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Abstract: This article considers inference for a common coefficient of vari-
ation (CV) shared by several normal populations. The confidence distribu-
tions (CD) are used to combine the information about each CV from dif-
ferent sources. A new procedure for constructing a confidence interval for
the common CV is developed based on a combined confidence distribution
for the inverse of the CV. The new derived CD interval has a theoretical
exact frequentist property. Simulation results demonstrate that the new
confidence intervals perform very well in terms of empirical coverage prob-
ability and average interval length. Finally, the proposed new procedure is
illustrated on a real data example.

MSC 2010 subject classifications: Primary 62F25; secondary 62P99.
Keywords and phrases: Average interval length, coefficient of variation,
confidence distribution, confidence interval, empirical coverage.

Received July 2014.

1. Introduction

The coefficient of variation (CV) of a distribution is defined to be the ratio
of the standard deviation σ to the mean µ, i.e., η = σ

µ . This parameter is a
useful measure of dispersion because it is not affected by the units of measure-
ment, and it has many applications in different scientific fields. For example, in
toxicology, the CV is often used as a measure of precision within and between
laboratories, or among replicates for each treatment concentration. In climatol-
ogy, Ananthakrishnan and Soman [3] used the CV in the analysis of rainfall
data. In finance, Miller and Karson [20] used the CV as a measure of relative
risks. Hamer et al. [11] also used the CV to assess homogeneity of bone test
samples produced by a new method.

There has been a significant amount of work on the CV in the literature;
e.g., McKay [19], Johnson and Welch [13], Koopmans et al. [14], Ahmed [1],
Vangel [29], Feltz and Miller [7], Fung and Tsang [10], Nairy and Rao [21], Tian
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[28], Verrill and Johnson [30], Forkman [9], Liu et al. [18], and Krishnamoorthy
and Lee [15], etc. Among these works, Ahmed [1], Tian [28] and Forkman [9]
considered the problem of estimating the coefficients of variance (CsV) when
it is apriori suspected that several CsV are the same. As Tian [28] noted the
need to infer the common population CsV from several samples, especially in
meta-analysis, it is necessary to put these information together to give a more
accurate pooling inference about the common CV after we accepted the equality
of CsV from different populations.

In this paper, we are interested in the problem just mentioned above, that is,
investigating how to pool the information about a common CV from different
populations and give confidence intervals for it. For this purpose, we will use a
confidence distribution (CD) as a main tool, take advantage of its good prop-
erty for combining information and derive a new confidence interval based on
a combined CD for the common inverse of the CV. It is worth noting that the
combined CD for the common inverse of the CV is exact, so the derived confi-
dence interval based on this CD naturally have exact frequentist property, and
to our knowledge, no existing method has this feature for this problem so far.

The rest of this paper is organized as follows. Section 2 reviews the concept
and some useful related conclusions about CD. As an illustration of how to
construct CD, a CD for the inverse of the CV is given by using the idea of
fiducial generalized pivotal quantity. In section 3, we construct the CD and the
combined CD for a common inverse of the CV and give the confidence interval
of the common CV on the basis of the combined CD. Section 4 provides the
simulation results. In section 5, we illustrate the proposed new CD method with
one real data set. The last section summarizes this paper.

2. A review of confidence distribution and related conclusions

2.1. Definition of confidence distribution

The concept of CD was formulated by Schweder and Hjort [23] and Singh et al.
[24], which was pointed out as “Neymannian interpretation of Fisher’s fiducial
distribution”. As a distribution estimator, a CD function contains a wealth of
information for inference, such as point estimators, confidence intervals and p-
values for frequentist statisticians. Schweder and Hjort [23] suggested that a CD
is a “frequentist analogue of a Bayesian posterior.”

Suppose X1, X2, . . . , Xn are n independent random draws from a population
F and X is the sample space corresponding to the data set Xn = (X1, X2, . . . ,
Xn)

T . Let θ be a parameter of interest associated with F (F may contain other
nuisance parameters), and let Θ be the parameter space. The following is the
CD definition formally proposed by Singh et al. [24, 25].

Definition 2.1. A function Hn(Xn, ·) : X × Θ → [0, 1] is called a confidence
distribution (CD) for a parameter θ if it satisfies the following two requirements:
(i) Hn(·) is a continuous distribution function given Xn ∈ X ; (ii) at the true
parameter value θ = θ0, Hn(θ0) = Hn(Xn, θ0), as a function of the sample Xn,
has the uniform distribution U(0, 1).
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The function Hn(·) is called an asymptotic confidence distribution (aCD) if

requirement (ii) above is replaced by (ii)′, at θ = θ0,Hn(θ0) = Hn(Xn, θ0)
W→

U(0, 1) as n → +∞, and the continuity requirement on Hn(·) is dropped.
Singh et al. [25] proposed several methods to construct a CD for a parameter

of interest, such as using fiducial distributions, significant(p-value) functions,
Bootstrap distributions and likelihood functions, etc. The following example of
constructing a CD is relevant to our research in this paper.

Example 2.1 (CD for the inverse of the CV). Suppose X1, X2, . . . , Xn are n
independent random draws from a population N(µ, σ2), and the parameter of
interest is the inverse of the CV, i.e. ρ = µ

σ . Now we try to construct the CD
for ρ and use the idea of constructing a fiducial generalized pivotal quantity in
Hannig et al. [12]. Denote X = 1

n

∑n
i=1 Xi, S

2
i = 1

n

∑n
i=1(Xi −X)2. According

to Hannig et al. [12], we derive pivot equations,

X
d
= µ+

σ√
n
E1,

√
nS

d
= σE2, (2.1)

where E1, E2 are independent, and E1 ∼ N(0, 1), E2
2 ∼ χ2(n − 1). The symbol

d
= means equal in distribution. Solving µ, σ and substituting them into ρ, we
obtain

ρ̂F =
X − S · E1/E2√

nS/E2
. (2.2)

It can also be expressed as

ρ̂F =
X − S(X

∗ − µ)/S∗

σS/S∗

△
= Rρ(D,D

∗; ξ) (2.3)

by the form of a fiducial generalized pivotal quantity, where ξ = (µ, σ), and

D
∗ = (X

∗
, S∗) is the independent copy of D = (X,S). Here ρ̂F can be viewed

as a CD random variable for ρ, and the concept of a CD random variable is
mentioned in Xie and Singh [32].

Denote Hρ(D; θ) = P (Rρ(D,D
∗; ξ) ≤ θ); we will show that Hρ(D; θ) is a CD

for the parameter ρ. Obviously, Hρ(d ; θ) is a continuous cumulative distribu-

tion function given D = d
△
= (x, s), where d is the observed value of D, the

first condition (i) in Definition 2.1 is satisfied. When θ is taken to be the real

parameter, that is, θ = ρ = µ
σ , Rρ(D,D

∗; ξ) = X−S(X
∗

−µ)/S∗

σS/S∗
≤ µ

σ can be ex-

pressed equally as X
S ≤ X

∗

S∗
after simplifying the expression. It is well known

that P (XS ≤ X
∗

S∗
) ∼ U [0, 1], so condition (ii) in Definition 2.1 is also satisfied. �

The CD derived above for the inverse of the CV is appealing because of the
exact property. It is worth noting that we also can construct an asymptotic CD
for the CV, i.e., η = σ

µ using a similar procedure to the one mentioned above.
However, because there exists an exact CD for the inverse of the CV, we will
take advantage of this property and focus on the CD of the inverse of the CV,
and we will see later that it is convenient to do so.
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2.2. The general framework of CD combination

Singh et al. [24] developed a general recipe for combining CD functions using a
coordinate-wise monotone function from a k-dimensional cube [0,1]k to the real
line R = (−∞,+∞). Assume Hi(θ) = Hi(Xi, θ), i = 1, . . . , k, are CD functions
for the same parameter θ from k different samples Xi and the sample size of Xi

is ni. Let gc(u1, . . . , uk) be a given continuous function on [0,1]k → R which is
monotone. Singh et al. [24] suggested to combine the k CD functions as

Hc(θ) = Gc{gc(H1(θ), . . . , Hk(θ))} (2.4)

Here, the functionGc is totally determined by the monotone gc function: Gc(t) =
P (gc(U1, . . . , Uk) ≤ t), where U1, . . . , Uk are independent U [0, 1] random vari-
ables. When the underlying true parameter values of the k individual CD func-
tions Hi(θ)s are the same, it is easy to verify that Hc(θ) is also a CD function
for θ, and Hc(θ) contains information from all k samples, and it is referred to
as a combined CD function. Usually we can take

gc(u1, . . . , uk) = F−1
0 (u1) + · · ·+ F−1

0 (uk), (2.5)

where F0(·) is a given cumulative distribution function. Singh et al. [24] discussed
the performance of combined CD functions in terms of Bahadur slope when using
different F0, such as the standard normal distribution F0(t) = Φ(t), exponential
distribution F0(t) = (1 − e−t)1(t>0) or F0(t) = et1(t≤0).

For further details about CD and combined CD we refer readers to Singh
et al. [24, 25], Schweder and Hjort [23], Efron [6], Xie et al. [31], Xie and Singh
[32], Claggett et al. [4], Liu et al. [16, 17] and Yang et al. [33], etc.

3. A new confidence interval for the common CV based on the

combined CD

3.1. A combined CD for the common inverse of the CV

We start by introducing the necessary notation. LetXi1, Xi2, . . . , Xini
be the ith

random sample from a normal population with mean µi and variance σ2
i = µ2

i η
for i = 1, 2, . . . , k, so that η is the common population CV, the samples are
mutually independent. Denote X i =

1
ni

∑ni

j=1 Xij , S
2
i = 1

ni

∑ni

j=1(Xij − Xi)
2,

i = 1, 2, . . . , k and xi, s
2
i , i = 1, 2, . . . , k are their observed values, respectively.

It is easy to obtain k independent CDs for the common inverse of the CV
ρ = 1

η from each sample according to Example 2.1 in section 2. Denote the CD
for the common inverse of the CV based on the ith sample is

Hi
ρ(Di; θ) = P (Ri(Di,D

∗
i ; ξi) ≤ θ), (3.1)

where Ri(Di,D
∗
i ; ξi) =

Xi−Si(X
∗

i
−µi)/S

∗

i

σiSi/S∗

i

, D∗
i = (X

∗

i , S
∗
i ) is the independent copy

of Di = (X i, Si), ξi = (µi, σi) for i = 1, 2, . . . , k and denote D = (D1, . . . ,Dk),
D

∗ = (D∗
1, . . . ,D

∗
k).
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Theorem 3.1. Suppose any continuous function gc(u1, u2, . . . , ud) : [0, 1]k →
R is monotone in each coordinate, U1, U2, . . . , Uk are independent U [0, 1] dis-
tributed random variables, Gc(·) is the continuous cumulative distribution func-
tion of gc(U1, U2, . . . , Uk); denote Hc(u1, u2, . . . , uk) = Gc(gc(u1, u2, . . . , uk)),
then

HC
ρ (θ) = Hc(H

1
ρ(D1; θ), . . . , H

k
ρ (Dk; θ)) (3.2)

is a CD for the common inverse of the CV, it is a combined CD, where Hi
ρ(Di; θ),

i = 1, . . . , k are defined as (3.1).

The proof is straightforward and is omitted.

3.2. Constructing confidence interval of the common CV

As Cox [5] mentioned, a confidence distribution can be viewed as a “sample-
dependent distribution function that can represent confidence intervals of all
levels” for a parameter of interest. It is evident from requirement (ii) in Defini-
tion 2.1 that the intervals (−∞, H−1

n (1 − α)] and [H−1
n (α),+∞) provide level

100(1−α)% one-sided confidence intervals for the parameter of interest θ, for any
α ∈ (0, 1). Also, [H−1

n (α1), H
−1
n (1−α2)] is a level 100(1−α1−α2)% confidence

interval for the parameter θ, for any α1 > 0, α2 > 0, and α1 + α2 < 1.

Proposition 3.1. Assume hα

2
(d), h1−α

2
(d) are α

2 , 1 − α
2 quantiles of HC

ρ (θ)
respectively given sample values D = d, then [hα

2
(d), h1−α

2
(d)] is a confidence

interval of ρ with 100(1− α)% confidence level. For the common CV η,
[
min {h−1

1−α

2

(d), h−1
α

2

(d)},max {h−1
1−α

2

(d), h−1
α

2

(d)}
]

(3.3)

is the confidence interval with 100(1− α)% confidence level.

According to the definition of a CD, this kind of confidence intervals have
exact frequentist property. In order to derive the confidence interval for CV, we
choose gc just as function (2.5). Regarding the choice of F0, at first, we consider
an exponential distribution, i.e., F0(t) = et1(t≤0). There are two reasons for
this choice. On one hand, in theory, theorem 3.2 in Singh et al. [24] showed
that an exponential distribution based combining method is optimal in terms of
achieving the largest possible value of Bahadur slopes. On the other hand, we
also conducted numerical simulation for three kinds of exponential distributions
mentioned in Singh et al. [24], and F0(t) = et1(t≤0) was the best choice according
to the simulation results. In addition, the standard normal distribution is often
used in combining methods, so we tried it too. Therefore, according to Singh
et al. [24], we have two kinds of combined CD as the following,

HE(y) = P

(
χ2
2k ≥ −2

k∑

i=1

logHi
ρ(Di; y)

)
, (3.4)

HN (y) = Φ

(
1√
k

k∑

i=1

Φ−1
(
Hi

ρ(Di; y)
)
)
, (3.5)
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where Hi
ρ(Di; y) is CD that is defined in (3.1) based on the ith sample for

i = 1, 2, . . . , k.

3.3. Computing algorithm

The new proposed confidence intervals can be calculated through Monte Carlo
simulation. For a given data set Xij , i = 1, 2, . . . , k, j = 1, 2, . . . , ni, the algo-
rithm follows

Step 1. Compute xi, s
2
i for i = 1, 2, . . . , k.

Step 2. For the calculated values (xi, s
2
i ), simulate the empirical distribution

according to formula (3.1) for i = 1, 2, . . . , k.
Step 3. Simulate the empirical distribution following (3.4) and (3.5).
Step 4. Obtain the empirical α

2 and 1− α
2 quantiles of (3.4) and (3.5) according

to Step 3.
Step 5. Compute the new intervals according to Proposition 3.1.

4. Simulation study

In this section, we describe the simulation studies that we conducted to compare
the new proposed confidence intervals (denote the methods as CDEM for expo-
nential distribution based combining method and CDNM for standard normal
distribution based combining method, respectively) for the common CV η with
two previously existing methods proposed by Tian [28](denote the method as
TM) and Forkman [9] (denote the method as FM). It is worth noting that both
TM and FM are asymptotic inference methods, in fact, to our knowledge, there
is no other exact inference method for this problem besides the CD method we
proposed in this paper. As Fung and Tsang [10] stated, the range from 0.05 to
0.5 is chosen since the CV rarely exceeds 0.5 in medical and biological studies,
so we set the common population coefficient of variation to 1

20 ,
1
10 ,

1
5 ,

1
3 and 1

2 .
We consider cases with 3, 5 and 8 samples with sample size from 3 to 20. For
each parameter setting, 5000 random samples are generated.

Table 1 presents the empirical coverage probabilities and average interval
lengths of 95% two-sided confidence intervals for the situations of 3 samples.
Figures 1 and 2 summarize the simulation results in Table 1 through boxplots.
Figure 1 shows that all of the four methods have good average empirical con-
fidence level that is very close to the nominal level 95%, but TM has larger
range than CDEM, CDNM and FM. Figure 2 shows the differences of the av-
erage confidence interval lengths, relative to the CDEM interval, for the other
three procedures. These relative lengths are denoted by RL, which is defined as
ALM−ALCDEM

ALCDEM
, where ALM denotes the average length of a competing interval

and ALCDEM denotes the average length of CDEM interval. From Figure 2,
we see that CDEM has smaller average lengths than CDNM, TM and FM.
In some settings, the average lengths of TM intervals are 1.4 times or more
of CDEM’s intervals. We also notice that the interval length performance of
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Table 1

Empirical coverage probabilities and average interval length of 95% two-sided confidence
intervals for 3 samples

CV Method αCV AV L αCV AV L αCV AV L

(5, 5, 5)∗ (10, 10, 10) (20, 20, 20)

CDEM .952 .0541 .947 .0277 .952 .0190
1

20
CDNM .954 .0599 .948 .0287 .955 .0191
TM .955 .1068 .955 .0330 .951 .0203
FM .951 .0557 .945 .0283 .947 .0190

CDEM .949 .1090 .951 .0557 .950 .0379
1

10
CDNM .949 .1215 .950 .0575 .952 .0383
TM .954 .2172 .953 .0660 .950 .0405
FM .947 .1135 .946 .0571 .949 .0382

CDEM .951 .2258 .949 .1153 .950 .0786
1

5
CDNM .952 .2506 .951 .1200 .952 .0789
TM .952 .4629 .947 .1340 .945 .0815
FM .954 .2463 .952 .1202 .948 .0793

CDEM .959 .3984 .951 .2055 .945 .1390
1

3
CDNM .951 .4326 .949 .2135 .946 .1404
TM .926 .9306 .934 .2290 .926 .1368
FM .939 .5161 .951 .2230 .945 .1435

CDEM .955 .5125 .953 .3360 .949 .2342
1

2
CDNM .955 .5124 .954 .3515 .949 .2362
TM .929 2.006 .921 .3612 .895 .2092
FM .978† .9936 .959 .4128 .956 .2517

∗Sample Size
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Fig 1. Comparison of empirical coverage
probabilities for settings with 3 samples.
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CDNM is worse than CDEM in most settings, and even worse than FM, espe-
cially when CV is relatively small, such as 1

20 ,
1
10 and 1

5 . With the sample size
increasing, the performance of CDNM is approaching to CDEM, as shown in
situations of (20, 20, 20).

In addition, we notice that FM did not work sometimes in several settings of
small sample sizes, such as (5, 5, 5), when we conducted Monte Carlo simulation.
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Table 2

Empirical coverage probabilities and average interval length of 95% two-sided confidence
intervals for 5 samples

CV Method αCV AV L αCV AV L αCV AV L

(5, 5, 5, (10, 10, 10, (20, 20, 20,
5, 5)∗ 10, 10) 20, 20)

CDEM .953 .0333 .955 .0217 .954 .0150
1

20
CDNM .951 .0350 .954 .0218 .953 .0147
TM .935 .0540 .949 .0258 .945 .0157
FM .942 .0337 .955 .0215 .957 .0147

CDEM .952 .0670 .952 .0435 .957 .0299
1

10
CDNM .951 .0708 .954 .0438 .958 .0293
TM .937 .1092 .948 .0517 .949 .0313
FM .948 .0683 .955 .0435 .956 .0296

CDEM .949 .1382 .949 .0897 .953 .0613
1

5
CDNM .947 .1462 .945 .0903 .949 .0599
TM .933 .2275 .927 .1049 .942 .0630
FM .942 .1432 .945 .0905 .948 .0607

CDNM .962 .2522 .951 .1593 .950 .1092
1

3
CDNM .955 .2634 .953 .1606 .950 .1068
TM .933 .4294 .926 .1791 .933 .1063
FM .941 .2727 .949 .1645 .951 .1088

CDEM .955 .4055 .957 .2696 .950 .1835
1

2
CDNM .954 .4057 .955 .2706 .948 .1788
TM .883 .8839 .923 .2837 .932 .1632
FM .937† .5754 .957 .2941 .952 .1892

∗Sample Size

The reason is that the χ2
1−α

2

−∑k
i=1(ni−1)ui and χ2

α

2

−∑k
i=1(ni−1)ui in formula

(12) of Forkman [9] may be negative. We discarded these negative outcomes
and computed the empirical coverage probabilities only using those effective
results. The simulated probabilities of these situations are denoted with symbol
† following the numbers in Tables 1–3. We also see that TM and FM have
bad performances of both empirical coverage probabilities and interval lengths,
especially in the setting of small samples and simultaneously relative large CV
value such as 1

2 . On the basis of the above analysis, we recommend the CD
intervals for the common CV.

Tables 2 and 3 are analogous to Table 1 for 5 and 8 samples, respectively, and
Figures 3–6 are analogous to Figures 1 and 2 for 5 and 8 samples, respectively.
Tables 2 and 3 show that TM are liberal for small sample sizes and large CVs.
Regarding interval lengths, in Tables 2 and 3, we notice that the interval lengths
of CDNM are a little bit shorter than the counterpart of CDEM in the last
situation of sample size design. It shows that average interval length performance
of CDNM intervals becomes closer to or even better than CDEM as sample
size increases to some extent. The anonymous referee points out that the CD
combining method allows use of non-trivial weights to improve the efficiency,
so we use a weighted CDNM (CDWNM) to study the CD combining method
further. The weighted combined CD formula based on the standard normal
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Table 3

Empirical coverage probabilities and average interval length of 95% two-sided confidence
intervals for 8 samples

CV Method αCV AV L αCV AV L αCV AV L

(5, 5, 5, 5, (10, 10, 10, 10, (20, 20, 20, 20,
5, 5, 5, 5)∗ 10, 10, 10, 10) 20, 20, 20, 20)

CDEM .953 .0258 .956 .0171 .955 .0116
1

20
CDNM .956 .0270 .953 .0171 .956 .0116
TM .901 .0436 .930 .0205 .940 .0125
FM .945 .0259 .949 .0168 .948 .0114

CDEM .951 .0519 .948 .0344 .956 .0238
1

10
CDNM .952 .0541 .947 .0341 .959 .0229
TM .917 .0881 .923 .0412 .946 .0248
FM .947 .0523 .944 .0339 .956 .0230

CDEM .956 .1079 .952 .0702 .951 .0487
1

5
CDNM .955 .1122 .952 .0700 .951 .0471
TM .890 .1858 .923 .0829 .930 .0499
FM .955 .1095 .945 .0699 .948 .0483

CDEM .957 .1945 .953 .1248 .952 .0863
1

3
CDNM .955 .2003 .952 .1243 .950 .0837
TM .870 .3549 .898 .1423 .925 .0843
FM .945 .2037 .947 .1271 .954 .0853

CDEM .953 .3234 .951 .2112 .949 .1440
1

2
CDNM .952 .3296 .951 .2088 .951 .1384
TM .859 .7518 .845 .2270 .873 .1289
FM .938 .3813 .949 .2241 .952 .1462

∗Sample Size

distribution is given by

HWN (y) = Φ




1√
k∑

j=1

w2
j

k∑

i=1

wiΦ
−1
(
Hi

ρ(Di; y)
)




, (4.1)

where Hi
ρ(Di; y) is the CD defined as before and wi is the weight for the ith

component, here we try to use the sample size, i.e., ni, as the weight. Obviously,
based on this weighted plan, CDNM and CDWNM are equivalent under the
situations of equal sample sizes. Hence, we only consider the settings of unequal
sample sizes. Table 4 presents the design and corresponding simulation results.
In theory, the CDWNM still has the exact frequentist property as we mentioned
before, so the focus is on the average interval length. From the interval length
results in Table 4, it is obvious that the average lengths of CDWNM are indeed
shorter than the counterparts of CDNM, and also shorter than CDEM in many
situations. The above weighted procedure shows an appealing property of the
combining CD method.

According to Tables 2–4, TM is also much longer than the other methods.
FM has similar performances as CDEM and CDWNM in some settings of 5 and
8 samples. However, considering the exact property of CD based method and
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fidence interval length for settings with 8
samples.

above mentioned possibly negative values during the process of calculating FM
intervals, the CD based intervals are better choices for practice use.

5. An application to a real data example

For illustration purposes, we consider a real data set derived from a field experi-
ment in two experiment stations of the China Agricultural University. In agricul-
ture, the CV is a very important criterion to measure experimental variability.
In general, lower magnitude of CV is the reflection of reliability (precision) of the
experimental results (Patel et al. [22], Taylor et al. [26]). Therefore, agricultural-
ists want to know the CV information in field experiments before further study.
They are also concerned with the estimation of the common CV if the equality of
CsV in different experimental fields can be reasonably assumed, because many
agricultural experiments are conducted in different fields of different locations,
the common CV shows the common uniformity of these different fields.
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Table 4

Empirical coverage probabilities and average interval length of 95% two-sided confidence
intervals for comparison of CDNM and CDWNM

CV Method αCV AV L αCV AV L αCV AV L

(3, 4, 5) (5, 8, 15) (10, 20, 30)

CDEM .949 .0541 .948 .0314 .955 .0201
1

20
CDNM .951 .0597 .955 .0314 .956 .0196
CDWNM .951 .0589 .951 .0306 .955 .0193
TM .948 .1067 .952 .0369 .949 .0204
FM .946 .0556 .948 .0297 .951 .0190

CDEM .950 .2260 .948 .1300 .951 .0829
1

5
CDNM .953 .2508 .947 .1300 .955 .0811
CDWNM .953 .2473 .948 .1272 .954 .0799
TM .964 .4657 .945 .1500 .953 .0821
FM .946 .2455 .944 .1271 .955 .0792

CDEM .946 .5076 .958 .3610 .953 .2474
1

2
CDNM .951 .5003 .960 .3690 .953 .2428
CDWNM .949 .4940 .956 .3633 .955 .2400
TM .995 2.075 .899 .4451 .901 .2125
FM .976† 1.206 .952 .4444 .960 .2513

(3, 3, 4, (5, 8, 10, (10, 15, 20,
5, 5) 12, 15) 25, 30)

CDEM .962 .0404 .953 .0225 .952 .0155
1

20
CDNM .958 .0433 .955 .0223 .952 .0149
CDWNM .958 .0426 .953 .0219 .953 .0148
TM .935 .0900 .945 .0266 .956 .0158
FM .947 .0405 .952 .0214 .948 .0145

CDEM .951 .1702 .955 .0928 .948 .0636
1

5
CDNM .956 .1819 .953 .0922 .949 .0614
CDWNM .954 .1792 .953 .0909 .951 .0609
TM .940 .4111 .942 .1087 .936 .0635
FM .946 .1738 .952 .0899 .943 .0610

CDEM .960 .4596 .959 .2788 .952 .1898
1

2
CDNM .957 .4571 .957 .2768 .955 .1823
CDWNM .951 .4496 .950 .2736 .953 .1811
TM .998 1.998 .875 .3183 .890 .1650
FM .955† .8100 .947 .2963 .957 .1890

In general, a field, or a block is divided into many plots with equal size in
agricultural experiments, then different types of seeds are randomly planted to
these plots for selecting high yield type of seed or other experimental purposes.
Among these planted seeds, one type of seed such as wild type with stable
traits must be planted as control group, and the yield data of plots with this
kind of seed will be used to compute CV. The data set we used here describes
three groups of crop yields of plots with wild type seeds from three different
experimental blocks, respectively; one block lies in Beijing experiment station
of China Agriculture University, the other two in Hebei experiment station of
China Agriculture University. Some descriptive statistics of the original data are
given in Table 5. The unit of the original data is kilogram per hectare (Kg/Ha).
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Table 5

Some descriptive statistics for crop yields from three different experimental blocks

Sample Size Xi(Kg/Ha) Si

Block 1 32 4881.3 1599.1
Block 2 32 6628.2 2032.1
Block 3 21 6512.0 1612.9

Table 6

Nominally 90% and 95% Confidence Intervals (CI) on common CV for the data set of crop
yields

Method 90%CI 90%CI Length 95%CI 95%CI Length

CDEM (0.2610, 0.3372) 0.0762 (0.2568, 0.3510) 0.0942
CDNM (0.2634, 0.3486) 0.0852 (0.2574, 0.3594) 0.1020
CDWNM (0.2622, 0.3480) 0.0858 (0.2556, 0.3588) 0.1032
TM (0.2709, 0.3527) 0.0818 (0.2633, 0.3621) 0.0987
FM (0.2652, 0.3518) 0.0866 (0.2589, 0.3628) 0.1039

Shapiro-Wilk method is used to test the normality of every sample and there is
no sufficient evidence to reject the normal assumption. Then we use the methods
mentioned in Nairy and Rao [21] to test the homogeneity of CsV, since there is
also no sufficient evidence to reject the equality of CsV, it may be reasonable to
assume that the CsV of the three different blocks data are common. Therefore,
on the basis of above analysis and assumptions, we are interested in making
inference about the common CV based on these three samples.

The 90% and 95% confidence intervals for the common CV based on the above
methods are given in Table 6. It is easy to see that the new CDEM confidence
intervals have the shortest interval lengths.

6. Concluding remarks

In this article, we propose a new interval estimation procedure for a common CV
shared by several normal populations using a CD and combined CD approach.
We report simulation studies conducted to compare confidence intervals for
common CV η with two other confidence intervals from the existing literature.
The results of simulation studies show that the proposed CD intervals for η are
satisfactory in terms of both coverage probability and average interval length.
In theory, the new CD intervals have exact frequentist property because of the
exact combined CD for the inverse of the CV ρ. We also present a real data set
to illustrate the use of the proposed procedure. All these results confirm that
the CD intervals can be recommended for practical use instead of the methods
previously discussed in the literature.
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