
Probability Surveys
Vol. 16 (2019) 62–98
ISSN: 1549-5787
https://doi.org/10.1214/15-PS267

Necessary and sufficient conditions for

limit theorems for quadratic variations

of Gaussian sequences∗

Lauri Viitasaari

Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, FIN-00014
University of Helsinki, Finland, e-mail: lauri.viitasaari@iki.fi

Abstract: The quadratic variation of Gaussian processes plays an impor-
tant role in both stochastic analysis and in applications such as estima-
tion of model parameters, and for this reason the topic has been exten-
sively studied in the literature. In this article we study the convergence
of quadratic sums of general Gaussian sequences. We provide necessary
and sufficient conditions for different types of convergence including con-
vergence in probability, almost sure convergence, Lp-convergence as well as
weak convergence. We use a practical and simple approach which simplifies
the existing methodology considerably. As an application, we show how
convergence of the quadratic variation of a given process can be obtained
by an appropriate choice of the underlying sequence.

MSC 2010 subject classifications: Primary 60G15; secondary 60F05,
60F15, 60F25.
Keywords and phrases:Quadratic variations, Gaussian sequences, Gaus-
sian processes, convergence in probability, strong convergence, convergence
in Lp, central limit theorem.

Received October 2015.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2 Convergence of Gaussian sequences . . . . . . . . . . . . . . . . . . . . 66

2.1 Notation and first results . . . . . . . . . . . . . . . . . . . . . . 66
2.2 Almost sure convergence . . . . . . . . . . . . . . . . . . . . . . . 70
2.3 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Application to quadratic variations . . . . . . . . . . . . . . . . . . . . 77
3.1 First order quadratic variations . . . . . . . . . . . . . . . . . . . 78
3.2 Second order quadratic variations . . . . . . . . . . . . . . . . . . 82
3.3 Remarks on generalised quadratic variations . . . . . . . . . . . . 84

4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1 Standard Brownian motion . . . . . . . . . . . . . . . . . . . . . 86
4.2 Fractional Brownian motion . . . . . . . . . . . . . . . . . . . . . 86

∗This research was partially funded by the Emil Aaltonen foundation. The author
thanks the anonymous referee for his/her valuable comments that greatly improved the
manuscript.

62

http://www.i-journals.org/ps
https://doi.org/10.1214/15-PS267
mailto:lauri.viitasaari@iki.fi


Quadratic variations of Gaussian sequences 63

4.3 Sub-fractional Brownian motion . . . . . . . . . . . . . . . . . . . 88

4.4 Bifractional Brownian motion . . . . . . . . . . . . . . . . . . . . 89

4.5 Construction of other examples . . . . . . . . . . . . . . . . . . . 92

A Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

1. Introduction

The quadratic variation of a stochastic process X plays an important role in
different applications. For example, the concept is important if one is inter-
ested to develop stochastic calculus with respect to the process X. Furthermore,
quadratic variation can be used to construct estimators for different parameters
describing the process. For example, quadratic variation can be used in the es-
timation of the self-similarity index or in the estimation of a certain parameter
describing the long range dependence, both of which are concepts that have
important applications in fields of science such as hydrology, chemistry, physics,
and finance to simply name a few. Both in stochastic analysis and in estimation
one is interested in studying the convergence of the quadratic variation. Going
beyond, we might want to obtain a central limit theorem which allows one to
apply statistical tools developed for normal random variables.

For Gaussian processes the study of quadratic variation goes back to Lévy
who studied one-dimensional standard Brownian motion (Wt)t∈[0,1] on an inter-
val [0, 1], and showed the almost sure convergence

lim
n→∞

2n∑
k=1

[
W k

2n
−W k−1

2n

]2
= 1.

Later this result was extended to cover more general Gaussian processes in
Baxter [4] and in Gladyshev [18] for uniformly divided partitions. General sub-
divisions were studied in Dudley [17] and Klein & Gine [24] where the optimal
condition o( 1

logn ) for the mesh of the partition was obtained in order to obtain
almost sure convergence. It is also known that for the standard Brownian mo-
tion the condition o( 1

logn ) is not only sufficient but also necessary. For details

on this topic see De La Vega [16] for construction, and [27] for recent results.
Functional central limit theorems for a general class of Gaussian processes were
studied in Perrin [42]. More recently Kubilius and Melichov [25] defined a modi-
fied Gladyshev’s estimator and the authors also studied the rate of convergence.
Norvaîsa [30] has extended Gladyshev’s theorem to a more general class of Gaus-
sian processes under the assumption of a uniform mesh. Finally, we can mention
a paper by Malukas [29] who extended the results of Norvaîsa to irregular par-
titions, and derived sufficient conditions for the mesh in order to obtain almost
sure convergence.

The case of the fractional Brownian motion with Hurst index H ∈ (0, 1)
was studied in details by Gyons and Leons [19]. The authors showed that an
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appropriately scaled first order quadratic variation (that is, the one based on
differences Xtk − Xtk−1

) converges to a Gaussian limit if H < 3
4 . In order to

overcome the restiction H < 3
4 one can use generalisations of quadratic variation

(including the one based on second order differences Xtk − 2Xtk−1
+Xtk−2

). In
[9] these were applied to the identification problem. In [14] these were used
to study singularity functions for fractional processes including the fractional
Brownian sheet. Similarly, in [22] generalised quadratic variation was used to
estimate the local Hölder index of a Gaussian process, and in [23] generalised
quadratic variation was used to estimate the Hurst parameter of the fractional
Brownian motion from discrete observations.

The most commonly used generalisation is second order quadratic variations
based on differences Xtk+1

−2Xtk +Xtk−1
which was studied in detail in a series

of papers by Begyn [5, 7, 6] with applications to the fractional Brownian sheet
and time-space deformed fractional Brownian motion. In particular, in [5] the
sufficient condition for almost sure convergence was studied with non-uniform
partitions. The central limit theorem and its functional version were studied in
[6] and [7] with respect to a standard uniformly divided partition.

The central limit theorem for a more general sequence f(Xt), where Xt is a
stationary Gaussian process, was proved in [12]. Later this result was refined
in [48] to obtain functional convergence to the fractional Brownian motion or
to the Rosenblatt process. For another generalisation, the localised quadratic
variations were introduced in [8] in order to estimate the Hurst function of
multifractional Brownian motion. These results have been generalised later in
[13, 26] to the identification problem of the multifractional Brownian motion
and multifractional Levy motions, respectively.

The fractional Brownian motion has received a lot of attention in modelling
as a (relatively) simple generalisation of a standard Brownian motion. However,
for some applications the assumption of stationary increments is an unwanted
feature. For this reason there is a need for extensions of fractional Brownian mo-
tion. Recent such generalisations are sub-fractional Brownian motion depending
on one parameter H ∈ (0, 1) introduced by Bojdecki et al. [10], and bifractional
Brownian motion depending on two parameters H ∈ (0, 1) and K ∈ (0, 1] (the
case K = 1 corresponding to the fractional Brownian motion) introduced by
Houdré and Villa [21], and later studied in more detail by Russo and Tudor [45].
Furthermore, bifractional Brownian motion was extended for values H ∈ (0, 1),
K ∈ (1, 2) satisfying HK ∈ (0, 1) in [1].

There has also been recent interest in general Hermite variations which are
partially motivated by the contributing paper by Breuer & Major [12]. Weighted
Hermite variations with respect to the fractional Brownian motion was studied
in [31] where both central and non-central limit theorems were proved. The error
bounds in the case of non-central limit theorem was studied in detail in [35].
The critical case H = 1

4 for quadratic variation was studied in [11]. Finally, the
integrals of fractional Brownian motion were studied in [15].

The fractional Brownian sheet, a two-dimensional extension of the fractional
Brownian motion, has received attention at least in papers [43, 44, 40], where
weighted quadratic variation of the fractional Brownian sheet, Hermite varia-
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tions of the fractional Brownian sheet, and functional limit theorems for Hermite
variations were studied. Power variations of more general Gaussian processes
with stationary increments were studied in [2]. Finally, we mention [39] where
limit theorems for power variations of ambit fields driven by a white noise were
derived.

This paper aims to take a practical, instructive, and a general approach to
quadratic variations. Firstly, our aim is to provide easy to verify conditions
for practitioners which still cover many interesting cases. Secondly, with our
simplified approach we are able to provide intuitively clear explanations such as
the discussion in Subsection 3.3 rather than get lost in technical details.

To obtain the generality we study sequences of general n-dimensional Gaus-

sian vectors Y n = (Y
(n)
1 , . . . , Y

(n)
n ), where each component Y

(n)
k may depend

on n, and we study the asymptotic behaviour of the vector Y n or its quadratic
variation defined as the limit

lim
n→∞

n∑
k=1

[
Y

(n)
k

]2
,

provided it exists in some sense. As such, different cases such as first or second
order quadratic variations can be obtained by choosing the vectors Y n suitably,
and this fact will be illustrated in the present paper.

We begin by providing necessary and sufficient conditions for the convergence
in probability which, applied to some quadratic functional of a given process,
can be used to construct consistent estimators in the spirit of, e.g. [13, 22]. Fur-
thermore, we show that in this case the convergence holds also in Lp for any
p ≥ 1. We will also apply the well-known Gaussian concentration inequality for
Hilbert-space valued Gaussian random variables which provides a simple con-
dition that guarantees the almost sure convergence. This condition is applied
to quadratic variations of Gaussian processes with non-uniform partitions for
which we obtain sufficient conditions for the convergence. More importantly,
this result is shown to hold for many cases of interest. In the particular case
of standard Brownian motion, this condition corresponds to the known neces-
sary and sufficient condition. Compared to the existing literature, in many of
the mentioned studies the almost sure convergence is obtained by the use of
the Hanson and Wright inequality [20] together with some technical compu-
tations. In this paper we show how these results follow easily from Gaussian
concentration phenomena.

We will also study central limit theorems in our general setting. We begin by
providing necessary and sufficient conditions under which appropriately scaled
quadratic variation converges to a Gaussian limit. To obtain this result we apply
a powerful fourth moment theorem proved by Nualart and Peccati [38] which,
thanks to the recent results by Sottinen and the current author [47], can essen-
tially be applied always. We will also show how a version of Lindeberg’s central
limit theorem for this case follows easily. Finally, we will use some well-known
matrix norm relations to obtain a surprisingly simple way to obtain a conver-
gence towards a normal random variable. More remarkably, it seems that this



66 L. Viitasaari

simple condition is essentially the one used in many studies. We will also pro-
vide a Berry-Esseen type bound that holds in our general setting which, to the
best of our knowledge, is not present in the literature excluding some very spe-
cial cases. Furthermore, our approach does not require knowledge of Malliavin
calculus and should be applicable for anyone with some background on linear
algebra and Gaussian vectors.

To summarise, in this paper we give necessary and sufficient conditions for
the convergence of quadratic variations of general Gaussian vectors which can be
used to reproduce and generalise existing results. Furthermore, we give easily
verified sufficient conditions so that one can obtain the desired convergence
results. As such, with our approach we are able to generalise the existing results
as well as simplify the proofs considerably by relying on different techniques.
The methods and results of this paper provide new tools to attack the problem
under consideration while classically the problem is studied by relying on the
Hanson and Wright inequality together with Lindeberg’s central limit theorem.

The rest of the paper is organised as follows. In Section 2 we study gen-
eral Gaussian vectors and provide our main results. In Section 3 we illustrate
how our results can be used to study quadratic variations. We will consider
non-uniform sequences and generalise some of the existing results. The main
emphasis is on first order quadratic variations which is more closely related to
stochastic calculus while we also illustrate how second order quadratic varia-
tions can be studied with our approach. We end Section 3 with a discussion on
general quadratic variations. Finally, Section 4 is devoted to examples.

2. Convergence of Gaussian sequences

2.1. Notation and first results

Let Y n = (Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
n ) be a zero mean vector of real-valued Gaussian

random variables Y
(n)
k , k = 1, . . . , n, where each Y

(n)
k possibly depends on n.

We consider properties of sequences Y n as n tends to infinity. Throughout the
paper we will also use Landau notation, i.e. for a sequences an and bn we denote;

• an = O(bn) if supn≥1
|an|
|bn| < ∞,

• an = o (bn) if limn→∞
|an|
|bn| = 0.

We also denote an ∼ bn as n → ∞ if limn→∞
an

bn
→ 1.

We begin with the following definition which is a discrete analogue of similar
concepts introduced in [46].

Definition 2.1. 1. We say that the sequence Y = (Y n)∞n=1 has quadratic

variation 〈Y 〉 if the random variable 〈Y 〉 := limn→∞
∑n

k=1(Y
(n)
k )2 exists

as a limit in probability.
2. The energy ε(Y ) of a sequence Y = (Y n)∞n=1 is defined as the limit

ε(Y ) := lim
n→∞

n∑
k=1

E

(
Y

(n)
k

)2
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provided the limit exists.
3. We say that Y has 2-planar variation Υ(Y ) defined as the limit

Υ(Y ) := lim
n,m→∞

n∑
k=1

m∑
j=1

[
E

[
Y

(n)
k Y

(m)
j

]]2

provided the limit exists.

We will also define

Vn =
n∑

k=1

[(
Y

(n)
k

)2
− E

(
Y

(n)
k

)2]
(1)

to be the centered quadratic variation.

Example 2.1. Let X = (Xt)t∈[0,T ] be a centred Gaussian process, tnk = k
n and

let ΔkX = Xtnk
−Xtnk−1

. By setting Y
(n)
k = ΔkX√

nE(ΔkX)2
we have E(Y

(n)
k )2 = n−1

and

Vn =
1

n

n∑
k=1

(ΔkX)2

E(ΔkX)2
− 1.

This corresponds to the first order quadratic variation with respect to the uniform
partition. Similarly, by setting ΔkX = Xtnk+1

−2Xtnk
+Xtnk−1

we obtain the second
order quadratic variation with respect to the uniform partition.

The Euclidean distance of the vector Y n = (Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
n ) is given by

‖Y n‖2 =

√√√√ n∑
k=1

(
Y

(n)
k

)2
.

Note that the norm ‖ · ‖2 also depends on the dimension n which we will omit
in the notation. We will denote by Γ(n) the covariance matrix of the vector Y n,
i.e. the n× n-matrix

Γ(n) =
(
Γ
(n)
jk

)
j,k=1,...,n

, Γ
(n)
jk = E

(
Y

(n)
j Y

(n)
k

)
. (2)

Note that with this notation the energy of a process Y is simply the limit of the
trace of the matrix Γ, i.e. ε(Y ) = limn→∞ trace(Γn). Similarly, Y n has finite
quadratic variation if ‖Y n‖22 converges as n tends to infinity. Recall also that

the Frobenius norm of a matrix Γ(n) = (Γ
(n)
ij )i,j=1,...,n is given by

‖Γ(n)‖F =

√√√√ n∑
i,j=1

(
Γ
(n)
ij

)2
.

Hence we have

lim
n→∞

‖Γ(n)‖2F = lim
n→∞

n∑
k=1

n∑
j=1

[
E

[
Y

(n)
k Y

(n)
j

]]2
. (3)
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We will later show that in interesting cases we also have

lim
n,m→∞

n∑
k=1

m∑
j=1

[
E

[
Y

(n)
k Y

(m)
j

]]2
= lim

n→∞

n∑
k=1

n∑
j=1

[
E

[
Y

(n)
k Y

(n)
j

]]2

which, in view of (3), shows that the 2-planar variation Υ(Y ) is given by

Υ(Y ) = lim
n→∞

‖Γ(n)‖2F .

The following first result concerns convergence in probability. The proof follows
essentially the arguments presented in [46] and is based on cumulant formulas
for Gaussian random variables. The main difference is that we also prove the
convergence in Lp for any p ≥ 1 while in [46] the authors considered only L2-
convergence. The proof follows the ideas presented in [46] but we will present
the key points for the sake of completeness.

Theorem 2.1. Let Y = (Y n)∞n=1 be a sequence of Gaussian vectors with finite
energy. Then quadratic variation exists as a limit in probability if and only if
the sequence (Y n)∞n=1 has 2-planar variation. In this case, the convergence holds
also in Lp for any p ≥ 1.

Proof. Let

Zn = ‖Y n‖22 =

n∑
k=1

(
Y

(n)
k

)2
.

We start by showing that for any p ≥ 1 and

Zp
n =

[
n∑

k=1

(
Y

(n)
k

)2]p
,

the family {Zp
n : n ≥ 1} is a uniformly integrable family. By Minkowski’s in-

equality for measures together with the fact that Y
(n)
k is Gaussian, we get

[
E

(
n∑

k=1

(
Y

(n)
k

)2)p] 1
p

≤
n∑

k=1

[
E

(
Y

(n)
k

)2p] 1
p

= Cp

n∑
k=1

E

(
Y

(n)
k

)2

for some constant Cp. As this upper bound converges to ε(Y ), the family {Zp
n :

n ≥ 1} is uniformly integrable for any p ≥ 1. Now

E(Zn − Zm)2 = EZ2
n + EZ2

m − 2E(ZnZm),

where

E(ZnZm) =

n∑
k=1

m∑
j=1

E

[(
Y

(n)
k

)2 (
Y

(m)
j

)2]
.

Here

E

[(
Y

(n)
k

)2 (
Y

(m)
j

)2]
= 2
[
E

(
Y

(n)
k Y

(m)
j

)]2
+ E

(
Y

(n)
k

)2
E

(
Y

(m)
j

)2
. (4)
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Hence we observe

n∑
k=1

m∑
j=1

E

[(
Y

(n)
k

)2 (
Y

(m)
j

)2]

= 2

n∑
k=1

m∑
j=1

[
E

(
Y

(n)
k Y

(m)
j

)]2
+

n∑
k=1

E

(
Y

(n)
k

)2
×

m∑
k=1

E

(
Y

(m)
k

)2
.

Consequently,

E(ZnZm) = 2

n∑
k=1

m∑
j=1

[
E

(
Y

(n)
k Y

(m)
j

)]2
+

n∑
k=1

E

(
Y

(n)
k

)2
×

m∑
k=1

E

(
Y

(m)
k

)2
, (5)

where
n∑

k=1

E

(
Y

(n)
k

)2
×

m∑
k=1

E

(
Y

(m)
k

)2
→ ε(Y )2

from the fact that Y has finite energy. Now relation (5) implies the result. Indeed,
assuming that Zn converges in probability, then uniform integrability implies
〈Y 〉 ∈ Lp and the convergence holds also in Lp. Hence E(ZnZm) converges,
and (5) implies that the 2-planar variation exists. Conversely, if the 2-planar
variation exists, then (5) implies that E(ZnZm) converges to the same limit as
E(Z2

n) which concludes the proof.

Remark 2.1. It is straightforward to prove that the Lp-convergence takes place
also in the continuous setting of Russo and Vallois [46].

Remark 2.2. Note that in order to obtain convergence in Lp from the assump-
tion that Zn converges in probability, we used Gaussianity of random variables

Y
(n)
k to get [E(Y

(n)
k )2p]

1
p = CpE(Y

(n)
k )2 from which uniform integrability fol-

lows. Hence the convergence in probability implies convergence in Lp for any

distribution of Y
(n)
k which satisfies [E(Y

(n)
k )2p]

1
p ≤ CpE(Y

(n)
k )2. For example,

this is the case if Y
(n)
k are random variables living in some fixed Wiener chaos

(see subsection 2.3 for definition).

The following theorem gives conditions for when the quadratic variation is
deterministic. It seems that this is indeed true in many cases of interest.

Proposition 2.1. Let Y = (Y n)∞n=1 be a sequence of centred Gaussian vectors
such that Y has finite energy. Then the quadratic variation exists as a limit in
probability and is deterministic if and only if the 2-planar variation is zero. In
this case 〈Y 〉 is equal to the energy of the process and the convergence holds also
in Lp for any p ≥ 1.

Proof. The result follows directly from limn→∞ E(Zn−ε(Y ))2 = E(Z2
n)−ε(Y )2

and (5) with m = n. Finally, the convergence in Lp follows directly from Theo-
rem 2.1.
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Remark 2.3. A generalisation of quadratic variation is α-variation which is

defined as the limit limn→∞
∑n

k=1 |Y
(n)
k |α provided the limit exists. Similarly,

we say that Y has finite α-energy if the limit εα(Y ) := limn→∞
∑n

k=1 E|Y
(n)
k |α

exists. It is straightforward to show that if the sequence Y = (Yn)
∞
n=1 has

finite α-energy and
∑n

k=1 |Y
(n)
k |α converges in probability as n → ∞, then the

convergence holds also in Lp for any p ≥ 1. In this case however, the concept of
2-planar variation becomes much more complicated.

2.2. Almost sure convergence

In this subsection we address the question of when the convergence takes place
almost surely. The key ingredient for our results is the concentration inequality
for Gaussian measures. Using this inequality, we show that, rather surprisingly,
the quadratic variation always converges to the energy of the process whether
or not the energy is finite provided that 2-planar variation vanishes.

Before stating our results we recall the following concentration inequality
taken from [3] for Gaussian processes. We present the result using our notation.

Lemma 2.1. Let Y n be a Gaussian vector with covariance matrix Γ(n) and let

T =
√

trace
(
Γ(n)

)
. Then for any h > 0 we have

P (|‖Y ‖2 − T | ≥ h) ≤ exp

(
− h2

4‖Γ(n)‖2

)
. (6)

Remark 2.4. In addition to finite dimensional spaces, the result holds for any
Hilbert-valued Gaussian random variables. Furthermore, even for Banach-valued
Gaussian random variables one can use concentration inequality

P (|‖X‖B − E‖X‖B| ≥ h) ≤ exp

(
− h2

2σ2

)
,

where (B, ‖ · ‖B) is a Banach space, X is a Banach-valued Gaussian random
variable and σ2 = supL∈B′:‖L‖≤1 EL(X)2. Applying this to R

n equipped with
the norm ‖ · ‖α together with the Riesz representation theorem one has

P (|‖Y ‖α − E‖Y ‖α| ≥ h) ≤ exp

(
− h2

2σ2

)
, (7)

where σ2 = sup‖a‖q≤1

∑n
k=1

∑n
j=1 akajE[YkYj ] with

1
α + 1

q = 1. This can be
used to obtain convergence of α-variations.

In order to obtain almost sure convergence of the quadratic variation, the idea
is to find an upper bound on ‖Γ(n)‖2, say, ‖Γ(n)‖2 ≤ φ(n) for some function
φ(n). If, for any ε > 0, we have

∞∑
n=1

exp

(
− ε2

4φ(n)

)
< ∞, (8)
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then the almost sure convergence follows immediately from the Borel-Cantelli
lemma.

Theorem 2.2. Let Y = (Y n)∞n=1 be a sequence of Gaussian vector such that
‖Γ(n)‖2 → 0 and

sup
n≥1

n∑
k=1

E

(
Y

(n)
k

)2
< ∞. (9)

Then, as n → ∞, ∣∣∣∣∣
n∑

k=1

(
Y

(n)
k

)2
−

n∑
k=1

E

(
Y

(n)
k

)2∣∣∣∣∣→ 0 (10)

in probability and in Lp for any p ≥ 1. Furthermore, the convergence holds
almost surely for any sequences satisfying ‖Γ(n)‖2 = o( 1

logn ).

Proof. The convergence∣∣∣∣∣∣
√√√√ n∑

k=1

(
Y

(n)
k

)2
−

√√√√ n∑
k=1

E

(
Y

(n)
k

)2∣∣∣∣∣∣→ 0

in probability follows immediately from Lemma 2.1, and the almost sure conver-
gence follows by applying the Borel-Cantelli Lemma. Now the convergence (10)
follows from the decomposition |a− b| = |√a−

√
b|(√a+

√
b) together with the

uniform integrability condition (9) which also implies convergence in Lp.

Remark 2.5. Note that if ‖Γ(n)‖2 → 0, we have∣∣∣∣∣∣
√√√√ n∑

k=1

(
Y

(n)
k

)2
−

√√√√ n∑
k=1

E

(
Y

(n)
k

)2∣∣∣∣∣∣→ 0

in probability even if supn≥1

∑n
k=1 E(Y

(n)
k )2 = ∞, i.e. we have convergence in

probability (or almost surely) while the energy might be infinite. For example,
it can be shown that this is the case for the fractional Brownian motion BH

with Hurst index H ∈
(
0, 1

2

)
and its non-scaled quadratic variation, i.e. the one

corresponding to a vector Y
(n)
k = BH

tk
−BH

tk−1
.

Remark 2.6. Note that for finite energy processes such that their 2-planar
variations vanish this result shows that

lim
n,m→∞

n∑
k=1

m∑
j=1

[
E

[
Y

(n)
k Y

(m)
j

]]2
= lim

n→∞

n∑
k=1

n∑
j=1

[
E

[
Y

(n)
k Y

(n)
j

]]2
,

or more compactly, Υ(Y ) = limn→∞ ‖Γ(n)‖F . Indeed, from the well-known re-
lation ‖A‖2 ≤ ‖A‖F we obtain that if limn→∞ ‖Γ(n)‖F → 0, then ‖Γ(n)‖2 → 0.
Consequently, Theorem 2.1 implies that 2-planar variation vanishes. This an-
swers a question raised in [46, Remark 3.12] in our discrete setting. Similarly,
one can use the general concentration inequality (7) to give an analogous answer
in the continuous case.
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Computation of the spectral norm ‖Γ(n)‖2, or equivalently the largest eigen-
value, can be a challenging task. One way to overcome this challenge is to use
the Frobenius norm ‖ · ‖F which provides an upper bound and is easier to anal-
yse. Unfortunately however, it provides quite rough estimates even in the simple
case of standard Brownian motion as will be shown in subsection 4.1. A way to
obtain general conditions is to use the matrix norm ‖ · ‖1 which is also the main
approach applied in the literature. This is the topic of the next theorem. The
proof is based on some well-known relations for matrix norms.

Theorem 2.3. Let Y = (Y n)∞n=1 be a sequence of Gaussian vectors such that
(9) holds. Furthermore, assume there exists a function φ(n) such that

max
j

n∑
k=1

∣∣∣E [Y (n)
k Y

(n)
j

]∣∣∣ ≤ φ(n).

If φ(n) → 0, then the convergence∣∣∣∣∣
n∑

k=1

[
Y

(n)
k

]2
−

n∑
k=1

E

[
Y

(n)
k

]2∣∣∣∣∣→ 0

holds in probability and in Lp for any p ≥ 1. Furthermore, if

φ(n) = o

(
1

logn

)
,

Then the convergence holds almost surely.

Proof. For arbitrary matrix A = (Aij)i,j=1,...,n, recall the well-known bound for

matrix norm ‖A‖2 given by ‖A‖2 ≤
√
‖A‖1‖A‖∞, where ‖A‖1 =

max1≤j≤n

∑n
k=1 |akj | and ‖A‖∞ = max1≤j≤n

∑n
k=1 |ajk|. Hence symmetry of

Γ(n) gives ‖Γ(n)‖2 ≤ ‖Γ(n)‖1, where

‖Γ(n)‖1 = max
j

n∑
k=1

∣∣∣E [Y (n)
k Y

(n)
j

]∣∣∣ .
Together with Theorem 2.2, this concludes the proof.

The following final result of this section is useful for stationary sequences.

Theorem 2.4. Let Y = (Y n)∞n=1 be a sequence of Gaussian vectors such that
(9) holds. Moreover, assume there exists a positive symmetric function r such
that ∣∣∣E [Y (n)

k Y
(n)
j

]∣∣∣ ≤ r(k − j), k, j = 1, . . . , n

and assume that there exists a function φ(n) such that

n∑
k=1

r(k) ≤ φ(n).
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If φ(n) → 0 as n tends to infinity, then the convergence∣∣∣∣∣
n∑

k=1

[
Y

(n)
k

]2
−

n∑
k=1

E

[
Y

(n)
k

]2∣∣∣∣∣→ 0

holds in probability and in Lp. Furthermore, the convergence holds almost surely
provided that φ(n) = o( 1

log n ).

Proof. Now for any j ≥ 1 we have

n∑
k=1

∣∣∣E [Y (n)
k Y

(n)
j

]∣∣∣ ≤ n∑
k=1

r(k − j) ≤
j−1∑
k=0

r(k) +

n−j∑
k=1

r(k) ≤ 2

n∑
k=0

r(k)

from which the result follows.

2.3. Central limit theorem

In this section we provide necessary and sufficient condition for the central limit
theorem (CLT) to hold. More precisely, we present two simple results where
the first one gives a version of Lindeberg’s CLT for quadratic variations, and
the second one (cf. Theorem 2.8) gives a simple condition which actually holds
in most of the studies cited in the introduction. Our necessary and sufficient
condition is based on the fourth moment theorem by Nualart and Peccati [38].
Hence we begin by recalling some basic facts on Wiener chaos. For more details
we refer to the monographs [36, 41, 32].

Let X be a separable Gaussian centered process. We denote by H the Hilbert
space spanned by the indicator functions 1(0,t] and closed with respect to the
inner product 〈1(0,t],1(0,s]〉H = RX(t, s), where RX is the covariance of X.
Then one can define the first chaos H1 of X as Gaussian random variables
X(h), h ∈ H. Equivalently, the elements of H1 can be defined as L2-closure of
the random variables spanned by Xt. Similarly, for q ≥ 1 fixed, the qth Wiener
chaos of X, denoted by Hq, is defined as the closed linear subspace of L2(Ω)
generated by the family {Hq(X(h)) : h ∈ H, ‖h‖H = 1}, where Hq is the qth
Hermite polynomial. The mapping IXq (h⊗q) = Hq(X(h)) can be extended to a
linear isometry between the symmetric tensor product H	q and the qth Wiener
chaos Hq, and for any h ∈ H	q the random variable IXq (h) is called a multiple
Wiener integral of order q.

Remark 2.7. If X = W is a standard Brownian motion, then H is simply the
space L2([0, T ], dt). In this case the random variable IXq (h) coincides with the
q-fold multiple Wiener-Itô integral of h (see [36]).

Remark 2.8. Let X be a separable centered Gaussian process on an interval
[0, T ]. It was proved in [47] that X admits a Fredholm integral representation

Xt =

∫ T

0

K(t, s)dWs,
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where K ∈ L2([0, T ]2) and W is a Brownian motion, if and only if
∫ T

0
EX2

udu <
∞. Furthermore, it was shown that this representation can be extended to a
transfer principle which can be used to develop stochastic calculus with respect
to X. In particular, the transfer principle can be used to define multiple Wiener
integrals as multiple Wiener integrals with respect to a standard Brownian mo-
tion. This definition coincides with the one defined via Hermite polynomials.

Finally, we are ready to recall the following characterisation of convergence
towards a Gaussian limit.

Theorem 2.5 ([38]). Let {Fn}n≥1 be a sequence of random variables in the
qth Wiener chaos, q ≥ 2, such that limn→∞ E(F 2

n) = σ2. Then, as n → ∞, the
following asymptotic statements are equivalent:

(i) Fn converges in law to N (0, σ2).
(ii) EF 4

n converges to 3σ4.

Remark 2.9. In this paper we are studying quadratic variations of Gaussian
sequences. Hence, thanks to the Fredholm representation from [47], such objects
can be viewed as sequences in the second chaos.

Remark 2.10. The case of the second chaos was studied in detail in [33, 34]
where the authors characterised all possible limiting laws. More precisely, in [33]
it was proved that if a sequence in the second chaos converges in law to some
random variable F , then F can be viewed as a sum of a normal random variable
and an independent random variable belonging to the second chaos.

Remark 2.11. It was proved in [37] that instead of fourth moment one can
also study the convergence of ‖DFn‖2H in L2, where D stands for Malliavin
derivative operator. For our purposes however it seems that working with the
fourth moment is more convenient.

Finally, we recall the following Berry-Esseen type estimate [41, Theorem
11.4.3].

Theorem 2.6. Let {Fn}n≥1 be a sequence of elements in the qth Wiener chaos
such that E(F 2

n) = 1 and let Z denote a standard normal random variable. Then
there exists a constant Cq depending only on q such that

sup
x∈R

∣∣∣P(Fn < x)− P(Z < x)
∣∣∣ ≤ Cq

√
EF 4

n − 3.

We are now ready to prove our results. We begin with the following auxiliary
technical lemma whose proof is postponed to the appendix.

Lemma 2.2. For Vn given by (1) we have

EV 2
n = 2

n∑
k,j=1

(
E

[
Y

(n)
k Y

(n)
j

])2
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and

EV 4
n = 12

⎡
⎣ n∑
k,j=1

(
E

[
Y

(n)
k Y

(n)
j

])2⎤⎦
2

+ 24

n∑
i,j,k,l=1

E

[
Y

(n)
k Y

(n)
j

]
E

[
Y

(n)
j Y

(n)
i

]
E

[
Y

(n)
i Y

(n)
l

]
E

[
Y

(n)
l Y

(n)
k

]
.

Theorem 2.7. Let Y = (Y (n))∞n=1 be a sequence of Gaussian vectors such

that for every n ≥ 1 the elements Y
(n)
k , k = 1, . . . , n belong to the first

Wiener chaos, and let Γ(n) denote the covariance matrix of Y (n) with eigen-
values λn

1 , λ
n
2 , . . . , λ

n
n. Then, as n tends to infinity, the following are equivalent.

1. Vn√
V ar(Vn)

law→ N (0, 1),

2.

n∑
i,j,k,l=1

E

[
Y

(n)
k Y

(n)
j

]
E

[
Y

(n)
j Y

(n)
i

]
E

[
Y

(n)
i Y

(n)
l

]
E

[
Y

(n)
l Y

(n)
k

]
= o
(
V ar(Vn)

2
)
,

3.
n∑

k=1

(λn
k )

4
= o

⎛
⎝[ n∑

k=1

(λn
k )

2

]2⎞⎠ .

Proof. By assumption we are able to use the fourth moment Theorem 2.5 from
which the equivalence of items (i) and (ii) follows with the help of Lemma 2.2.

To obtain equivalence of (i) and (iii), it is well-known that
∑n

k=1[Y
(n)
k ]2 equals in

law with
∑n

k=1 λ
n
k [ξ

(n)
k ]2, where λn

k are the eigenvalues of the covariance matrix

Γ(n) and ξ
(n)
k are independent standard normal random variables. Denoting

Ṽn =

n∑
k=1

[
λn
k

[
ξ
(n)
k

]2
− λn

k

]

and using Lemma 2.2 again we obtain

EṼ 2
n = 2

n∑
k=1

[λn
k ]

2

and

EṼ 4
n = 12

[
n∑

k=1

[λn
k ]

2

]2
+ 24

n∑
k=1

[λn
k ]

4

which concludes the proof.
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As a simple corollary we obtain the following result which corresponds to
Lindeberg’s CLT and is mainly used in the references given in the introduction.

Corollary 2.1. Let the assumptions of Theorem 2.7 hold. If

λ∗(n) := max
k=1,...,n

|λn
k | = o

(√
V ar(Vn)

)
, n → ∞,

then
Vn√

V ar(Vn)

law→ N (0, 1).

Proof. We have
n∑

k=1

(λn
k )

4 ≤ max
k=1,...,n

|λn
k |2

n∑
k=1

(λn
k )

2

and since V ar(Vn) =
∑n

k=1(λ
n
k )

2, the result follows at once.

Remark 2.12. Note that since Lindeberg’s CLT can be proved without the
theory of Wiener chaos, the above result is valid for arbitrary sequences of
vectors Y n.

Finally, the following theorem justifies that in many cases it is sufficient to

find an upper bound for λ∗(n), or even for max1≤j≤n

∑n
k=1 |E[Y

(n)
k Y

(n)
j ]|. While

the proof follows from simple relations for matrix norms, the result turns out
to be very useful for many practical applications. In particular, the following
result covers many of the cases studied in the literature. Furthermore, in this
case it easy to give a Berry-Esseen bound.

Theorem 2.8. Let the assumptions of Theorem 2.7 hold, and assume that Y n

is a Gaussian vector with finite non-zero energy. Then there exists a constant
C > 0 such that

sup
x∈R

∣∣∣∣∣P
(

Vn√
V ar(Vn)

< x

)
− P(Z < x)

∣∣∣∣∣ ≤ C
√
nλ∗(n).

where Z is a standard normal random variable. Hence if

λ∗(n) = o

(
1√
n

)
,

then Vn√
V ar(Vn)

law→ N (0, 1). In particular, if

max
1≤j≤n

n∑
k=1

∣∣∣E [Y (n)
k Y

(n)
j

]∣∣∣ = o

(
1√
n

)
,

then Vn√
V ar(Vn)

law→ N (0, 1).
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Proof. Recall that the trace norm is given by ‖Γ(n)‖∗ =
∑n

k=1 λ
n
k . By the

Cauchy-Schwartz inequality we get the well-known matrix norm inequality

‖Γ(n)‖∗ ≤
√
n

√√√√ n∑
k=1

[λn
k ]

2 =
√
n‖Γ(n)‖F .

By assumption, the vector Y n has finite non-zero energy. Hence by observing
that limn→∞ ‖Γ(n)‖∗ = ε(Y ) > 0, we obtain that, for large enough n, we have

0 < c ≤
√
n‖Γ(n)‖F

for some constant c > 0. Next we observe that
√
V ar(Vn) = ‖Γ(n)‖F . Hence

the fourth moment of Vn√
V ar(Vn)

is given by

EV 4
n

(EV 2
n )

2 = 3 +
3
∑n

k=1[λ
n
k ]

4

2 (
∑n

k=1[λ
n
k ]

2)
2

so that
EV 4

n

(EV 2
n )

2 − 3 ≤ 3[λ∗(n)]2

2EV 2
n

≤ 3

2
n[λ∗(n)]2.

Hence the Berry-Esseen bound follows from Theorem 2.6.

Remark 2.13. Note that the convergence towards normal random variable
follow also from Corollary 2.1 which does not rely on the theory of Wiener
chaos. However, for a sequence living in the second chaos we also obtain a
Berry-Esseen bound.

3. Application to quadratic variations

In this section we apply the results to the quadratic variation of Gaussian pro-
cesses. Throughout this section we consider arbitrary sequences of partitions
πn = {0 = tn0 < tn1 < . . . < tnN(πn)−1 = T}, where N(πn) denotes the number
of points in the partition. For notational simplicity, we drop the super-index n
and simply use tk instead of tnk . The mesh of the partition is denoted by |πn| =
max{tk− tk−1, tk ∈ πn/{0}}. We also use m(πn) = min{tk− tk−1, tk ∈ πn/{0}}.
Throughout this section we assume that

|πn|
m(πn)

≤ k(|πn|), n ≥ 1 (11)

for some function k. Obviously, usually the partition is chosen such that k(|πn|) ≤
C < ∞.
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3.1. First order quadratic variations

In this subsection we study first order quadratic variation of Gaussian processes
which is our main interest due to its connection to stochastic analysis. Through-
out this subsection we also use the metric induced by the incremental variance
of X, i.e.

dX(t, s) = E(Xt −Xs)
2.

Definition 3.1. Let X = (Xt)t∈[0,T ] be a centred Gaussian process. We say
that X has first order φ-quadratic variation along πn if

V1(πn, φ) :=
∑

tnk∈πn

(Xtk −Xtk−1
)2

φ(tk − tk−1)
(12)

converges in probability as |πn| tends to zero.

Remark 3.1. A natural choice for the function φ is such that

lim
|πn|→0

N(πn)−1∑
k=1

E(Xtk −Xtk−1
)2

φ(tk − tk−1)
= K < ∞. (13)

In particular, in many interesting cases one has dX(t, s) ∼ r(t−s) as |t−s| → 0

for some function r, meaning that dX(t,s)
r(t−s) → 1 as |t − s| → 0. In this case a

natural choice is φ(x) = r(x)
x .

To simplify the notation we denote Ṽ1(πn, φ) = V1(πn, φ) − EV1(πn, φ). We
also use Δtj = tj − tj−1. We begin by giving the following general theorem
which generalises the main results of [29] by allowing us to drop some technical
assumptions. The result follows directly by uniting and rewriting Theorem 2.2

and Theorem 2.8 for the sequence Y
(n)
k =

Xtk
−Xtk−1√

φ(tk−tk−1)
.

Theorem 3.1. Let X be a Gaussian process. Assume that

max
1≤j≤N(πn)−1

N(πn)−1∑
k=1

1√
φ(Δtk)φ(Δtj)

|E[(Xtk −Xtk−1
)(Xtj −Xtj−1)]| ≤ H(|πn|)

(14)
for some function H(|πn|).

1. If H(|πn|) → 0 as |πn| tends to zero, then convergence∣∣∣∣∣∣
N(πn)−1∑

k=1

(Xtk −Xtk−1
)2

φ(tk − tk−1)
−

N(πn)−1∑
k=1

E(Xtk −Xtk−1
)2

φ(tk − tk−1)

∣∣∣∣∣∣→ 0 (15)

holds in probability. If H(|πn|) = o
(

1
logn

)
, then convergence (15) holds

almost surely. In these cases the convergence holds also in Lp for any p ≥ 1
provided that (13) holds.
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2. Furthermore, assume that

lim
|πn|→0

N(πn)−1∑
k=1

E(Xtk −Xtk−1
)2

φ(tk − tk−1)
= K > 0. (16)

Then there exists a constant C > 0 such that

sup
x∈R

∣∣∣∣∣∣P
⎛
⎝ Ṽ1(πn)√

V ar(Ṽ1(πn))
< x

⎞
⎠− P(Z < x)

∣∣∣∣∣∣ ≤ C
√
N(πn)H(|πn|),

where Z is a standard normal random variable. In particular, if H(|πn|) =
o(N(πn)

− 1
2 ), then

Ṽ1(πn)√
V ar(Ṽ1(πn))

law→ N (0, 1).

Remark 3.2. In [29] the author studied a particular class of Gaussian processes
while here we consider arbitrary Gaussian processes. Similarly, in [29] the main
result was derived by using some technical computations under assumption (14)
together with several additional technical assumptions. Here we have shown
that (14) is the only needed assumption which generalises the class of processes
considerably. Similarly, we have been able to simplify the proof since we have
shown that such results follows essentially from Gaussian concentration together
with some matrix algebra.

Next we will provide some sufficient conditions which are easy to verify. A par-
ticularly interesting case for us is Gaussian processes for which the function

d(s, t) = E(Xt −Xs)
2

is C1,1 (that is, continuously differentiable with respect to both variables) off
the diagonal. Note that a sufficient condition for this is that the variance EX2

t

is C1 and the covariance R of X is C1,1 off the diagonal.

Theorem 3.2. Let X be a continuous Gaussian process such that the function
d(s, t) = E(Xt −Xs)

2 is C1,1 off the diagonal. Furthermore, assume that there
exists a positive function f(s, t) such that

|∂std(s, t)| ≤ f(s, t)

and

sup
s,v∈[0,T ]

∫ v

0

f(s, t)dt < ∞.

If there exists a function H(|πn|) such that

max
1≤j≤N(πn)−1

d(tj , tj−1) + Δtj sup1≤k,j≤N(πn)−1

√
φ(Δtj)√
φ(Δtk)

φ(Δtj)
≤ H(|πn|),

then the result of Theorem 3.1 holds with function H(|πn|).
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Proof. For j = k we have

E[(Xtk −Xtk−1
)(Xtj −Xtj−1)] =

1

2

∫ tk

tk−1

∫ tj

tj−1

∂std(s, t)dsdt

giving us

∣∣E[(Xtk −Xtk−1
)(Xtj −Xtj−1)]

∣∣ ≤ ∫ tk

tk−1

∫ tj

tj−1

|∂std(s, t)| dsdt.

Hence

N(πn)−1∑
k=1

∣∣∣E [Y (n)
k Y

(n)
j

]∣∣∣
≤ d(tj , tj−1)

φ(Δtj)
+

1√
φ(Δtj)

N(πn)−1∑
k=1,k �=j

1√
φ(Δtk)

∫ tk

tk−1

∫ tj

tj−1

|∂std(s, t)| dsdt

≤ d(tj , tj−1)

φ(Δtj)
+

1

φ(Δtj)

N(πn)−1∑
k=1,k �=j

√
φ(Δtj)√
φ(Δtk)

∫ tk

tk−1

∫ tj

tj−1

|∂std(s, t)| dsdt

≤ d(tj , tj−1)

φ(Δtj)
+

sup1≤k,j≤N(πn)−1

√
φ(Δtj)√
φ(Δtk)

φ(Δtj)

N(πn)−1∑
k=1,k �=j

∫ tk

tk−1

∫ tj

tj−1

|∂std(s, t)| dsdt.

Here

N(πn)−1∑
k=1,k �=j

∫ tk

tk−1

∫ tj

tj−1

|∂std(s, t)| dsdt

=

∫ tj−1

0

∫ tj

tj−1

|∂std(s, t)| dsdt+
∫ T

tj

∫ tj

tj−1

|∂std(s, t)| dsdt

= O (Δtj)

by Tonelli’s theorem and assumptions. The claim follows at once.

Remark 3.3. The convergence depends now on sup1≤k,j≤N(πn)−1

√
φ(Δtj)√
φ(Δtk)

.

However, in any naturally chosen sequence of partitions we have supn≥1 k(πn) <

∞ which guarantees sup1≤k,j≤N(πn)−1

√
φ(Δtj)√
φ(Δtk)

< ∞ for many functions φ. For

example, this is obviously true for power functions φ(x) = xγ which is a typical
choice in many cases.

As an immediate corollary we obtain the following which again seems to
generalise the existing results in the literature. Most importantly, the following
result shows how the lower bound for the variance plays a fundamental role.
Furthermore, a standard assumption in the literature is that d(t, s) ∼ |t − s|γ
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for some number γ ∈ (0, 2) which in particular covers the case of fractional
Brownian motion and related processes. In the following the structure of the
variance can be more complicated. For simplicity we will only present the result
in the case of bounded function k(πn) while the general case follows similarly.

Corollary 3.1. Let the notation and assumptions of Theorem 3.2 hold. Fur-
thermore, assume that there exists a function r such that d(t, s) ∼ r(t − s) as

|t− s| → 0. Let supn≥1 sup1≤k,j≤N(πn)−1

√
r(Δtj)√
r(Δtk)

< ∞, supn≥1 k(πn) < ∞, and

put φ(Δtj) =
r(Δtj)
Δtj

.

1. If |πn| = o(
√

r(|πn|)), then

|Ṽ1(πn, φ)| → 0

in probability and in Lp for any p ≥ 1. The convergence holds almost

surely for any sequence (|πn|)2
r(|πn|) = o( 1

logn ).

2. There is a constant C > 0 such that

sup
x∈R

∣∣∣∣∣∣P
⎛
⎝ Ṽ1(πn)√

V ar(Ṽ1(πn))
< x

⎞
⎠− P(Z < x)

∣∣∣∣∣∣ ≤ C

(
|πn|

1
2 +

|πn|
3
2

r(|πn|)

)
,

where Z is a standard normal random variable. In particular, if |πn|
3
2 =

o (r(|πn|)), then
Ṽ1(πn)√

V ar(Ṽ1(πn))

law→ N (0, 1).

Proof. The claim follows immediately from Theorem 3.2 by noting that our
choice of function φ guarantees condition (16).

We end this section with the following result that recovers the case of the
fractional Brownian motion and related processes. Note again that our technical
assumptions are rather minimal.

Theorem 3.3. Let X be a continuous Gaussian process such that the function
d(s, t) = E(Xt −Xs)

2 is C1,1 off the diagonal. Furthermore, assume that

|∂std(s, t)| = O
(
|t− s|2η−2

)
for some η ∈ (0, 1), η = 1

2 and there exists a function H(|πn|) such that

max
1≤j≤N(πn)−1

d(tj , tj−1) + [Δtj ]
min(1,2η) sup1≤k,j≤N(πn)−1

√
φ(Δtj)√
φ(Δtk)

φ(Δtj)
≤ H(|πn|).

Then the result of Theorem 3.1 holds with function H(|πn|).
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Proof. Note that the case η > 1
2 follows directly from Theorem 3.2. Let now

η < 1
2 . Using Fubini’s Theorem we have

∫ T

tj

∫ tj

tj−1

|∂std(s, t)| dsdt

≤ C

∫ tj

tj−1

(T − s)2η−1ds+ C

∫ tj

tj−1

(tj − s)2η−1ds

≤ C[Δtj ]
2η

for some unimportant constants C which vary from line to line. Here we have
used the fact that for positive numbers a, b and γ ∈ (0, 1) we have |aγ − bγ | ≤
|a− b|γ . Treating the integral

∫ tj−1

0

∫ tj
tj−1

|∂std(s, t)| dsdt similarly concludes the

proof.

Remark 3.4. We remark that the case η = 1
2 can be treated similarly. In this

case one obtains a condition

max
1≤j≤N(πn)−1

d(tj , tj−1) + Δtj | logΔtj | sup1≤k,j≤N(πn)−1

√
φ(Δtj)√
φ(Δtk)

φ(Δtj)
≤ H(|πn|).

Remark 3.5. It is straightforward to give a version of Corollary 3.1 in the case
η = 1

2 as well.

3.2. Second order quadratic variations

In this subsection we briefly study second order quadratic variations. In par-
ticular, we reproduce and generalise the results presented in papers [5] and [6].
We will present our results in slightly different form. However, comparison is
provided in Remark 3.6.

Usually second order quadratic variation on [0, 1] is defined as the limit of∑n
k=1(X k+1

n
− 2X k

n
+X k−1

n
)2. To generalise for irregular subdivisions Begyn [5]

introduced and motivated a second order differences along a sequence πn as

ΔXk = Δtk+1Xtk−1
+ΔtkXtk+1

− (Δtk+1 +Δtk)Xtk .

As in [5], we study the second order quadratic variation defined as the limit

V2(πn) =

N(πn)−1∑
k=1

Δtk+1 (ΔXk)
2

E (ΔXk)
2 .

As before, we use short notation

Ṽ2(πn) = V2(πn)− EV2(πn).
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We also assume that the derivative ∂4

∂2s∂2tR(s, t) of the covariance function R of
X exists off the diagonal and satisfies∣∣∣∣ ∂4

∂2s∂2t
R(s, t)

∣∣∣∣ ≤ C

|t− s|2+γ
(17)

for some number γ ∈ (0, 2). Finally, we make the simplifying assumption
supn k(πn) < ∞ on the function k. Hence it is also natural to assume

sup
j,k

E (ΔXj)
2

E (ΔXk)
2 < ∞. (18)

In particular, the assumptions made in [5] implied

E (ΔXk)
2 ∼ (Δtk+1)

3−γ
2 (Δtk)

3−γ
2 (Δtk+1 +Δtk) (19)

in which case (18) is clearly satisfied.

Theorem 3.4. Suppose that (17) and (18) holds, and that supn k(πn) < ∞.

1. If H(πn) := max1≤j≤N(πn)−1
|πn|5−γ

E(ΔXj)
2 converges to zero, then

∣∣∣Ṽ2(πn)
∣∣∣→ 0

in probability and in Lp for any p ≥ 1. Furthermore, the convergence holds
almost surely provided that H(πn) = o( 1

logn ).
2. There is a constant C > 0 such that

sup
x∈R

∣∣∣∣∣∣P
⎛
⎝ Ṽ2(πn)√

V ar(Ṽ2(πn))
< x

⎞
⎠− P(Z < x)

∣∣∣∣∣∣ ≤ C
√
N(πn)H(|πn|),

where Z is a standard normal random variable. In particular, if H(πn) =

o([N(πn)]
− 1

2 ), then

Ṽ2(πn)√
V ar

(
Ṽ2(πn)

) law→ N (0, 1).

Proof. Denote

Y
(n)
k =

√
ΔtkΔXk√
E (ΔXk)

2
.

By (18) and boundedness of k(πn), we have

N(πn)−1∑
k=1

∣∣∣E [Y (n)
k Y

(n)
j

]∣∣∣ ≤ C
|πn|

E (ΔXj)
2

N(πn)−1∑
k=1

|E [ΔXkΔXj ]|
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for some constant C. Furthermore, it was proved in [5] that boundedness of
k(πn) together with (17) yields

N(πn)−1∑
k=1

|E [ΔXkΔXj ]| ≤ C|πn|4−γ

for a constant C. This gives a bound for

N(πn)−1∑
k=1

∣∣∣E [Y (n)
k Y

(n)
j

]∣∣∣
from which the result follows immediately by combining Theorems 2.2 and 2.8.

Remark 3.6. To compare our result with the ones provided in papers [5] and
[6], first note that we were able to reproduce and generalise the main theorem
of [5] although we gave our result in a slightly different form. Indeed, in [5]
several additional technical conditions were assumed to ensure the asymptotic
relation (19) while here we have worked with general variance. This is helpful
since the message of our result is that basically one has to only study the
asymptotic behaviour of the variance, and (17) guarantees the upper bound for
the corresponding matrix norm. Furthermore, the central limit theorem in [6]
was proved only for uniformly divided partitions, and the central limit theorem
was proved under more restrictive technical conditions, similar to those in [5],
and by finding a lower bound for the variance in order to apply Lindeberg’s CLT.
Here we have proved that such result holds also for non-uniform partitions and
the result follows easily from the computations presented in [5] together with
Theorem 2.8. Finally, here we also obtained a Berry-Esseen bound. In particular,
under (19) we obtain a bound proportional to

√
|πn|.

3.3. Remarks on generalised quadratic variations

We end this section by giving some remarks on generalised quadratic variations
introduced by Istas and Lang [22].

Let a = (a0, a1, . . . , ap) be a vector such that
∑p

k=0 ak = 0, where p is
a fixed integer. Let also δ be a fixed small number and consider time points
tk = kδ, k = 1, . . . , n. The a-differences of X are given by

ΔaXj =

p∑
k=0

akXtj+k
, j = 0, 1, . . . , n− p.

In [22] the authors considered stationary or stationary increment Gaussian pro-
cesses and studied generalised a-variations defined as a limit of

V (a, n) =
1

n

n−p∑
k=1

(ΔaXk)
2

E[ΔaXk]2
.
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Since X is either stationary or has stationary increments, the function d(t, s)
depends only on the difference |t − s|. The assumption in [22] was that the
function v(t) = d(0, t) is 2D times differentiable (D is the greatest such integer,
possibly 0), and for some number γ ∈ (0, 2) and some constant C > 0 we have

v(2D)(t) = v(2D)(0) + Ctγ + r(t),

where the remainder r satisfies r(t) = o (tγ). The main results in [22] was that
under certain assumptions one can obtain a Gaussian limit with some rate with
a suitable choice of the vector a, although in some cases one has to assume the
observation window nδ increases to infinity. Obviously, by using the result of
this paper we could reproduce and generalise, at least to cover more general vari-
ances as in here for the first and second order quadratic variations, these results
together with a much simplified proofs. Instead of getting lost into technical de-
tails we wish to give some remarks and explanations. In [22] the main message
was, roughly speaking, that the larger the value of D and s, then the larger one
has to choose the value p, i.e. taking account of more refined discretisations.
The idea is to try to find a discretisation vector a so that

max
1≤j≤n

1

n2
√
E[ΔaXj ]2

n−p∑
k=1

1√
E[ΔaXk]2

|E [(ΔaXk)(ΔaXj)]| = o
(
n− 1

2

)

from which we obtain almost sure convergence and a central limit theorem
(with

√
V ar (V (a, n)− EV (a, n)) as normalisation so one is left to analyse the

asymptotic of this variance). Hence it remains to study the choice of the vector a.
The idea for this becomes clearer from the first order variation and Corollary 3.1.
Indeed, as also pointed out in [22], the number D is the order of differentiability
of X in the L2-sense. If D ≥ 1, the variance must be at least of order (Δtj)

2

so it is not possible to obtain even convergence in probability. The larger the
D, the larger the value of p should also be. Similarly, as γ becomes close to 2
it roughly means that D becomes closer to 1 so once again one needs to refine
the discretisation to obtain a Gaussian limit. More precisely, as γ comes closer
to 2 we see immediately that the variance is no longer enough to compensate
|πn|

3
2 in order to obtain a central limit theorem. Hence, in this case, one should

consider second order quadratic variations.

4. Examples

This section is devoted to examples. We focus on reproducing some interest-
ing and already studied examples to illustrate the power of our method rather
than finding complicated new examples. On the other hand, our method can be
easily applied to study more complicated examples which we will illustrate in
subsection 4.5. As particular examples, we study Brownian motion, fractional
Brownian motion and related processes together with extensions sub-fractional
Brownian motion and bifractional Brownian motion. Furthermore, we will focus
on first order quadratic variation for which we find sufficient conditions for the
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mesh to obtain almost sure convergence. In this context a particularly inter-
esting case for us is the bifractional Brownian motion for which we are able to
improve the sufficient condition proved in [29]. Throughout the section, for the
sake of simplicity, we assume that the function k(πn) is bounded.

4.1. Standard Brownian motion

Let X = W be a standard Brownian motion. Then it is known that the almost
sure convergence holds provided that |πn| = o( 1

logn ) (for recent results on the

topic see [27]). Furthermore, this is sharp in the sense that one can construct
a sequence with |πn| = O( 1

logn ) such that almost sure convergence does not

hold. Now the sufficiency of |πn| = o( 1
log n ) follows easily from concentration

inequality (6) applied to the increments of the Brownian motion. Indeed, in the
case of standard Brownian motion the covariance matrix Γ(n) of the increments
is diagonal, and we have

‖Γ(n)‖1 = ‖Γ(n)‖2 = |πn|.

Note also that if one uses the Frobenius norm ‖Γ(n)‖F to obtain the upper

bound, we have ‖Γ(n)‖F =
√
|πn| provided that |πn|

m(πn)
≤ C. Hence we only

obtain half of the best possible rate even in the case of standard Brownian
motion. Finally, it is straightforward to obtain a central limit theorem which,
of course, is well-known already.

4.2. Fractional Brownian motion

Recall that a fractional Brownian motion BH with Hurst index H ∈ (0, 1) is a
continuous centred Gaussian process with covariance function

R(t, s) =
1

2

(
t2H + s2H − |t− s|2H

)
.

The case H = 1
2 reduces to a standard Brownian motion. We obtain Lp-

convergence of general α-variations in a straightforward manner by using Re-
mark 2.3.

Proposition 4.1. Let BH be a fractional Brownian motion with H ∈ (0, 1).
Then there exists a constant CH such that for α = 1

H we have

∑
tnk∈πn

|BH
tk

−BH
tk−1

|α → CHT

in Lp for any p ≥ 1.

Remark 4.1. The exact value of the constant CH is given by CH = E|N | 1
H ,

where N is a standard normal random variable.
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We now turn to the convergence of quadratic variation which is more inter-
esting for us. Now it is natural to take φ(x) = x2H−1, since for any partition of
[0, T ] we have ∑

tnk∈πn

E(BH
tk

−BH
tk−1

)2

[Δtk]2H−1
= T.

The following result is a direct consequence of Theorem 3.3.

Proposition 4.2. Let BH be a fractional Brownian motion with H ∈ (0, 1).
Then

1.

V B
n :=

N(πn)−1∑
k=1

(BH
tk

−BH
tk−1

)2

[Δtk]2H−1
→ T

in probability and in Lp for any p ≥ 1. Furthermore, the convergence holds
almost surely for any sequence of partitions satisfying |πn| = o( 1

(logn)γ ),

where γ = max( 1
2−2H , 1).

2. There exists a constant C > 0 such that

sup
x∈R

∣∣∣∣∣P
(

V B
n − T√

V ar(V B
n − T )

< x

)
− P(Z < x)

∣∣∣∣∣ ≤ C|πn|min( 1
2 ,

3
2−2H),

where Z is a standard normal random variable. In particular, a central
limit theorem holds for all values H < 3

4 .

Remark 4.2. Note that, in the case H < 1
2 , we obtain similar sufficient condi-

tions as in the case of a standard Brownian motion. Indeed, the only difference is
that as here the increments are not independent, we have to pose an additional
assumption supn≥1 k(πn) < ∞ to obtain the optimal condition o( 1

logn ).

Remark 4.3. By considering uniform partitions it can be shown that by con-
centration inequalities one cannot obtain any better result. It would be inter-
esting to know whether the given conditions are optimal similarly as in the case
of a standard Brownian motion. However, for Brownian motion the counter-
examples are constructed relying on independence of increments and, to the
best of our knowledge, there exists no method to attack the problem for general
Gaussian process.

Remark 4.4. The limit theorems for quadratic variations of fractional Brow-
nian motion are extensively studied in the literature. However, most of the
related studies rely on uniform partitions and focus on generalisations, e.g. to
study Hermite variations or weighted variations rather than generalising the
sequence of partitions. Furthermore, to recover the central limit theorem in the
case H < 3

4 our approach is based only on simple linear algebra. For this rea-
son our approach may be more applicable to generalise the results for arbitrary
Gaussian processes while the obvious drawback is that it cannot provide a full
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answer to the problem. Finally, to the best of our knowledge the non-uniform
partition is not widely studied in the literature.

Remark 4.5. It is known that in the critical case H = 3
4 we also have conver-

gence towards a normal random variable (see, e.g. [35] and references therein)
with the only difference in the rate, i.e. the variance is of order logn

n instead of 1
n .

Given a priori knowledge that the variance is of order logn
n it is straightforward

to recover also this critical case by Corollary 2.1. This highlights our claim that
it is sufficient to study the asymptotic behaviour of the variance.

4.3. Sub-fractional Brownian motion

The sub-fractional Brownian motion GH with parameter H ∈ (0, 1) is a centred
Gaussian process with covariance function

R(s, t) = s2H + t2H − 1

2

[
s2H + t2H − |t− s|2H

]
.

Note that, as in the case of the fractional Brownian motion, the value H = 1
2

corresponds to a standard Brownian motion.

Proposition 4.3. Let GH be a sub-fractional Brownian motion with H ∈ (0, 1).
Then

1.

V G
n :=

∑
tnk∈πn

(
GH

tk
−GH

tk−1

)2
[Δtk]2H−1

→ T

in probability and in Lp for any p ≥ 1. Furthermore, the convergence
holds almost surely for any sequence satisfying |πn| = o( 1

(log n)γ ), where

γ = max( 1
2−2H , 1).

2. There exists a constant C > 0 such that

sup
x∈R

∣∣∣∣∣P
(

V G
n − T√

V ar(V G
n − T )

< x

)
− P(Z < x)

∣∣∣∣∣ ≤ C|πn|min( 1
2 ,

3
2−2H),

where Z is a standard normal random variable. In particular, central limit
theorem holds for all values H < 3

4 .

Proof. Note that the case H = 1
2 is already covered since it reduces back to the

standard Brownian motion. Hence we assume H = 1
2 . We have

∂stdG(t, s) ≤ C(t+ s)2H−2 + C|t− s|2H−2

for some constant C and dG(s, t) ≤ C|t− s|2H . Now (t+ s)2H−2 ≤ |t− s|2H−2

from which the result follows immediately with similar arguments as in the case
of the fractional Brownian motion.
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Remark 4.6. We remark that the above result was already given in [29]
with the same rates although there the condition for the case H = 1

2 was
|πn|| log |πn|| = o( 1

logn ) which would follow from Remark 3.4. Obviously how-

ever, in this case we have standard Brownian motion so that |πn| = o( 1
logn ) is

sufficient. Note also that in this case one cannot obtain better by using con-
centration inequalities. Indeed, this comes from the “fractional Brownian part”
|t− s|2H .

4.4. Bifractional Brownian motion

A particularly interesting case for us is the bifractional Brownian motion which
was also studied in [29]. However, with our method we are able to improve the
results of [29].

The bifractional Brownian motion, first introduced by [21], extended for val-
ues K ∈ (1, 2) such that HK ∈ (0, 1) by [1], and later analysed e.g. by [45], is
an extension of the fractional Brownian motion.

Definition 4.1. The bifractional Brownian motion is a centred Gaussian pro-
cess BH,K with BH,K

0 = 0 and covariance function

R(t, s) =
1

2K
(
(t2H + s2H)K − |t− s|2HK

)
with H ∈ (0, 1) and K ∈ (0, 2) such that HK ∈ (0, 1).

Remark 4.7. Note that K = 1 corresponds to the ordinary fractional Brown-
ian motion. It is straightforward to see that BH,K is HK-self-similar and Hölder
continuous of any order γ < HK. For more details on the properties of bifrac-
tional Brownian motion, we refer to [45] and references therein.

While the main emphasis in [45] was integration via regularisation it was
pointed out that one can prove the existence of α-variation in L1. Consequently,
the following result is obvious from Remark 2.3.

Proposition 4.4. Let BH,K be a bifractional Brownian motion with H ∈ (0, 1)
and K ∈ (0, 2) such that HK ∈ (0, 1), and let α = 1

HK . Then there exists a
constant CH,K such that

∑
tnk∈πn

∣∣∣BH,K
tk

−BH,K
tk−1

∣∣∣α → CH,KT

in Lp for any p ≥ 1.

Remark 4.8. In [45] the authors considered only the case K ∈ (0, 1]. However,
it is straightforward to obtain the claim for the case K > 1 by repeating the
arguments.

The next theorem studies the quadratic variation of the bifractional Brownian
motion.
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Proposition 4.5. Let BH,K be a bifractional Brownian motion with H ∈
(0, 1),K ∈ (0, 2) and HK ∈ (0, 1). Then

1.

V H,K
n :=

∑
tnk∈πn

(
BH,K

tk
−BH,K

tk−1

)2
[Δtk]2HK−1

→ 21−KT

in probability and in Lp for any p ≥ 1. Furthermore, the convergence holds
almost surely for any sequence of partitions satisfying |πn| = o( 1

(logn)γ ),

where;

• γ = max
(

1
2−2HK , 1

)
for K ∈ (0, 1],

• γ = 1
min(1,2H)+1−2HK for K ∈ (1, 2).

2. In the case K ∈ (0, 1] we have

sup
x∈R

∣∣∣∣∣P
(

V H,K
n − 21−KT√

V ar(V H,K
n − 21−KT )

< x

)
− P(Z < x)

∣∣∣∣∣ ≤ C|πn|min( 1
2 ,

3
2−2HK)

for some constant C and a standard normal random variable Z. In par-
ticular, central limit theorem holds for all values HK < 3

4 .
3. In the case K ∈ (1, 2) we have

sup
x∈R

∣∣∣∣∣P
(

V H,K
n − 21−KT√

V ar(V H,K
n − 21−KT )

<x

)
−P(Z <x)

∣∣∣∣∣≤C|πn|min(1,2H)−2HK+ 1
2 .

for some constant C and a standard normal random variable Z. In
particular, central limit theorem holds for all values of H,K satisfying
min (1, 2H)− 2HK + 1

2 > 0.

Proof. We assume K = 1 as the case K = 1 reduces to the ordinary fractional
Brownian motion covered by Proposition 4.2.

The function d(s, t) = E[BH,K
t −BH,K

s ]2 is differentiable off the diagonal and
we have

∂std(s, t) = C1|t− s|2HK−2 + C2
(ts)2H−1

(t2H + s2H)2−K

for some unimportant constants C1 and C2. Furthermore, we have

d(s, t) ∼ |t− s|2HK

as |t − s| → 0. Now the term |t − s|2HK−2 can be treated as in Theorem 3.3,
and for HK = 1

2 this term vanishes. Consider next the term

(ts)2H−1

(t2H + s2H)2−K
.
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We are left to bound integrals

I1 =

∫ tj−1

0

∫ tj

tj−1

(ts)2H−1

(t2H + s2H)2−K
dsdt

and

I2 =

∫ T

tj

∫ tj

tj−1

(ts)2H−1

(t2H + s2H)2−K
dsdt.

We consider only I1 since I2 can be treated similarly, and we denote by C an
unimportant constant which may vary from line to line. By change of variables
x = t2H , y = s2H and Tonelli’s theorem we have

I1 = C

∫ t2Hj−1

0

∫ t2Hj

t2Hj−1

(xy)
1

2H (2H−1)

(x+ y)2−K
x

1
2H −1y

1
2H −1dxdy

= C

∫ t2Hj−1

0

∫ t2Hj

t2Hj−1

(x+ y)K−2dxdy

= C

∫ t2Hj

t2Hj−1

∫ t2Hj−1

0

(x+ y)K−2dxdy

= C

∫ t2Hj

t2Hj−1

∫ t2Hj−1

0

(t2Hj−1 + y)K−1dxdy − C

∫ t2Hj

t2Hj−1

yK−1dy.

For K > 1 we have yK−1 ≤ C which leads to

∫ t2Hj

t2Hj−1

yK−1dy ≤ C(t2Hj − t2Hj−1) ≤ C|πn|min(1,2H)

by the fact that for T ≥ a > b ≥ 0 and γ ∈ (0, 1) we have aγ − bγ ≤ (a − b)γ

and for γ ≥ 1 we have aγ − bγ ≤ C(a− b) by the mean value theorem. Similarly,
for K < 1 we have∫ t2Hj

t2Hj−1

yK−1dy ≤ t2HK
j − t2HK

j−1 ≤ |πn|min(1,2HK).

Treating other integrals similarly the result follows by Theorem 3.3 with φ(x) =
x2HK−1.

Remark 4.9. It may seem that for the case K > 1 one gets better (i.e. larger
exponent) by computing

∫ t2Hj

t2Hj−1

yK−1dy = C(t2HK
j − t2HK

j−1 ) ≤ C|πn|min(1,2HK).

However, this analysis cannot be used to cover, e.g. integral
∫ t2Hj
t2Hj−1

(T + y)K−1dy.
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Remark 4.10. In order to compare our results with the existing literature, it
was proved in [29] that almost sure convergence holds for the value γ = 1

1−HK ,

where H ∈ (0, 1) and K ∈ (0, 1]. Note that setting K = 1 and H = 1
2 we have a

standard Brownian motion, and this produces half of the best possible rate. In
our result we have value γ = 1

2−2HK which is twice better compared to 1
1−HK .

Furthermore, we obtained an even better rate for the range 2HK > 1. Note
also that, to the best of our knowledge, the case K > 1 is not studied in the
literature before the present paper.

Remark 4.11. A particularly interesting case is the case HK = 1
2 . In this

case the quadratic variation exists in the ordinary sense which allows one to
develop stochastic calculus with respect to the process BH,K although BH,K

is not a semimartingale [45] if K ∈ (0, 1). However, for this process we obtain
similar condition to the one of standard Brownian motion. On the other hand,
if K ∈ (1, 2) and HK = 1

2 , then the process BH,K is a semimartingale. In
comparison, in this case we only obtain condition |πn|2H = o( 1

logn ) since K > 1

and HK = 1
2 implies H < 1

2 .

Remark 4.12. In the case K ∈ (0, 1] we obtain a sufficient condition HK < 3
4

for the central limit theorem to hold which of course is not surprising. Similarly,
in the case K ∈ (1, 2) we obtain sufficient condition HK < 3

4 provided that
H > 1

2 . However, in the case H < 1
2 something strange occurs. Indeed, if

HK ≥ 3
4 , then 2H + 1

2 − 2HK ≤ 0 so that the given Berry-Esseen bound does
not converge to zero. On the other hand, even if HK < 3

4 it is not necessarily
true that 2H + 1

2 − 2HK > 0 so that condition HK < 3
4 is no longer sufficient.

Indeed, even in the semimartingale case 2HK = 1 we have 2H + 1
2 − 2HK ≤ 0

for values H ∈
(
0, 1

4

]
.

4.5. Construction of other examples

In this subsection we briefly describe how other examples can be constructed.
Denote ΔXk = Xtk − Xtk−1

and Δtk = tk − tk−1. As before, the idea is to
consider quadratic variation defined by

V1(πn, X) :=

N(πn)−1∑
k=1

(ΔXk)
2

(Δtk)−1E (ΔXk)
2 .

Then, by construction, V1(πn, X) has finite energy. Consequently, by a modifi-
cation of Theorem 3.1 it suffices to show that

max
1≤j≤N(πn)−1

N(πn)−1∑
k=1

√
ΔtkΔtj√

E(ΔXk)2E(ΔXj)2
|E[(ΔXk)(ΔXj)]| → 0.
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This condition means that the increments of X are asymptotically independent
in the above sense. Furthermore, if the convergence is sufficiently fast, then The-
orem 3.1 implies almost sure convergence as well as the central limit theorem.
As a concrete example, this observation can be used in order to study quadratic
variations of the multifractional Brownian motion, introduced in [28] (cf. also
[13, 8]). Again, it suffices to study the asymptotic variance E(ΔXk)

2 although
in this case it depends heavily on the function H(t) as well. Similarly, other
examples can be defined by constructing the partition so that E(ΔXk)

2 can be
analysed.

Appendix A: Proof of Lemma 2.2

A simple application of (4) yields

EV 2
n =

n∑
k,j=1

(
E

[
Y

(n)
k Y

(n)
j

])2
.

Next we compute EV 4
n . We have

V 4
n =

n∑
i,j,k,l=1

∏
p∈{i,j,k,l}

[(
Y (n)
p

)2
− E

(
Y (n)
p

)2]
. (20)

Recall next that all information of a Gaussian vector is encoded to the covariance
matrix Γ(n) so that k-moments of a centred Gaussian vector (Y1, Y2, . . . , Yn) can
be computed by using the formula

E[Y k1
1 Y k2

2 . . . Y kn
n ] =

∑
σ

E[Yσ(1)Yσ(2)] . . .E[Yσ(n−1)Yσ(n)],

where the summation is over all permutations σ of numbers {1, 2, . . . , n}, pro-
ducing n! terms. Applying this to 8-dimensional vector (Y

(n)
k , Y

(n)
k , Y

(n)
j , . . . ,

Y
(n)
l ) and taking expectation on[(

Y
(n)
k

)2 (
Y

(n)
i

)2 (
Y

(n)
j

)2 (
Y

(n)
l

)2]

we obtain terms of form

A1(σ) =
[
E

[
Y

(n)
σ(1)Y

(n)
σ(2)

]]2 [
E

[
Y

(n)
σ(3)Y

(n)
σ(4)

]]2
,

A2(σ) = E

[
Y

(n)
σ(1)

]2
E

[
Y

(n)
σ(2)

]2 [
E

[
Y

(n)
σ(3)Y

(n)
σ(4)

]]2
,

A3(σ) = E

[
Y

(n)
σ(1)

]2
E

[
Y

(n)
σ(2)

]2
E

[
Y

(n)
σ(3)

]2
E

[
Y

(n)
σ(4)

]2
,

A4(σ) = E

[
Y

(n)
σ(1)Y

(n)
σ(2)

]
E

[
Y

(n)
σ(2)Y

(n)
σ(3)

]
E

[
Y

(n)
σ(3)Y

(n)
σ(1)

]
E

[
Y

(n)
σ(4)

]2
,
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and

A5(σ) = E

[
Y

(n)
σ(1)Y

(n)
σ(2)

]
E

[
Y

(n)
σ(2)Y

(n)
σ(3)

]
E

[
Y

(n)
σ(3)Y

(n)
σ(4)

]
E

[
Y

(n)
σ(4)Y

(n)
σ(1)

]
,

where σ = (σ(1), σ(2), σ(3), σ(4)) can be any permutation of indices {i, j, k, l}.
By symmetry of covariance and summing over symmetric set {1 ≤ i, j, k, l ≤
n} we obtain that, for each p = 1, . . . , 5 and any permutation σ, we have∑n

i,j,k,l=1 Ap(σ) =
∑n

i,j,k,l=1 Ap(σ0), where σ0 is any fixed permutation. For
example,

n∑
i,j,k,l=1

[
E

[
Y

(n)
i Y

(n)
j

]]2 [
E

[
Y

(n)
k Y

(n)
l

]]2

=

n∑
i,j,k,l=1

[
E

[
Y

(n)
i Y

(n)
k

]]2 [
E

[
Y

(n)
j Y

(n)
l

]]2
.

Consequently, we obtain

n∑
i,j,k,l=1

E

[(
Y

(n)
k

)2 (
Y

(n)
i

)2 (
Y

(n)
j

)2 (
Y

(n)
l

)2]
=

n∑
i,j,k,l=1

5∑
p=1

apAp(σ0)

for arbitrary reference permutation σ0 and some weights a = (a1, . . . , a5).
Note also that the weights ap, p = 1, . . . , 5 are independent of indices i, j, k, l
and the underlying Gaussian process. Now treating rest of the terms in∏

p∈{i,j,k,l}[(Y
(n)
p )2 − E(Y

(n)
p )2] similarly we conclude that

EV 4
n =

n∑
i,j,k,l=1

5∑
p=1

bpAp(σ0)

with some weights b = (b1, . . . , b5) independent of i, j, k, l and the underlying
Gaussian process. Next we claim that b = (12, 0, 0, 0, 24). Instead of computing
the weight vector b explicitly through combinatorial argument we rely on the
classical central limit theorem for a sequence of independent standard normal
random variables. We begin by computing the values b4 and b5 which are rel-
atively easy to compute directly. First note that terms A5 are produced only

by the term E[(Y
(n)
k )2(Y

(n)
i )2(Y

(n)
j )2(Y

(n)
l )2] which gives us the permutations

of indices {i, j, k, l}, leading to b5 = 4! = 24. Consider next b4. Terms of the

form A4 are produced from E[(Y
(n)
k )2(Y

(n)
i )2(Y

(n)
j )2(Y

(n)
l )2] by first picking

one variable, Y
(n)
k say, to get E[Y

(n)
k ]2 and then organising the remaining three

into 3! = 6 ways which produces 4! = 24 (the first one can be picked in 4
ways). On the other hand, computing the product (20) we obtain 4 terms of

form E[(Y
(n)
k )2](Y

(n)
i )2(Y

(n)
j )2(Y

(n)
l )2 and with similar analysis we obtain that

each term produces A4 exactly 3! = 6 times. Due to the minus sign in terms

−E[(Y
(n)
k )2] and the fact 24 − 4 × 6 = 0 we obtain b4 = 0. It remains to prove
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that b1 = 12 and b2 = b3 = 0. For this purpose let Y
(n)
k be a sequence of in-

dependent standard normal random variables Yk. Then by the classical central
limit theorem we have

Sn :=
1√
2n

n∑
k=1

[Y 2
k − EY 2

k ] → N (0, 1)

in distribution and consequently, ES4
n → 3. In this case we have

b1

n∑
i,j,k,l=1

A1(σ0) = b1n
2

b2

n∑
i,j,k,l=1

A3(σ0) = b2n
3

and

b3

n∑
i,j,k,l=1

A2(σ0) = b3n
4

so that

ES4
n =

1

4n2

[
b1n

2 + b2n
3 + b3n

4
]
.

Now since bk, k = 1, 2, 3 are independent of n and the underlying Gaussian
process, the convergence ES4

n → 3 implies b2 = b3 = 0 and b1 = 12. This
completes the proof.
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Hölder index of a Gaussian process. Annales de l’Institut Henri Poincaré,
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