ → M̃ is the linear operator given by

H̃(P )M := M +

∫
ρ′′(‖x‖2) y(x)⊤My(x) y(x)y(x)⊤ P (dx)

for matrices M in

M̃ :=

{{
M ∈ R

(q+1)×(q+1)
sym : tr(M) = 0

}
if ν = 1,

R
(q+1)×(q+1)
sym if ν > 1.

Moreover, in case of ν > 1,

Z̃q+1,q+1 ≡ 0.

Remark 7.3 (Empirical distributions). Let P1, P2, P3, . . . and P be distribu-
tions on Rq such that Pn →w P and µ(P ) = 0 = µ(Pn) andΣ(P ) = Iq = Σ(Pn)

for all n. Further let P̂n be the empirical distribution of independent random vec-
tors Xn1, Xn2, . . . , Xnn with distribution Pn. As in the proof of Theorem 6.10
one can show that these random distributions P̂n satisfy the assumptions of
Theorem 7.2. This implies that (µ(P̂n),Σ(P̂n)) is well-defined with asymptotic
probability one, and

√
n

[
Σ(P̂n)− Iq µ(P̂n)

µ(P̂n)
⊤ 0

]
=

1√
n

n∑

i=1

(
Z̃(Xni)− Z̃(Xni)q+1,q+1Iq

)
+ op(1)

with Z̃ : Rq → R
(q+1)×(q+1)
sym as in Theorem 7.2. In particular, EZ̃(Xn1) = 0 for

all n, and the random matrix in the previous display converges in distribution

to a random matrix with a centered Gaussian distribution on R
(q+1)×(q+1)
sym .

Remark 7.4 (Symmetry). Suppose that P is symmetric in the sense that
L(−X) = L(X) for X ∼ P . Then the function Z̃ in Theorem 7.2 may be
written as

Z̃(x) =

[
Z(xx⊤) 0

0 z(‖x‖2)

]
+ ρ′(‖x‖2)

[
0 Bx

x⊤B 0

]
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with bounded and continuous functions Z : R
q×q
sym,≥0 → Rq×q

sym, z : [0,∞) →
R and a nonsingular matrix B ∈ Rq×q

sym. In particular, the random variables√
n(Σ(P̂n)− Iq) and

√
nµ(P̂n) in Remark 7.3 are asymptotically independent.

Remark 7.5 (Spherical symmetry). Suppose that P is spherically symmetric
around 0. Let β = β(P, ν), A0(·) and a(·) be defined as in Remark 6.14. Then
the function Z̃ − Z̃q+1,q+1Iq+1 in Theorem 7.2 may be written as follows:

Z̃(x) − Z̃(x)q+1,q+1Iq+1 = (ν + ‖x‖2)−1

[
c0A0(x) + c1a(x)Iq c2x

c2x
⊤ 0

]

where

c0 :=
(q + ν)(q + 2)

q + 2(1− β)ν/q
, c1 :=

q

1− β
and c2 :=

q

q − 2(1− β)
.

Comparing this with Remark 6.14, we see that the estimator Σ(P̂n) has the
same asymptotic behaviour as the corresponding estimator in the scatter-only
problem.

8. Auxiliary results and proofs

8.1. Proofs for Section 2

Proof of Lemma 2.4. Note that (Xπ(i))
q
i=1 = BX with the permutation ma-

trix B = (1[π(i)=j])
q
i,j=1. Thus our assumption on X in part (i) and linear

equivariance of Σ(·) imply that

Σ(P ) = BΣ(P )B⊤ =
(
Σ(P )π(i),π(j)

)q
i,j=1

for any permutation π of {1, 2, . . . , q} such that π(i) = i whenever i 6∈ J . Let
j1 := min(J) and j2 := max(J). For arbitrary indices j 6= k in J , choose π such
that π(j1) = j and π(j2) = k. Then we realize that Σ(P )j,j = a(P ) := Σ(P )j1,j1
and Σ(P )j,k = b(P ) := Σ(P )j1,j2 . This proves part (i).

To verify part (ii) we write (siXi)
q
i=1 = BX with B := diag(s). Then

Σ(P ) = BΣ(P )B⊤ =
(
sisjΣ(P )i,j

)q
i,j=1

.

Consequently, Σ(P )ij = 0 whenever sisj = −1, i.e. si 6= sj .
As for part (iii), suppose first that P is spherically symmetric. This implies

that X ∼ P satisfies the assumptions of part (i) with the full index set J =
{1, 2, . . . , q} and of part (ii) for any sign vector s ∈ {−1, 1}q. Hence Σ(P ) =
c(P )Iq for some c(P ) ≥ 0. Now suppose that P is elliptically symmetric with
center 0 and scatter matrix Σ ∈ R

q×q
sym,>0. Then the distribution P ′ of X ′ :=

Σ−1/2X is spherically symmetric, and P = P ′B with B := Σ1/2. Thus Σ(P ) =
BΣ(P ′)B⊤ = c(P ′)Σ.

Proof of Lemma 2.5. Under the assumption of part (i),

µ(P ) = diag(s)µ(P ) =
(
siµ(P )i

)q
i=1

.

Consequently, µ(P )i = 0 whenever si = −1.
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If P is elliptically symmetric with center µ and scatter matrix Σ, then the
distribution P ′ of X ′ := Σ−1/2(X −µ) is spherically symmetric, and P = P ′µ,B

with B := Σ1/2. But X ′ satisfies the assumptions of part (i) for any sign vector
s ∈ {−1, 1}q. Hence µ(P ′) = 0, and µ(P ) = µ + Bµ(P ′) = µ. Moreover,
Σ(P ) = BΣ(P ′)B⊤ = c(P ′)Σ, according to Lemma 2.4, applied to P ′.

8.2. Proofs for Section 4

Proof of Lemma 4.7. LetM =
∑q

i=1 λi(M)uiu
⊤
i with eigenvalues λi(M) ≥ 0

and an orthonormal basis u1, u2, . . . , uq of Rq. Then tr(M) =
∑q

i=1 λi(M) and

tr(AM) =

q∑

i=1

λi(M)u⊤i Aui

{
≤ λmax(A)

∑q
i=1 λi(M) = λmax(A) tr(M),

≥ λmin(A)
∑q

i=1 λi(M) = λmin(A) tr(M).

Proof of Lemma 4.8. For fixed s > 0 and x ∈ R define f(x) := ρ(exs). Then
f ′(x) = ρ′(exs)exs = ψ(exs). Consequently by the mean value theorem,

ρ(t)− ρ(s) = f(log(t/s))− f(0) = f ′(ξ) log(t/s) = ψ(eξs) log(t/s)

with some number ξ between 0 and log(t/s). Since ψ is non-decreasing on (0,∞),
either log(t/s) > 0 and ψ(s) ≤ ψ(eξs) ≤ ψ(t), or log(t/s) < 0 and ψ(t) ≤
ψ(eξs) ≤ ψ(s). In both cases, ψ(s) log(t/s) ≤ ρ(t)− ρ(s) ≤ ψ(t) log(t/s).

Note also that
ρ(t)− ρ(s) = ρ′(ξ)(t− s)

for some ξ between a and b. Hence if ρ′ is non-increasing, the asserted inequalities
follow from the fact that either t− s ≥ 0 and ρ′(t) ≤ ρ′(ξ) ≤ ρ′(s), or t− s < 0
and ρ′(s) ≤ ρ′(ξ) ≤ ρ′(t).

Proof of Lemma 4.10. It follows from (4.8) that

P
(
X1, X2, . . . , Xk are linearly independent

)
= 1 for k = 1, 2, . . . , q.

Indeed, P(X1 6= 0) = 1, and for 2 ≤ k ≤ q,

P
(
Xk 6∈ span(X1, . . . , Xk−1)

∣∣X1, . . . , Xk−1

)
= 1.

This implies that with probability one,

Q̂1(M(V)) = P̂ (V) ≤ dim(V)

n
for all V ∈ Vq with dim(V) < q.

Consequently, according to Theorem 4.9,Σρ(Q̂
1) is well-defined with probability

one, provided that

d

n
<





d

q
for 1 ≤ d < q, in Case 0,

ψ(∞)− q + d

ψ(∞)
for 0 ≤ d < q, in Case 1.

But this can be shown to be equivalent to n ≥ q + 1 in Case 0 and n ≥ q in
Case 1.
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To understand setting (4.2) thoroughly, the following two results about linear
subspaces of Rq and sample covariance matrices are useful:

Lemma 8.1. For arbitrary integers k ≥ 1 and points x1, x2, . . . , xk ∈ Rq with

sample mean x̄ = k−1
∑k

i=1 xi,

W(x1, x2, . . . , xk) := span(xi − xj : i, j = 1, 2, . . . , k)

= span(x1 − x̄, x2 − x̄, . . . , xk − x̄)

= span(x1 − xa, x2 − xa, . . . , xk − xa)

for any a ∈ {1, 2, . . . , k}. Moreover, in case of k ≥ 2,

S(x1, x2, . . . , xk)R
q = W(x1, x2, . . . , xk).

Corollary 8.2. Let x1, x2, . . . , xk and y1, y2, . . . , yℓ be arbitrary point in Rq.

Suppose that both W(x1, x2, . . . , xk) and W(y1, y2, . . . , yℓ) are contained in a

given space V ∈ Vq. If {x1, x2, . . . , xk} and {y1, y2, . . . , yℓ} have at least one

point in common, then

W(x1, x2, . . . , xm, y1, y2, . . . , yℓ) ⊂ V.

Proof of Lemma 8.1. For arbitrary indices a, j ∈ {1, 2, . . . , k} we may write

xj − x̄ = (xj − xa)− k−1
∑k

i=1(xi − xa), so

span(x1 − x̄, x2 − x̄, . . . , xk − x̄)

⊂ span(x1 − xa, x2 − xa, . . . , xk − xa)

⊂ span(xi − xj : i, j = 1, 2, . . . , k)

= span
(
(xi − x̄)− (xj − x̄) : i, j = 1, 2, . . . , k)

⊂ span(x1 − x̄, x2 − x̄, . . . , xk − x̄).

Hence the preceding three inclusions are equalities.
Now suppose that k ≥ 2. Since S := S(x1, x2, . . . , xk) is positive semidefinite,

it follows from its spectral representation that a vector w ∈ Rq is perpendicular
to the column space S Rq if, and only if,

0 = w⊤Sw = (k − 1)−1
k∑

i=1

(w⊤(xi − x̄))2,

i.e. w is perpendicular to span(x1 − x̄, x2 − x̄, . . . , xk − x̄) = W(x1, x2, . . . , xk).
Hence the column space of S is equal to W(x1, x2, . . . , xk).

Proof of Lemma 4.11. For any nonvoid index set M ⊂ {1, 2, . . . , n} define
W(M) := W(Xi : i ∈ M); in particular, W({i}) = {0}. Then it follows from
Lemma 8.1 that for any V ∈ Vq,

Q̂k(M(V)) =

(
n

k

)−1 ∑

J∈Jk

1[W(J)⊂V],
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where Jk stands for the set of all subsets of {1, 2, . . . , n} with k elements. More-
over, Corollary 8.2 implies that for two nonvoid index sets M,M ′,

W(M ∪M ′) ⊂ V if W(M) ⊂ V,W(M ′) ⊂ V and M ∩M ′ 6= ∅.
Consequently, if we partition {1, 2, . . . , n} into pairwise disjoint and maximal
subsets M1,M2, . . . ,ML such that W(Mℓ) ⊂ V for ℓ = 1, 2, . . . , L, then

Q̂k(M(V)) =

(
n

k

)−1 L∑

ℓ=1

(
#Mℓ

k

)

with the usual convention that
(
a
k

)
:= 0 for integers 0 ≤ a < k.

For any fixed index setM with 1 ≤ #M ≤ q and an additional index j 6∈M ,
it follows from (4.10) and Lemma 8.1 that

P
(
W(M ∪ {j}) 6= W(M)

∣∣ (Xi)i6=j

)
= P

(
Xj −Xa 6∈ W(M)

∣∣ (Xi)i6=j

)

= 1,

where a is any index in M . This implies that with probability one, for any given
partition M1,M2, . . . ,ML of {1, 2, . . . , n} into nonvoid subsets Mℓ,

dim
( L⋃

ℓ=1

W(Mℓ)
)

= min
( L∑

ℓ=1

(#Mℓ − 1), q
)
.

In particular, for any V ∈ Vq with d := dim(V) < q, the value of Q̂k(M(V)) is
no larger than the maximum of

(
n

k

)−1 L∑

ℓ=1

(
mℓ + 1

k

)
(8.1)

over all integers L ≥ 1 and m1,m2, . . . ,mL ≥ k − 1 such that
∑

ℓ=1mℓ ≤ d. It
will be shown later that this maximum equals

(
n

k

)−1(
d+ 1

k

)
.

Since (ψ(∞)− q+d)/ψ(∞) = 1− (q−d)/ψ(∞) > 1− (q−d)/q = d/q in Case 1,

we conclude that Σρ(Q̂
k) is well-defined almost surely, provided that

(
n

k

)−1(
d+ 1

k

)
<

d

q
for k − 1 ≤ d < q.

Since
(
d+1
k

)/
d is increasing in d ≥ k − 1, this condition is equivalent to

(
n

k

)−1(
q

k

)
<

q − 1

q
.

But this holds in case of n ≥ q + 1, since the left hand side equals
(
n

k

)−1(
q

k

)
≤

(
q + 1

k

)−1(
q

k

)
=

q − k + 1

q + 1
≤ q − 1

q + 1
<

q − 1

q
.
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It remains to be shown that the sum
∑L

ℓ=1

(
mℓ+1

k

)
in (8.1) is not larger than(

d+1
k

)
. For this purpose, let N1, N2, . . . , NL be disjoint subsets of {1, 2, . . . , d}

with #Nℓ = mℓ, and let Mℓ := Nℓ ∪ {d+ 1}. Then for ℓ, ℓ′ ∈ {1, 2, . . . , L} with
ℓ 6= ℓ′, a subset of Mℓ with k elements is different from any subset of Mℓ′ with
k elements. Consequently,

L∑

ℓ=1

(
mℓ + 1

k

)
=

L∑

ℓ=1

#
{
subsets of Mℓ with k elements

}

≤ #
{
subsets of {1, 2, . . . , d+ 1} with k elements

}

=

(
d+ 1

k

)
.

Proof of Theorem 4.9. The first part, i.e. the equivalence of the fixed-point
equation Ψρ(Σ, Q) = Σ and Σ being a minimizer of Lρ(·, Q), follows from Propo-
sitions 5.2 and 5.4: Recall that with B := Σ1/2 we may write

Lρ(Σ
1/2 exp(A)Σ1/2, Q)− Lρ(Σ, Q) = Lρ(exp(A), QB)

=
〈
A,Gρ(QB)

〉
+ o(‖A‖)

as Rq×q
sym ∋ A→ 0, and

Gρ(QB) = B−1(Σ−Ψρ(Σ, Q))B−1.

If Σ minimizes Lρ(·, Q), then Gρ(QB) = 0, which is equivalent to Ψρ(Σ, Q) = Σ.
On the other hand, if Σ is not a minimizer of Lρ(·, Q), then there exists a matrix
A ∈ R

q×q
sym such that Lρ(exp(A), QB) < 0. But convexity of R ∋ t 7→ h(t) :=

Lρ(exp(tA), QB) implies that

0 > Lρ(exp(A), QB) = h(1)− h(0) ≥ h′(0) = 〈A,Gρ(QB)〉,

i.e. Gρ(QB) 6= 0 and thus Ψρ(Σ, Q) 6= Σ.
In Case 1, suppose that Condition 1 holds true. According to Proposition 5.5,

L(·, Q) is a continuous function on R
q×q
sym,>0 which is coercive in that Lρ(Σ, Q) →

∞ as ‖ log(Σ)‖ → ∞. Consequently there exists a minimizer Σo of Lρ(·, Q). But

Condition 1 and Proposition 5.4 imply that Lρ(Σ
1/2
o exp(tA)Σ

1/2
o , Q) is strictly

convex for any A ∈ Rq×q
sym \ {0}. Consequently, Σo is the unique minimizer of

Lρ(·, Q).
Still in Case 1, suppose that Σo ∈ R

q×q
sym,>0 is a unique minimizer of Lρ(·, Q).

Then Lρ(Σ
1/2
o exp(A)Σ

1/2
o , Q) is a coercive function of A ∈ R

q×q
sym: For if ‖A‖ ≥ 1

and A′ := ‖A‖−1A, then by Proposition 5.4,

Lρ(Σ
1/2
o exp(A)Σ1/2

o , Q)− Lρ(Σo, Q)

= Lρ(Σ
1/2
o exp(‖A‖A′)Σ1/2

o , Q)− Lρ(Σo, Q)

≥ ‖A‖
(
Lρ(Σ

1/2
o exp(A′)Σ1/2

o , Q)− Lρ(Σo, Q)
)

≥ ‖A‖ min
A′′∈R

q×q
sym : ‖A′′‖=1

(
Lρ(Σ

1/2
o exp(A′′)Σ1/2

o , Q)− Lρ(Σo, Q)
)
,
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and the minimum on the right hand side is strictly positive by uniqueness of the

minimizer Σo. But coercivity of Lρ(Σ
1/2
o exp(·)Σ1/2

o , Q) is equivalent to Condi-
tion 1, according to Proposition 5.5.

In Case 0 one can argue in the same way, this time with {Σ ∈ R
q×q
sym,>0 :

det(Σ) = 1} and {A ∈ Rq×q
sym : tr(A) = 0} in place of R

q×q
sym,>0 and Rq×q

sym,
respectively.

Proof of Lemma 4.13. Writing Ψ(Q̃) = Ψρ(I, Q̃) for arbitrary distributions

Q̃ and B := Σ1/2, note first that

Lρ(Ψρ(Σ, Q), Q)− Lρ(Σ, Q) = Lρ(BΨ(QB)B
⊤, Q)− Lρ(BB

⊤, Q)

= Lρ(Ψ(QB), QB).

Hence it suffices to show that

Lρ(Ψ(QB), QB) < 0

unless Ψ(QB) = Iq . It follows from the second part of Lemma 4.8 that for
Γ ∈ R

q×q
sym,>0,

Lρ(Γ, QB) =

∫ [
ρ(tr(Γ−1M))− ρ(tr(M))

]
QB(dM) + log det(Γ)

≤
∫
ρ′(tr(M))

[
tr(Γ−1M)− tr(M)

]
QB(dM) + log det(Γ)

= tr
(
(Γ−1 − Iq)Ψ(QB)

)
+ log det(Γ).

Hence

Lρ(Ψ(QB), QB) ≤ tr(Iq −Ψ(QB)) + log detΨ(QB)

=

q∑

i=1

[
1− λi(Ψ(QB)) + logλi(Ψ(QB))

]
.

Since 1 − x + log x < 0 for 0 < x 6= 1, the latter sum is strictly negative
unless λi(Ψ(QB)) = 1 for 1 ≤ i ≤ q, which is equivalent to Ψ(QB) = Iq , i.e.
Ψρ(Σ, Q) = Σ.

Proof of Lemma 4.12. Under the stated conditions on the distribution Q,
the function Lρ(·, Q) has a minimizer Σo, that means, Ψρ(Σo, Q) = Σo. Note
that

Σ−1/2
o ΣkΣ

−1/2
o = Σ−1/2

o Ψρ(Σk−1, Q)Σ−1/2
o = Ψρ(Σ

−1/2
o Σk−1Σ

−1/2
o , Q

Σ
1/2
o

).

Hence we may assume w.l.o.g. that Σo = Iq and Ψρ(Iq, Q) = Iq. Again we write
Ψ(·) instead of Ψρ(·, Q).

The equation Ψ(Iq) = Iq implies that the mapping Ψ has the following prop-
erties, as shown below: For any Σ ∈ R

q×q
sym,>0,

λmin(Ψ(Σ)) ≥ a :=

{
λmin(Σ) in Case 0,

min{λmin(Σ), 1} in Case 1,
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λmax(Ψ(Σ)) ≤ b :=

{
λmax(Σ) in Case 0,

max{λmax(Σ), 1} in Case 1.

This follows from Lemma 4.7 and various properties of ρ: For anyM ∈ R
q×q
sym,≥0,

λmax(Σ)
−1 tr(M) ≤ tr(Σ−1M) ≤ λmin(Σ)

−1 tr(M).

Hence for any unit vector v ∈ Rq,

v⊤Ψ(Σ)v =

∫
ρ′(tr(Σ−1M)) v⊤MvQ(dM)





≥ a

∫
ρ′(tr(M)) v⊤MvQ(dM) = a v⊤Ψ(Iq)v = a,

≤ b

∫
ρ′(tr(M)) v⊤MvQ(dM) = b v⊤Ψ(Iq)v = b,

because for M 6= 0,

ρ′(tr(Σ−1M))





≥ ρ′(tr(M)/a) =
ψ(tr(M)/a)

tr(M)/a
≥ aψ(tr(M))

tr(M)
= aρ′(tr(M)),

≤ ρ′(tr(M)/b) =
ψ(tr(M)/b)

tr(M)/b
≤ bψ(tr(M))

tr(M)
= bρ′(tr(M)),

due to ρ′ being non-increasing and ψ being constant in Case 0 and increasing
on (0,∞) in Case 1.

Now we define

[ak, bk] :=

{[
λmin(Σk), λmax(Σk)

]
in Case 0,[

min{λmin(Σk), 1},max{λmax(Σk), 1}
]

in Case 1.

Then (ak)k and (bk)k are non-decreasing and non-increasing, respectively, with
corresponding limits a∗ ≤ b∗. In Case 0 we have to show that a∗ = b∗, be-
cause then Σk → a∗Iq. In Case 1 we have to show that a∗ = b∗ = 1, because
then Σk → Iq . To this end, note that the set

{
Σ ∈ Rq×q

sym : λ(Σ) ∈ [a0, b0]
q
}

is compact. Hence there exist indices k(1) < k(2) < k(3) < · · · such that
Σk(ℓ) → Σ∗ as ℓ→ ∞, where λ(Σ∗) ∈ [a0, b0]

q. Lemma 4.13 entails that the se-

quence
(
Lρ(Σk, Q)

)
k≥0

is non-increasing. Consequently, since Lρ(·, Q) and Ψ(·)
are continuous,

Lρ(Σ∗, Q) = lim
ℓ→∞

Lρ(Σk(ℓ), Q)

= lim
ℓ→∞

Lρ(Σk(ℓ)+1, Q) = lim
ℓ→∞

Lρ(Ψ(Σk(ℓ), Q) = Lρ(Ψ(Σ∗), Q).

Hence Lemma 4.13 implies that Ψ(Σ∗) = Ψρ(Σ∗, Q) = Σ∗. Thus Σ∗ is a min-
imizer of Lρ(·, Q). In Case 0 this implies that Σ∗ is a positive multiple of Iq,
whence a∗ = λmin(Σ∗) = λmax(Σ∗) = b∗. In Case 1 this implies that Σ∗ = Iq,
whence a∗ = min{λmin(Σ∗), 1} = 1 and b∗ = max{λmax(Σ∗), 1} = 1.
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8.3. Proofs for Section 5

Proof of Lemma 5.1. By definition,

exp(A+∆) =

∞∑

ℓ=0

(A+∆)ℓ

ℓ!
,

and for ℓ ≥ 1, the expansion of (A+∆)ℓ is the sum of Aℓ and all matrices of the
form As0∆As1 · · ·∆Ask with k ∈ {1, . . . , ℓ} times the factor ∆ and exponents

s0, . . . , sk ≥ 0 such that s+ :=
∑k

j=0 sj equals ℓ− k. Consequently,

exp(A+∆) = exp(A) +
∞∑

k=1

Tk(A,∆)

with

Tk(A,∆) :=
∑

s0,...,sk≥0

As0∆As1 · · ·∆Ask

(s+ + k)!
.

Note that for given ℓ ≥ k there are
(
ℓ
k

)
tupels (s0, . . . , sk) of integers sj ≥ 0

with s+ = ℓ− k. Thus

‖Tk(A,∆)‖ ≤
∞∑

ℓ=k

(
ℓ

k

)‖A‖ℓ−k‖∆‖k
ℓ!

= e‖A‖ ‖∆‖k
k!

.

In particular,

exp(A+∆) = exp(A) +R0(A,∆) = exp(A) + T1(A,∆) +R1(A,∆)

with

‖Rm(A,∆)‖ ≤
∞∑

k=m+1

e‖A‖ ‖∆‖k
k!

≤ e‖A‖+‖∆‖ ‖∆‖m+1

(m+ 1)!

for m = 0, 1.
It remains to derive alternative expressions for Tk(A,∆). First of all, it follows

from a well-known identity for the beta function that

T1(A,∆) =
∑

s0,s1≥0

As0∆As1

(s0 + s1 + 1)!

=
∑

s0,s1≥0

s0!s1!

(s0 + s1 + 1)!

As0

s0!
∆
As1

s1!

=
∑

s0,s1≥0

∫ 1

0

(1− u)s0us1 du
As0

s0!
∆
As1

s1!

=

∫ 1

0

∑

s0,s1≥0

((1 − u)A)s0

s0!
∆
(uA)s1

s1!
du

=

∫ 1

0

exp((1 − u)A)∆ exp(uA) du.
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For general k ≥ 1 we utilize a special construction of the random tupel (Ukj)
k
j=0

which is well-known from uniform order statistics: If E0, E1, E2, . . . are in-
dependent standard exponential random variables, then the random variable
(Ukj)

k
j=0 := (Ej/F )

k
j=0 with F :=

∑k
j=0 Ej has the desired distribution. More-

over, (Ukj)
k
j=0 and F are stochastically independent, where F has distribution

Gamma(k + 1, 1). From these facts one can derive that

E
[
Us0
k0U

s1
k1 · · ·Usk

kk

]
= E

[
F s+Us0

k0U
s1
k1 · · ·Usk

kk

]/
E(F s+)

= E
[
Es0

0 E
s1
1 · · ·Esk

k

]/
E(F s+) =

s0!s1! · · · sk!
(s+ + k)!/k!

,

so

Tk(A,∆) =
1

k!

∑

s0,...,sk≥0

E

[ (Uk0A)
s0

s0!
B
(Uk1A)

s1

s1!
· · ·B (UkkA)

sk

sk!

]

=
1

k!
E
[
exp(Uk0A)B exp(Uk1A) · · ·B exp(UkkA)

]
.

In our proofs of Propositions 5.2 and 5.11 we utilize two elementary bounds
for random variables with bounded support. The first one is well-known, but we
haven’t seen the second one elsewhere.

Lemma 8.3. Let Y be a random variable with values in [a, b]. Then

Var(Y ) ≤ (b− a)2/4 and
∣∣E
(
(Y − E(Y ))3

)∣∣ ≤ (b − a)3/(6
√
3).

In addition we need several properties of an auxiliary function:

Lemma 8.4. Let A ∈ Rq×q
sym and M ∈ R

q×q
sym,≥0 \ {0}. For t ∈ R let

g(t) = g(t, A,M) := log tr(exp(−tA)M).

This defines a smooth convex function g on R with the following properties:

|g′| ≤ ‖A‖ with g′(0) = − tr(AM)/ tr(M),

0 ≤ g′′ ≤ ‖A‖2 with g′′(0) = tr(A2M)/ tr(M)− tr(AM)2/ tr(M)2,

|g′′′| ≤ ‖A‖3 4/
√
27.

Furthermore, either g′′ > 0 on R, or there exists an eigenvalue λ of A such that

M ∈ M({x ∈ R
q : Ax = λx}), g′ ≡ −λ and g′′ ≡ 0.

Proof of Lemma 8.3. It suffices to consider the case [a, b] = [0, 1], because
otherwise one could just replace Y with (Y − a)/(b − a). Then

Var(Y ) = E(Y 2)− E(Y )2 ≤ E(Y )− E(Y )2 ≤ 1/4

with equality if, and only if, Y ∈ {0, 1} almost surely and E(Y ) = 1/2.
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As to the central third moment, with µ := E(Y ) it suffices to prove that

E((Y − µ)3) ≤ 1/(6
√
3), (8.2)

because −(Y −µ)3 = ((1−Y )−(1−µ))3. We only have to consider the situation
that 0 < µ < 1 with strictly positive probabilities p0 := P(Y < µ) and p1 :=
P(Y ≥ µ), because otherwise Y = µ almost surely. Note that h(x) := (x − µ)3

is concave on [0, µ] and convex on [µ, 1]. Hence with

x0 := E(Y |Y < µ) and x1 := E(Y |Y ≥ µ)

we may conclude from Jensen’s inequality that

E((Y − µ)3) = p0E(h(Y ) | Y < µ) + p1E(h(Y ) |Y ≥ µ)

≤ p0(x0 − µ)3 + p1E(h(Y ) |Y ≥ µ)

≤ p0(x0 − µ)3 + p1E
(1− Y

1 − µ
h(µ) +

Y − µ

1− µ
h(1)

∣∣∣Y ≥ µ
)

= p0(x0 − µ)3 + p1E
(Y − µ

1− µ
(1 − µ)3

∣∣∣Y ≥ µ
)

= p0(x0 − µ)3 + p1(x1 − µ)(1− µ)2.

Equality holds if

Y ∼ p0δx0
+
p1(1− x1)

1− µ
δµ +

p1(x1 − µ)

1− µ
δ1.

Note that in the latter case, E(Y ) is still equal to µ, because p0x0+p1x1 = µ. If
we replace L(Y ) with L(Y |Y 6= µ), the mean does not change, but E((Y −µ)3)
increases by the factor 1/P(Y 6= µ). Thus it even suffices to consider distribu-
tions L(Y ) which are concentrated on two points x0 ∈ [0, 1) and 1. Finally,
in case of x0 > 0 we could replace Y and µ with (Y − x0)/(1 − x0) and
(µ− x0)/(1− x0) = P(Y = 1), respectively. This would increase E((Y −µ)3) by
a factor (1− x0)

−3 and lead to a random variable with values in {0, 1}.
Finally we have to maximize

(1 − µ)(0− µ)3 + µ(1− µ)3 = µ(1− µ)(1 − 2µ)

over all µ ∈ (0, 1). With u := 1− 2µ ∈ (−1, 1) one may write

µ(1 − µ)(1− 2µ) = 4−1(1− u2)u ≤ 1/(6
√
3)

with equality for u = 1/
√
3.

Proof of Lemma 8.4. Let A =
∑q

i=1 λi(A)uiu
⊤
i with an orthonormal basis

u1, u2, . . . , uq of Rq. Then tr(M) =
∑q

i=1 u
⊤
i Mui and

g(t) = log
( q∑

i=1

e−tλi(A)u⊤i Mui

)
= log tr(M) + logE(etY ),
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where Y ∼ ∑q
i=1 piδ−λi(A) with pi := u⊤i Mui/ tr(M). Elementary calculations

show that

g′(t) = E(etY Y )/E(etY ),

g′′(t) = E(etY Y 2)/E(etY )− E(etY Y )2/E(etY )2,

g′′′(t) = E(etY Y 3)/E(etY )− 3E(etY Y 2)E(etY Y )/E(etY )2

+ 2E(etY Y )3/E(etY )3.

Defining the modified distribution Pt via Pt(B) := E(etY 1B)/E(e
tY ), we may

rewrite this as

g′(t) = Et(Y ), g′′(t) = Vart(Y ) and g′′′(t) = Et

(
(Y − Et(Y ))3

)
.

In particular, g′(0) = E(Y ) equals− tr(AM)/ tr(M), and g′′(0) = Var(Y ) equals
tr(A2M)/ tr(M)− tr(AM)2/ tr(M)2.

Note that |Y | ≤ ‖A‖, so |g′| ≤ ‖A‖. Further it follows from Lemma 8.3 with
[a, b] =

[
−‖A‖, ‖A‖

]
that 0 ≤ g′′(0) ≤ ‖A‖2, and |g′′′| ≤ ‖A‖34/

√
27.

Finally, for any to ∈ R the equation g′′(to) = 0 is equivalent to Y being con-
stant almost surely with respect to Pto . But this means that for some eigenvalue
λ of A,

u⊤i Mui = 0 whenever λi(A) 6= λ,

soM ∈ M({x ∈ Rq : Ax = λx}). This implies that g(t) = g(0)−λt for all t ∈ R,
whence g′ ≡ −λ and g′′ ≡ 0.

Proof of Proposition 5.2. Note first that

Lρ(exp(A), Q) = tr(A) +

∫ [
ρ(tr(exp(−A)M))− ρ(tr(M))

]
Q(dM).

For fixed M ∈ R
q×q
sym,≥0 \ {0} let a := tr(M) > 0 and b := tr(exp(−A)M). Then

b/a ∈
[
λmin(exp(−A)), λmax(exp(−A))

]
⊂ [e−‖A‖, e‖A‖] by Lemma 4.7. Hence

Lemma 4.8 implies that ρ(tr(exp(−A)M))− ρ(tr(M)) equals

ρ(b)− ρ(a) = ψ(a) log(b/a) + r1(a, b)

with

|r1(a, b)| ≤
(
ψ(max{a, b})− ψ(min{a, b})

)
| log(b/a)|

≤
(
ψ
(
e‖A‖ tr(M)

)
− ψ

(
e−‖A‖ tr(M)

))
‖A‖.

Moreover, log(b/a) = g(1) − g(0) with g = g(·, A,M) as in Lemma 8.4. Hence
for a suitable number ξ ∈ (0, 1),

g(1)− g(0) = g′(0) + g′′(ξ)/2
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where g′(0) = − tr(AM)/ tr(M) and 0 ≤ g′′(ξ) ≤ ‖A‖2. All in all we obtain the
expansion

ρ(b)− ρ(a) = ψ(a)g′(0) + ψ(a)g′′(ξ)/2 + r1(a, b)

= −ρ′(tr(M)) tr(AM) + ψ(tr(M))g′′(ξ)/2 + r1(a, b).

Consequently

Lρ(exp(A), Q) = tr(A)−
∫
ρ′(tr(M)) tr(AM)Q(dM) + Rρ(A,Q),

where

|Rρ(A,Q)| ≤
(
Jρ(e

‖A‖, Q)− Jρ(e
−‖A‖, Q)

)
‖A‖+ Jρ(Q)‖A‖2/2.

Moreover,

tr(A)−
∫
ρ′(tr(M)) tr(AM)Q(dM) = 〈A,Gρ(Q)〉

with Gρ(Q) = Iq −
∫
ρ′(tr(M))M Q(dM) = Iq − Ψρ(Q), and the inequalities

| tr(A)| ≤ q‖A‖ and | tr(AM)‖ ≤ ‖A‖ tr(M) imply that
∣∣〈A,Gρ(Q)〉

∣∣ is bounded
by (q + Jρ(Q))‖A‖.
Proof of Corollary 5.3. For fixed Σ ∈ R

q×q
sym,>0 let B := Σ1/2. If ∆ ∈ Rq×q

sym

with ‖∆‖ < λmin(Σ), then Σ +∆ ∈ R
q×q
sym,>0, too, and we may write

Σ +∆ = B(Iq +B−1∆B−1)B = B exp(A(∆))B

with A(∆) := log(Iq +B−1∆B−1), whence

Lρ(Σ +∆, Q)− Lρ(Σ, Q) = Lρ(exp(A(∆)), QB).

As ∆ → 0,
A(∆) = B−1∆B−1 +O(‖∆‖2),

so it follows from Proposition 5.2 that

Lρ(exp(A(∆)), QB) = 〈B−1∆B−1, Gρ(QB)〉+ o(‖∆‖)
= 〈∆, B−1Gρ(QB)B

−1〉+ o(‖∆‖).

Consequently, ∇Lρ(Σ, Q) equals

B−1Gρ(QB)B
−1 = Σ−1 −

∫
ρ′(tr(Σ−1M))Σ−1MΣ−1Q(dM).

By dominated convergence, this is continuous in Σ, because Σ 7→ Σ−1 is con-
tinuous, ρ′ is continuous on (0,∞), and the norm of the integrand on the right
hand side is not greater than λmin(Σ)

−1ψ(λmin(Σ)
−1 tr(M)).
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For a compact convex set K ⊂ R
q×q
sym,>0 and Σ0,Σ1 ∈ K define the convex

combination Σt := (1− t)Σ0+ tΣ1 for t ∈ [0, 1]. Then Lρ(Σt, Q) is differentiable
in t with derivative 〈Σ1 −Σ0,∇Lρ(Σt, Q)〉. Hence for a suitable point ξ ∈ (0, 1)

and B := Σ
1/2
ξ it follows from the bounds in Proposition 5.2 and inequality (5.1)

that
∣∣Lρ(Σ1, Q)− Lρ(Σ0)

∣∣ =
∣∣〈Σ1 − Σ0,∇Lρ(Σξ, Q)〉

∣∣

=
∣∣〈B−1(Σ1 − Σ0)B

−1, Gρ(QB)
〉∣∣

≤ (q + Jρ(QB))
∥∥B−1(Σ1 − Σ0)B

−1
∥∥

≤
(
q + Jρ(λmin(Σξ)

−1, Q)
)
λmin(Σ)

−1
∥∥Σ1 − Σ0

∥∥

≤ (q + Jρ(ΛK , Q)
)
ΛK

∥∥Σ1 − Σ0

∥∥.

Proof of Proposition 5.4. Note first that by (4.4),

Lρ(B exp(tA)B⊤, Q)− Lρ(BB
⊤, Q)

= Lρ(exp(tA), QB)

= t · tr(A) +
∫ [

ρ(tr(exp(−tA)M))− ρ(tr(M))
]
Q(dM).

Thus we consider a fixed matrix M ∈ R
q×q
sym,≥0 \ {0} and verify convexity of

h(t) = h(t, A,M) := ρ(eg(t))

with g(t) = log tr(exp(−tA)M)) as in Lemma 8.4. Indeed,

h′(t) = ρ′(eg(t))eg(t)g′(t) = ψ(eg(t))g′(t)

is monotone increasing in t ∈ R. For if s < t, then

ψ(eg(t))g′(t)− ψ(eg(s))g′(s)

=

{(
ψ(eg(t))− ψ(eg(s))

)
g′(s) + ψ(eg(t))

(
g′(t)− g′(s)

)
(
ψ(eg(t))− ψ(eg(s))

)
g′(t) + ψ(eg(s))

(
g′(t)− g′(s)

)

≥
{(
ψ(eg(t))− ψ(eg(s))

)
g′(s)(

ψ(eg(t))− ψ(eg(s))
)
g′(t)

(8.3)

≥ 0. (8.4)

Inequality (8.3) follows from ψ being positive and g′ being non-decreasing. In-
equality (8.4) follows from ψ being non-decreasing and g being convex. For if
ψ(eg(t)) − ψ(eg(s)) > 0, then g(t) − g(s) > 0 and thus g′(t) > 0. Likewise
ψ(eg(t))− ψ(eg(s)) < 0 implies that g(t)− g(s) < 0 whence g′(s) < 0.

Concerning strict convexity, recall from Lemma 8.4 that either g′′ > 0 on R, or
g′′ ≡ 0 and M ∈ ⋃ℓ

i=1 M(Vi). Hence, in Case 0, ψ(eg)g′ = qg′ is strictly increas-

ing if, and only if, M 6∈ ⋃ℓ
i=1 M(Vi). Consequently, t 7→ Lρ(B exp(tA)B⊤, Q) is

strictly convex if, and only if, QB

(⋃ℓ
i=1 M(Vi)

)
= Q

(⋃ℓ
i=1 M(BVi)

)
< 1.
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In Case 1, inequality (8.3) is strict, unless g′′ ≡ 0. But in the latter case, g(t) =
g(0)+g′(0)t and g′(t) = g′(0), so inequality (8.4) is strict, unless g′(0) = 0. Hence
h is strictly convex unless g is constant. But this is equivalent to saying that
M ∈ M(V0). Consequently, t 7→ Lρ(B exp(tA)B⊤, Q) is strictly convex, unless
QB(M(V0)) = Q(M(BV0)) = 1.

Proof of Proposition 5.5. Since Conditions 0 and 1 are not affected by re-
placing Q with QB, we may restrict our attention to B = Iq. Let W := {A ∈
Rq×q

sym : tr(A) = 0} in Case 0 and W := Rq×q
sym in Case 1. For A ∈ W and t ∈ R let

h(t, A) := Lρ(exp(tA), Q).

We know from Proposition 5.4 that h is convex in the first argument. Moreover,
the derivative h′(t, A) = ∂h(t, A)/∂t is given by

h′(t, A) = tr(A) +

∫
ρ′
(
tr(exp(−tA)M

)
tr(−A exp(−tA)M)Q(dM).

This could be verified directly or derived from Proposition 5.2, because h(t+ s,
A) − h(t, A) = Lρ(exp(sA), Qexp(tA/2)). The derivative h′(t, A) is continuous
in A, which implies the following equivalence:

lim
‖B‖→∞,B∈W

Lρ(exp(B), Q) = ∞ (8.5)

if, and only if,

h′(A) := lim
t→∞

h′(t, A) > 0 for any fixed A ∈ W \ {0}. (8.6)

To see this, note first that h′(A) ≤ 0 is equivalent to h(·, A) being non-increasing.
Thus a violation of (8.6) would imply a violation of (8.5). Now suppose that
(8.6) holds true. Since h′(t, A) is non-decreasing in t ≥ 0 and continuous in
A ∈ S(W) := {A ∈ W : ‖A‖ = 1},

U(t) :=
{
A ∈ S(W) : h′(t, A) > 0

}

is an open subset of S(W) with U(s) ⊂ U(t) whenever s < t. Moreover, (8.6)
entails that

⋃
t≥0 U(t) = S(W). But the latter set is compact, so U(to) = S(W)

for some to ≥ 0. Now for t ≥ to we have by the convexity of h in the first
argument,

min
B∈W : ‖B‖=t

Lρ(exp(B), Q) = min
A∈S(W)

h(t, A)

≥ min
A∈S(W)

h(to, A) + (t− to) min
A∈S(W)

h′(to, A)

→ ∞ as t→ ∞,

i.e. (8.5) is satisfied, too.
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Now we determine the limit h′(A) for fixed A ∈ W\{0}. To this end we write
A = −∑q

i=1 βiuiu
⊤
i with βi := −λi(A) and an orthonormal basis u1, u2, . . . , uq

of Rq. Then

h′(t, A) = −
q∑

i=1

βi +

∫
ψ
( q∑

i=1

u⊤i Mui e
tβi

)∑q
i=1 βiu

⊤
i Mui e

tβi

∑q
i=1 u

⊤
i Mui e

tβi
Q(dM)

with ψ(0) · 0/0 := 0. As shown in the proof of Proposition 5.4, the integrand
on the right hand side is non-decreasing in t ≥ 0. Let V0 := {0} and Vj :=
span(u1, . . . , uj) for 1 ≤ j ≤ q. If M ∈ M(Vj) \M(Vj−1), then u

⊤
j Muj > 0 =

u⊤kMuk for j < k ≤ q, and one can easily derive from β1 ≤ β2 ≤ · · · ≤ βq that

lim
t→∞

ψ
( q∑

i=1

u⊤i Mui e
tβi

)∑q
i=1 βiu

⊤
i Mui e

tβi

∑q
i=1 u

⊤
i Mui e

tβi
=

{
qβj in Case 0

ψ(∞)β+
j in Case 1

with the usual notation a± = max(±a, 0) for real numbers a. Thus it follows
from monotone convergence that

h′(A) = −
q∑

i=1

βi +





q

q∑

j=1

βjQ
(
M(Vj) \M(Vj−1)

)
in Case 0,

ψ(∞)

q∑

j=1

β+
j Q

(
M(Vj) \M(Vj−1)

)
in Case 1.

In Case 0, define γd := βd+1 − βd for d = 1, . . . , q − 1. Then

h′(A) = q

q∑

j=1

βj
[
−1/q +Q(M(Vj))−Q(M(Vj−1))

]

= q

q∑

j=1

βj
[
Q(M(Vj))− j/q −Q(M(Vj−1)) + (j − 1)/q

]

= q

q−1∑

j=1

βj
[
Q(M(Vj))− j/q

]
+ q

q∑

j=2

βj
[
(j − 1)/q −Q(M(Vj−1))

]

= q

q−1∑

d=1

γd
[
d/q −Q(M(Vd))

]
,

where we utilized that Q(M(V0)) = Q({0}) = 0 and Q(M(Vq)) = Q(Rq×q
sym) = 1.

Since all γd are non-negative with
∑q−1

d=1 γd = βq − β1 > 0, Condition 0 implies
clearly that h′(A) > 0. On the other hand, if Q(M(V)) ≥ j/q for some V ∈ Vq

with d := dim(V) ∈ [1, q), we may choose the basis u1, u2, . . . , uq such that
V = Vd, and with βi := 1[i>d] − (q − d)/q, the matrix A = −∑q

i=1 βiuiu
⊤
i

satisfies h′(A) = q
[
d/q −Q(M(Vd))

]
≤ 0. Consequently, (8.6) and Condition 0

are equivalent in Case 0.
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In Case 1, let γd := β+
d+1 − β+

d for d = 0, 1, . . . , q − 1, where β+
0 := 0. Then

−∑q
i=1 βi is equal to

q∑

i=1

β−
i −

q∑

i=1

(β+
i − β+

0 ) =

q∑

i=1

β−
i −

q∑

i=1

i−1∑

d=0

γd =

q∑

i=1

β−
i −

q−1∑

d=0

γd(q − d)

and
∑q

j=1 β
+
j Q

(
M(Vj) \M(Vj−1)

)
may be written as

q∑

j=1

β+
j

[
1−Q(M(Vj−1))

]
−

q−1∑

j=0

β+
j

[
1−Q(M(Vj))

]
=

q−1∑

d=0

γd
[
1−Q(M(Vd))

]
.

Consequently,

h′(A) =

q∑

i=1

β−
i +

q−1∑

d=0

γd

(
ψ(∞)

[
1−Q(M(Vd))

]
− (q − d)

)
.

Again one can easily deduce from γd ≥ 0 and
∑q−1

d=0 γd = β+
q = maxi β

+
i that

Condition 1 implies (8.6). On the other hand, if Q(M(V)) ≥ 1−(q−d)/ψ(∞) for
some V ∈ Vq with d := dim(V) ∈ [0, q), we may choose the basis u1, u2, . . . , uq
such that V = Vd, and with βi := 1[i>d] we obtain a matrix A such that
h′(A) ≤ 0. Consequently, (8.6) and Condition 1 are equivalent in Case 1.

Proof of Lemma 5.10. Suppose that Condition (5.5) is satisfied; in other
words,

∂ logφ(t)/∂t ≤ κt−1 for all t > 0.

Now fix arbitrary s > 0 and λ > 1. For any integer ℓ > 1,

logφ(λs) − logφ(s) =
ℓ∑

i=1

(
logφ(λi/ℓs)− logφ(λ(i−1)/ℓs)

)

≤
ℓ∑

i=1

(λi/ℓs− λ(i−1)/ℓs)κ(λ(i−1)/ℓs)−1

= κℓ(λ1/ℓ − 1) → κ logλ as ℓ→ ∞.

Consequently, logφ(λs) − logφ(s) ≤ κ logλ, which proves Condition (5.6).
On the other hand, if Condition (5.6) is satisfied, then for s > 0,

sφ′(s) = lim
λ↓1

φ(λs) − φ(s)

λ− 1
≤ lim

λ↓1

(λκ − 1)φ(s)

λ− 1
= κφ(s).

Hence Condition (5.5) is satisfied as well.

Proof of Proposition 5.11. As in the proof of Proposition 5.2 we start from

Lρ(exp(A), Q) = tr(A) +

∫ [
ρ(tr(exp(−A)M))− ρ(tr(M))

]
Q(dM)

and analyze for a fixed M ∈ R
q×q
sym,≥0 \ {0} the difference ρ(b) − ρ(a), where

a := tr(M) > 0 and b := tr(exp(−A)M).
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Recall first that b/a ∈ [e−‖A‖, e‖A‖]. For x ∈ R define f(x) := ρ(exa). Then
f ′(x) = ρ′(exa)exa = ψ(exa), and f ′′(x) = ψ′(exa)exa = ψ2(e

xa). Conse-
quently, for a suitable point ξ between 0 and log(b/a),

ρ(b)− ρ(a) = f(log(b/a))− f(0)

= ψ(a) log(b/a) + ψ2(e
ξa) log(b/a)2/2

= ψ(a) log(b/a) + ψ2(a) log(b/a)
2/2 + r2(a, b),

where
|r2(a, b)| ≤ sup

z∈[−‖A‖,‖A‖]

∣∣ψ2(e
zs)− ψ2(s)

∣∣‖A‖2/2.

Now we utilize the fact that log(b/a) = g(1)−g(0) with the auxiliary function
g(t) := log tr(exp(−tA)M) from Lemma 8.4. In particular, |g(1)−g(0)−g′(0)| ≤
‖A‖2/2 and |g(1)− g(0)− g′(0)− g′′(0)/2| ≤ ‖A‖3(4/

√
27)/6 ≤ ‖A‖3/7. Conse-

quently,

ψ(a) log(b/a) = ψ(a)
(
g′(0) + g′′(0)/2

)
+ r3(a, b),

ψ2(a) log(b/a)
2/2 = ψ2(a)g

′(0)2/2 + r4(a, b),

where

|r3(a, b)| < ψ(a)‖A‖3/7,
|r4(a, b)| ≤ ψ2(a)

∣∣log(b/a)2 − g′(0)2
∣∣/2

≤ κψ(a)
∣∣log(b/a)− g′(0)

∣∣(| log(b/a)|+ |g′(0)|
)
/2

≤ κψ(a)‖A‖3.

All in all this shows that

ρ(b)− ρ(a) = ψ(a)g′(0) + ψ(a)g′′(0)/2 + ψ2(a)g
′(0)2/2 + r∗(a, b)

with

|r∗(a, b)| ≤ sup
z∈[−‖A‖,‖A‖]

∣∣ψ2(e
za)− ψ2(a)

∣∣‖A‖2/2 + ψ(a)(κ + 1/7)‖A‖3.

Note that ψ(a)g′(0) = ρ′(tr(M)) tr(AM). Moreover, it follows from |g′| ≤ ‖A‖,
0 ≤ g′′ ≤ ‖A‖2 and ψ, ψ2 ≥ 0 that

0 ≤ ψ(a)g′′(0) + ψ2(a)g
′(0)2 ≤ ψ(tr(M))‖A‖2 + ψ2(tr(M))‖A‖2

≤ (1 + κ)ψ(tr(M))‖A‖2.

Furthermore, elementary calculations show that

ψ(a)g′′(0) + ψ2(a)g
′(0)2 = ρ′(tr(M)) tr(A2M) + ρ′′(tr(M)) tr(AM)2.

Consequently,

L(exp(A), Q) = 〈A,Gρ(A)〉 + 2−1Hρ(A,Q) +Rρ,2(A,Q)
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with the quadratic term

Hρ(A,Q) =

∫ (
ρ′(tr(M)) tr(A2M) + ρ′′(tr(M)) tr(AM)2

)
Q(dM)

and a remainder Rρ,2(A,Q) satisfying the asserted bounds (5.8) and (5.9).
It remains to prove inequality (5.10). Since Hρ(A,Q) is the integral of the

term ψ(a)g′′(0) + ψ2(a)g
′(0)2 ≥ 0 with a = tr(M) and g = g(·, A,M), it is

equal to 0 if, and only if, ψ(a)g′′(0)+ψ2(a)g
′(0)2 for Q-almost all M . Based on

Lemma 8.4 we may argue as follows: In Case 0, ψ(a)g′′(0)+ψ2(a)g
′(0)2 = qg′′(0)

equals zero if, and only if, M ∈ ⋃ℓ
i=1 M(Vi). Hence Hρ(A,Q) > 0 is equivalent

to Q
(⋃ℓ

i=1 M(Vi) < 1. In Case 1, both ψ(a) and ψ2(a) are strictly positive while
g′′(0) ≥ 0. Hence ψ(a)g′′(0) + ψ2(a)g

′(0)2 equals zero if, and only if, g′′(0) =
g′(0) = 0, which is equivalent to M ∈ M(V0). Consequently, Hρ(A,Q) > 0 if,
and only if, Q(M(V0)) < 1.

8.4. Proofs for Section 6

In the proof of Theorem 6.3 we utilize a well-known elementary fact about weak
convergence, adapted to random distributions:

Lemma 8.5. Let Q be a fixed and Q̂1, Q̂2, Q̂3, . . . be random probability dis-

tributions on a metric space (Y, d) with the following two properties: For any

bounded and continuous function f : Y → R,
∫
f dQ̂n →p

∫
f dQ.

Further, for a particular continuous function φ : Y → [0,∞),
∫
φdQ̂n < ∞

almost surely for all n, and
∫
φdQ̂n →p

∫
φdQ <∞.

Then ∫
f dQ̂n →p

∫
f dQ

for any continuous function f : Y → R such that |f |/(1 + φ) is bounded on Y.

Proof of Lemma 8.5. It suffices to consider any continuous function f : Y →
R such that |f | ≤ φ̃ := 1 + φ. For any fixed number R ≥ 1 let

fR(y) := sign(f(y))min{|f(y)|, R}.
Then

∣∣∣
∫
f dQ̂n −

∫
f dQ

∣∣∣ ≤
∫

|f − fR| dQ̂n +

∫
|f − fR| dQ

+
∣∣∣
∫
fR dQ̂n −

∫
fR dQ

∣∣∣

=

∫
|f − fR| dQ̂n +

∫
|f − fR| dQ+ op(1)
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by our first assumption. But |f−fR| = (|f |−R)+ ≤ (φ̃−R)+ = (φ−R+1)+, so
∫

|f − fR| dQ̂n ≤
∫
(φ−R+ 1)+ dQ̂n

=

∫
φdQ̂n −

∫
min{φ,R− 1} dQ̂n

→p

∫
φdQ−

∫
min{φ,R− 1} dQ =

∫
(φ −R+ 1)+ dQ

by our assumptions. Consequently,
∣∣∣
∫
f dQ̂n −

∫
f dQ

∣∣∣ ≤ 2

∫
(φ −R+ 1)+ dQ+ op(1),

and the integral on the right hand is arbitrarily small for sufficiently large R.

Proof of Theorem 6.3. By linear equivariance we may assume without loss
of generality that Σρ(Q) = Iq . Let W := {A ∈ Rq×q

sym : tr(A) = 0} in Case 0, and
W := Rq×q

sym in Case 1. For any fixed δ > 0, the set Kδ := {A ∈ W : ‖A‖ ≤ δ} is
compact, and for A ∈ Kδ,

f(A,M) := tr(A) +
[
ρ
(
tr(exp(−A)M)

)
− ρ(tr(M))

]

is continuous in M ∈ Y with

|f(A,M)| ≤ qδ + ψ(eδ tr(M))δ

by Lemmas 4.7 and 4.8. If δ is sufficiently small, ψ(eδ tr(M)) ≤ ψ(tr(Σ−1
o M))

for any M ∈ Y. Then it follows from Lemma 8.5 that

Lρ(exp(A), Qn) =

∫
f(A,M), Q̂n(dM)

→p

∫
f(A,M)Q(dM) = Lρ(exp(A), Q)

for any fixed A ∈ Kδ. Moreover it follows from Corollary 5.3 and the first part
of Lemma 5.1 that

∣∣Lρ(exp(A), Q̂n)− Lρ(exp(B), Q̂n)
∣∣ ≤ J(eδ, Q̂n)e

δ‖ exp(A)− exp(B)‖
≤ J(eδ, Q̂n)e

4δ‖A−B‖

for A,B ∈ Kδ, and the Lipschitz constant J(eδ, Q̂n)e
4δ converges to J(eδ, Q)e4δ

in probability. This implies that

max
A∈Kδ

∣∣Lρ(exp(A), Q̂n)− Lρ(exp(A), Q)
∣∣ →p 0.

In particular,

ǫn(δ) := min
A∈W:‖A‖=δ

Lρ(exp(A), Q̂n) →p ǫ(δ) := min
A∈W:‖A‖=δ

L(exp(A), Q) > 0.
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Whenever ǫn(δ) > 0, we may conclude from Proposition 5.4 the inequality

Lρ(exp(A), Q̂n) ≥ ǫn(δ)‖A‖/δ for all A ∈ W with ‖A‖ ≥ δ. This shows that

Lρ(exp(A), Q̂n) → ∞ as ‖A‖ → ∞, so Q̂n ∈ Qρ by Proposition 5.5 and Theo-

rem 4.9. Moreover, since Lρ(exp(0), Q̂n) = 0, we may conclude that Σρ(Q̂n) ∈
{exp(A) : A ∈ Kδ}.

Proof of Theorem 6.4. According to Theorem 6.3, Q̂n ∈ Qρ with asymptotic

probability one. Thus we may replace L(Q̂n) with L(Q̂n | Q̂n ∈ Qρ) and thus

assume that Q̂n ∈ Qn almost surely.
As in earlier proofs we define W := Rq×q

sym in Case 1’ and W := {A ∈ Rq×q
sym :

tr(A) = 0} in Case 0. Since Gρ(Q̂n) ∈ W, and since Hρ(Q̂n) is a selfadjoint

linear operator on the finite-dimensional space W, both ‖Gρ(Q̂n)‖ and

∥∥Hρ(Q̂n)−Hρ(Q)
∥∥ := max

A∈W : ‖A‖≤1

∥∥Hρ(Q̂n)A−Hρ(Q)A
∥∥

converge to 0 in probability if, and only if, for arbitrary fixed A,B ∈ W,

〈A,Gρ(Q̂n)〉 →p 〈A,Gρ(Q)〉 = 0 and 〈A,Hρ(Q̂n)B〉 →p 〈A,Hρ(Q)B〉.

But this is a consequence of Lemma 8.5: We may write 〈A,Gρ(Q̃)〉 =
∫
g dQ̃

and 〈A,Hρ(Q̃)B〉 =
∫
h dQ̃ with

g(M) := tr(A)− ρ′(tr(M)) tr(AM),

h(M) := ρ′(tr(M)) tr(ABM) + ρ′′(tr(M)) tr(AM) tr(BM).

Both g(M) and h(M) are continuous in M ∈ Y and satisfy

|g(M)| ≤ (q + ψ(tr(M))‖A‖,
|h(M)| ≤

(
ψ(tr(M)) + tr(M)2|ρ′′(tr(M))|

)
‖A‖‖B‖

≤ (2 + κ)ψ(tr(M))‖A‖‖B‖,

whence
∫
g dQ̂n →p

∫
g dQ and

∫
h dQ̂n →p

∫
h dQ.

In particular we may conclude that there exist numbers δn > 0 such that
δn → 0 and P

(
‖Gρ(Q̂n)‖ > δn

)
→ 0. Moreover, with asymptotic probability

one, Hρ(Q̂n) is positive definite.

Now we consider Lρ(exp(A), Q̂n) for A ∈ W with ‖A‖ ≤
√
δn: According to

Proposition 5.11,

Lρ(exp(A), Q̂n) = 〈A,Gρ(Q̂n)〉+ 2−1Hρ(A, Q̂n) +Rρ,2(A, Q̂n).

But it follows from Proposition 5.11 that for any fixed δ > 0,

sup
A∈W:0<‖A‖≤

√
δn

|Rρ,2(A, Q̂n)|
‖A‖2 ≤ Ω(δ, Q̂n)/2 + (κ+ 1/7)J(Q̂n)δ
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as soon as
√
δn ≤ δ. But Ω(δ, Q̃)/2 + (κ+ 1/7)J(Q̃) =

∫
fδ dQ̃ with

fδ(M) := sup
z∈[−δ,δ]

∣∣ψ2(e
z tr(M))− ψ2(tr(M))

∣∣/2 + (κ+ 1/7)ψ(tr(M))δ.

This is continuous in M ∈ Y, and

0 ≤ fδ(M) ≤ (3κ/2 + 1/7)ψ(eδ tr(M)) ≤ (3κ/2 + 1/7)eκδψ(tr(M)).

Hence we may conclude from Lemma 8.5 that

sup
A∈W:0<‖A‖≤

√
δn

|Rρ,2(A, Q̂n)|
‖A‖2 ≤

∫
fδ dQ+ op(1).

But the right hand side converges to 0 as δ → 0, because fδ(M) ↓ 0 as δ ↓ 0 for
any M ∈ Y. Hence the left hand side converges to 0 in probability.

Together with our considerations about Hρ(Q̂n) we obtain the following ex-
pansion:

Lρ(exp(A), Q̂n) = 〈A,Gρ(Q̂n)〉+ 2−1〈A,Hρ(Q)A〉 + γ̂n(A)‖A‖2

where
Γ̂n := sup

A∈W:‖A‖≤
√
δn

|γ̂n(A)| →p 0.

Now we define
Ân := −Hρ(Q)−1Gρ(Q̂n)

and note that c(Q)‖Gρ(Q̂n)‖ ≤ ‖Ân‖ ≤ C(Q)‖Gρ(Q̂n)‖ for suitable constants

0 < c(Q) < C(Q). If Ân = 0, then Σρ(Q̂n) = Iq, i.e. log(Σρ(Q̂n)) = 0. Thus

we focus on the event Ân 6= 0. We fix an arbitrary number ǫ ∈ (0, 1). For any

matrix A ∈ W with ‖A− Ân‖ = ǫ‖Ân‖,

Lρ( exp(A), Q̂n)− L(exp(Ân), Q̂n)

= 2−1
〈
A− Ân, Hρ(Q)(A− Ân)

〉
+ γ̂n(A)‖A‖2 − γ̂n(Ân)‖Ân‖2.

Note that ‖A‖ ≤ 2‖Ân‖, and 2‖Ân‖ ≤
√
δn with asymptotic probability one. In

case of 2‖Ân‖ ≤
√
δn,

inf
A∈W:‖A−Ân‖=ǫ‖Ân‖

(
Lρ(exp(A), Q̂n)− L(exp(Ân), Q̂n)

)

≥
(
2−1λmin(Hρ(Q))ǫ2 − 5Γ̂n

)
‖Ân‖2

=
(
2−1λmin(Hρ(Q))ǫ2 + op(1)

)
‖Ân‖2.

Whenever the right hand side is strictly positive, we may conclude that
∥∥log(Σρ(Q̂n))− Ân

∥∥ ≤ ǫ‖Ân‖ ≤ ǫC(Q)‖Gρ(Q̂n)‖.

These considerations show that
∥∥log(Σρ(Q̂n)) − Ân

∥∥ ≤ ǫC(Q)‖Gρ(Q̂n)‖ with
asymptotic probability one. Since ǫ > 0 is arbitrarily small, this proves that
log(Σρ(Q̂n)) equals Ân + op

(
‖Gρ(Q̂n)‖

)
.
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The proof of Lemma 6.9 relies on the following two propositions involving the
Haar distribution on the set of orthogonal matrices in Rq×q. A good reference
for Haar distributions in general is the monograph by Eaton (1989).

Proposition 8.6. Let U ∈ Rq×q be a random orthogonal matrix with Haar

distribution, i.e. L(U) = L(U⊤) = L(V U) for any fixed orthogonal matrix V .

Then for arbitrary indices i, j, k, ℓ, k′, ℓ′ ∈ {1, 2, . . . , q},
E(U2

ijUkℓUk′ℓ′) = 0 if (k, ℓ) 6= (k′, ℓ′), (8.7)

E(U4
ij) = cq,0 :=

3

q(q + 2)
, (8.8)

E(U2
ijU

2
iℓ) = E(U2

jiU
2
ℓi) = cq,1 :=

1

q(q + 2)
if j 6= ℓ, (8.9)

E(U2
ijU

2
kℓ) = cq,2 :=

q + 1

(q − 1)q(q + 2)
if i 6= k, j 6= ℓ. (8.10)

Proposition 8.7. Let M = U diag(λ)U⊤ with a fixed vector λ ∈ [0,∞)q and a

random orthogonal matrix U as in Proposition 8.6. Then for any matrix A =
A0 +A1 with A0 ∈ W0, A1 ∈ W1,

E(tr(AM)M) = c0(λ)A0 + c1(λ)A1,

where

c0(λ) =
2

q(q + 2)

(
‖λ‖2 − λ2+ − ‖λ‖2

q − 1

)
and c1(λ) =

λ2+
q

and λ+ :=
∑q

i=1 λi.

Proof of Proposition 8.6. By assumption, U has the same distribution as
the random matrix Ũ = (ξiζjUij)

q
i,j=1, where U , ξ and ζ are independent with

distribution ξ, ζ ∼ Unif({−1, 1}q). Hence U2
ijUkℓUk′ℓ′ has the same distribution

as the random product U2
ijUkℓUk′ℓ′ξkξk′ζℓζℓ′ . In case of (k, ℓ) 6= (k′, ℓ′), the

factor ξkξk′ζℓζℓ′ is a random sign, and this implies (8.7).
As to the remaining equations, note that U has the same distribution as

U⊤ and as Ũ = (Uπ(i)σ(j))
q
i,j=1 for arbitrary permutations π, σ of {1, 2, . . . , q}.

Hence it suffices to show that

E(U4
11) =

3

q(q + 2)
, (8.11)

E(U2
11U

2
12) =

1

q(q + 2)
, (8.12)

E(U2
11U

2
22) =

q + 1

(q − 1)q(q + 2)
. (8.13)

Any row or column of U is uniformly distributed on the unit sphere of Rq, and
this implies that U2

11 ∼ Beta(a, b) with a = 1/2, b = (q − 1)/2. Hence (8.11)
follows from

E(U4
11) =

a(a+ 1)

(a+ b)(a+ b+ 1)
=

3

q(q + 2)
.
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Now we utilize the fact that all rows of U are unit vectors. Hence

1 = E

(( q∑

j=1

U2
1j

)2)
=

q∑

j,ℓ=1

E(U2
1jU

2
1ℓ) = qE(U4

11) + q(q − 1)E(U2
11U

2
12)

=
3

q + 2
+ q(q − 1)E(U2

11U
2
12),

so

E(U2
11U

2
12) =

1− 3/(q + 2)

q(q − 1)
=

1

q(q + 2)
,

which is (8.12). Similarly we deduce (8.13):

1 = E

( q∑

j=1

U2
1j

q∑

ℓ=1

U2
2ℓ

)
=

q∑

j,ℓ=1

E(U2
1jU

2
2ℓ)

= qE(U2
11U

2
12) + q(q − 1)E(U2

11U
2
22)

=
1

q + 2
+ q(q − 1)E(U2

11U
2
22),

so

E(U2
11U

2
22) =

1− 1/(q + 2)

q(q − 1)
=

q + 1

(q − 1)q(q + 2)
.

Proof of Proposition 8.7. Suppose first that A = diag(a) for some a ∈ Rq.
Denoting the columns of U with U1, U2, . . . , Uq, we may write

E(tr(AM)M) =

q∑

j=1

λjE(U
⊤
j AUjU diag(λ)U⊤)

=

q∑

i,j=1

aiλjE(U
2
ijU diag(λ)U⊤)

=

q∑

i,j,ℓ=1

aiλjλℓE
(
U2
ij(UkℓUk′ℓ)

q
k,k′=1

)
.

It follows from Proposition 8.6 that

E
(
U2
ij(UkℓUk′ℓ)

q
k,k′=1

)

= diag
((

E(U2
ijU

2
kℓ

)q
k=1

)

= diag
((

1[i=k,j=ℓ]cq,0 + 1[i=k,j 6=ℓ]cq,1 + 1[i6=k,j=ℓ]cq,1 + 1[i6=k,j 6=ℓ]cq,2
)q
k=1

)
.

Consequently,
E(tr(AM)M) = diag(γ1, γ2, . . . , γq)

with γk given by
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q∑

i,j,ℓ=1

aiλjλℓ
(
1[i=k,j=ℓ]cq,0 + 1[i=k,j 6=ℓ]cq,1 + 1[i6=k,j=ℓ]cq,1 + 1[i6=k,j 6=ℓ]cq,2

)

= ak‖λ‖2cq,0 + ak(λ
2
+ − ‖λ‖2)cq,1

+ (qā− ak)‖λ‖2cq,1 + (qā− ak)(λ
2
+ − ‖λ‖2)cq,2

=
(
‖λ‖2(cq,0 − cq,1) + (λ2+ − ‖λ‖2)(cq,1 − cq,2)

)
· ak

+
(
‖λ‖2qcq,1 + (λ2+ − ‖λ‖2)qcq,2

)
· ā

=
(
‖λ‖2(cq,0 − cq,1) + (λ2+ − ‖λ‖2)(cq,1 − cq,2)

)
· (ak − ā)

+
(
‖λ‖2(cq,0 + (q − 1)cq,1) + (λ2+ − ‖λ‖2)(cq,1 + (q − 1)cq,2)

)
· ā

=
2

q(q + 2)

(
‖λ‖2 − λ2+ − ‖λ‖2

q − 1

)
· (ak − ā) +

λ2+
q

· ā,

where λ+ :=
∑q

i=1 λi and ā := q−1
∑q

i=1 ai. Hence

E(tr(AM)M) = c0(λ) diag((ak − ā)qk=1) + c1(λ)āIq

with c0(λ), c1(λ) as stated.
In general let A = V diag(a)V ⊤ with an orthogonal matrix V ∈ Rq×q. Then

A0 = V diag((ak − ā)qk=1)V
⊤ and A1 = āIq , so

E(tr(AM)M) = V E
(
tr(diag(a)V ⊤MV )V ⊤MV

)
V ⊤

= V
(
c0(λ) diag((ak − ā)qk=1) + c1(λ)āIq

)
V ⊤

= c0(λ)A0 + c1(λ)A1,

because L(V ⊤MV ) = L
(
(V ⊤U) diag(λ)(V ⊤U)⊤

)
= L(M).

Proof of Lemma 6.9. Let M ∼ Q and U be independent, where U is a ran-
dom orthogonal matrix as in Proposition 8.6. If we write M = V diag(Λ)V T

with a random orthogonal matrix V ∈ Rq×q and a random vector Λ ∈ [0,∞)q,
then

L(M) = L(UV diag(Λ)V ⊤U⊤) = L
(
(UV ) diag(Λ)(UV )⊤

)
= L(U diag(Λ)U⊤),

where the first step follows from orthogonal invariance of Q and the last step
follows after conditioning on (Λ, V ) and utilizing the fact that L(UV ) = L(U).
Consequently, we may and do assume thatM = U diag(Λ)U⊤. Then, by Propo-
sition 8.7,

Hρ(Q)A = A+ E
(
ρ′′(tr(M)) tr(AM)M

)

= A+ E
(
ρ′′(Λ+) tr(AM)M

)

= A+ E
(
ρ′′(Λ+)E(tr(AM)M |Λ)

)

= A+ E
(
ρ′′(Λ+)

(
c0(Λ)A0 + c1(Λ)A1

))

=
(
1 + E

(
ρ′′(Λ+)c0(Λ)

))
A0 +

(
1 + E

(
ρ′′(Λ+)c1(Λ)

))
A1.

Now the assertion follows from the explicit formula for c0(Λ), c1(Λ) and the fact
that Λ+ = tr(M) and ‖Λ‖2 = ‖M‖2F .
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Proof of Theorem 6.10. Note first that the nonrandom distributions Qn sat-
isfy the conditions of Theorem 6.1: It follows from Pn →w P that P⊗k

n =
L(Xn1, . . . , Xnk) converges weakly to P⊗k = L(X1, . . . , Xk), where X1, . . . , Xk

are independent with distribution P . Since the mappings R
q ∋ x 7→ xx⊤ ∈

R
q×q
sym,≥0 and (Rq)ℓ ∋ (x1, . . . , xℓ) 7→ S(x1, . . . , xℓ), ℓ ≥ 2, are continuous,

Qn →w Q by the Continuous Mapping Theorem. As to Condition (6.1), note
first that for x ∈ Rq,

ψ(λo tr(xx
⊤)) ≤ λκoψ(‖x‖2)

and for ℓ ≥ 2 points x1, . . . , xℓ ∈ Rq,

ψ
(
λo tr(S(x1, . . . , xℓ))

)
≤ λκo (1− 1/ℓ)−κ

ℓ∑

i=1

ψ(‖xℓ‖2),

see also the derivation of (4.9) and Lemma 5.10. Hence we may apply Lemma 8.5

with the non-random triple
(
(Rq)k, P⊗k

n , P⊗k
)
in place of (Y, Q̂n, Q) and the

function φ(x1, . . . , xk) :=
∑k

i=1 ψ(‖xi‖2) to show that under our additional
assumptions with m = 1,

∫
ψ(λo tr(M))Qn(dM) →

∫
ψ(λo tr(M))Q(dM).

Now we show that the random distributions Q̂n satisfy Conditions (6.2) and
(6.3) in Theorem 6.3. Because of the preceding considerations for (Qn)n, it
suffices to show that

E

∣∣∣
∫
g d(Q̂n −Qn)

∣∣∣ → 0 (8.14)

whenever g : Y → R is a bounded measurable function or g(M) = φ(M) :=
ψ(λo tr(M)).

In both cases the expected value of
∫
g dQ̂n equals

∫
g dQn ∈ R. Conse-

quently, if g is bounded, then

E

∣∣∣
∫
g d(Q̂n −Qn)

∣∣∣ ≤
(
Var

(∫
g dQ̂n

))1/2

≤ ‖g‖∞/
√
n/k.

In case of k = 1, the latter inequality follows from the well-known identity

Var
(∫

g dQ̂n

)
= Var(g(Xn1X

⊤
n1))/n ≤ ‖g‖2∞/n.

For k ≥ 2 it follows from inequalities by Hoeffding (1948) for U -statistics, see
also Dudley (2002, Section 11.9). This proves (8.14) for bounded g.

In case of g = φ we fix an arbitrary R > 0 and write

E

∣∣∣
∫
φd(Q̂n −Qn)

∣∣∣ ≤ 2

∫
(φ−R)+ dQn + E

∣∣∣
∫

min{φ,R} d(Q̂n −Qn)
∣∣∣
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≤ 2

∫
(φ −R)+ dQn +R/

√
n/k

→ 2

∫
(φ−R)+ dQ,

because (φ − R)+ = φ −min{φ,R}. This implies Condition (6.3), because the
limit

∫
(φ−R)+ dQ tends to 0 as R→ ∞.

Proof of Theorem 6.11. As in the proof of Theorem 6.10 it can be shown
that ∫

ψ(tr(M))ℓQn(dM) →
∫
ψ(tr(M))ℓQ(dM) for ℓ = 1, 2,

and that the random distributions Q̂n satisfy Conditions (6.2) and (6.4). Hence

Theorem 6.4 implies that Q̂n ∈ Qρ with asymptotic probability one, and

√
n log(Σρ(Q̂n)) = Hρ(Q)−1

(
−√

nGρ(Q̂n)
)
+ op

(√
n‖Gρ(Q̂n)‖

)
.

Thus we have to analyze the random matrix

W̃n := −√
nGρ(Q̂n) =

√
n

∫ (
ρ′(tr(M))M − Iq

)
Q̂n(dM) ∈ W

in more detail.

In case of k = 1 the random matrix W̃n equals

1√
n

n∑

i=1

Z̃(Xni) with Z̃(x) := ρ′(‖x‖2)xx⊤ − Iq

for x ∈ X. Here EZ̃(Xn1) = Gρ(Qn) = 0 and ‖Z̃(·)‖F ≤ ψ(‖x‖2) + √
q. This

implies that W̃n = Op(1). Moreover, continuity of ρ′ on (0,∞) and of ψ on

[0,∞) in Case 1’ with ψ(0) = 0 implies that Z̃ : X → Rq×q
sym is continuous.

In case of k ≥ 2 we may write

W̃n =
√
n

(
n

k

)−1 ∑

1≤i1<···<ik≤n

M(Xni1 , . . . , Xnik)

with

M(x1, . . . , xk) := ρ′
(
tr(S(x1, . . . , xk))

)
S(x1, . . . , xk)− Iq.

In Case 0, we define M(x1, . . . , xk) := 0 whenever S(x1, . . . , xk) = 0. Here

‖M(x1, . . . , xk)‖F ≤ ψ
(
tr(S(x1, . . . , xk))

)
+
√
q

≤ (k/(k − 1))κ
k∑

i=1

‖xi‖2 +
√
q, (8.15)
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and EM(Xn1, . . . , Xnk) = Gρ(Qn) = 0. Hence standard considerations for
U -statistics as in Dudley (2002, Section 11.9), with straightforward extensions
to vector- or matrix-valued ones, imply that

W̃n =
1√
n

n∑

i=1

Z̃n(Xni) + op(1) = Op(1),

where

Z̃n(x) := kEM(x,Xn2, . . . , Xnk) = kE(M(Xn1, Xn2, . . . , Xnk)|Xn1 = x)

satisfies EZ̃n(Xn1) = 0. In addition we define

Z̃(x) := kEM(x,X2, . . . , Xk).

We may conclude from (8.15), continuity of ρ′ on (0,∞) and of ψ on [0,∞) in
Case 1’ and dominated convergence that both functions Z̃n and Z̃ are continuous
on R

q. Further there exists a constant C such that

‖Z̃n(x)‖F , ‖Z̃(x)‖F ≤ C + Cψ(‖x‖2)

for all n ≥ k and x ∈ X. Thus it suffices show that

E

(∥∥∥ 1√
n

n∑

i=1

Z̃n(Xni)−
1√
n

n∑

i=1

(
Z̃(Xni)− EZ̃(Xn1)

)∥∥∥
2

F

)

≤ E
(∥∥Z̃n(Xn1)− Z̃(Xn1)

∥∥2

F

)
→ 0.

To this end we use a well-known result about weak convergence and almost
surely convergent representations (Skorohod, 1956; Dudley, 1968): There exists
a probability space (Ωo,Ao,Po) with random variables Y ∼ P and Yn ∼ Pn

for n ≥ k such that Yn → Y almost surely. Now we define (Ω,A,P) :=
(Ωk

o ,A⊗k
o ,P⊗k

o ) and Xi(ω) = Y (ωi), Xni(ω) := Yn(ωi) for 1 ≤ i ≤ k, n ≥ k
and ω = (ωi)

k
i=1 ∈ Ω. This construction implies that (Xni)

k
i=1 → (Xi)

k
i=1 al-

most surely. With A∗ denoting the σ-field generated by X1 and (Xn1)n≥k we
may write

Z̃n(Xn1)− Z̃(Xn1) = E(Ṽn | A∗)

with
Ṽn := M(Xn1, Xn2, . . . , Xnk)−M(Xn1, X2, . . . , Xk),

and

E
(∥∥Z̃n(Xn1)− Z̃(Xn1)

∥∥2
F

)
= E

(∥∥E(Ṽn | A∗)
∥∥2
F

)
≤ E

(
‖Ṽn‖2F

)
.

But Ṽn → 0 almost surely, and

‖Ṽn‖2F ≤ Bn := C′
k∑

i=1

(
ψ(‖Xni‖2)2 + ψ(‖Xi‖2)2

)
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for a suitable constant C′. Furthermore,Bn → B := 2C′ ∑k
i=1 ψ(‖Xi‖2)2 almost

surely, and E(Bn) → E(B) <∞. Hence for any fixed R > 0,

E
(
‖Ṽn‖2F

)
≤ E

(
min{‖Ṽn‖2F , R}

)
+ E((Bn −R)+) → E((B −R)+),

and the right hand side tends to 0 as R→ ∞.

For the proof Remark 6.13 we need an elementary fact about symmetric
matrices:

Proposition 8.8. Let M ∈ R
q×q
sym and x ∈ R

q such that

BMB⊤ = M for any orthogonal B ∈ R
q×q with Bx = x.

Then there exist real numbers γ, β such that

M = γ xx⊤ + β Iq.

Proof of Proposition 8.8. Let u ∈ x⊥ with ‖u‖ = 1. Then B := Iq − 2uu⊤

defines an orthogonal matrix such that B⊤ = B, Bx = x and Bu = −u.
Consequently,

u⊤Mx = u⊤BMB⊤x = (Bu)⊤M(Bx) = −u⊤Mx.

Hence Mx ⊥ x⊥ which is equivalent to Mx = λx for some λ ∈ R. In particular,
M(x⊥) ⊂ x⊥.

Next let u and v be unit vectors in x⊥ such that u⊤v = 0 and Mu = βuu,
Mv = βvv for real numbers βu, βv. Then B := Iq − uu⊤ − vv⊤ + uv⊤ + vu⊤

defines an orthogonal matrix B such that B⊤ = B, Bx = x, Bu = v and
Bv = u. Consequently,

βu = u⊤Mu = (Bu)⊤M(Bu) = v⊤Mv = βv.

Consequently, there exists a real number β such that My = βy for all y ∈ x⊥.
All in all we obtain the representationM = γ xx⊤+β Iq, where γ = λ‖x‖−2−

β in case of x 6= 0.

Proof of Remark 6.13. Spherical symmetry of P implies that Q is orthog-
onally invariant. Hence Lemma 6.9 applies to Hρ(Q), and it suffices to show

that Z̃(x) = γ(‖x‖2)xx⊤ + β(‖x‖2)Iq with certain real numbers γ(‖x‖2) and
β(‖x‖2). But this is a consequence of Proposition 8.8: For any orthogonal matrix
B ∈ Rq×q,

S(Bx,BX2, . . . , BXk) = BS(x,X2, . . . , Xk)B
⊤,

so it follows from L(BXj) = L(Xj) for 2 ≤ j ≤ k that

Z̃(Bx) = EM(Bx,BX2, . . . , BXk) = BEM(x,X2, . . . , Xk)B
⊤ = BZ̃(x)B⊤.
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Restricting our attention temporarily to matrices B such that Bx = x reveals
that

Z̃(x) = γ̃(x)xx⊤ + β̃(x)Iq

with certain numbers γ̃(x) and β̃(x). But for arbitrary orthogonal B ∈ Rq×q,

Z̃(Bx) =

{
γ̃(Bx)(Bx)(Bx)⊤ + β̃(Bx)Iq = B

(
γ̃(Bx)xx⊤ + β̃(Bx)Iq

)
B⊤,

BZ̃(x)B⊤ = B
(
γ̃(x)xx⊤ + β̃(x)Iq

)
B⊤,

whence
γ̃(Bx)xx⊤ + β̃(Bx)Iq = γ̃(x)xx⊤ + β̃(x)Iq .

Multiplying the latter equation with y⊤ from the left and with y from the
right, where 0 6= y ∈ x⊥, reveals that β̃(Bx) = β̃(x), i.e. β̃(x) = β(‖x‖2).
Then multiplication with x⊤ from the left and x from the right reveals that
γ̃(Bx) = γ̃(x), i.e. γ̃(x) = γ(‖x‖2).
Proof of Remark 6.14. If P is spherically symmetric around 0, we may rep-
resent a random vector X ∼ P as X = RU with independent random variables
R ≥ 0 and U ∈ R

q, where U is uniformly distributed on the unit sphere of Rq.
In case of ν = 0 (Case 0) we know already that

Hρ(Q)A =
q

q + 2
A0

for any A = A0 + aIq ∈ Rq×q
sym, where a = q−1 tr(A) and tr(A0) = 0. Hence

Z(x) = Hρ(Q)−1
(
q‖x‖−2xx⊤ − Iq

)
=

q

‖x‖2Hρ(Q)−1A0(x) =
q + 2

‖x‖2 A0(x)

= (ν + ‖x‖2)−1
(
c0A0(x) + c1a(x)Iq

)

with ν = 0 and c0, c1 as stated. Note that c1 = 0 when ν = 0.
In case of ν > 0 (Case 1’), Proposition 8.7, applied with λ = (1, 0, . . . , 0)⊤,

entails that A = A0 + aIq as above is mapped to

Hρ(Q)A = A− E

((ν + q)R4

(ν +R2)2
U⊤AU UU⊤

)

= A− E

((ν + q)R4

(ν +R2)2

)( 2

q(q + 2)
A0 +

1

q
aIq

)

=
(
1− 2(q − ν + βν)

q(q + 2)

)
A0 +

(
1− q − ν + βν

q

)
aIq

=
q + 2ν(1− β)/q

q + 2
A0 +

ν(1 − β)

q
aIq,

because

E

( (ν + q)R4

(ν +R2)2

)
= E

( (ν + q)(R2 − ν)

ν +R2
+

(ν + q)ν2

(ν +R2)2

)
= q − (1− β)ν
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by the definition of β and since Σρ(Q) = Iq. Note that the latter implies the
equations E(R2/(ν + R2)) = q/(ν + q) and E(1/(ν + R2)) = 1/(ν + q). Conse-
quently,

Hρ(Q)−1A =
q + 2

q + 2(1− β)ν/q
A0 +

q

(1 − β)ν
aIq.

This yields the representation

Z(x) = Hρ(Q)−1
(
ρ′(‖x‖2)xx⊤ − Iq

)

= (ν + ‖x‖2)−1Hρ(Q)−1
(
(ν + q)(A0(x) + a(x)Iq + Iq)− (ν + ‖x‖2)Iq

)

= (ν + ‖x‖2)−1Hρ(Q)−1
(
(ν + q)A0(x) + νa(x)Iq

)

= (ν + ‖x‖2)−1
( (ν + q)(q + 2)

q + 2(1− β)ν/q
A0(x) +

q

1− β
a(x)Iq

)

= (ν + ‖x‖2)−1
(
c0A0(x) + c1a(x)Iq

)

with c0 and c1 as stated.

8.5. Proofs for Section 7

Proof of Theorem 7.1. Note that L̃(·, P̃ ) is equal to the scatter-only func-
tional L(·, Q) with Q = Q1(P̃ ) = L

(
y(X)y(X)⊤

)
, X ∼ P . In what follows let

H0 :=
{
(x⊤, 0)⊤ : x ∈ Rq

}
and H1 :=

{
(x⊤, 1)⊤ : x ∈ Rq

}
= {y(x) : x ∈ Rq}.

For any linear subspace W of Rq+1 with 1 ≤ dim(W) ≤ q, elementary linear
algebra reveals that either W ⊂ H0 or

W ∩H1 =
{
y(a+ v) : v ∈ V

}

for some a ∈ Rq and a linear subspace V of Rq with dim(V) = dim(W)− 1.
In case of ν = 1, we know from Theorem 4.9 that L̃(·, P̃ ) = L(·, Q) possesses

a unique minimizer up to multiplication with positive scalars if, and only if,

Q(M(W)) = P̃ (W) <
dim(W)

q + 1

for arbitrary linear subspaces W of Rq+1 with 1 ≤ dim(W) ≤ q. In view of the
previous considerations, and since P̃ (H0) = 0, this is equivalent to

P (a+ V) <
dim(V) + 1

q + 1

for arbitrary a ∈ Rq and any linear subspace V of Rq with 0 ≤ dim(V) < q.
In case of ν > 1, we apply Theorem 4.9 to ρ(s) = ρν−1,q+1(s) = (ν+q) log(ν+

s− 1), i.e. ψ(∞) = ν + q. Hence L̃(·, P̃ ) = L(·, Q) possesses a unique minimizer

Γ ∈ R
(q+1)×(q+1)
sym,>0 if, and only if

Q(M(W)) = P̃ (W) <
dim(W) + ν − 1

q + ν
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for arbitrary linear subspacesW of Rq+1 with 0 ≤ dim(W) ≤ q. Since P̃ ({0}) = 0,
it suffices to consider the case dim(W) ≥ 1, and then the previous considerations
show that our requirement on P̃ is equivalent to

P (a+ V) <
dim(V) + ν

q + ν

for arbitrary a ∈ R
q and any linear subspace V of Rq with 0 ≤ dim(V) < q.

It remains to show that for ν > 1, a minimizer Γ of L̃(·, P̃ ) satisfies
Γq+1,q+1 = 1. To this end, recall that Γ satisfies the fixed-point equation

Γ = Ψ(Q) = E

( q + ν

Y ⊤Γ−1Y + ν − 1
Y Y ⊤

)
(8.16)

with Y := y(X), X ∼ P . In particular, since Yq+1 = 1 almost surely,

Γq+1,q+1 = E
q + ν

Y ⊤Γ−1Y + ν − 1
.

But (8.16) implies also that

q + 1 = tr(Γ−1Ψ(Q)) = E
(q + ν)Y ⊤Γ−1Y

Y ⊤Γ−1Y + ν − 1

= q + ν − E
(q + ν)(ν − 1)

Y ⊤Γ−1Y + ν − 1

= q + ν − (ν − 1)Γq+1,q+1

= q + 1 + (ν − 1)(1 − Γq+1,q+1),

i.e. Γq+1,q+1 = 1.

Proof of Theorem 7.2. It follows from Theorem 6.4 that with asymptotic
probability one there exists a unique minimizer Γ(P̂n) of

∫ [
ρ(y(x)⊤Γ−1y(x))− ρ(‖y(x)‖2)

]
P̂n(dx) + log det(Γ)

over all Γ ∈ R
(q+1)×(q+1)
sym,>0 . In case of ν = 1 we also require that det(Γ) = 1.

Moreover,
Γ(P̂n) = Iq+1 − H̃(P )−1G̃(P̂n) + op

(
‖G̃(P̂n)‖

)

with the operator H̃(P ) as stated, and

G̃(P̂n) := Iq+1 −
∫
ρ̃′(‖y(x)‖2)y(x)y(x)⊤ P̂n(dx) →p 0.

Now we set
Z̃(x) := H̃(P )−1

(
ρ′(‖x‖2)y(x)y(x)⊤ − Iq+1

)

for x ∈ Rq. This defines a bounded, continuous function Z̃ : Rq → R
(q+1)×(q+1)
sym

with
∫
Z̃ dP = 0. Since the operator H̃(P ) is non-singular, both ‖G̃(P̂n)‖ and
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δn :=
∥∥∫ Z̃ dP̂n

∥∥ tend to zero in probability at the same speed, and we may
write

Γ(P̂n) = Iq+1 +

∫
Z̃ dP̂n + op(δn).

But then
[
Σ(P̂n) + µ(P̂n)µ(P̂n)

⊤ µ(P̂n)

µ(P̂n)
⊤ 1

]

= (Γ(P̂n)q+1,q+1)
−1Γ(P̂n)

=
(
1−

∫
Z̃q+1,q+1 dP̂n + op(δn)

)(
Iq+1 +

∫
Z̃ dP̂n + op(δn)

)

= Iq+1 +

∫ (
Z̃ − Z̃q+1,q+1Iq+1

)
dP̂n + op(δn).

In particular, µ(P̂n) = Op(δn), whence µ(P̂n)µ(P̂n)
⊤ = Op(δ

2
n) = op(δn) and

thus
[
Σ(P̂n)− Iq µ(P̂n)

µ(P̂n)
⊤ 0

]
=

∫ (
Z̃ − Z̃q+1,q+1Iq+1

)
dP̂n + op(δn).

It remains to show that Z̃q+1,q+1(x) = 0 for any fixed x ∈ Rq in case of ν > 1.
To this end we consider the nonrandom distributions Pn := (1−n−1)P +n−1δx.
For sufficiently large n, Γ(Pn) is well-defined with Γ(Pn)q+1,q+1 = 1. On the

other hand,
∫
Z̃ dPn = n−1Z̃(x) and

Γ(Pn) = Iq+1 + n−1Z̃(x) + o(n−1),

which implies that Z̃q+1,q+1(x) = 0.

Proof of Remarks 7.4 and 7.5. Recall that G̃(P ) = 0 is equivalent to

∫
ν + q

ν + ‖x‖2
[
xx⊤ x
x⊤ 1

]
P (dx) =

[
Iq 0
0 1

]
, (8.17)

in particular,

∫
(ν + q)‖x‖2
ν + ‖x‖2 P (dx) = q and

∫
ν + q

ν + ‖x‖2 P (dx) = 1. (8.18)

Now we introduce the auxiliary objects

Ψ2 = Ψ2(P ) :=

∫
ν + q

(ν + ‖x‖2)2 xx
⊤ P (dx) ∈ R

q×q
sym,>0,

β = β(P ) :=

∫
(ν + q)ν

(ν + ‖x‖2)2 P (dx) > 0,
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i.e.

β + tr(Ψ2) =

∫
ν + q

ν + ‖x‖2P (dx) = 1,

and the operator H = H(P ) : Rq×q
sym → Rq×q

sym given by

HA := A−
∫

ν + q

(ν + ‖x‖2)2 x
⊤Axxx⊤ P (dx).

Then for a matrix

M =

[
A b
b⊤ c

]

with A ∈ Rq×q
sym, b ∈ Rq and c ∈ R, we may write

H̃(P )M =

[
A b
b⊤ c

]
−
∫

(ν + q)(x⊤Ax + 2x⊤b+ c)

(ν + ‖x‖2)2
[
xx⊤ x
x⊤ 1

]
P (dx)

=

[
HA− cΨ2 0

0 (1− β/ν)c− 〈Ψ2, A〉

]
+

[
0 (Iq − 2Ψ2)b

b⊤(Iq − 2Ψ2) 0

]

Here we utilized the fact that any term of the form f(xx⊤)x integrates to 0,
due to the symmetry of P . Consequently,

{
H̃(P )

[
A 0
0 c

]
: A ∈ R

q×q
sym, c ∈ R

}
⊂

{[
A 0
0 c

]
: A ∈ R

q×q
sym, c ∈ R

}

{
H̃(P )

[
0 b
b⊤ 0

]
: b ∈ R

q

}
=

{[
0 b
b⊤ 0

]
: b ∈ R

q

}
,

where the latter equality follows from H̃(P ) being nonsingular on M̃. In partic-
ular, B = B(P ) := (Iq − 2Ψ2(P ))

−1 ∈ Rq×q
sym exists, and

Z̃(x) = H̃(P )−1
(
ρ′(‖x‖2)y(x)y(x)−1 − Iq+1

)

= H̃(P )−1

[
ρ′(‖x‖2)xx⊤ − Iq 0

0 ρ′(‖x‖2)− 1

]
+ ρ′(‖x‖2)H̃(P )−1

[
0 x
x⊤ 0

]

=

[
Z(xx⊤) 0

0 z(‖x‖2)

]
+ ρ′(‖x‖2)

[
0 Bx

x⊤B 0

]

with certain bounded, continuous functions Z : R
q×q
sym,≥0 → Rq×q

sym and z :
[0,∞) → R.

This proves Remark 7.4. In the special case of P being spherically symmetric
around 0, a random vector X ∼ P may be written as X = RU with independent
random variables R ≥ 0 and U ∈ Rq, where U is uniformly distributed on the
unit sphere of Rq. Then (8.18) and the definition of β translate to

E

( (ν + q)R2

ν +R2

)
= q, E

( ν + q

ν +R2

)
= 1 and β = E

( (ν + q)ν

(ν +R2)2

)
.



100 L. Dümbgen et al.

Further, it follows from E(UU⊤) = q−1Iq that

Ψ2 = E

( (ν + q)R2

(ν +R2)2
UU⊤

)
= E

( ν + q

ν +R2
− (ν + q)ν

(ν +R2)2

) 1

q
Iq = γ1 Iq

with

γ1 :=
1− β

q
.

Now we write A ∈ Rq×q
sym as A = A0 + aIq with a := tr(A)/q, so tr(A0) = 0.

Then

〈Ψ2, A〉 =
1− β

q
tr(A) = γ1qa

and, as shown in the proof of Remark 6.14,

H(P )A = γ0A0 + γ1ν aIq,

with

γ0 :=
q + 2γ1ν

q + 2
.

Hence for A0 ∈ Rq×q
sym with tr(A0) = 0, a ∈ R, b ∈ Rq and c ∈ R,

H̃(P )

[
A0 + aIq b

b⊤ c

]
=

[
γ0A0 + γ1(νa− c)Iq (1− 2γ1)b

(1 − 2γ1)b
⊤ (1− β/ν)c− γ1qa

]
.

In case of ν = 1 we only consider the case tr(M) = 0, i.e. c = −qa. Then

H̃(P )

[
A0 + aIq b

b⊤ −qa

]
=

[
γ0A0 + γ1(q + 1)aIq (1− 2γ1)b

(1− 2γ1)b
⊤ −qγ1(q + 1)a

]
,

and this shows that

H̃(P )−1

[
A0 + aIq b

b⊤ −qa

]
=

[
γ−1
0 A0 + γ−1

1 (q + 1)−1aIq (1 − 2γ1)
−1b

(1 − 2γ1)
−1b⊤ −qγ−1

1 (q + 1)−1a

]
.

Now we consider x ∈ Rq and write xx⊤ = A0(x) + a(x)Iq + Iq with a(x) :=
q−1‖x‖2 − 1, so tr(A0(x)) = 0. Then

Z̃(x) = (1 + ‖x‖2)−1H̃(P )−1
(
(1 + q)y(x)y(x)⊤ − (1 + ‖x‖2)Iq+1

)

= (1 + ‖x‖2)−1H̃(P )−1

[
(1 + q)A0(x) + a(x)Iq (1 + q)x

(1 + q)x⊤ −qa(x)

]

= (1 + ‖x‖2)−1




1 + q

γ0
A0(x) +

1

γ1(1 + q)
a(x)Iq (1− 2γ1)

−1x

(1− 2γ1)
−1x⊤

−q
γ1(1 + q)

a(x)


 .

Consequently,

Z̃(x) − Z̃(x)q+1,q+1Iq+1 = (1 + ‖x‖2)−1

[
c0A0(x) + c1a(x)Iq c2x

c2x
⊤ 0

]
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with

c0 :=
1 + q

γ0
=

(q + 1)(q + 2)

q + 2(1− β)/q
,

c1 :=
1

γ1
=

q

1− β
,

c2 := (1− 2γ1)
−1 =

q

q − 2(1− β)
.

In case of ν > 1, elementary calculations reveal that the inverse of the map-
ping [

a
c

]
7→

[
γ1(νa− c)

(1− β/ν)c− γ1qa

]
=

[
γ1ν −γ1
−γ1q 1− β/ν

] [
a
c

]

is given by [
a
c

]
7→ 1

ν − 1

[
(1 − β/ν)/γ1 1

q 1ν

] [
a
c

]
.

Consequently

H̃(P )−1

[
A0 + aIq b

b⊤ c

]
=



γ−1
0 A0 +

(1− β/ν)γ−1
1 a+ c

ν − 1
Iq (1− 2γ1)

−1b

(1− 2γ1)
−1b⊤

qa+ νc

ν − 1


 .

Hence

Z̃(x) = (ν + ‖x‖2)−1H̃(P )−1
(
(ν + q)y(x)y(x)⊤ − (ν + ‖x‖2)Iq+1

)

= (ν + ‖x‖2)−1H̃(P )−1

[
(ν + q)A0(x) + νa(x)Iq (ν + q)x

(ν + q)x⊤ −qa(x)

]

= (1 + ‖x‖2)−1



ν + q

γ0
A0(x) +

q

1− β
a(x)Iq (1− 2γ1)

−1x

(1− 2γ1)
−1x⊤ 0




= (1 + ‖x‖2)−1

[
c0A0(x) + c1a(x)Iq c2x

c2x
⊤ 0

]

with c0, c1, c2 as stated.
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List of notation and assumptions

Linear and affine transformations Let P and Q be probability distribu-
tions on Rq and R

q×q
sym,≥0, respectively. For a ∈ Rq, B ∈ Rq×q

ns and X ∼ P ,
S ∼ Q,

PB := L(BX), P a,B := L(a+BX),
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and
QB := L(BSB⊤), QB := L(B−1SB−⊤).

Special (empirical) distributions Let X = X1, X2, X3, . . . be i.i.d. ∼ P .
Then for k ≥ 2,

Q1(P ) := L(XX⊤) and Qk(P ) := L
(
S(X1, X2, . . . , Xk)

)

with S(x1, x2, . . . , xk) denoting the sample covariance matrix of x1, x2, . . . ,
xk ∈ Rq. Furthermore,

P̂ := n−1
n∑

i=1

δXi
, Q̂1 := n−1

n∑

i=1

δXiX
⊤

i

and

Q̂k :=

(
n

k

)−1 ∑

1≤i1<i2<···<ik≤n

δS(Xi1 ,Xi2 ,...,Xik
).

Log-likelihood functions (times −2) and derivatives

L(µ,Σ, P ) :=

∫ [
ρ
(
(x− µ)⊤Σ−1(x − µ)

)
− ρ(x⊤x)

]
P (dx) + log det(Σ),

Lρ(Σ, Q) :=

∫ [
ρ(tr(Σ−1M))− ρ(tr(M))

]
Q(dM) + log detΣ.

Under certain conditions, as Rq×q
sym ∋ A→ 0,

Lρ(exp(A), Q) = 〈Gρ(Q), A〉+ o(‖A‖)
= 〈Gρ(Q), A〉+ 2−1Hρ(A,Q) + o(‖A‖2),

where

Gρ(Q) := Iq −Ψρ(Q), Ψρ(Q) := Ψρ(Iq, Q),

Ψρ(Σ, Q) :=

∫
ρ′(tr(Σ−1M))M Q(dM),

Hρ(A,Q) :=

∫ (
ρ′(tr(M)) tr(A2M) + ρ′′(tr(M)) tr(AM)2

)
Q(dM).

Moreover, Hρ(A,Q) = 〈Hρ(Q)A,A〉 with the linear operator Hρ(Q) : Rq×q
sym →

R
q×q
sym given by

Hρ(Q)A := 2−1
(
AΨρ(Q) + Ψρ(Q)A

)
+

∫
ρ′′(tr(M)) tr(AM)M Q(dM).

Sometimes we write Rq×q
sym = W0 ⊕W1 with

W0 := {A ∈ R
q×q
sym : tr(A) = 0} and W1 := {sIq : s ∈ R}.

In Case 0, we view Hρ(Q) as an endomorphism of W0.
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Assumptions on ρ and Q We assume that ρ is continuously differentiable
on (0,∞) with derivative ρ′ > 0. For s > 0 we define

ψ(s) := sρ′(s).

Case 0 ρ(s) = q log(s) for s > 0, and Q({0}) = 0.

Case 1 ψ is strictly increasing on (0,∞) with limits ψ(0) = 0 and ψ(∞) ∈
(q,∞]. Moreover, Jρ(λ,Q) :=

∫
ψ(λ tr(M))Q(dM) <∞ for any λ ≥ 1.

Case 1’ ρ is twice continuously differentiable on (0,∞) with ψ′ > 0, and ψ has
limits ψ(0) = 0 and ψ(∞) ∈ (q,∞]. Moreover, Jρ(Q) :=

∫
ψ(tr(M))Q(dM) <

∞, and there exists a constant κ ≥ 0 such that sψ′(s) ≤ κψ(s) for all s > 0.

Existence of Σρ(Q) Let Qρ be the set of all distributions Q such that
Lρ(·, Q) is real-valued and has a unique minimizer Σρ(Q) ∈ R

q×q
sym,>0, where

det(Σρ(Q)) = 1 in Case 0. To characterize Qρ let

Vq := {V : V a linear subspace of Rq},
M(V) :=

{
M ∈ R

q×q
sym :MR

q ⊂ V
}

for V ∈ Vq.

Necessary and sufficient condition for Q ∈ Qρ:

Condition 0 (for Case 0) For any V ∈ Vq with 1 ≤ dim(V) < q,

Q(M(V)) <
dim(V)

q
.

Condition 1 (for Case 1) For any V ∈ Vq with 0 ≤ dim(V) < q,

Q(M(V)) <
ψ(∞)− q + dim(V)

ψ(∞)
.
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