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1. Introduction

We congratulate the authors for this very stimulating paper. Testing statistical
composite hypotheses is a very difficult area of the mathematical statistics the-
ory and optimal solutions are found in very seldom cases. It is precisely in this
respect that the present paper brings a new insight and a powerful contribu-
tion. The optimality of solutions depends strongly on the criterion adopted for
measuring the risk of a statistical procedure. In our opinion, the novelty here
lies in the introduction of a new criterion different from the usual one (compare
criterions (2.1) and (2.2) below). With this new criterion, a minimax optimal
solution can be obtained for rather general classes of composite hypotheses and
for a vast class of statistical models. This solution is nearly optimal with respect
to the usual criterion. The more remarkable results are contained in Theorem
2.1 and Proposition 3.1 and are illustrated by numerous examples.

In what follows, we give some more precise details on the main results nec-
essary to enlighten the strength and the limits of the new theory.

2. The main results

2.1. Theorem 2.1

In this paper, the authors consider a parametric experiment (Ω, (Pμ)μ∈M) where
the parameter setM is a convex open subset of Rm. From one observation ω, it is
required to build a test deciding between two composite hypothesesHX : μ ∈ X,
HY : μ ∈ Y where X,Y are convex compact subsets of M. Assumptions on the
subsets X,Y are thus quite general and the problem is taken as symmetric
(no distinction is done between the hypotheses such as choosing H0 versus H1).
We come back to this point later on.
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A test φ is identified with a random variable φ : Ω → R and the decision rule
for HX versus HY is

φ < 0 ⇔ reject HX , φ ≥ 0 ⇔ accept HX

so that −φ is a decision rule for HY versus HX .
The theory does not consider randomized tests which are found to be optimal

tests in the classical theory for discrete observations.
The usual risk of a test is based on the two following errors:

R(φ) := max{εX(φ) := sup
x∈X

Px(φ < 0), εY (φ) := sup
y∈Y

Py(φ ≥ 0)}. (2.1)

We use the notation εX(φ), εY (φ) to stress on the dependence on φ. An optimal
minimax test with respect to the classical criterion would be a test achieving

min
φ

max
(x,y)∈X×Y

(Px(φ < 0) + Py(φ ≥ 0)).

The authors introduce another risk r(φ), larger than R(φ) by the simple Markov
inequality:

r(φ) := max{sup
x∈X

Ex(e
−φ), sup

y∈Y
Ey(e

φ)}. (2.2)

The main result contained in Theorem 2.1 is that there exists an optimal mini-
max solution with respect to the augmented criterion: a triplet (φ∗, x∗, y∗) exists
that achieves

min
φ

max
(x,y)∈X×Y

(Ex(e
−φ) + Ey(e

φ)) := 2 log ε∗ (2.3)

Such a triplet can be explicitly computed in classical examples (discrete, Gaus-
sian, Poisson) together with the value ε∗. Moreover, the usual error probabilities
εX(φ∗), εY (φ∗) can be computed too.

Nevertheless, conditions on the parametric family are required and the opti-
mal test is to be found in a specific class F of tests. The whole setting (condi-
tions 1.–4.) must be “a good observation scheme” which roughly states:

• First, the parametric family must be an exponential family with its natural
parameter set: ( ′ denotes the transpose)

dPμ(ω) = pμ(ω) dP (ω) = exp (μ′S(ω)− ψ(μ)) dP (ω), (2.4)

M = interior of {μ ∈ R
m,

∫
Ω

exp (μ′S) dP < +∞}

S : ω ∈ Ω → S(ω) ∈ R
m.

• The class F of possible tests is a finite-dimensional linear space of contin-
uous functions, and contains constants and all Neyman-Pearson statistics
log(pμ(.)/pν(.)). This is not a surprising assumption but means that the
class of tests among which an optimal solution is to be found is exactly

F = {a′S + b, a ∈ R
m, b ∈ R} (2.5)
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• Condition 4. is more puzzling: the class F must be such that for all φ ∈ F ,

μ → log

∫
Ω

eφpμ dP

is defined and concave in M. This means that:

μ → log

∫
Ω

exp [(a′ + μ′)S + b− ψ(μ)] dP

is defined and concave in μ ∈ M. This may reduce the class F . On the
three examples (discrete, Gaussian, Poisson) condition 4. is satisfied. How-
ever, on other examples (see the discussion below), condition 4. together
with condition 3. requires a comment.

Because of (2.4) and (2.5), the computation of

(φ, x, y) → Ex(e
−φ) + Ey(e

φ)

is easy and the solution of (2.3) is obtained by solving a simple optimization
problem. Theorem 2.1 provides the solution φ∗ = (1/2) log(px∗/py∗) and a re-
markable result is that:

ε∗ = ρ(x∗, y∗)

where ρ is the Hellinger affinity of Px∗ , Py∗ .
An important point too concerns the translated detectors φa

∗ := φ∗−a. Equa-
tion (4), p. 4, shows that by a translation, the probabilities of wrong decision
can be upper-bounded as follows:

εX(φa
∗) ≤ eaε∗, εY (φ

a
∗) ≤ e−aε∗.

Therefore, by an appropriate choice of a, one can easily break the symmetry
between hypotheses, choose H0 and H1 and reduce one error while increasing
the other one.

Examples (2.3.1, 2.3.2, 2.3.3) are particularly illuminating. All computations
are easy and explicit.

The extension of the theory to repeated observations is relatively straightfor-
ward due to the exponential structure of the parametric model and we will not
discuss it.

2.2. Proposition 3.1

Another very powerful result concerns the case where one has to decide not
only on a couple of hypotheses but on more than two hypotheses. The testing
of unions is an impressive result. The problem is of deciding between:

HX : μ ∈ X =
m⋃
i=1

Xi, HY : μ ∈ Y =
n⋃

i=1

Yi
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on the basis of one observation ω ∼ pμ. Here, Xi, Yj are subsets of the parameter
set. The authors consider tests φij available for the pair (HXi , HYj ) such that

Ex(e
−φij ) ≤ εij , ∀x ∈ X, Ey(e

φij ) ≤ εij , ∀y ∈ Y,

(for instance the optimal tests of Theorem 2.1, but any other test would suit)
and define the matrices E = (εij) and

H =

[
0 E
E′ 0

]
.

An explicit test φ for deciding between HX and HY is built using an eigenvector
of H and the risk r(φ) of this test is evaluated with accuracy: it is smaller than
||E||2 the spectral norm of E.

A very interesting application, which is illustrated on numerous examples, is
when HX = H0 : μ ∈ X0 is one hypothesis (not a union) and HY =

⋃n
j=1 Hj :

μ ∈
⋃n

j=1 Yj is a union. One simply builds for j = 1, . . . , n the optimal tests
φ∗(H0, Hj) := φ0j with errors bounded by ε0j (obtained, for instance, by The-
orem 2.1). The matrix E is the (1, n) matrix E = [ε01 . . . ε0n]. As E′E has
rank 1, its only non null eigenvalue is equal to Tr(E′E) =

∑n
j=1 ε

2
0j = (||E||2)2.

The eigenvector of H is given by [1 h1 . . . hn]
′ with hi = ε0i/(

∑n
j=1 ε

2
0j)

1/2.

Then, the optimal test for H0 versus the union
⋃n

j=1 Hj is explicitly given by

φ = min
1≤j≤n

{
φ0j − log (ε0j/(

n∑
j=1

ε20j)
1/2)

}
.

For all μ ∈ X0, Eμ(e
−φ) ≤

(∑n
j=1 ε

2
0j

)1/2
and for all μ ∈

⋃n
j=1 Yj , Eμ(e

φ) ≤( ∑n
j=1 ε

2
0j

)1/2
.

Then, given a value ε, if it is possible to tune the test φ0j := φ0j(ε) of H0

versus Hj to have a risk less than ε/
√
n, then the resulting test for the union

φ(ε) has risk less than ε.
This is remarkable: if we consider the test min1≤j≤n{φ0j} for H0 versus the

union
⋃n

j=1 Hj , we have

P0( min
1≤j≤n

{φ0j}) ≤
n∑

j=1

ε0j .

To get a risk bounded by ε, one would have to tune the test φ0j of H0 versus
Hj to have a risk less than ε/n.

3. Discussion

• The theory is restricted to exponential families of distributions with nat-
ural parameter space. As noted by the authors in the introduction, this
is the price to pay for having very general hypotheses. The problem of
finding more general statistical experiments which would fit in the theory
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is open and worth investigating. The new risk criterion seems to be a more
flexible one for finding new optimal solutions.

• The fact that the sets X,Y must be compact sets is restrictive. We wonder
if there are possibilities to weaken this constraint.

• The combination of conditions 3. and 4. on the class of tests implies a re-
duction of the class of tests. Consider the case of exponential distributions,
where

pμ(ω) = μ exp (−μ ω), ω ∈ (0,+∞), μ ∈ M = (0,+∞), S(ω) = −ω.

By condition 3., F contains log pμ/pν for all μ, ν > 0, hence F contains
all tests φ(ω) = aω + b, a, b ∈ R.
For condition 4., to compute F (μ) the condition μ > a is required and

F (μ) = log [

∫ +∞

0

μ exp ((a− μ)ω + b)dω] = b+ log [μ/(μ− a)].

As F ′′(μ) = a(2μ − a)/(μ2(μ − a)2), F is concave if and only if a ≤ 0.
Therefore, condition 4. restricts the class of tests to F = {φ = aω +
b, a ≤ 0, b ∈ R}. This raises a contradiction: condition 3) states that F
must contain all log pμ/pν , thus all φ = aω + b, a, b ∈ R. We wonder if
condition 4. could be stated differently so as to avoid this contradiction.

• Generally, when testing statistical hypotheses, one chooses a hypothesis
H0 and builds a test of H0 versus H1. One wishes to control the error
of rejecting H0 when it is true and the other error does not really mat-
ter. A discussion on this point is lacking in relation with Theorem 2.1,
formula (4).

• Randomized tests are not considered here. However, they are found as op-
timal solutions in the fundamental Neyman-Pearson lemma. In estimation
theory, randomized estimators are of no use because, due to the convexity
of loss functions, a non randomized estimator is better. In the setting of
the paper, is there such a reason to eliminate randomized tests?

• The criterion r(φ) is larger than the usual one, entailing a loss. The notion
of “provably optimal test” introduced in this study is not commented
in the text. So, it is difficult to understand or quantify it. Maybe more
comments on Theorem 2.1 (ii) would help. At this point, let us notice
that the notation εX without dependence on the test statistic φ is a bit
misleading. It should be εX(φ), so that in formula (4) of Theorem 2.1, we
would read εX(φ∗).
Another point is the comparison between εX(φ∗) and ε∗. Apart from the
Markov inequality, would it be possible to quantify ε∗− εX(φ∗)? Example
2.3.1 give both quantities without comment. Examples 2.3.2 and 2.3.3 only
give ε∗.

• We looked especially at Section 4.2. The Poisson case is illuminating and
helps understanding the application of Proposition 3.1. On the contrary,
we had difficulties with Section 4.2.3 (Gaussian case) and do not under-
stand why the optimal test of H0 versus Hj is not computed as in Section
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2.3.1. Consequently, more details on the proof of Proposition 4.2 would
have been useful. Also, in these examples, are the quantities ε0j computed
as ε∗(φ∗(H0, Hj)) or as εX0(φ∗(H0, Hj))? The numerical illustrations were
also difficult to follow.

4. Concluding remarks

To conclude, the criterion r(φ), defined in (2.2), provides a powerful new tool to
build nearly optimal tests for multiple hypotheses. The large number of concrete
and convincing examples is impressive. We believe that this paper offers a new
insight on the theory of testing statistical hypotheses and will surely inspire new
research and new developments.
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