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Abstract: This paper establishes consistency of the weighted bootstrap

for quadratic forms
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i=1

are mean zero, independent Rd-valued random variables and d = d(n) is
allowed to grow with the sample size n, slower than n1/4. The proof relies
on an adaptation of Lindeberg interpolation technique whereby we simplify
the original problem to a Gaussian approximation problem. We apply our
bootstrap results to model-specification testing problems when the number
of moments is allowed to grow with the sample size.
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1. Introduction

Since its introduction by Efron (1979) the bootstrap has been widely used as
a method for approximating the distribution of statistics. Many papers have
extended the original idea in terms, both, of the applicability (see Horowitz
(2001) and Hall (1986) for excellent reviews) and of its methodology; of particu-
lar interest for us are the bootstrap procedures: “wild bootstrap” (see Mammen
(1993)) and more generally the “weighted bootstrap” (see Praestgaard (1990)
and Praestgaard and Wellner (1993)).

In this paper we attempt to expand the applicability of the weighted boot-
strap procedure to quadratic forms with increasing dimensions. Namely, we
study quadratic forms of the form

(
1√
n

n∑
i=1

Zi,n

)T (
1√
n

n∑
i=1

Zi,n

)
(1)

where (Z1,n, ..., Zn,n) are independent (among each other) R
d-valued random

variables with mean zero and general covariance matrix Σn. We show that its
distribution is well-approximated (under the Kolmogorov distance) by the dis-
tribution of (

1√
n

n∑
i=1

ωi,nZi,n

)T (
1√
n

n∑
i=1

ωi,nZi,n

)
(2)

where (ω1,n, ..., ωn,n) are independent bootstrap weights. The novelty in this
paper is that we allow for d = d(n) to increase with the sample size.

Studying the asymptotic behavior of quadratic forms, in particular estab-
lishing bootstrap consistency, is relevant since many statistics of interest can
asymptotically be represented as quadratic forms of (scaled) sample averages.
For instance, the likelihood ratio and Wald test statistics are asymptotically
represented as quadratic forms of the scores; see Van der Vaart (2000) Ch. 16,
and references therein. Portnoy (1988) establishes such representations for the
likelihood ratio test statistics; there d(n) is the dimension of the parameter of
interest and is allowed to grow with n. Hjort et al. (2009) uses Portnoy’s results
to show a quadratic approximation result for Owen’s (Owen (1990)) empirical
likelihood, allowing for d(n)3/n → 0; see also Peng and Schick (2012). There-
fore, by establishing the validity of the bootstrap for general quadratic forms,
we propose an alternative method for inference for these statistics.
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So as to further illustrate the applicability of our results, in Section 4 we
study a concrete application motivated by the work of Donald et al. (2003) who
consider model-specification tests for models defined by a diverging number of
moment conditions (this quantity determines our d(n)). By applying our results,
we establish bootstrap consistency results for the distribution of the model-
specification test statistics of two ubiquitous estimators in econometrics and
statistics: The generalized empirical likelihood (GEL; Smith (1997)) estimator
and The generalized method of moments (GMM; Hansen (1982)) estimator.
By employing our bootstrap result we are able to perform inference for non-
optimally weighted GMM estimators. To our knowledge these results are new.

By letting d to increase with sample size in our general theory, we allow for
different asymptotics, a “large-d and large-n” asymptotics, rather than the stan-
dard “fixed-d and large-n”. The former type of asymptotics are more explicit
about how the dimension, d, can affect the quality of the approximations. That
is, even if the dimension does not literally grow with n, if, for instance, the
model has a large number of parameters (or moment conditions as in our appli-
cation), doing “fixed-d and large-n” asymptotics could be misleading, whereas
doing “large-d and large-n” asymptotics could depict a more accurate picture of
the behavior for fixed samples; see Mammen (1989) for discussion. Our results
can also be applied in cases where there is literally a growing number of parame-
ters. For instance, Chen and Pouzo (2015) study the asymptotic behavior of the
quasi-likelihood ratio and Wald test statistics in a semi-parametric conditional
moment setup; in particular they show that the statistics are asymptotically
equivalent to quadratic forms (1) under a null hypothesis of increasing dimen-
sions (see Appendix A.4 in their paper); our results, in conjunction with theirs,
could be applied to establish bootstrap-based inference for the quasi-likelihood
ratio and Wald test statistics.1

In order to establish our main result of bootstrap consistency, we use Lin-
deberg interpolation techniques (see Chatterjee (2006), Rollin (2013) and refer-
ences therein) to approximate the quadratic forms of n−1/2

∑n
i=1 ωi,nZi,n and

n−1/2
∑n

i=1 Zi,n by the ones for Gaussian random variables with zero mean and
covariance n−1

∑n
i=1 Zi,nZ

T
i,n and E[Z1,nZ

T
1,n], respectively.

By proceeding in this manner, we are able to reduce the original problem to
a Gaussian approximation problem wherein we need to establish convergence of
a Gaussian distribution with zero mean and variance n−1

∑n
i=1 Zi,nZ

T
i,n to one

with zero mean and variance E[Z1,nZ
T
1,n]. We use Slepian interpolation (Slepian

(1962), Rollin (2013), Chernozhukov et al. (2013b) and references therein) to
accomplish this.

Due to the interpolation techniques used here, we need certain restrictions on
the higher moments of the random variables. In particular, we impose growth
restrictions on the higher moments of the bootstrap weights and the Euclidean
norm of Z1,n. These conditions essentially restrict the growth rate of d(n). Al-
though the precise growth rate depends on such conditions, the dimensions
cannot grow faster than n1/4.

1In Section 4 we provide more concrete examples of these two cases in the context of our
application.
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A number of papers develop large sample results allowing for increasing di-
mension. To name a few, Portnoy (1988) establishes the validity of the Wilks
phenomenon for the likelihood ratio for exponential families when d(n)3/2/n →
0. He and Shao (2000) derive the asymptotic distribution for M-estimators when
the number of parameters is allowed to grow with the sample size. Recently, a
few papers develop this type of results for quadratic forms of the form (1) al-
lowing for increasing dimensions. In particular, Peng and Schick (2012) and Xu
et al. (2014) develop a central limit theorem for quadratic forms of sample aver-
ages of vectors, allowing for the dimension to grow with n; both papers discuss
several applications and examples. The results on our paper offer an alternative,
bootstrap-based, method for inference for these cases.

Our paper also contributes to the growing literature of bootstrap results
allowing for increasing dimensions. Mammen (1989) derives asymptotic expan-
sion for M-estimators in linear models allowing for increasing dimension and
use them to show consistency of a weighted bootstrap. In a different context,
Radulovic (1998) uses Lindeberg interpolation methods allowing for increasing
dimension to show that the functional bootstrap CLT holds under weaker con-
ditions than equicontinuity; in his paper the restriction over the growth rate is
d(n)6/n → 0. In Chernozhukov et al. (2013a), the authors derive a Gaussian
weighted bootstrap approximation result for the maximum of the sum of high
dimensional random vectors; in this specific setup the dimension is allowed to
grow very fast, even at an exponential rate. Zhang and Cheng (2014) provide
an extension of Chernozhukov et al. (2013a) to time series. In our paper the
object of interest is the �2-norm of the sum of high dimensional random vectors
(as opposed to the �∞-norm), so the results in these papers are not directly
applicable. Finally, in a recent independent work, Spokoiny and Zhilova (2014)
study the validity of the weighted bootstrap procedure for the likelihood ratio
test statistics in finite samples and model misspecification; their results require
d(n)3/n to be “small”.

Organization of the Paper. In Section 2 we define the problem and impose
the required assumptions. Section 3 presents the main Theorem and a discussion
of its implications. Section 4 presents an application to model-specification tests.
Section 5 presents a numerical simulations. Section 6 presents the proof of the
main Theorem. Section 7 presents some concluding remarks. In order to keep
the paper short, the proofs of intermediate results are gathered in the appendix.

Notation. For any vector x ∈ R
d, we use ||x||pp to denote

∑d
l=1 |xl|p and x[l]

to denote the l-th coordinate of the vector. tr{A} denotes the trace of matrix A.
We use EP to denote the expectation with respect to the probability measure
P ; for conditional distributions P (·|X) we use EP (·|X)[·] or sometimes directly
EP [·|X]. We use Xn � Yn to denote that Xn ≤ CYn for some universal C > 0.
We use ∂rf to denote the r-th derivative of f ; for the cases of r = 1 and r = 2
we use the more standard f ′ and f ′′ notation. wpa1−P means “with probability
approaching one under P”.
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2. Preliminaries

Let {Zi,n ∈ R
d(n) : i = 1, ..., n and n ∈ N} with (d(n))n∈N being a non-

decreasing integer-valued sequence; d(n) could diverge to infinity. For all n ∈ N,
let Zn ≡ (Z1,n, ..., Zn,n) be independent among themselves with Zi,n ∼ Pn and
EPn [(Zi,n)] = 0 and Σn ≡ EPn [(Zi,n)(Zi,n)

T ] ∈ R
d(n)×d(n) positive definite and

finite. Henceforth, we will typically omit the sub-index n in Zi,n.
Let Zn ≡ n−1

∑n
i=1 Zi, and

EPn [(
√
nZn)(

√
nZn)

T ] = n−1
n∑

i=1

EPn [(Zi)(Zi)
T ] = Σn.

For a given matrix A ∈ R
d×d we denote its eigenvalues as {λ1(A), ..., λd(A)}.

Assumption 2.1. (i) There exist constants 0 < c ≤ C < ∞ such that c ≤
λl(Σn) ≤ C for any l = 1, ..., d(n) and n ∈ N, and

max{d(n)(EPn [||Z1||32])2, EPn [||Z1||42], (d(n))4}
n

= o(1);

(ii) there exists a γ > 0 such that (d(n))2+γ

nγ EPn [||Z1||4+2γ
2 ] = o(1); (iii) there

exists a κ ≥ 0 such that (log(d(n)))κ/2d(n)2+κ

n1+κ/2 EPn [||Z1||2(2+κ)
2+κ ] = o(1).

2.1. Discussion of the Assumption 2.1

The assumption that c ≤ λl(Σn) ≤ C can be somewhat relaxed; for instance,

it could be replaced by lim supn→∞
tr{Σ3

n}
(tr{Σ2

n})3/2
= 0 and tr{Σn}

tr{Σ2
n}

≤ C < ∞. The

rest of Assumption 2.1 essentially imposed restrictions on the rate of growth
of d(n) relative to n. In order to provide sufficient conditions for this part of
Assumption 2.1, it is convenient to provide bounds in terms of d(n) for the

quantities EPn [||Z1||q2] (for different q’s) and EPn [||Z1||2(2+κ)
2+κ ] in the assumption.

Clearly, if |Z[l],1| ≤ C < ∞ a.s-Pn for all l = 1, ..., d(n) and all n ∈ N,

then EPn [||Z1||2q2 ] = O(d(n)q) for any q > 0.2 For example, such condition is
imposed by Vershynin (2012b) in the context of estimation and approximation
of covariance matrices of high dimensional distributions.

The next lemma shows that the result still holds if we impose the following

(milder) restriction: EPn

[
eλZ

2
[l],1

]
≤ C < ∞ for some λ > 0. For instance, if

(Z[l],1)
2 is a sub-Gamma random variable (Boucheron et al. (2013) p. 27), then

the condition holds since EPn

[
eλZ

2
[l],1

]
≤ exp{ λ2v

2(1−cλ)} for any λ ∈ (0, 1/c)

and some c > 0. If Z[l],1 is sub-Gaussian, then (Z[l],1)
2 is sub-exponential (see

Vershynin (2012a) Lemma 5.14) and the condition holds by the same argument.
An appealing feature of this result is that it only imposes restrictions on

the marginal behavior of the components of the vector Z1 and not on its joint
behavior.

2Recall that for a vector x, x[l] denotes the l-th component.
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Lemma 2.1. Suppose that there exists a C > 0 and λ > 0 such EPn

[
eλZ

2
[l],1

]
≤

C for all l = 1, ..., d(n) and all n ∈ N. Then EPn [||Z1||2q2 ] � d(n)q for any q > 0.

Proof. Observe that

EPn [(||Z1||22/d(n))q] =
∫ ∞

0

Pn

(
||Z1||22/d(n) ≥ t1/q

)
dt

=q

∫ ∞

0

uq−1Pn

(
||Z1||22/d(n) ≥ u

)
du

since ||Z1||22/d(n) = d(n)−1
∑d(n)

l=1 |Z[l],1|2, by the Markov inequality it follows
that for any λ > 0

EPn [(||Z1||22/d(n))q] ≤
(
q

∫ ∞

0

uq−1e−λudu

)
EPn

[
eλd(n)

−1∑d(n)
l=1 |Z[l],1|2

]
.

By Jensen inequality EPn

[
eλd(n)

−1∑d(n)
l=1 |Z[l],1|2

]
≤ d(n)−1

∑d(n)
l=1 EPn

[
eλ|Z[l],1|2

]
which is bounded by a constant C. Thus, the desired result follows from the
fact that

(
q
∫∞
0

uq−1e−λudu
)
=
(
qλ−q

∫∞
0

wq−1e−wdw
)
= qλ−qΓ(q) < ∞ for

any q > 0.

Under the conditions in the lemma, Assumption 2.1(i) boils down to d(n)4

n =

o(1). For Assumption 2.1(ii) is sufficient to impose d(n)4+2γ

nγ = o(1); for γ = 2 it

boils down to d(n)4

n = o(1) but for large γ it (roughly) becomes d(n)2

n = o(1).

Finally, for, say κ = 0, Assumption 2.1(iii) is reduced to d(n)2

n EPn [||Z1||42] �
d(n)4

n → 0.
That is, under conditions that bound all (polynomial) moments of the in-

dividual components of Z1, the dimension is allowed to grow slower than the
4th-root of the sample size.

2.2. The bootstrap weights

The bootstrap weights are given by {ωin ∈ R : i = 1, ..., n and n ∈ N} where,
for any n ∈ N and conditional on Zn = zn, (ω1n, ..., ωnn) ∼ P∗

n(·|zn) for some
P∗

n(·|zn).
Assumption 2.2. For all n ∈ N and i = 1, 2, ..., n, (i) (ω1n, ..., ωnn) are in-
dependent and EP∗

n(·|Zn) [ωin] = 0 and EP∗
n(·|Zn)

[
(ωin)

2
]
= 1; (ii) there exists

a q ≥ max{γ + 2, 4}, such that EP∗
n(·|Zn) [|ωin|q] ≤ Cw < ∞ for some constant

Cw > 0.

Part (i) is standard. Part (ii) is mild considering that the weights are chosen
by the researcher.3

3Of course, the technique of proof can be applied to the case where the following (stronger)
restriction is imposed: EP∗

n(·|Zn) [exp{ωin}] ≤ Cw < ∞.
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3. The main result

We now present the main result of the paper. In what follows, for any measurable
function zn 
→ f(zn) we use |f(Zn)| = oPn(1) to denote: For any ε > 0, there
exists a N(ε) such that for all n ≥ N(ε), Pn(|f(Zn)| ≥ ε) < ε.

Let Z∗
n ≡ n−1

∑n
i=1 ωinZi be the bootstrap analog of Zn.

Theorem 3.1. Suppose Assumption 2.1 and 2.2 hold. Then

sup
t∈R

∣∣P∗
n

(
||
√
nZ∗

n||22 ≥ t | Zn
)
−Pn

(
||
√
nZn||22 ≥ t

)∣∣ = oPn(1). (3)

3.1. Comments and discussion

We now present some remarks and discuss some implications of the preceding
Theorem.

Heuristics. We postpone the somewhat long proof of the Theorem to Sec-
tion 6; here we present an heuristic argument. The first step of the proof is
to apply Lindeberg interpolation techniques (see Chatterjee (2006) and Rollin
(2013) and references therein) to approximate

√
nZ∗

n by
√
nUn and

√
nZn by√

nVn, where Un and Vn are Gaussian random variables with zero mean and
covariances n−1

∑n
i=1 ZiZ

T
i and E[Z1,nZ

T
1,n] respectively.

In order to do this, we first approximate the indicator function x 
→ 1{||x||22 ≥
t} by “smooth” functions x 
→ Pt,δ,h(||x||22); the exact expression for Pt,δ,h is
presented in Lemma B.1 and follows from the suggestion by Pollard (2001) p.
247. The functions are indexed by (h, δ) where h is “small” compared to δ, and
the “smaller” δ is, the closer the function Pt,δ,h is to the indicator function;
see Lemmas B.1, B.2 and B.3 in the Appendix B. It is worth to note that
what we mean by δ to be “small” depends on how ||√nVn||22 concentrates mass.
Lemma B.4 in the Appendix B establishes an anti-concentration result, wherein
we obtain that this random variable puts very little mass in any given interval.
Therefore δ could actually be quite large, of the order of

√
tr{Σ2

n}.
Second, since x 
→ Pt,δ,h(||x||22) belongs to a class of “smooth” functions, we

show that it suffices to show consistency under the weak norm (as opposed to
the norm implied in 3).4 This is done in Lemmas 6.1 and 6.2. The relevant class
of “smooth” functions is given by CM , which is the class of functions f : R → R

that are three times continuously differentiable and supx |∂rf(x)| ≤ (M)r and
supx |f(x)| ≤ 1.

The following Theorems formalize the aforementioned approximation of
√
nZ∗

n

by
√
nUn and

√
nZn by

√
nVn and can be viewed of independent interest since

they show that a “generalized invariance principle” holds in our setup. Hence-
forth, we use Φ∗

n(·|Zn) and Φn respectively, to denote their probability distri-
butions.

4The formal definition of the norm is presented in Equation 6 in Section 6.
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Theorem 3.2. Suppose Assumption 2.1 and 2.2 hold. For any h > 0,

sup
f∈Ch−1

∣∣EP∗
n

[
f
(
||
√
nZ∗

n||22
)
|Zn
]
− EΦ∗

n

[
f
(
||
√
nUn||22

)
|Zn
]∣∣ = oPn(h

−2).

Proof. See Appendix A.

Theorem 3.3. Suppose Assumption 2.1 and 2.2 hold. For any h > 0,

sup
f∈Ch−1

∣∣EPn

[
f
(
||
√
nZn||22

)]
− EΦn

[
f
(
||
√
nVn||22

)]∣∣ = o(h−2).

Proof. See Appendix A.

By using Theorems 3.2 and 3.3 we have reduced the original problem to a
Gaussian approximation problem. That is, we need to establish convergence
(under the distance induced by C) of a Gaussian distribution with zero mean
and variance n−1

∑n
i=1 ZiZ

T
i to one with zero mean and variance E[Z1Z

T
1 ].

Lemma 6.3 in Section 6 — which is based in the Slepian interpolation (see
Chernozhukov et al. (2013a), Chernozhukov et al. (2013b) and Rollin (2013)
and references therein)— establishes that is enough to show that

d(n) max
1≤j,l≤d(n)

∣∣∣∣∣n−1
n∑

i=1

Z[j],iZ[l],i − EPn [Z[j],1Z[l],1]

∣∣∣∣∣ = oPn(1). (4)

In Section 6, we show that, employing standard arguments, the expression 4
holds under our assumptions. A similar result is obtained by Chernozhukov
et al. (2013a) without the scaling factor of d(n); their setup, however, is different
since the object of interest is max1≤j≤d(n) |n−1/2

∑n
i=1 Z[j],i| (as opposed to

||n−1/2
∑n

i=1 Zi||22). 5

Asymptotic Distribution of ||√nZn||22. An implication of the proof of
Theorem 3.1 and Theorem 3.3 is that

sup
t∈R

∣∣∣∣∣Pn

(
||√nZn||22 − d(n)√

d(n)
≥ t

)
−Φn

(
||√nVn||22 − d(n)√

d(n)
≥ t

)∣∣∣∣∣ = o(1). (5)

That is, if Σn = Id(n) then this expression and a direct application of the CLT

(when d(n) → ∞) imply that
||√nZn||22−d(n)√

2d(n)
⇒ N(0, 1) or, informally, ||√nZn||22

is approximately chi-square distributed with d(n) degrees of freedom. When

Σn �= Id(n), the last claim is no longer true but it holds that
||√nZn||22−tr{Σn}√

2tr{Σ2
n}

is

5An important consequence of this difference is that, as opposed to our case, Chernozhukov
et al. (2013a) can use a “smooth maximum function” to approximate their quantity of interest;
the approximation error is only of order log d. This, allows them to obtain faster rates for the
approximation of the indicator functions with smooth functions. This, in turn, translates into
a faster overall rate of convergence — d = o(exp(n)) in their case. See Wasserman (2014) for
a discussion and a nice review of these results.



3054 D. Pouzo

approximately distributed as
∑d(n)

j=1
λj(Σn)(χj−1)√
2
∑d(n)

j=1 λ2
j (Σn)

with χ2
j drawn from a chi-

square with degree one; see Xu et al. (2014) and Peng and Schick (2012) for a
discussion regarding these results.

We note that in Theorem 3.1 no scaling (by −d(n) and 1/
√
2d(n) or −tr{Σn}

and 1/
√
2tr{Σ2

n}) is needed. That is, although the mean and variance of
||√nZn||22 are “drifting” to infinity, the bootstrap still provides a good approx-
imation since the moments of ||√nZ∗

n||22 are mimicking this behavior.

On the Lindeberg Interpolation. Theorems 3.2 and 3.3 are based on the
following Lindeberg interpolation for quadratic forms.6

Theorem 3.4. Let (A1, ..., An) ∈ R
d×n and (B1, ..., Bn) ∈ R

d×n be random
matrices independent from each other. Suppose for each 1 ≤ i ≤ n, Ai has
finite second moments with E[Ai] = 0, A1, ..., An are independent, and Bi has
finite second moments, with E[Bi] = 0 and B1, ..., Bn are independent. Suppose
E[AiA

T
i ] = E[BiB

T
i ] ≡ Ci. Let f : R → R be three times differentiable and for

r = 1, 2, 3, |∂rf(·)| ≤ Lr(f). Then for any ε > 0 and for any q > 0

|E[f(||
n∑

i=1

Ai||22)]− E[f(||
n∑

i=1

Bi||22)]| ≤ Sn + L2(f)

(
L3(f)

L2(f)

)q

Rn

where Sn = S1,n + S2,n, with

S1,n =

n∑
i=1

|E
[
f ′′ (||Si:n||22)]E[||Bi||42]− E[||Ai||42]|

S2,n =4

n∑
i=1

|E
[
f ′′ (||Si:n||22) STi:n] (E[Bi||Bi||22]− E[Ai||Ai||22]

)
|

Rn =

n∑
i=1

E
[(
S
T
i:nBi + ||Bi||22

)2+q
+
(
S
T
i:nAi + ||Ai||22

)2+q
]

and Si:n ≡
∑i−1

j=1 Aj + 0 +
∑n

j=i+1 Bj.

Proof. See Appendix A.

It is worth pointing out that the interpolation compares the quantities∑n
i=1 Ai with

∑n
i=1 Bi by comparing “one component at a time”. This com-

parison is essentially divided into two parts. First, we compare ||Si:n+Ai||22 and
||Si:n + Bi||22, which are real-valued quantities. Second, we exploit the smooth-
ness of the univariate function f to bound its variation using Taylor’s approx-
imation. Loosely speaking, the first step reduces a d(n)-dimensional problem
to an univariate one. An alternative approach would be to consider interpola-
tions for multivariate functions (e.g. Chatterjee and Meckes (2008)) of the form
g : Rd(n) → R with g(x) ≡ f(||x||22). As can be seen from the derivations in Chat-
terjee and Meckes (2008), the remainder term will also require bounds on higher

6This Lindeberg interpolation builds on the approach in Xu et al. (2014).
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derivatives of g (and thus f), but of the form supx 	=y

‖Hess(g)(x)−Hess(g)(y)‖op

||x−y||2 . 7

Which approach is better depends largely on what type of restrictions over the
class of test functions are natural in the problem at hand. For us, ||∂rf ||L∞ < ∞
is a natural assumption, but in other applications it could be too strong.

More generally, this discussion illustrates the relationship between restrictions
in the class of test functions (C) and the bounds on higher order moments and
ultimately the rate of growth of d(n).

Bootstrap P-Value. For any α ∈ (0, 1) and Zn ∈ R
d(n), let tn(α,Z

n) ≡
inf{t : P∗

n

(
||√nZ∗

n||22 ≤ t | Zn
)
≥ α}. Due to the distribution consistency result

proven in Theorem 3.1, we can approximate the α-th quantile of the distribution
of ||√nZn||22 by tn(α,Z

n), in the sense that

Pn

(
||
√
nZn||22 ≥ tn(α,Z

n)− η
)
≤ α+ o(1)

for any η > 0. If tn(α,Z
n) is a continuity point of P∗

n (·|Zn), then

P∗
n

(
||
√
nZ∗

n||22 ≥ tn(α,Z
n) | Zn

)
= α,

and the first display becomes Pn

(
||√nZn||22 ≥ tn(α,Z

n)
)
= α + o(1). Hence,

Theorem 3.1 can be used to construct valid p-values based on the bootstrap.

4. An application to model specification tests for GEL and GMM
estimators

In this section we apply our results to construct bootstrap-based specification
tests for models with increasing number of moment restrictions. We do this for
two estimators: generalized method of moment (GMM; see Hansen (1982)) esti-
mator and generalized empirical likelihood (GEL; see Smith (1997)) estimator.
Both estimators are widely used in econometrics and statistics and encompass
a wide range of commonly used estimators such as Z-estimators (Van der Vaart
(2000) Ch. 5), and empirical likelihood estimator (Owen (1988)), respectively.8

In models characterized by moment conditions, model-specification tests
(MST) allow us to check whether the moment conditions match the data well
or not. In this setup with increasing moment restrictions, MST has been stud-
ied by Donald et al. (2003) (DIN, henceforth); see also de Jong and Bierens
(1994). They show that the MST statistic is asymptotically a quadratic form
of scaled sample averages; however, they rely on inferential methods build on
expressions akin to 5. Instead, by applying our Theorem 3.1, we can use the
weighted bootstrap method to approximate the asymptotic distribution of MST
statistics; thus complementing their results by providing an alternative way of
constructing asymptotic p-values. Moreover, as explained below, by not relying
on CLT-type results to approximate the limiting distribution, we are able to

7Hess(g) is the Hessian of the function and ||.||op is the operator norm. Other type of
bounds could be found in Raic (2004) based on Hilbert-Schmidt norm.

8See Imbens (2002) for additional examples and a discussion. See also Hall (2005) for a
review for GMM.
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provide valid asymptotic inference for a larger class of GMM estimators than
the one considered in DIN.

The setup closely follows that of DIN and is as follows. Suppose (Xi)
n
i=1 is

an i.i.d. sample of real-valued random variables with Xi ∼ Pn = P. The model
we consider is one where the true parameter of interest, θ0 ∈ Int(Θ) — with Θ
a compact subset of Rq— is uniquely identified by the following set of moment
conditions

EP[g(X, θ0)] = 0

where g : R× R
q → R

d is known to the researcher.
The main feature of this setup is that it allows d ≡ d(n) to grow with the

sample size. In many cases this departure from the standard theory is of rel-
evance. For example, in many models the identifying condition is given by a
conditional moment restriction, EP[ρ(Y, θ0)|W ] — where ρ maps into R

J with
J fixed — and the researcher converts it to a series of unconditional moment
restrictions EP[ρ(Y, θ0)⊗ qK(n)(W )] where qK(n)(w) = (q1(w), ..., qK(n)(w)) are
basis functions such as Fourier series, P-splines, etc; this is the case considered
in DIN (see also de Jong and Bierens (1994) and references therein). For this
case x = (y, w), d(n) = JK(n) and g(x, θ) = ρ(y, θ)⊗ qK(n)(w).

An alternative motivation to consider increasing d would be cases where
although the number of moments is fixed, it could be large and thus treating it as
a diverging sequence could deliver more accurate asymptotics. As pointed out by
Koenker and Machado (1999) one example of this could be the panel data model
in Arellano and Bond (1991) where x = (y1, ..., yT ) and the components of the
vector g(x, θ) are given by ((yt−yt−1)−θ(yt−1−yt−2))yt−s for s = 1, ..., t−1 and
t = 3, ..., T . Here, for a panel of length T , the number of instruments/moments
is given by d = (T − 2)(T − 1)/2. 9

The next assumptions impose some regularity conditions on g. These re-
strictions are standard in the literature and can be somewhat relaxed (e.g. see
Donald et al. (2003) and references therein).

Assumption 4.1. Ω ≡ EP[g(X, θ0)g(X, θ0)
T ] exists with C−1 ≤ λl(Ω) ≤ C

for all l = 1, ..., d for some C ≥ 1.

For instance, for the case where g = ρ ⊗ qK(n) (for simplicity, let J = 1) it
suffices to assume that EP[ρ(Y, θ0)

2|W ] and the eigenvalues of
EP[q

K(n)(W, θ0)q
K(n)(W, θ0)

T ] are both bounded bounded and bounded away
from zero a.s.-P. These assumptions are standard; see Donald et al. (2003) for
a discussion. 10

Let N be an open neighborhood of θ0.

9For instance for T = 4, d = d(n) = 3 and for T = 5, d = d(n) = 6. In cases where
d(n) = o(n1/4), these values imply that, roughly speaking, the number of observations should
be larger than 82 and 1300, resp. It is also worth to point out that in case where T is large,
one can simply include fewer lags yt−s in ((yt − yt−1)− θ(yt−1 − yt−2))yt−s and thus reduce
d.

10These assumptions are also standard in the context of series-based estimators; see Chen
(2007).
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Assumption 4.2. For all n: (i) EP

[
supθ∈N ||g(X, θ)||2(2+γ)

2

]
� d(n)2+γ for

some γ ≥ 0; (ii) θ 
→ g(X, θ) is continuously differentiable a.s.-P;

(iii) EP[supθ∈N ||∇θg(X, θ)||2β2 ] � d(n)β for some β ≥ 1; (iv) there exists a
measurable x 
→ δn(x) such that ||∇θg(X, θ)−∇θg(X, θ0)||2 � δn(X)||θ − θ0||2
for all θ ∈ N a.s.-P, and EP[δn(X)2] � d(n).11

For instance, for the case g = ρ ⊗ qK for many basis functions such as
splines and Fourier series it holds that supw ||qK(w)||2 �

√
K.12 Thus,

the previous assumption holds provided that E[supθ∈N ||ρ(Y, θ)||2(2+γ)
2 |W ] and

EP[supθ∈N ||∇θρ(Y, θ)||2β2 |W ] are bounded by a constant C, and ||∇θρ(Y, θ) −
∇θρ(Y, θ0)||2 � δ(Y )||θ−θ0||2 with EP[δ(Y )2|W ] ≤ C, a.s.-P, for some C > 0.13

The GMM estimator is given by θ̂GMM,n = argminθ∈Θ Q̂GMM,n(θ) where

Q̂GMM,n(θ) ≡ n−1
n∑

i=1

g(Xi, θ)
T Ŵnn

−1
n∑

i=1

g(Xi, θ)

with Ŵn ∈ R
d×d is a (possibly random) positive definite matrix. The following

mild condition is required

Assumption 4.3. There exists a W ∈ R
d(n)×d(n) positive definite and a C ≥ 1

such that ||Ŵn − W ||2 = oP(d(n)
−1/2) and C−1 ≤ λl(W ) ≤ C for all l =

1, ..., d(n) and n ∈ N.

The bootstrap analog is given by θ̂∗GMM,n = argminθ∈Θ Q̂∗
GMM,n(θ) where

Q̂∗
GMM,n(θ) = n−1

n∑
i=1

ωi,ng(Xi, θ)
T Ŵnn

−1
n∑

i=1

ωi,ng(Xi, θ).

These formulas yield the MST statistic: T̂GMM,n ≡ nQ̂GMM,n(θ̂GMM,n) and

its bootstrap version T̂ ∗
GMM,n ≡ nQ̂∗

GMM,n(θ̂
∗
GMM,n).

In order to simplify the exposition we directly impose that (ωi,n)i≤n satisfy
Assumption 2.2 and also that they are uniformly bounded; this last assumption
is not necessary for the results but imposing it greatly simplifies the technical
derivations in our proofs.

It is worth to point out that DIN only considers GMM estimators with W =
Ω−1 because they rely on CLT-type approximations for inference (e.g., see their
Theorem 6.3). Since our result allow us to focus on bootstrap-based inference,
the weighting matrixW does not need to coincide with Ω−1; in fact it can simply
be chosen as Ŵ = W = I. That is, our results provide valid asymptotic inference
for MST statistics for a larger class of GMM estimator, one with W �= Ω−1.

11The notation ∇θg(x, θ) means the gradient with respect to θ of the function g; it is a
q × d matrix. For any matrix, A, ||A||2 is defined as the operator norm.

12Other series like power series typically present supw ||qK(w)||2 � K, or more generally one
can think of supw ||qK(w)||2 � ζ(K) for some function ζ. These cases can be accommodated
in our theory, at the expense of further restricting the rate of growth of d(n).

13These restrictions are analogous to Assumptions 4-6 in Donald et al. (2003).



3058 D. Pouzo

The GEL estimator is given by

θ̂GEL,n = argmin
θ∈Θ

Q̂GEL,n(θ),

where Q̂GEL,n(θ) ≡ sup
λ∈Λ(θ)

n∑
i=1

s(λT g(Xi, θ))

where s : V ⊆ R 
→ R is concave and twice continuously differentiable with
Lipschitz second derivative, V includes a neighborhood of 0, and Λ(θ) ≡ {λ ∈
R

d : λT g(X, θ) ∈ V , a.s. − P}. The function s can be chosen to encompass
several estimators of interest such as empirical likelihood (s(·) = ln(1 − ·)),
exponential tilting (s(·) = − exp(·); Imbens et al. (1998) and Kitamura and
Stutzer (1997)) and continuously updating GMM (s(·) = −0.5(1 + ·)2; Hansen
et al. (1996)). Henceforth, to simplify the presentation we assume the following
normalization s′(0) = s′′(0) = −1.

Analogously to GMM, we have the following MST statistic for GEL: T̂GEL,n ≡
2
{
Q̂GEL,n(θ̂GEL,n)− ns(0)

}
and its bootstrap version

T̂ ∗
GEL,n ≡ 2

{
Q̂∗

GEL,n(θ̂
∗
GEL,n)− ns(0)

}
, where θ̂∗GEL,n = argminθ∈Θ Q̂∗

GEL,n(θ)

and Q̂∗
GEL,n is defined as Q̂GEL,n but with ωi,ng(xi, ·) instead of g(xi, ·).14

The next assumption is a high level condition. Part (i) ensures existence of a
minimizer for λ and part (ii) imposes convergence rates on the GMM and GEL
estimators. Because our main goal is to establish the asymptotic behavior of the
MST statistics, we directly impose this assumption to ease the exposition.

Assumption 4.4. (i) λ̂∗
n = argmaxλ∈Λ(θ̂∗

GEL,n)

∑n
i=1 s(λ

Tωi,ng(Xi, θ̂
∗
GEL,n))

exists wpa1-P and ||λ̂∗
n||2 = OP∗

n(·|Zn)(
√

d(n)/n), wpa1-P; (ii) θ̂∗j,n = θ0 +

OP∗
n(·|Zn)(n

−1/2) wpa1-P and θ̂j,n = θ0 +OP(n
−1/2) for j ∈ {GEL,GMM}.

The derivation of both parts of this assumption from more primitive condi-
tions can be obtained from the results in DIN and references therein; in partic-
ular in Lemma A.10 and Theorems 5.4 and 5.6.

The following lemma establishes that the test statistics for both estimators
are asymptotically equivalent to a quadratic form on sample averages of g.

Lemma 4.1. Suppose Assumptions 4.1, 4.2, 4.3 and 4.4 hold. Also, suppose

that d(n)max{2+4/γ,4}

n = o(1). Then

T̂GMM,n =

(
1√
n

n∑
i=1

g(Xi, θ0)

)T

W

(
1√
n

n∑
i=1

g(Xi, θ0)

)
+ oP(

√
d(n))

T̂GEL,n =

(
1√
n

n∑
i=1

g(Xi, θ0)

)T

Ω−1

(
1√
n

n∑
i=1

g(Xi, θ0)

)
+ oP(

√
d(n))

14Abusing notation we still denote Λ(θ) as the set for the bootstrap case.
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T̂ ∗
GMM,n =

(
1√
n

n∑
i=1

ωi,ng(Xi, θ0)

)T

W

(
1√
n

n∑
i=1

ωi,ng(Xi, θ0)

)

+ oP∗
n(·|Zn)(

√
d(n)),

T̂ ∗
GEL,n =

(
1√
n

n∑
i=1

ωi,ng(Xi, θ0)

)T

Ω−1

(
1√
n

n∑
i=1

ωi,ng(Xi, θ0)

)

+ oP∗
n(·|Zn)(

√
d(n))

wpa1-P.

Proof. See Appendix C.

This Lemma establishes that the test statistics, asymptotically, behave as
quadratic forms of (properly scaled) sample averages. Thus, our result in The-
orem 3.1 can be applied to these cases with Zi ≡ g(Xi, θ0)W

1/2 or Zi ≡
g(Xi, θ0)Ω

−1/2. The next Theorem formalizes this claim in this particular set-
ting.

Theorem 4.1. Suppose Assumptions 4.1, 4.2, 4.3 and 4.4 hold. Also, suppose

that d(n)max{2+4/γ,4}

n = o(1). Then

sup
t∈R

∣∣∣∣∣P∗
n

(
T̂ ∗
GMM,n√
d(n)

≥ t | Zn

)
−P

(
T̂GMM,n√

d(n)
≥ t

)∣∣∣∣∣ = oP(1),

and

sup
t∈R

∣∣∣∣∣P∗
n

(
T̂ ∗
GEL,n√
d(n)

≥ t | Zn

)
−P

(
T̂GEL,n√

d(n)
≥ t

)∣∣∣∣∣ = oP(1).

Proof. See Appendix C.

This result allow us to compute bootstrap-based p-values for the MST statis-
tics for the general classes of GMM and GEL estimators, even when the number
of moment restrictions increases with the sample size (but not too fast). In par-
ticular, for γ ≥ 2, our condition on rate imposes that d(n)4/n = o(1) which is
the one required in Theorem 6.4 in DIN, but at the cost of imposing restrictions
on some higher moments of ||g(·, θ0)||2 (see Assumption 4.2(i)).

5. Numerical simulations

In this section we present a Monte Carlo (MC) study to assess the finite sample
behavior of our procedure. We perform 5000 MC repetitions and in each draw
we perform 5000 bootstrap repetitions.

The design is as follows: In each MC repetition we draw Zi = V 1/2
√
12Ui

with Ui ∼ U(−0.5, 0.5) for i = 1, ..., n, and V is a positive definite symmetric
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matrix specified below. Let

Qn = n

(
n−1

n∑
i=1

Zi

)T (
n−1

n∑
i=1

Zi

)

and the associated bootstrapped version is given by

Q∗
n = n

(
n−1

n∑
i=1

ωiZi

)T (
n−1

n∑
i=1

ωiZi

)
.

Throughout the study we use ω ∼ N(0, 1).
We are interested in studying K

B
n = supa∈A

∣∣Pn

(
Qn ≥ tBn (a, Z

n)
)
− (1− a)

∣∣
and, for comparison, Kn = supa∈A |Pn (Qn ≥ tn(a))− (1− a)|, where tBn (a, Zn)
is the a-th empirical percentile of Q∗

n and tn(a) is the a-th percentile of a chi-
square with degrees of freedom d(n).15 16 We let A = {0.90, 0.95, 0.975, 0.99}.
The typical application for our results is testing — like in the Section 4 —, and
with this in mind A is designed to capture the relevant values of a for which we
would like to assess the performance of the approximation.

Approximation Error. Figure 1 shows the log(Kn/K
B
n ) for different val-

ues of the weighting matrix V and for n = 500 and d(n) = 3. When V = I
both, the chi-squared-based and boostrap-based procedures yield correct ap-
proximations of the limiting distribution, and thus log(Kn/K

B
n ) is close to one.

As expected, for cases where V = (1 + ε/
√
n)I with ε �= 0, the chi-squared-

based approximation does not approximate the limiting distribution, whereas
the bootstrap-based continues to do so. The simulations shows that even for

Fig 1. Plot of log(Kn/KB
n ) for different values of V = (1 + ε/

√
n)I for ε ∈ {0, 2, ..., 28}.

15In both cases, we approximate Pn using the empirical cdf across MC repetitions.
16KB

n is in fact the quantity of interest since, by construction, 1 −
a coincides with the empirical quantile of Q∗

n, thus KB
n approximates

supa∈A

∣∣Pn
(
Qn ≥ tBn (a, Zn)

)
−P∗

n(Q
∗
n ≥ tBn (a, Zn) | Zn)

∣∣. A similar observation holds
for Kn.
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small values of ε/
√
n, the difference is non-negligible. We also note that the

deviations from V = I we consider are “mild” and we expect that for more
complex deviations the results will be even more stark.

Table 1 shows the value of 100 ×
∣∣Pn

(
Qn ≥ tBn (a, Z

n)
)
− (1− a)

∣∣ for each
a ∈ A. We can see that regardless of the value of V , the approximation error of
our bootstrap procedure remains stable at low values, below 0.5%.

Table 1

100×
∣∣Pn

(
Qn ≥ tBn (a, Zn)

)
− (1− a)

∣∣ for all a ∈ A and different values of ε; for n = 500
and d(n) = 3

ε 0 4 8 12 16 20 24 28
a = 0.900 0.06 0.50 0.40 0.30 0.20 0.02 0.20 0.10
a = 0.950 0.06 0.30 0.22 0.02 0.04 0.02 0.28 0.14
a = 0.975 0.30 0.20 0.08 0.02 0.14 0.26 0.06 0.06
a = 0.990 0.24 0.30 0.04 0.04 0.06 0.18 0.02 0.02

Table 2 shows KB
n /Kn for d(n) = n1/5. We see that for all n under consider-

ation the ratio is around one, and in almost all below one. These results suggest
that, at least for the current design, the convergence rate of the bootstrap-based
approximation is no worse than the one for the chi-squared-based.

Table 2

KB
n /Kn for d(n) = n1/5 and different values of n

n = 250 n = 500 n = 1000 n = 2000 n = 3000

KB
n /Kn for d(n) = n1/5 0.937 0.950 0.750 0.892 1.030

Robustness to d(n) and choice of weights. We now assess how robust
our procedure is to the choice of d(n). Recall that, for this specification, our
theory predicts that is sufficient to have d(n) = o(n1/4); for values higher than
this our theory is silent about the validity of our bootstrap procedure. We are
thus particularly interested on the performance of our procedure for the latter
set of values. In this exercise, we set V = I and consider different values of n
and d(n).

Table 3 columns 2–5 shows the value of 100×K
B
n for different choices of d(n)

and n. For values of n less than 1000, the procedure seems to be quite robust
to larger choices of d(n) in the range of n1/4 to n1/2, but not higher. For values
of n around 2000-3000, however, our procedure seems to deteriorate for values
of d(n) equal or larger than n1/2.

Table 3

The value of 100× KB
n for different values of (n, d(n))

n \ d(n) n1/5 n1/4 n1/3 n1/2 n3/4

250 0.300 0.440 0.332 0.440 2.440
500 0.350 0.401 0.280 0.450 2.780
1000 0.340 0.240 0.540 0.500 2.080
2000 0.400 0.250 0.340 0.690 0.943
3000 0.200 0.201 0.341 0.601 1.463
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We now assess the robustness of our procedure to different choices of weights.
We compare the Gaussian weights with two other weights: ωi ∼ U(−0.5, 0.5)
and ωi ∼ t− Student(3) (properly scaled to have unit variance). These choices
are designed to study how different tail behavior of the weight’s distribution
affect the performance of our bootstrap procedure.

In order to ease the computational burden we lower the bootstrap repetitions
to 2000 each. Table 4 presents the results. The overall pattern seems to suggest
that the Gaussian and Uniform weights have comparable performances, and per-
form better than the t-Student weights. This pattern illustrates the discussion
in Section 7 regarding desirable properties of weights.

Table 4

The value of 100× KB
n for Gaussian, Uniform and t-Student weights with d(n) = n1/5

n\ Weights Gaussian Uniform t-Student
250 0.560 0.440 0.960
500 0.500 0.370 0.980
1000 0.139 0.319 0.400
2000 0.240 0.340 0.660
3000 0.180 0.200 0.400

Remarks. Overall, the simulations suggest that our procedure has a finite
sample performance that is at least as good as, and in some cases better than, the
“standard” chi-squared approach. Weights with “thin tails” such as Uniform and
Gaussian seem to perform better than weights with heavier tails. Additionally,
as also discussed in the context of our application in Section 4, our bootstrap-
based approximation can be applied in situations that go beyond those covered
by the chi-square approach.

6. Proof of Theorem 3.1

Recall that x ∈ R
d(n) 
→ ||x||22 ≡ xTx and that CM is the class of functions

f : R → R that are three times continuously differentiable and supx |∂rf(x)| ≤
(M)r.

All the proofs of the lemmas in this section are relegated to Appendix B.
For any two probability measures Q and P , let

ΔM (P,Q) ≡ sup
f∈CM

|EP [f(||X||22)]− EQ[f(||Y ||22)]|. (6)

Remark 6.1. Throughout the text we use this definition for X = n−1/2
∑n

i=1 Xi

and Y = n−1/2
∑n

i=1 Yi, with (X1, ..., Xn) ∼ P and (Y1, ..., Yn) ∼ Q. For these
cases, we abuse notation and use ΔM (P,Q) to denote

sup
f∈CM

|EP [f(||n−1/2
n∑

i=1

Xi||22)]− EQ[f(||n−1/2
n∑

i=1

Yi||22)]|.

Also, in the cases where Xi ∼ i.i.d. − P , we abuse notation and still use
ΔM (P,Q) to denote the same quantity.
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We want to establish the following: For any ε′ > 0, there exists a N(ε′) such
that

Pn

(
sup
t∈R

∣∣P∗
n

(
||
√
nZ∗

n||22 ≥ t | Zn
)
−Pn

(
||
√
nZn||22 ≥ t

)∣∣ ≥ ε′
)

< ε′

for all n ≥ N(ε′). Observe that

Pn

(
sup
t∈R

∣∣P∗
n

(
||
√
nZ∗

n||22 ≥ t | Zn
)
−Pn

(
||
√
nZn||22 ≥ t

)∣∣ ≥ ε′
)

≤Pn

(
{sup
t∈R

∣∣P∗
n

(
||
√
nZ∗

n||22 ≥ t | Zn
)
−Pn

(
||
√
nZn||22 ≥ t

)∣∣ ≥ ε′} ∩ Sn

)
+Pn

(
SC
n

)
where Sn ≡ {Zn : n−1

∑n
i=1 ||Zi||22 ≤ (0.5ε′)−1tr{Σn}}. By the Markov inequal-

ity Pn

(
SC
n

)
≤ 0.5ε′. Thus, it suffices to show that

Pn

({
sup
t∈R

∣∣P∗
n

(
||
√
nZ∗

n||22 ≥ t | Zn
)
−Pn

(
||
√
nZn||22 ≥ t

)∣∣ ≥ ε′
}
∩ Sn

)
< 0.5ε′.

(7)

By the triangle inequality, for all t ∈ R and Zn

|EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t} | Zn
]
− EPn

[
1{||

√
nZn||22 ≥ t}

]
|

≤|EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t} | Zn
]
− EΦn

[
1{||

√
nVn||22 ≥ t}

]
|

+ |EPn

[
1{||

√
nZn||22 ≥ t}

]
− EΦn

[
1{||

√
nVn||22 ≥ t}

]
|

where
√
nVn ∼ N(0,Σn). We use Φn to denote this probability.

Therefore, in order to obtain display 7, it suffices to bound

Pn

(
{sup
t∈R

∣∣EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t} | Zn] − EΦn

[
1{||

√
nVn||22 ≥ t}

]∣∣ ≥ 0.5ε′} ∩ Sn

)
< 0.25ε′ (8)

and

lim
n→∞

sup
t∈R

∣∣EPn

[
1{||

√
nZn||22 ≥ t}

]
− EΦn

[
1{||

√
nVn||22 ≥ t}

]∣∣ = 0. (9)

The next two lemmas allow us to “replace” the indicator functions by “smooth”
functions.

Lemma 6.1. Suppose Assumption 2.1(i) holds. For any ε > 0, there exists a
γ(ε) and N(ε) such that for all n ≥ N(ε) and all h ≤ h(

√
tr{Σ2

n}γ(ε), ε) 17

sup
t∈R

∣∣EPn

[
1{||

√
nZn||22 ≥ t}

]
− EΦn

[
1{||

√
nVn||22 ≥ t}

]∣∣ (10)

≤ ε

1− ε
+ 3ε+Δh−1(Pn,Φn). (11)

17The value h(
√

tr{Σ2
n}γ(ε), ε) is given by

√
tr{Σ2

n}γ(ε)/(−Φ−1(ε)); see Lemma B.1.
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(Recall Δh−1(Pn,Φn)= supf∈Ch−1

∣∣EPn

[
f
(
||√nZn||22

)]
−EΦn

[
f
(
||√nVn||22

)]∣∣).
And

Lemma 6.2. Suppose Assumption 2.1(i) holds. For any ε > 0, there exists a
γ(ε) and N(ε) such that for all n ≥ N(ε) and all h ≤ h(

√
tr{Σ2

n}γ(ε), ε)

sup
t∈R

∣∣EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t}|Zn
]
− EPr

[
1{||

√
nVn||22 ≥ t}

]∣∣
≤ ε

1− ε
+ 3ε+Δh−1(P∗

n(·|Zn),Φn), (12)

for any Zn ∈ R
d(n).

Remark 6.2. The previous lemma holds for any h provided that is below h ≤
h(
√

tr{Σ2
n}γ(ε), ε). The intuition from this restriction is as follows: h and δn ≡√

tr{Σ2
n}γ(ε) index the “smooth” function we use to approximate x 
→ 1{||x||22 ≥

t}; see Lemma B.1 in the Appendix for a precise expression. It turns out that h
has to be “small” relative to δn. Therefore, we need the bound h(δn, ε).

It is worth to note that, for the “smooth” function to be a good approximation
of 1{|| · ||22 ≥ t}, we need δn to be “small” (see the proof of Lemma 6.2 in
the Appendix). What we mean by δn to be “small” depends on how ||√nVn||22
concentrates mass. Lemma B.4 establishes an anti-concentration result, wherein
we obtain that this random variable puts very little mass in any given interval.
Therefore δn is actually be quite large, of the order of

√
tr{Σ2

n}.
Therefore, by letting ε in the lemmas be such that ε

1−ε + 3ε = 0.25ε′ we
obtain

sup
t∈R

∣∣EPn

[
1{||

√
nZn||22 ≥ t}

]
− EΦn

[
1{||

√
nVn||22 ≥ t}

]∣∣ ≤ ε′

4
+ Δh−1(Pn,Φn)

(13)

and

Pn

(
{sup
t∈R

∣∣EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t} | Zn
]
−EΦn

[
1{||

√
nVn||22 ≥ t}

]∣∣ ≥ ε′

2
} ∩ Sn

)
≤ Pn ({Δh−1(P∗

n(·|Zn),Φn) ≥ 0.25ε′} ∩ Sn) (14)

for all n ≥ N(ε) and all h ≤ h(δn, ε) (note that ε is a function of ε′).
By the triangle inequality and straightforward algebra, it follows that

Pn ({Δh−1(P∗
n(·|Zn),Φn) ≥ 0.25ε′} ∩ Sn)

≤ Pn

(
{Δh−1(P∗

n(·|Zn),Φ∗
n(·|Zn)) ≥ 1

8
ε′} ∩ Sn

)

+Pn

(
{Δh−1(Φ∗

n(·|Zn),Φn) ≥
1

8
ε′} ∩ Sn

)

where Φ∗
n(·|Zn) denotes the conditional probability (given the original data Zn)√

nUn ∼ N(0, n−1
∑n

i=1 ZiZ
T
i )
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Hence, by the previous display and Equations 7, 8-9, 13 and 14, in order to
show the desired result it suffices to show that: For all ε′, there exists a N(ε′)
such that

Pn ({Δh−1(P∗
n(·|Zn),Φ∗

n(·|Zn)) ≥ ε′} ∩ Sn) < ε′, (15)

Pn ({Δh−1(Φ∗
n(·|Zn),Φn) ≥ ε′} ∩ Sn) < ε′, (16)

and Δh−1(Pn,Φn) < ε′ (17)

for all n ≥ N(ε′) and some h ≤ h(
√
tr{Σ2

n}γ(ε), ε). Theorems 3.2 and 3.3
establish expressions 15 and 17.

Remark 6.3. From Lemma B.2, h(
√

tr{Σ2
n}γ(ε), ε)=

√
tr{Σ2

n}γ(ε)/(−Φ−1(ε))
and thus h can be taken to be proportional (up to a constant that depends on ε)
to
√

tr{Σ2
n}. Hence, under Assumption 2.1(i), h can be taken to be such that

h−2 � d(n)−1. Therefore, Theorems 3.2 and 3.3 actually imply a stronger result:
Δh−1(Pn,Φn) = o(d(n)−1) and Δh−1(P∗

n(·|Zn),Φ∗
n(·|Zn)) = oPn(d(n)

−1).

We have thus reduced the original problem to a Gaussian approximation
problem. That is, it remains to show that

Pn ({Δh−1(Φ∗
n(·|Zn),Φn) ≥ ε′} ∩ Sn) < ε′. (18)

Since
√
nUn ∼ N(0, Σ̂n) (with Σ̂n = n−1

∑n
i=1 ZiZ

T
i ) and

√
nVn ∼ N(0,Σn),

the previous display is equivalent to showing that

Pn

(
{Δh−1(N(0, Σ̂n), N(0,Σn)) ≥ ε′} ∩ Sn

)
< ε′.

Essentially, this expression follows by the fact that Σ̂n converges in probabil-
ity to Σn in a suitable norm. The following lemma formalizes this.

Lemma 6.3. For any h > 0 and any n ∈ N

Δh−1(Φ∗
n(·|Zn),Φn) �max

j,l

∣∣∣∣∣
{
n−1

n∑
i=1

Z[j],iZ[l],i − Σ[l,j]

}∣∣∣∣∣
× h−1d(n)

(
h−1tr{Σn}+ h−1tr{Σ̂n}+ 2

)
.

Observe that for any Zn ∈ Sn = {Zn : n−1
∑n

i=1 ||Zi||22 ≤ (0.5ε′)−1tr{Σn}},
so the RHS of the expression in the Lemma is bounded above by

d(n)

h
{ tr{Σn}

hε′
+ 2}.

Thus by Lemma 6.3, in order to establish the desired result, it suffices to
show that

Pn

(
max
j,l

∣∣∣∣∣n−1
n∑

i=1

Z[l],iZ[j],i − Σ[j,l]

∣∣∣∣∣ ≥ (ε′)2

d(n)h−2tr{Σn}
∩ Sn

)
< ε′ (19)
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for sufficiently large n. Henceforth, let cn ≡ (ε′)2

d(n)h−2tr{Σn} and let Ai,n[j, l] ≡
Z[j],iZ[l],i, observe that

EPn [Ai,n[j, l]] = EPn [Z[j],iZ[l],i] = Σ[j,l],n.

Let Ai,n[j, l] = AL
i,n[j, l] +AU

i,n[j, l] with AL
i,n[j, l] ≡ Ai,n[j, l]1{|Ai,n[j, l]| ≤

en} and AU
i,n[j, l] ≡ Ai,n[j, l]1{|Ai,n[j, l]| ≥ en} where (en)n with en > 0 is de-

fined below. Clearly, AL
i,n[j, l] ≤ en. So, by Hoeffding inequality (see Boucheron

et al. (2013) p. 34)

Pn

(
max
j,l

|n−1
n∑

i=1

{AL
i,n[j, l]− EPn [A

L
i,n[j, l]]}| ≥ cn

)

≤
∑
j,l

Pn

(
|n−1

n∑
i=1

{AL
i,n[j, l]− EPn [A

L
i,n[j, l]]}| ≥ cn

)

� exp

{
2 log(d(n))− n

c2n
e2n

}
.

Therefore, by setting en = cn
√

n0.25
log(d(n)) , the previous display implies that

Pn

(
max
j,l

|n−1
n∑

i=1

{AL
i,n[j, l]− EPn [A

L
i,n[j, l]]}| ≥ ε′

)
≤ ε′,

for sufficiently large n.
Second, by the Markov inequality and the fact that

EPn

[(
{AU

i,n[j, l]− EPn [A
U
i,n[j, l]]}

) (
{AU

k,n[j, l]− EPn [A
U
k,n[j, l]]}

)]
= 0 (20)

for all i �= k, it follows that

Pn

(
max
j,l

|n−1
n∑

i=1

{AU
i,n[j, l]− EPn [A

U
i,n[j, l]]}| ≥ cn

)

≤
∑
j,l

(cn)
−2EPn

⎡
⎣(n−1

n∑
i=1

{AU
i,n[j, l]− EPn [A

U
i,n[j, l]]}

)2
⎤
⎦

=(cn)
−2n−1

∑
j,l

EPn

[(
{AU

1,n[j, l]− EPn [A
U
1,n[j, l]]}

)2]

≤(cn)
−2n−1

∑
j,l

EPn

[(
AU

1,n[j, l]
)2]

.

Therefore by the Markov inequality, for p > 0

Pn

(
max
j,l

|n−1
n∑

i=1

{AU
i,n[j, l]− EPn [A

U
i,n[j, l]]}| ≥ cn

)
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≤ 1

c2nn(en)
p

d(n)∑
j=1

d(n)∑
l=1

EPn

[(
Z[j],1Z[l],1

)2+p
]

=
1

c2nn(en)
p
EPn

⎡
⎢⎣
⎛
⎝d(n)∑

j=1

(Z[j],1)
2+p

⎞
⎠

2
⎤
⎥⎦ .

Since en = cn
√

n0.25
log(d(n)) and cn ≡ (ε′)2

d(n)h−2tr{Σn} , it follows that

Pn

(
max
j,l

|n−1
n∑

i=1

{AU
i,n[j, l]− EPn [A

U
i,n[j, l]]}| ≥ cn

)

� log(d(n))p/2

c2+p
n n1+p/2

EPn

⎡
⎢⎣
⎛
⎝d(n)∑

j=1

(Z[j],1)
2+p

⎞
⎠

2
⎤
⎥⎦

� (log(d(n)))p/2d(n)2+p(tr{Σn})2+p

h4+2pn1+p/2
EPn

⎡
⎢⎣
⎛
⎝d(n)∑

j=1

(Z[j],1)
2+p

⎞
⎠

2
⎤
⎥⎦ .

Since we can set h �
√
tr{Σ2

n}, the RHS becomes

(log(d(n)))p/2d(n)2+p

n1+p/2

(
tr{Σn}
tr{Σ2

n}

)2+p

EPn

[(∑d(n)
j=1 (Z[j],1)

2+p
)2]

. By choosing p = κ,

by Assumptions 2.1(i) and 2.1(iii), the term vanishes as n → ∞.
Therefore, Equation 19 is established and with that the proof of Theorem 3.1.

7. Discussion

Applicability of our Results. The example developed in Section 4 illustrates
a general feature present in several test statistics, namely that they behave
asymptotically as quadratic forms of (properly scaled) sample averages. These
are the main motivational examples to which we can apply our result in Theo-
rem 3.1.

This remark is best illustrated in the Wald statistic case. To formalize this,
consider i.i.d. data (X1, ..., Xn) drawn from P and parameter a k ≥ d = d(n)
dimensional θP and a “smooth” function θ 
→ c(θ) ∈ Rd which represent the
hypothesis we want to test; i.e., the null hypothesis is c(θP) = 0. 18 The fact
that d grows with the sample size is of potential interest because in certain
situations one could have that the dimension of the parameter, although fixed,
is not “small” relative to n. Also, in some other situations, one could have a
more explicit model of increasing dimensionality like in the cases discussed in
Section 4 or in series or sieves estimators; see, for example, Chen and Pouzo
(2015).

18The notation θP stresses that the parameter is a (known) function of the probability
distribution. Thus, an estimator can obtained by “plugging in” the empirical distribution Pn.
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Suppose there exists an estimator θPn (Pn is the empirical distribution), then
the Wald statistic is given by

Wn(Pn,P) = n (c(θPn)− c(θP))
T
Vn (c(θPn)− c(θP))

where Vn ∈ R
d×d is some (possibly random) matrix to be determined later.

Suppose θPn admits an asymptotic linear representation (ALR) of the form 19∥∥√n(c(θPn)− c(θP))−
√
nEPn [ψ(X, θP)]

∥∥
2
= oP(1 +

√
n||c(θPn)− c(θP)||2)

(21)

with EP[ψ(X, θP)] = 0 and finite second moment. 20

The bootstrap analog of the Wald statistic are of the “plug-in” type, i.e., 21

Wn(P
∗
n , Pn) = n

(
c(θP∗

n
)− c(θPn)

)T
Vn

(
c(θP∗

n
)− c(θPn)

)
where P ∗

n is given by n−1
∑n

i=1 ωi,nδXi (the dependence of P
∗
n on Xn is omitted

to ease the notational burden). The bootstrap ALR (B-ALR) is given by∥∥∥∥∥√n(c(θP∗
n
)− c(θPn))− n−1/2

n∑
i=1

ωi,nψ(Xi, θP)

∥∥∥∥∥
2

= oP∗
n
(1 +

√
n||c(θP∗

n
)− c(θPn)||2), wpa1−P. (22)

Given the asymptotic linear representations, we can show that the Wald and
Bootstrapped Wald statistics can be represented asymptotically as quadratic
forms, and thus fall in the framework studied in this paper. The following propo-
sition formalizes such representation, and thereby allow us to apply our The-
orem 3.1 with Zi ≡ ψ(Xi, θP)V

1/2 to approximate the limiting distribution of
Wn(Pn,P).

Proposition 7.1. Let V be a matrix such that there exists a c ≥ 1 such that
c−1 ≤ λl(V ) ≤ c for all l = 1, ..., d and ||Vn − V ||2 = oP(1). Then, under the
null hypothesis, ALR and B-ALR yield

Wn(Pn,P)(1 + oP(1)) =

(
n−1/2

n∑
i=1

ψ(Xi, θP)

)T

V

(
n−1/2

n∑
i=1

ψ(Xi, θP)

)

+ oP(
√

d(n)),

and

Wn(P
∗
n , Pn)(1 + oP∗

n
(1)) =

(
1√
n

n∑
i=1

ωi,nψ(Xi, θP)

)T

V

(
1√
n

n∑
i=1

ωi,nψ(Xi, θP)

)

+ oP∗
n
(
√
d(n)) wpa1−P.

19See Van der Vaart (2000) and references therein for a discussion regarding ALR and
sufficient conditions for it. Here we follow Murphy and der Vaart (2000).

20Note that EPn [ψ(X, θP)] = n−1
∑n

i=1 ψ(Xi, θP).
21In principle, one could also “replace” Vn — which typically is a function of Pn, VPn —

by VP∗
n
. Our results could be extended to this case too.
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Proof. See Appendix D.

A few remarks are in order. First, and more importantly, we note that, our
results can be applied to other test statistic provided that are asymptotically
equivalent (up to o(

√
d(n))) to W(Pn,P) or to a quadratic form as in the

proposition. Typically this is the case for the Likelihood ratio and Lagrange
Multiplier (or Score) test statistics; see Newey and McFadden (1994) Section 9.

Second, for the Chi-square-based approximation to be valid, V must coincide
with (EP[ψ(X, θ0)ψ(X, θ0)

T ])−1. The bootstrap-based approximation, however,
does not require this assumption. This situation may arise, for instance, in
Likelihood ratio tests under model misspecification.

Choice of Weights. We now provide some heuristic discussion regarding
the weights.

The bootstrap procedure studied in this paper uses independent weights.
Such restriction has also been used in several papers; e.g. Chernozhukov et al.
(2013a) and Ma and Kosorok (2005). This choice is largely due to the fact that
the independent behavior of weights makes many of the proofs easier. It would
be of interest still to extend our results to non-iid weights such as Multinomial
weights — which yield non-parametric and m-out-n bootstrap procedures. While
such an extension is beyond the scope of the paper, we point out that one
possible way to extend our results to this case is to “remove” the dependence
by employing Poissonization results; see e.g. Chapter 3.5-3.6 of Van der Vaart
and Wellner (1996). The key step would be to ensure the validity of Theorem 3.4
and Lemma A.1 (in the Appendix).22

Even within the class of independent weights, one could wonder what prop-
erties are desirable for the weights to have. Clearly, as indicated by our As-
sumption 2.2, restrictions on the tail behavior of the weights are important for
our results. We now present a discussion, which expands on the quantitative
explorations in Section 5, about what other properties might be desirable to
have.

Heuristically, the Lindeberg interpolation result — Theorem 3.4 — relies on
“matching” the first and second moments. By choosing the weights to match
higher moment one could expect to improve the approximation rates.23 More
precisely, the bounds for Sn (and Rn) obtained in Lemma A.1 in the Appendix
only use restrictions in the original data and the bootstrap weights present in
Assumptions 2.1(i)(ii) and 2.2. However, it is easy to see that if one would
have additional information on the higher moments, one could obtain sharper
bounds for Sn. For instance, to show Theorem 3.2, we apply Theorem 3.4 with
Ai = n−1/2ωi,nZi and Bi = n−1/2uiZi with ui ∼ N(0, 1). If we would have that
(ωi,n)

n
i=1 were such that E[|ωi,n|4] = E[(Z)4] with z ∼ N(0, 1), then S1,n = 0.

22Another possibility is to directly extend the Theorem and Lemma to allow for non-
independent data; at least for one sequence, either theA’s orB’s in the Theorem. Independence
is, due to the technique of proof, particularly important for establishing Lemma A.1.

23These observations are related to the four moment Theorem of Tao and Vu in the context
of random matrices; see Tao and Vu (2011).
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A similar observation applies to S2,n but in this case the relevant moments are
E[ω3

i,n] and E[Z3].24

Finally, another extension that is linked to the previous discussion, is that of
refinements (or lack thereof) of certain choices of bootstrap weights. We leave
this for future research.

Appendix A: Proof of Theorems 3.4, 3.2 and 3.3

The next lemma provides a bound for Sn and Rn in Theorem 3.4. Henceforth,
let Si:n ≡

∑i−1
j=1 Aj + 0 +

∑n
j=i+1 Bj ≡

∑n
j=1 Sj .

Lemma A.1. Suppose the same conditions of Theorem 3.4. Then,

S1,n ≤L2(f)

n∑
i=1

E[||Bi||42 + ||Ai||42]

S2,n ≤L2(f)

√√√√ n∑
j=1

tr{Cj}
n∑

i=1

(
E
[
||Bi||32

]
+ E

[
||Ai||32

])
.

And, for any q > 0

Rn �
n∑

i=1

(
E
[(
S
T
i:nBi

)2+q
+
(
S
T
i:nAi

)2+q
]
+ E

[
||Bi||4+2q

2

]
+ E

[
||Ai||4+2q

2

])
.

And

n∑
i=1

E
[(
S
T
i:nBi

)2+q
]

�
n∑

i=1

E[||Bi||2+q
2 ] max

⎧⎪⎨
⎪⎩
⎛
⎝ n∑

j=1

E
[
||Sj ||22

]⎞⎠
1+0.5q

,

n∑
j=1

E
[
||Sj ||2+q

2

]⎫⎪⎬
⎪⎭ .

An analogous expression holds for
∑n

i=1 E
[(
STi:nAi

)2+q
]
.

Proof of Lemma A.1. S1,n is trivially bounded by L2(f)
∑n

i=1 E[||Bi||42+||Ai||42].
Regarding S2,n, observe that

n∑
i=1

|E
[
f ′′ (||Si:n||22) STi:n] (E[Bi||Bi||22]

)
| ≤L2(f)

n∑
i=1

E [||Si:n||2]E
[
||Bi||32

]

≤L2(f)
n∑

i=1

√
E [||Si:n||22]E

[
||Bi||32

]
24The rate of convergence of the term Rn is regulated by q, which is linked to the bound

on higher moments of the data and weights (see Assumptions 2.2 and 2.1).
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by independence of Si:n and Bi and Cauchy-Schwarz. Also, E[Si:nS
T
i:n] =∑n

j=1 E[SjS
T
j ], so E

[
||Si:n||22

]
= tr{E[Si:nS

T
i:n]} =

∑n
j=1 tr{Cj}. A similar re-

sults holds when Bi is replaced by Ai. Therefore

S2,n ≤L2(f)

√√√√ n∑
j=1

tr{Cj}
n∑

i=1

(
E
[
||Bi||32

]
+ E

[
||Ai||32

])
.

Regarding Rn. Note that

n∑
i=1

E
[(
S
T
i:nBi + ||Bi||22

)2+q
]
�
(

n∑
i=1

E
[(
S
T
i:nBi

)2+q
]
+

n∑
i=1

E
[
(||Bi||2)4+2q

])
.

Observe that E
[(
S
T
i:nBi

)2+q
]

= E

[
E

[(∑n
j=1 S

T
j bi

)2+q

|Bi = bi

]]
. Since

(Sj)j does not contain Bi, conditioning on Bi = bi, (S
T
j bi)j is an independent

sequence.
Therefore, by Johnson et al. (1985), for any q > 0,

E
[(
S
T
i:nbi

)2+q
]

�

⎛
⎜⎜⎝max

⎧⎪⎪⎨
⎪⎪⎩

√√√√√√E

⎡
⎢⎣
⎛
⎝ n∑

j=1

ST
j bi

⎞
⎠

2
⎤
⎥⎦,
⎛
⎝ n∑

j=1

E
[(
ST
j bi
)2+q

]⎞⎠
1/(2+q)

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2+q

(where the expectation is only with respect to (Sj)
n
j=1, not bi). By independence,

and the fact that E[ST
j bi] = 0,

E

⎡
⎢⎣
⎛
⎝ n∑

j=1

ST
j bi

⎞
⎠

2
⎤
⎥⎦ =E

⎡
⎣ n∑
j=1

(
ST
j bi
)2⎤⎦ = tr

⎧⎨
⎩E

⎡
⎣
⎛
⎝ n∑

j=1

SjS
T
j

⎞
⎠
⎤
⎦ bibTi

⎫⎬
⎭ .

Also, note that

n∑
j=1

E
[(
ST
j bi
)2+q

]
≤

n∑
j=1

E
[
(||Sj ||2||bi||2)2+q

]
= (||bi||2)2+q

n∑
j=1

E
[
(||Sj ||2)2+q

]
.

Therefore, using these bounds and taking expectation with respect to Bi and
after straightforward algebra,

n∑
i=1

E
[(
S
T
i:nBi

)2+q
]

�
n∑

i=1

E[||Bi||2+q
2 ] max

⎧⎪⎨
⎪⎩
⎛
⎝ n∑

j=1

E
[
||Sj ||22

]⎞⎠
1+0.5q

,

n∑
j=1

E
[
||Sj ||2+q

2

]⎫⎪⎬
⎪⎭ .

Analogous steps can be taken to show the same result replacing Bi by Ai; they
will be omitted.
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Proof of Theorem 3.4 . Observe that (Si)
n
i=1 are independent and E[Si] = 0,

also E[SiS
T
i ] = E[BiB

T
i ] = Ci. Also, note that S1:n ≡

∑n
i=1 Bi − B1 and

Sn:n ≡
∑n

i=1 Ai −An. Moreover

Si:n +Ai =

⎛
⎝ i∑

j=1

Aj +

n∑
j=i+1

Bj

⎞
⎠ = Si+1:n +Bi+1. (23)

Therefore,

n∑
i=1

E
[
f
(
||Si:n +Bi||22

)
− f

(
||Si:n +Ai||22

)]

=E

[
f

(
||

n∑
i=1

Bi||22

)
− f

(
||

n∑
i=1

Ai||22

)]
.

Observe that ||Si:n + Bi||22 = ||Si:n||22 + ||Bi||22 + 2STi:nBi. Therefore, by this
fact and three times differentiability of f , it follows that

f
(
||Si:n +Bi||22

)
− f

(
||Si:n||22

)
=f ′ (||Si:n||22) (||Bi||22 + 2STi:nBi

)
+ 0.5f ′′ (||Si:n||22) (||Bi||22 + 2STi:nBi

)2
+Ri,1,n

where Ri,1,n is a reminder term which will be defined later. Similarly

f
(
||Si:n +Ai||22

)
− f

(
||Si:n||22

)
=f ′ (||Si:n||22) (||Ai||22 + 2STi:nAi

)
+ 0.5f ′′ (||Si:n||22) (||Ai||22 + 2STi:nAi

)2
+Ri,2,n.

Hence

E
[
f
(
||Si:n +Bi||22

)
− f

(
||Si:n +Ai||22

)]
=E
[
f ′ (||Si:n||22) (||Ai||22 − ||Bi||22 + 2STi:n(Ai −Bi)

)]
+ 0.5E

[
f ′′ (||Si:n||22){(||Bi||22 + 2STi:nBi

)2 − (||Ai||22 + 2STi:nAi

)2}]
+ E [Ri,1,n −Ri,2,n]

≡Fi,n + Si,n + E [Ri,1,n −Ri,2,n] .

Therefore, it suffices to bound the first order terms Fn ≡
∑n

i=1 Fi,n, second
order terms Sn ≡

∑n
i=1 Si,n and the remainder terms E [Ri,1,n −Ri,2,n].

The First order terms, Fn. Since Si:n is independent with Ai and Bi

and E[Ai] = E[Bi] = 0 and E[AiA
T
i ] = E[BiB

T
i ] it readily follows that

n∑
i=1

E
[
f ′ (||Si:n||22) STi:n (Bi −Ai)

]
=

n∑
i=1

E
[
f ′ (||Si:n||22) STi:n]E [(Bi −Ai)] = 0
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and
n∑

i=1

E
[
f ′ (||Si:n||22) (||Bi||22 − ||Ai||22

)]
=

n∑
i=1

E
[
f ′ (||Si:n||22)]E [(||Bi||22 − ||Ai||22

)]
=0.

The term Second order terms, Sn. For this term it suffices to study the
following terms:

S1,n ≡
n∑

i=1

E
[
f ′′ (||Si:n||22) (||Bi||42 − ||Ai||42

)]

S2,n ≡
n∑

i=1

E
[
f ′′ (||Si:n||22) 4 ((STi:nBi)

2 − (STi:nAi)
2
)]

S3,n ≡
n∑

i=1

E
[
f ′′ (||Si:n||22) 4STi:n (Bi||Bi||22 −Ai||Ai||22

)]
.

By independence of Si:n with Ai and Bi, it follows that

S1,n =

n∑
i=1

E
[
f ′′ (||Si:n||22)]E [||Bi||42 − ||Ai||42

]
.

Regarding S2,n, because Si:n is independent to Ai and Bi and E[AiA
T
i ] =

E[BiB
T
i ], it follows that E

[
S
T
i:nBiB

T
i Si:n

]
= E

[
S
T
i:nAiA

T
i Si:n

]
and thus S2,n =

0.
Finally, regarding S3,n, observe that by independence of Si:n and Bi and Ai

|S3,n| ≤ 4

n∑
i=1

|E
[
f ′′ (||Si:n||22) STi:n] (E[Bi||Bi||22]− E[Ai||Ai||22]

)
|.

The remainder terms, R1,n and R2,n. By Taylor’s Theorem it follows
that: For any q > 0

n∑
i=1

E [|Ri,1,n|] � L2(f)
1−qL3(f)

q
n∑

i=1

E
[(
S
T
i:nBi + ||Bi||22

)2+q
]
.

A.1. Proof of Theorem 3.2

Proof of Theorem 3.2. We first note that is enough to show that for all ε > 0,
there exists a N(ε) such that

Pn

({
sup

f∈C
h−1

h2
∣∣EP∗

n

[
f
(
||
√
nZ∗

n||22
)
|Zn] − EΦ∗

n

[
f
(
||
√
nUn||22

)
|Zn]∣∣ ≥ ε

}
∩Kn

)

< ε

for all n ≥ N(ε), where Kn ≡ {Zn : n−1
∑n

i=1 ||Zi||22 ≤ (0.5ε)−1tr{Σn} ≡ Mn}.
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The strategy of proof consists of applying the results in Theorem 3.4 and
Lemma A.1, with Ai = n−1/2ωinZi and Bi = n−1/2uiZi where ui ∼ N(0, 1).25

Then uses the Markov inequality and shows that the expectation (under Pn)
of the terms in the RHS of the main expression in Theorem 3.4, Sn and Rn,
are such that the first one vanishes at rate h−2 as n → ∞, and the second one
vanishes as n → ∞.26

The leading terms, Sn. For this case
∑n

i=1 E[(||Bi||2)4] � n−2
∑n

i=1 ||Zi||42
and

∑n
i=1 E[(||Ai||2)4] � n−2

∑n
i=1 ||Zi||42, under Assumption 2.2. Therefore,

S1,n in Theorem 3.4 is bounded above (up to a constant) by
n−1

(
n−1

∑n
i=1 ||Zi||42

)
.

Therefore, since L2(f) = h−2, EPn [S1,n] � h−2n−2
∑n

i=1 EPn [||Zi||42] =
h−2n−1EPn [||Z1||42] which is of order o(h−2) by Assumption 2.1(i).

Observe that in this case E[SiS
T
i ] = n−1ZiZ

T
i and thus

S2,n �h−2

√√√√n−1

n∑
i=1

||Zi||22n−3/2
n∑

i=1

E[|ωin|3 + |ui,n|3]||Zi||32

�h−2

√√√√n−1

n∑
i=1

||Zi||22n−3/2
n∑

i=1

||Zi||32.

For any Zn ∈ Kn, S2,n � h−2
√
Mnn

−3/2
∑n

i=1 ||Zi||32. Therefore,

EPn [S2,n1{Kn}] �
√
Mn

h2n3/2

n∑
i=1

EPn [||Zi||32]

= h−2
√
Mnn

−1/2EPn [||Z1||32],

which is of order o(h−2) by Assumption 2.1(i).

The remainder terms, Rn. To bound the remainder term in the expression
of Theorem 3.4 we use Lemma A.1. Observe that (tr{

∑n
j=1 E[(ST

j Sj)]})1+0.5q =

(tr{n−1
∑n

j=1 ZjZ
T
j })1+0.5q = (n−1

∑n
j=1 ||Zj ||22)1+0.5q. Also,

n∑
i=1

E
[
(||Bi||2)2+q

]
=

1

n1+0.5q

n∑
i=1

E
[
|ui,n|2+q

]
||Zi||2+q

2 � 1

n1+0.5q

n∑
i=1

||Zi||2+q
2

because of the fact that E[|ui,n|2+q] ≤ C < ∞ with q = γ. Similarly, under
Assumption 2.2,

n∑
j=1

E
[
(||Sj ||2)2+q

]
� n−(1+0.5q)

n∑
i=1

||Zi||2+q
2 .

25Note that Un can be cast as n−1
∑n

i=1 uiZi.
26For the last one is enough to show that it simply vanishes because in Theorem 3.4, Rn

is already scaled by L2(f)(L3(f)/L2(f))q = h−2h−q . For any h > 0, the RHS is trivially
O(h−2); this is true — in fact is o(h−2) — even in the case h diverges to infinity. It will not
be the case, however, if h is taken to converge to 0, but we never consider such case.
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Therefore,

n∑
i=1

E
[(
S
T
i:nBi

)2+q
]

� 1

n1+0.5q

n∑
i=1

||Zi||2+q
2 max

⎧⎪⎨
⎪⎩
⎛
⎝n−1

n∑
j=1

||Zj ||22

⎞
⎠

1+0.5q

, n−(1+0.5q)
n∑

i=1

||Zi||2+q
2

⎫⎪⎬
⎪⎭

�max

⎧⎪⎨
⎪⎩n−(1+0.5q)

n∑
i=1

||Zi||2+q
2

⎛
⎝n−1

n∑
j=1

||Zj ||22

⎞
⎠

1+0.5q

, n−(1+q)
n∑

i=1

||Zi||4+2q
2

⎫⎪⎬
⎪⎭

where the last line follows from Jensen inequality. And,
∑n

i=1 E[(||Bi||2)4+2q] �
n−(2+q)

∑n
i=1 ||Zi||4+2q

2 .
It is straightforward to check that analogous expressions hold for∑n
i=1 E

[(
S
T
i:nAi

)2+q
]
and

∑n
i=1 E[(||Ai||2)4+2q].

Recall that q = γ. Thus, EPn [
1

n2+q

∑n
i=1 ||Zi||4+2q

2 ] = 1
n1+q EPn [||Z1||4+2q

2 ]
which vanishes as n → ∞ under Assumption 2.1(ii). Similarly,

EPn

[
n∑

i=1

E
[(
S
T
i:nBi

)2+q
]
1{Zn ∈ Kn}

]

(and EPn

[∑n
i=1 E

[(
S
T
i:nAi

)2+q
]
1{Zn ∈ Kn}

]
) are bounded above (up to a

constant) by (Mn)
1+0.5qn−(0.5q)EPn [||Z1||2+q

2 ] + n−qEPn [||Z1||4+q
2 ]; both terms

vanish as n → ∞ under Assumption 2.1(ii) with q = γ.
The desired result follows by the Markov inequality, Theorem 3.4 and the

fact that Ll(f) = h−l with h > 0 and l = 2, 3; given that we have proven that
EPn [Sn1{Kn}] = o(h−2) and EPn [Rn1{Kn}] = o(1).27

A.2. Proof of Theorem 3.3

For the proof of Theorem 3.3 we need the following simple lemma.

Lemma A.2. Let d ≥ 1 and let X ∈ R
d such that X ∼ N(0, A) for some A

positive definite. Then for any q > 0

E[||X||2q2 ] ≤ C(q)(tr{A})q

for some C(q) ∈ (0,∞).

27As pointed out above, L2(f)(L3(f)/L2(f))q = h−2h−q and thus for any h > 0, the RHS
is trivially O(h−2); this is true — in fact is o(h−2) — even in the case h diverges to infinity. It
will not be the case, however, if h is taken to converge to 0, but we never consider such case.
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Proof of Lemma A.2. Let U ∼ N(0, Id) and let Λ be the diagonal matrix of
eigenvalues of A and V the eigenvector matrix. For any q > 0

E[||X||2q2 ] = E[(XTX)q] = E[(UTAU)q]

= E[(ξTΛξ)q], where ξ = V TU

= tr{A}qE

⎡
⎣
⎛
⎝ d∑

j=1

cj(A)|ξj |2
⎞
⎠

q⎤
⎦

where cj(A) ≡ λj(A)∑d
j=1 λj(A)

. Since

E

⎡
⎣
⎛
⎝ d∑

j=1

cj(A)|ξj |2
⎞
⎠

q⎤
⎦ =

∫ ∞

0

Pr

⎛
⎝ d∑

j=1

cj(A)|ξj |2 ≥ t1/q

⎞
⎠ dt

=q

∫ ∞

0

uq−1 Pr

⎛
⎝ d∑

j=1

cj(A)|ξj |2 ≥ u

⎞
⎠ du

≤q

∫ ∞

0

uq−1e−0.25uduE
[
e0.25

∑d
j=1 cj(A)|ξj |2

]

≤q

∫ ∞

0

uq−1e−0.25udu

d∑
j=1

cj(A)E
[
e0.25|ξj |

2
]

where the third line follows from the Markov inequality and the fourth from
Jensen inequality. The result follows from the fact that q

∫∞
0

uq−1e−0.25udu ≤
C < ∞ and |ξj |2 ∼ χ2 and

∑d
j=1 cj(A) = 1.

Proof of Theorem 3.3. Firs note that we can always write Vn ≡ n−1
∑n

i=1 Vi,n

with Vi,n ∼ i.i.d.−N(0,Σn).
The strategy of proof follows the one for Theorem 3.2, which consists of

applying the results in Theorem 3.4 and Lemma A.1, with Ai = n−1/2Zi and
Bi = n−1/2Vi,n, and then bounding the terms Sn and Rn as in the proof of
Theorem 3.2; we refer the reader to that proof for details and discussion.

Observe that E[AiA
T
i ] = E[BiB

T
i ] = Σn.

The term Sn. For this case
∑n

i=1 E[(||Bi||2)4] = n−2
∑n

i=1 E[||Vi,n||42] =
n−1E[||V1,n||42] and

∑n
i=1 E[(||Ai||2)4] = n−2

∑n
i=1 E[||Zi||42] = n−1E[||Z1||42].

Therefore, S1,n in Theorem 3.4 is bounded above (up to a constant) by
h−2n−1

(
E[||Z1||42] + E[||V1,n||42]

)
, and by Lemma A.2, this implies that

S1,n � h−2n−1
(
E[||Z1||42] + (tr{Σn})2

)
both terms are of order o(h−2) under Assumption 2.1(ii).

Observe that in this case E[SjS
T
j ] = n−1Σn and thus

S3,n �h−2
√
tr{Σn}n−3/2

n∑
i=1

(E[||Zi||32] + E[||Vi,n||32])
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=h−2
√
tr{Σn}n−1/2(E[||Z1||32] + E[||V1,n||32]).

By Lemma A.2, E[||V1,n||32] = (tr{Σn})3/2. Thus, by Assumption 2.1(i), S2,n

is of order o(h−2).
We thus have established that Sn in Theorem 3.4 vanishes (at rate h−2). We

now establish that Rn also vanishes.

The remainder terms, Rn. To bound the remainder term in the expres-
sion of Theorem 3.4 we use Lemma A.1 and also set q = γ. Observe that(
tr
{∑n

j=1 E
[(
ST
j Sj

)]})1+0.5q

= (tr {Σn})1+0.5q
. Also,

n∑
i=1

E
[
(||Bi||2)2+q

]
= n−0.5qE[||V1||2+q

2 ] � n−0.5q(tr{Σn})1+0.5q

by Lemma A.2. Therefore,

n∑
i=1

E
[(
S
T
i:nBi

)2+q
]
� (tr{Σn})1+0.5q

n0.5q
max

⎧⎨
⎩(tr{Σn})1+0.5q,

n∑
j=1

E[||Sj ||2+q
2 ]

⎫⎬
⎭ .

Observe that

n∑
j=1

E
[
(||Sj ||2)2+q

]
� n−(1+0.5q)

⎛
⎝i−1∑

j=1

E
[
(||Zj ||2)2+q

]
+ (n− i)tr{Σn}1+0.5q

⎞
⎠

by Lemma A.2. Under Assumption 2.1(ii),

n∑
j=1

E
[
(||Sj ||2)2+q

]
�n−(1+0.5q)

(
iE
[
(||Z1||2)2+q

]
+ (n− i)tr{Σn}1+0.5q

)

≤n−(0.5q)
(
E
[
(||Z1||2)2+q

]
+ tr{Σn}1+0.5q

)
→ 0, as n → 0

because, n−(0.5q)tr{Σn}1+0.5q =
(
n−1/2tr{Σn}0.5+1/q

)q
and with q = γ > 2 is

implied by Assumption 2.1(ii); and due to Jensen inequality

n−(0.5q)E
[
(||Z1||2)2+q

]
≤
√
n−qE

[
(||Z1||2)4+2q

]
which vanishes for q = γ.

Also, by Assumption 2.1(ii), n−(0.5q)(tr{Σn})2+q → 0 as n → ∞. Finally,
note that, by Lemma A.2,

∑n
i=1 E[(||Bi||2)4+2q] � n−(2+q)

∑n
i=1 E[||Vi,n||4+2q

2 ] �
n−(1+q)(tr{Σn})2+q. By Assumption 2.1(ii) and the previous calculations,
n−(1+q)(tr{Σn})2+q = o(1). Similarly,

n∑
i=1

E[(||Ai||2)4+2q] � n−(2+q)
n∑

i=1

E[||Zi||4+2q
2 ]

= n−(1+q)E[||Z1||4+2q
2 ] = o(1)

by Assumption 2.1(ii).
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We thus have established that the remainder term Rn in Theorem 3.4 van-
ishes.

The desired result therefore follows by the same arguments as those in the
proof of Theorem 3.2.

Appendix B: Proofs of lemmas in Section 6

In order to prove the lemmas in Section 6 we need the following lemmas.

B.1. Supplementary lemmas

Let for any t ∈ R, δ > 0, n ∈ N, and h > 0

Pt,δ,h(||x||22) =
∫

pt,δ(||x||22 + hz)φ(z)dz, ∀x ∈ R
d(n)

where R � u 
→ pt,δ(u) = 1{u ≥ t}+ u−t+δ
δ 1{u ∈ (t−δ, t)} and φ is the standard

Gaussian pdf.
The next three lemmas show that we can use Pt,δ,h(·) to approximate the

indicator function 1{· ≥ t} in expectation for the variables ||√nZ∗
n||2, ||

√
nVn||2

and ||√nZn||2, respectively.

Lemma B.1. For any ε ∈ (0, 1), δ > 0 and n ∈ N, there exists h(δ, ε) = δ
−Φ−1(ε)

such that for all h ≤ h(δ, ε):
(i)

EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t}|Zn
]
≤ 1

1− ε
EP∗

n

[
Pt−δ,δ,h(||

√
nZ∗

n||22)|Zn
]
. (24)

(ii)

EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t}|Zn
]
≥ 1

1− ε
EP∗

n

[
Pt+2δ,δ,h(||

√
nZ∗

n||22)|Zn
]
− ε

1− ε
.

(25)

Lemma B.2. For any ε ∈ (0, 1), δ > 0 and n ∈ N, there exists h(δ, ε) = δ
−Φ−1(ε)

such that for all h ≤ h(δ, ε):
(i)

EΦn

[
1{||

√
nVn||22 ≥ t}

]
≤ 1

1− ε
EΦn

[
Pt−δ,δ,h(||

√
nVn||22)

]
. (26)

(ii)

EΦn

[
1{||

√
nVn||22 ≥ t}

]
≥ 1

1− ε
EΦn

[
Pt+2δ,δ,h(||

√
nVn||22)

]
− ε

1− ε
. (27)
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Lemma B.3. For any ε ∈ (0, 1), δ > 0 and n ∈ N, there exists h(δ, ε) = δ
−Φ−1(ε)

such that for all h ≤ h(δ, ε):
(i)

EPn

[
1{||

√
nZn||22 ≥ t}

]
≤ 1

1− ε
EPn

[
Pt−δ,δ,h(||

√
nZn||22)

]
. (28)

(ii)

EPn

[
1{||

√
nZn||22 ≥ t}

]
≥ 1

1− ε
EPn

[
Pt+2δ,δ,h(||

√
nZn||22)

]
− ε

1− ε
. (29)

Lemma B.4. Suppose Assumption 2.1(i) holds. For any ε > 0, there exists a
N(ε) and γ(ε) such that for all γ ≤ γ(ε) and all n ≥ N(ε):

sup
t

Φn

(
|||
√
nVn||22 − t| ≤

√
tr{Σ2

n}γ
)
≤ ε. (30)

Remark B.1. It is easy to see that from this lemma it follows that: For any
ε > 0, there exists a N(ε) and γ(ε) such that for all γ ≤ γ(ε) and all n ≥ N(ε):

Φn

(
||
√
nVn||22 ≥ t

)
≤ ε+Φn

(
||
√
nVn||22 ≥ t+

√
tr{Σ2

n}γ
)

(31)

for all t ≥ 0.

Proof of Lemma B.1. Part (i) By definition of Pt,δ,h, for any ||x||22 ≥ t+ δ

Pt,δ,h(||x||22) ≥
∫

1{z : ||x||22 + hz ≥ t}φ(z)dz ≥
∫

1{z : hz ≥ −δ}φ(z)dz

= 1− Φ(−δ/h).

Thus, for any h ≤ δ
−Φ−1(ε) ≡ h(δ, ε), Pt,δ,h(||x||22) ≥ (1 − ε)1{||x||22 ≥ t + δ}.

Thus

EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t}|Zn
]
≤ 1

1− ε
EP∗

n

[
Pt−δ,δ,h(||

√
nZ∗

n||22)|Zn
]

for any h ≤ h(δ, ε).

Part (ii) Observe that for any x : ||x||22 ≤ t− 2δ,

Pt,δ,h(||x||22) ≤
∫

1{z : ||x||22 + hz ≥ t− δ}φ(z)dz ≤
∫

1{z : hz ≥ δ}φ(z)dz.

Thus Pt,δ,h(||x||22) ≤ 1−Φ(δ/h). Since h ≤ δ
−Φ−1(ε) , Pt,δ,h(||x||22) ≤ ε. Therefore,

Pt,δ,h(||x||22) ≤ ε for any x : ||x||22 ≤ t − 2δ and h ≤ h(δ, ε). Thus, for all
x ∈ R

d, Pt,δ,h(||x||22) ≤ (1− ε)1{||x||22 ≥ t− 2δ}+ ε. The result follows by taken
expectation, EP∗

n
[.], at both sides.
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Proof of Lemma B.2. The proof is identical to that of Lemma B.1 and will be
omitted.

Proof of Lemma B.3. The proof is identical to that of Lemma B.1 and will be
omitted.

Proof of Lemma B.4. ξn ≡ √
nVn ∼ N(0,Σn) with Σn = E[Z1,nZ

T
1,n]. Note

that

ξTn ξn = (Σ−1/2
n ξn)

TΣn(Σ
−1/2
n ξn) =(UnΣ

−1/2
n ξn)

TΛn(UnΣ
−1/2
n ξn)

≡(ζn)
TΛn(ζn) =

d(n)∑
l=1

λlζ
2
l,n

where the third inequality follows from the diagonalization of Σn, where Λn is a
diagonal matrix of eigenvalues and Un is an unitary matrix. Observe that ζn =

UnΣ
−1/2
n ξn ∼ N(0, Id(n)) and thus its components are iid standard Gaussian,

so ζ2l ∼ χ2
1 and λlζ

2
l ∼ Γ(1/2, 2λl). Moreover, it is easy to see that

E[λlζ
2
l,n] = λl and V ar(λlζ

2
l,n) = 2λ2

l

which implies that V ar(
∑d(n)

l=1 λlζ
2
l,n) = 2tr{Σ2

n}. Also,
E[|λlζ

2
l,n|3] = λ3

lE[|ζl,n|6] ≤ C (λmax(Σn))
3
where λmax(A) is the largest eigen

value of a matrix A.
If d(n) ≤ d < ∞, the proof follows from the fact that Γ(1/2, 2λl) does not

have mass points and is straight forward to show that the statement holds for
any n.

Suppose that d(n) → ∞ as n → ∞. 28 Therefore,

sup
t

Φn

(
|||
√
nVn||22 − t| ≤

√
tr{Σ2

n}γ
)

=sup
t

Φn

(
| ||ξn||22√

2tr{Σ2
n}

− t√
2tr{Σ2

n}
| ≤ γ/

√
2

)

=sup
t′

Φn

(
| ||ξn||22√

2tr{Σ2
n}

− t′| ≤ γ/
√
2

)

=sup
t′

Φn

(
|
∑d(n)

l=1 λl(ζ
2
l,n − 1)√

2tr{Σ2
n}

− t′ + tr{Σn}| ≤ γ/
√
2

)

=sup
t′′

Φn

(
|
∑d(n)

l=1 λl(ζ
2
l,n − 1)√

2tr{Σ2
n}

− t′′| ≤ γ/
√
2

)
.

Then, by Berry-Essen bound (Theorem 2, p. 544 Feller (1971)).

sup
t

∣∣∣∣∣Φn

(∑d(n)
l=1 λl(ζ

2
l,n − 1)√

2tr{Σ2
n}

≤ t′

)
− Φ(t′)

∣∣∣∣∣ ≤ 6C

∑d(n)
l=1 λ3

l

(2tr{Σ2
n})

3/2

28The relevant cases for us are: (i) d(n) ≤ d < ∞ or (ii) d(n) ↑ ∞, that is why we implicitly
assume the limit of (d(n))n exist.
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where Φ is the standard Gaussian cdf. Since
∑d(n)

l=1 λ3
l

(2tr{Σ2
n})3/2

=
tr{Σ3

n}
(2tr{Σ2

n})3/2
, by

Assumption 2.1(i), for any ε > 0, there exists a N(ε) such that 6C
tr{Σ3

n}
(2tr{Σ2

n})3/2
<

0.5ε for all n ≥ N(ε). Thus,

sup
t∈R

Φn

(
|||ξn||22 − t| ≤

√
tr{Σ2

n}γ
)

=sup
t∈R

Φn

(√
tr{Σ2

n}γ − t ≤ ||ξn||22 ≤ t+
√

tr{Σ2
n}γ
)

≤ sup
t∈R

∣∣∣Φ(t+ γ/
√
2
)
− Φ

(
t− γ/

√
2
)∣∣∣+ 0.5ε.

Since for any ε > 0, there exists a γ(ε) such that∣∣Φ (t+ γ/
√
2
)
− Φ

(
t− γ/

√
2
)∣∣ < 0.5ε, the desired result follows.

B.2. Proofs of lemmas in Section 6

Proof of Lemma 6.1. The proof is analogous to that of Lemma 6.2 and will not
be repeated here.

Proof of Lemma 6.2. Throughout the proof, let δn ≡
√

tr{Σ2
n}γ(ε), where γ(ε)

as in Lemma B.4. By remark B.1 (applied thrice),

EΦn

[
1{||

√
nVn||22 ≥ t}

]
≥ EΦn

[
1{||

√
nVn||22 ≥ t− 3δn}

]
− 3ε (32)

for all n ≥ N(ε). By Lemma B.2(ii),

EΦn

[
1{||

√
nVn||22 ≥ t}

]
≥ 1

1− ε
EΦn

[
Pt−δn,δn,h(||

√
nVn||22)

]
− ε

1− ε
− 3ε

(33)

for all h ≤ h(δn, ε) and all n ≥ N(ε). By Lemma B.1(i), for all h ≤ h(δn, ε)

EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t}|Zn
]
≤ 1

1− ε
EP∗

n

[
Pt−δn,δn,h(||

√
nZ∗

n||22)|Zn
]
. (34)

Hence, for all h ≤ h(δn, ε) and all n ≥ N(ε),

EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t}|Zn
]
− EΦn

[
1{||

√
nVn||22 ≥ t}

]
≤ 1

1− ε

(
EP∗

n

[
Pt−δn,δn,h(||

√
nZ∗

n||22)|Zn
]
− EΦn

[
Pt−δn,δn,h(||

√
nVn||22)

])
+

ε

1− ε
+ 3ε. (35)

Similarly, by Lemma B.1(ii), for all h ≤ h(δn, ε)

EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t}|Zn
]
≥ 1

1− ε
EP∗

n

[
Pt+2δn,δn,h(||

√
nZ∗

n||22)|Zn
]
− ε

1− ε
.

(36)
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By Remark B.1 (applied thrice),

EΦn

[
1{||

√
nVn||22 ≥ t}

]
≤ EΦn

[
1{||

√
nVn||22 ≥ t+ 3δn}

]
+ 3ε (37)

for all n ≥ N(ε). By Lemma B.2(ii),

EΦn

[
1{||

√
nVn||22 ≥ t}

]
≤ 1

1− ε
EΦn

[
Pt+2δn,δn,h(||

√
nVn||22)

]
+ 3ε (38)

for all h ≤ h(δn, ε) and all n ≥ N(ε).
Hence,

EP∗
n

[
1{||

√
nZ∗

n||22 ≥ t}|Zn
]
− EΦn

[
1{||

√
nVn||22 ≥ t}

]
≥ 1

1− ε

(
EP∗

n

[
Pt+2δn,δn,h(||

√
nZ∗

n||22)|Zn
]
− EΦn

[
Pt+2δn,δn,h(||

√
nVn||22)

])
− ε

1− ε
− 3ε. (39)

By displays 35 and 39, in order to obtain the desired result it suffices to verify
that a ∈ R 
→ Pt,δ,h(a) belong to Ch−1 . It is straight forward to check that Pt,δ,h

is three times continuously differentiable. Moreover, for any a ∈ R,

|∂Pt,δ,h(a)| ≤ h−1.

To show this expression, observe that by the Dominated Convergence Theo-
rem, for any a ∈ R,

|∂Pt,δ,h(a)| =h−1

∣∣∣∣
∫

pt,δ(u)(u− a)h−2φ((u− a)h−1)du

∣∣∣∣
=h−1

∫
|u− a|h−2φ((u− a)h−1)du

≤h−2

√∫
|u− a|2 h−1φ((u− a)h−1)du

=h−1

where the second line follows from the fact that 0 ≤ pt,δ(u) ≤ 1. Similar calcu-
lations yield

|∂rPt,δ,h(a)| ≤ h−r

which holds uniformly in a ∈ R, δ, and t.

Proof of Lemma 6.3. Establishing the result is analogous to establishing a bound
for Δh−1(Q∗

n(·|Zn),Qn) where Q∗
n(·|Zn) is N(0, Σ̂n) and Qn is N(0,Σn). Let

ξ̃n ∼ Q∗
n(·|Zn) and ξn ∼ Qn.

For any x ∈ R
d, let f(x) ≡ g(||x||22). Observe that for any g ∈ Ch−1 , ∂if(x) =

g′(||x||22)2xi and ∂ijf(x) = g′′(||x||22)4xixj + 2g′(||x||22)1{i = j}.
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By the Slepian interpolation (Rollin (2013) p. 4 — there the construction
itself is slightly different, using

√
t instead of cos(t) —,

EQ∗
n(·|Zn)·Qn

[
f
(
ξ̃n

)
− f (ξn)

]
=

d(n)∑
j=1

∫ π/2

0

EQ∗
n(·|Zn)·Qn

[
∂jf (ξn(t)) ξ̇[j],n(t)

]
dt

where ξn(t) = cos(t)ξn+sin(t)ξ̃n and ξ̇[j],n(t) denotes the j-th coordinate of ξ̇n(t)

(the same holds for ξn, etc). Observe that ξ̇[j],n(t) = − sin(t)ξ[j],n + cos(t)ξ̃[j],n.

Hence (ξ̇[j],n(t), ξn(t)) are jointly Gaussian with mean 0 a.s.-Pn, for any t. Hence,
by Stein’s Identity (Stein (1981) and Chernozhukov et al. (2013a) Lemma H.2),

EQ∗
n(·|Zn)·Qn

[
∂jf (ξn(t)) ξ̇[j],n(t)

]

=

d(k(n))∑
l=1

EQ∗
n(·|Zn)·Qn

[∂jlf (ξn(t))]EQ∗
n(·|Zn)·Qn

[
ξ[l],n(t)ξ̇[j],n(t)

]
.

It follows that

E
[
ξ[l],n(t)ξ̇[j],n(t)

]
= E

[
(ξ̃[l],nξ̃[j],n − ξ[l],nξ[j],n)

]
sin(t) cos(t).

Therefore,

EQ∗
n(·|Zn)·Qn

[
f
(
ξ̃n

)
− f (ξn)

]
=

d(n)∑
j=1

d(n)∑
l=1

EQ∗
n(·|Zn)·Qn

[
(ξ̃[l],nξ̃[j],n − ξ[l],nξ[j],n)

]

×
∫ π/2

0

EQ∗
n(·|Zn)·Qn

[∂jlf (ξn(t))] sin(t) cos(t)dt

=

d(n)∑
j=1

d(n)∑
l=1

{
n−1

n∑
i=1

Z[l],i,nZ[j],i,n − Σ[j,l],n

}

×
∫ π/2

0

EQ∗
n(·|Zn)·Qn

[∂jlf (ξn(t))] sin(t) cos(t)dt

where the second line follows from the fact that ξ̃n ∼ N(0, n−1
∑n

i=1 ZiZ
T
i ),

under Q∗
n(·|Zn).

Therefore,

EQ∗
n(·|Zn)·Qn

[
f
(
ξ̃n

)
− f (ξn)

]

≤max
j,l

∣∣∣∣∣n−1
n∑

i=1

Z[l],iZ[j],i − Σ[j,l],n

∣∣∣∣∣
×

d(n)∑
j=1

d(n)∑
l=1

∫ π/2

0

EQ∗
n(·|Zn)·Qn

[|∂jlf (ξn(t)) |] | sin(t) cos(t)|dt.
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Observe that, by Cauchy-Schwarz inequality and the fact that ∂ijf(x) =
g′′(||x||22)4xixj + 2g′(||x||22)1{i = j}
d(n)∑
j=1

d(n)∑
l=1

EQ∗
n(·|Zn)·Qn

[|∂jlf (ξn(t)) |] ≤
4

h2

d(n)∑
j=1

d(n)∑
l=1

EQ∗
n(·|Zn)·Qn

[
|ξ[j],n(t)||ξ[l],n(t)|

]
+ 2h−1d(n)

≤4h−2

⎛
⎝d(n)∑

j=1

√
EQ∗

n(·|Zn)·Qn

[
|ξ[j],n(t)|2

]⎞⎠
2

+ 2h−1d(n)

≤4d(n)

h2
EQ∗

n(·|Zn)·Qn

[
||ξn(t)||22

]
+

2d(n)

h
.

Therefore, since ||ξn(t)||22 � {||ξn||22 + ||ξ̃n||22},
d(n)∑
j=1

d(n)∑
l=1

EQ∗
n(·|Zn)·Qn

[|∂jlf (ξn(t)) |] �
d(n)

h2
EQ∗

n(·|Zn)·Qn

[
||ξn||22 + ||ξ̃n||22

]

+
d(n)

h
2

=d(n)h−1{h−1
(
tr{Σn}+ tr{Σ̂n}

)
+ 2}.

The desired result from the fact that
∫ π/2

0
| sin(t) cos(t)|dt < ∞.

Appendix C: Proofs for Section 4

We first introduce some notation and lemmas needed in the proofs of the results
in Section 4 (the proofs of these lemmas are relegated to the end of the section).

Let ĝ∗n ≡ n−1
∑n

i=1 ωing(Xi, θ̂
∗
GMM,n) and ḡ∗n ≡ n−1

∑n
i=1 ωing(Xi, θ0). Let

Ḡ∗
n(θ) = n−1

∑n
i=1 ωin∇θg(Xi, θ) ∈ R

d(n)×q.

Lemma C.1. Suppose Assumption 4.2(ii)(iii)(iv) holds. Then:

(1)
√
n||ḡ∗n||2 = OP∗

n(·|Zn)(
√

n−1
∑n

i=1 ||g(Xi, θ0)||22).

(2) Uniformly over θ ∈ {θ ∈ Θ : ||θ − θ0||2 � Δn} with Δn = o(1),

||Ḡ∗
n(θ)||2 = OP∗

n(·|Zn)(
√

d(n)(n−1/2 +Δn)), wpa1−P.

Let

R∗
n(θ, λ)

≡ λT

(
n−1

n∑
i=1

∫ 1

0

s′′(tλTωing(Xi, θ))dtω
2
ing(Xi, θ)g(Xi, θ)

T − s′′(0)Ω

)
λ.
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Lemma C.2. Suppose Assumption 4.2(i)(ii)(iii) holds and d(n)4/n = o(1).
Then:

(1) For all θ ∈ N , {λ : ||λ||2 �
√

d(n)/n} ⊆ Λ(θ), wpa1-P.29

(2) Uniformly over λ ∈ {λ ∈ Λ(θ̂∗GEL,n) : ||λ||2 �
√
d(n)/n} and ||θ−θ0||2 �

Δn with Δn = o(1),

nR∗
n(θ, λ) = OP∗

n(·|Zn)

(√
d(n)(o(1) + d(n)3/2Δn)

)
, wpa1−P.

The following lemma is a general result that provides a relationship between
OP∗

n(·|Zn) (and oP∗
n(·|Zn)) and OP variables that we use throughout.

Lemma C.3. Let (Wi)i and (Xi)i be sequences of random variables such that
Wn is (ωin, Zi)i≤n measurable and Xn is (Zi)i≤n measurable and Xn �= 0 a.s.-P.
Let (cn)n be a sequence of positive real numbers. Then:

(1) If Wn = OP∗
n(·|Zn)(|Xn|) and Xn = OP(cn), then Wn = OP∗

n(·|Zn)(cn)
wpa1-P.

(2) If Wn = OP∗
n(·|Zn)(|Xn|) and Xn = oP(cn), then Wn = oP∗

n(·|Zn)(cn)
wpa1-P.

Proof of Lemma 4.1. The proof for T̂GMM,n is in Lemma 6.1 in DIN and also

analogous to that of T̂ ∗
GMM,n, so it will be omitted.

We now establish the result for T̂ ∗
GMM,n. It follows that n|(ḡ∗n)T Ŵnḡ

∗
n −

(ḡ∗n)
TWnḡ

∗
n| ≤ ||Ŵn −Wn||2 × ||√nḡ∗n||22. By Lemma C.1(1),

n|(ḡ∗n)T Ŵnḡ
∗
n − (ḡ∗n)

TWnḡ
∗
n| = OP∗

n(·|Zn)

(
n−1

n∑
i=1

||g(Xi, θ0)||22||Ŵn −Wn||2

)
.

Under Assumption 4.3 and since EP[n
−1
∑n

i=1 ||g(Xi, θ0)||22] = tr{Ω} = O(d(n)),

it follows by the Markov inequality that n−1
∑n

i=1 ||g(Xi, θ0)||22||Ŵn −Wn||2 =

oP(
√
d(n)). Thus, by Lemma C.3, n|(ḡ∗n)T Ŵnḡ

∗
n − (ḡ∗n)

TWnḡ
∗
n| =

oP∗
n(·|Zn)(

√
d(n)) wpa1-P.

Given this, it suffices to show that
n|(ĝ∗n)T Ŵnĝ

∗
n − (ḡ∗n)

T Ŵnḡ
∗
n| = oP∗

n(·|Zn)(
√

d(n)) wpa1-P. Note that

n|(ĝ∗n)T Ŵnĝ
∗
n − (ḡ∗n)

T Ŵnḡ
∗
n| ≤2n|(ĝ∗n − ḡ∗n)

T Ŵnḡ
∗
n|+ n|(ĝ∗n − ḡ∗n)

T Ŵn(ĝ
∗
n − ḡ∗n)|

=2n|(θ̂∗GMM,n − θ0)
T (Γ∗

n)
T Ŵnḡ

∗
n|

+n|(θ̂∗GMM,n − θ0)
T (Γ∗

n)
T Ŵn(Γ

∗
n)(θ̂

∗
GMM,n − θ0)|

≡T ∗
1,n + T ∗

2,n

where the second line follows Assumption 4.2(i) and the mean value Theorem;

here Γ∗
n ≡

∫ 1

0
Ḡ∗

n(θ̂
∗
n(t))dt with θ̂∗n(t) ≡ θ0 + t(θ̂∗GMM,n − θ0). The desired result

29The set N is the one in Assumption 4.2.
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follows by establishing that T ∗
i,n = oP∗

n(·|Zn)(
√

d(n)) wpa1-P for i = 1, 2. We do
this next.

We note that,

T ∗
1,n �

√
n||θ̂∗GMM,n − θ0||2||(Γ∗

n)
T Ŵn

√
nḡ∗n||2

wpa1-P.
By assumption

√
n||θ̂∗GMM,n − θ0||2 = OP∗

n(·|Zn)(
√
d(n)) wpa1-P. Moreover,

under Assumption 4.3, λmax(Ŵn) ≤ C wpa1-P and thus
||(Γ∗

n)
T Ŵn

√
nḡ∗n||2 � ||Γ∗

n||2||
√
nḡ∗n||2. We can apply Lemma C.1(2) with Δn =

n−1/2
√
d(n) and obtain ||Γ∗

n||2 = OP∗
n(·|Zn)(d(n)/

√
n) wpa1-P. By Lemma C.1,

and since EP[n
−1
∑n

i=1 ||g(Xi, θ0)||22] = tr{Ω} = O(d(n)), it follows by

Lemma C.3 that ||√nḡ∗n||2 = OP∗
n(·|Zn)(

√
(d(n)). Thus

T ∗
1,n = OP∗

n(·|Zn)((
√

d(n)d(n)/
√
n)
√

d(n)) = OP∗
n(·|Zn)(

√
d(n)d(n)

3/2

√
n

) wpa1-P

since d(n)3

n → 0 the result follows.

Finally, by our assumption ||θ̂∗GMM,n−θ0||2 = OP∗
n(·|Zn)(

√
d(n)n−1/2), Lem-

ma C.1, and Assumption 4.3, it follows that T2,n = OP∗
n(·|Zn)(d(n)

1/2 d(n)5/2

n ) =

oP∗
n(·|Zn)(d(n)

1/2) wpa1-P because d(n)3/n → 0.
Therefore, we conclude that

n|(ĝ∗n)T Ŵnĝ
∗
n − (ḡ∗n)

TWnḡ
∗
n| = oP∗

n(·|Zn)(
√

d(n))

wpa1-P.

We now establish the result for T̂ ∗
GEL,n. The proof for T̂GEL,n is completely

analogous and therefore omitted. Abusing notation,
we denote ĝ∗n ≡ n−1

∑n
i=1 ωing(Xi, θ̂

∗
GEL,n). Define the following function

λ 
→ F ∗
n(λ) = s′(0)λT ḡ∗n + 0.5s′′(0)λTΩλ.

Since s′′(0)< 0, the maximum of this function is achieved at λ0 =− s′(0)
s′′(0)Ω

−1ḡ∗n

and F ∗
n(λ0) = 0.5 (s′(0))2

s′′(0) (ḡ∗n)
TΩ−1ḡ∗n. By Lemma C.1(1) and the fact that Ω

has eigenvalues uniformly bounded away from zero (Assumption 4.1), ||λ0||2 =

OP∗
n(·|Zn)(

√
d(n)/n) wpa1-P. Hence, λ0 ∈ Λ(θ̂∗GEL,n) wpa1-P by Lemma C.2(1).

By definition of T̂ ∗
GEL,n and the mean value Theorem

T̂ ∗
GEL,n ≥ 2

n∑
i=1

(
s(λTωing(Xi, θ̂

∗
GEL,n))− s(0)

)
= 2nF ∗

n(λ) + nR∗
n(θ̂

∗
GEL,n, λ)

for all λ ∈ Λ(θ̂∗GEL,n) with R∗
n defined in Lemma C.2.

By Lemma C.2(2) with Δn = n−1/2
√
d(n), it follows that nR∗

n(θ̂
∗
GEL,n, λ0) =

oP∗
n(·|Zn)(d(n)

1/2) wpa1-P since d(n)4/n = o(1) by assumption. Moreover, λ0 ∈
Λ(θ̂∗GEL,n), so T̂ ∗

GEL,n ≥ 2nF ∗
n(λ0) + oP∗

n(·|Zn)(d(n)
1/2) wpa1-P.
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By definition of λ0 it also follows that F ∗
n(λ0) ≥ F ∗

n(λ̂
∗
n) (recall that λ̂

∗
n is the

maximizer of
∑n

i=1 s(λ
Tωing(Xi, θ̂

∗
GEL,n)); see Assumption 4.4).

Therefore,

2nF ∗
n(λ0) ≥ 2nF ∗

n(λ̂
∗
n) = T̂ ∗

GEL,n − nR∗
n(θ̂

∗
GEL,n, λ̂

∗
n).

Observe that, since ||λ̂∗
n||2 = OP∗

n(·|Zn)(
√

d(n)/n) (by Assumption 4.4), by

Lemma C.2(2) with Δn = n−1/2
√
d(n), nR∗

n(θ̂
∗
GEL,n, λ̂

∗
n) = oP∗

n(·|Zn)(
√

d(n))

wpa1-P, and thus 2nF ∗
n(λ0) ≥ 2nF ∗

n(λ̂
∗
n) ≥ T̂ ∗

GEL,n+oP∗
n(·|Zn)(

√
d(n)) wpa1-P.

Therefore, it follows that

T̂ ∗
GEL,n =2nF ∗

n(λ0) + oP∗
n(·|Zn)(d(n)

1/2)

=
(s′(0))2

s′′(0)
n(ḡ∗n)

TΩ−1ḡ∗n + oP∗
n(·|Zn)(

√
d(n))

wpa1-P.

Throughout the proof, for any matrix M , let ||t||2M ≡ t′Mt.

Proof of Theorem 4.1. We only establish the result for the GMM estimator; the
one for the GEL estimator is completely analogous. We divide the proof into
several steps.

Step 1. By Lemma 4.1, for any ε > 0,

P∗
n

(
T̂ ∗
GMM,n√
d(n)

≥ t | Zn

)

≤ (≥)P∗
n

(∥∥n−1/2
∑n

i=1 ωing(Xi, θ0)
∥∥2
W√

d(n)
≥ t− (+)ε | Zn

)
+ oP(1)

and similarly,

P

(
T̂GMM,n√

d(n)
≥ t

)
≥ (≤)P

(∥∥n−1/2
∑n

i=1 g(Xi, θ0)
∥∥2
W√

d(n)
≥ t+ (−)ε

)
− o(1).

Step 2. We now verify Assumptions 2.2 and 2.1 for Zi ≡ W 1/2g(Xi, θ0). The
former is directly imposed, so we only need to verify the latter.

Note that Σn = W 1/2EP[g(X, θ0)g(X, θ0)
T ]W 1/2 = W 1/2ΩW 1/2. Thus, As-

sumption 2.1(i), the first part, follows by the fact that C−1 ≤ λl(Ω) ≤ C for all
l = 1, ..., d(n) (Assumption 4.1) and Assumption 4.3. Regarding the second part
of Assumption 2.1(i), note that under Assumption 4.2(i), for any l ≤ 2(2 + γ),

EPn [||Z1||l2] = EP[||W 1/2g(X, θ0)||l2] � EP[||g(X, θ0)||l2] (by Assumption 4.3)

and by Assumption 4.2(i), EPn [||Z1||l2] � d(n)l/2. Thus EPn [||Z1||42] � d(n)2

and (EPn [||Z1||32])2 � d(n)3. Hence, the expression in the second part of As-
sumption 2.1(i) is of order d(n)4/n which is o(1) by assumption.
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Assumption 2.1(ii) follows because EP[||g(X, θ0)||2(2+γ)
2 ] � d(n)2+γ and

d(n)4+2γ

nγ =
(

d(n)2+4/γ

n

)γ
= o(1) by assumption. Finally, part (iii) of the Assump-

tion 2.1 follows with κ = 0 and d(n)4

n = o(1).

Step 3. We now show that: For any ε > 0 and t ∈ R, there exists a N(ε)
such that

P

(∥∥n−1/2
∑n

i=1 g(Xi, θ0)
∥∥2
W√

d(n)
≥ t+ ε

)

≥Pn

(∥∥n−1/2
∑n

i=1 g(Xi, θ0)
∥∥2
W√

d(n)
≥ t− ε

)
− ε− o(1)

for all n ≥ N(ε).
By the Expression 5, uniformly over t,

P

(∥∥n−1/2
∑n

i=1 g(Xi, θ0)
∥∥2
W√

d(n)
≥ t+ ε

)
≥P

(∥∥W 1/2
√
nVn

∥∥2
2√

d(n)
≥ t+ ε

)

− o(1)

where
√
nVn ∼ N(0,Ω). Under our assumptions d(n) � tr{(W 1/2ΩW 1/2)2}

and thus by Lemma B.4 (and its Remark B.1), it follows that for sufficiently

small ε, P

(
‖W 1/2√nVn‖2

2√
d(n)

≥ t+ ε

)
≥ P

(
‖W 1/2√nVn‖2

2√
d(n)

≥ t− ε

)
− 0.5ε for any

n ≥ N(ε). Invoking again Expression 5, the desired result follows.

Step 4. For any t ∈ R and all n ≥ N(ε),

P∗
n

(
T̂ ∗
GMM,n√
d(n)

≥ t | Zn

)
−P

(
T̂GMM,n√

d(n)
≥ t

)

≤P∗
n

(∥∥n−1/2
∑n

i=1 ωi,ng(Xi, θ0)
∥∥2
W√

d(n)
≥ t− ε | Zn

)

−P

(∥∥n−1/2
∑n

i=1 g(Xi, θ0)
∥∥2
W√

d(n)
≥ t+ ε

)
+ oP(1), (by Step 1)

≤P∗
n

(∥∥n−1/2
∑n

i=1 ωi,ng(Xi, θ0)
∥∥2
W√

d(n)
≥ t− ε | Zn

)

−P

(∥∥n−1/2
∑n

i=1 g(Xi, θ0)
∥∥2
W√

d(n)
≥ t− ε

)
− ε+ oP(1), (by Step 3).

An analogous result holds for −
(
P∗

n

(
T̂∗
GMM,n√

d(n)
≥ t | Zn

)
−P

(
T̂GMM,n√

d(n)
≥ t

))
.
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Therefore, for any ε > 0 and n ≥ N(ε),

sup
t∈R

∣∣∣∣∣P∗
n

(
T̂ ∗
GMM,n√
d(n)

≥ t | Zn

)
−P

(
T̂GMM,n√

d(n)
≥ t

)∣∣∣∣∣
≤ sup

t∈R

∣∣∣∣∣∣∣P
∗
n

⎛
⎜⎝
∥∥∥n−1/2∑n

i=1 ωi,ng(Xi, θ0)
∥∥∥2
W√

d(n)
≥ t | Zn

⎞
⎟⎠

−P

⎛
⎜⎝
∥∥∥n−1/2∑n

i=1 g(Xi, θ0)
∥∥∥2
W√

d(n)
≥ t

⎞
⎟⎠
∣∣∣∣∣∣∣+ ε+ oP(1)

= sup
t∈R

∣∣∣∣∣P∗
n

(∥∥∥∥∥n−1/2
n∑

i=1

ωi,ng(Xi, θ0)

∥∥∥∥∥
2

W

≥ t | Zn

)
−P

(∥∥∥∥∥n−1/2
n∑

i=1

g(Xi, θ0)

∥∥∥∥∥
2

W

≥ t

)∣∣∣∣∣
+ ε+ oP(1)

where the last line follows from the fact that
√

d(n)t ∈ R for any t ∈ R. The
desired result thus follows from Theorem 3.1 with Zi ≡ W 1/2g(Xi, θ0) for all
i = 1, ..., n.

C.1. Proofs of Lemmas C.1, C.2 and C.3

Proof of Lemma C.1. (1) Note that

EP∗
n(·|Zn)[||

√
nḡ∗n||22]

=tr{EP∗
n(·|Zn)[(n

−1/2
n∑

i=1

ωing(Xi, θ0))(n
−1/2

n∑
i=1

ωing(Xi, θ0))
T ]}

=tr{n−1
n∑

i=1

EP∗
n(·|Zn)[ω

2
in]g(Xi, θ0)g(Xi, θ0)

T }

because under Assumption 2.2, the weights are centered and independent. Thus
EP∗

n(·|Zn)[||
√
nḡ∗n||22] = n−1

∑n
i=1 ||g(Xi, θ0)||22, and the desired result follows by

the Markov inequality.

(2) By the triangle inequality

||Ḡ∗
n(θ)||2 ≤||n−1

n∑
i=1

ωin{∇θg(Xi, θ)−∇θg(Xi, θ0)}||2

+ n−1/2||n−1/2
n∑

i=1

ωin∇θg(Xi, θ0)||2

≡T1,n + T2,n
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where ∇θg(X, θ0) ∈ R
d(n)×q. Recall that for matrices, ||A||2 is the spectral

norm. Let ||A|| ≡ tr{ATA}; it is clear that ||A||2 ≤ ||A||. Moreover,

||n−1/2
n∑

i=1

ωin∇θg(Xi, θ0)||2

=tr

⎧⎨
⎩
(
n−1/2

n∑
i=1

ωin∇θg(Xi, θ0)

)T (
n−1/2

n∑
i=1

ωin∇θg(Xi, θ0)

)⎫⎬
⎭

=tr

{
n−1

n∑
i=1

ω2
in (∇θg(Xi, θ0))

T ∇θg(Xi, θ0)

}

+ tr

⎧⎨
⎩n−1

∑
i 	=j

ωinωjn (∇θg(Xi, θ0))
T ∇θg(Xj , θ0)

⎫⎬
⎭ .

Applying EP∗
n(·|Zn) the second term in the RHS vanishes because of indepen-

dence of the weights and zero mean. Thus, since EP∗
n(·|Zn)[ω

2
in] = 1, it follows

by the Markov inequality that

T2,n = OP∗
n(·|Zn)

⎛
⎝n−1/2

√√√√n−1

n∑
i=1

||∇θg(Xi, θ0)||2
⎞
⎠ .

Also, note that n−1
∑n

i=1 ||∇θg(Xi, θ0)||2 = OP(d(n)) by the Markov inequality,
Assumption 4.2(iii), and the fact that ||A|| ≤ √

q||A||2. Therefore by Lemma C.3,

T2,n = OP∗
n(·|Zn)

(√
d(n)/n

)
wpa1-P.

Regarding T1,n, note that T1,n ≤ n−1
∑n

i=1 |ωin| × ||∇θg(Xi, θ) −
∇θg(Xi, θ0)||2. Under Assumption 4.2(iv),

T1,n ≤ n−1
n∑

i=1

|ωin|δn(Xi)||θ − θ0||2 ≤ n−1
n∑

i=1

|ωin|δn(Xi)Δn.

Since weights are uniformly bounded, T1,n � Δnn
−1
∑n

i=1 δn(Xi) a.s-P
∗
n. Thus

under Assumption 4.2(iv), the Markov inequality and Lemma C.3, T1,n =

OP∗
n(·|Zn)(Δn

√
d(n)) wpa1-P.

Proof of Lemma C.2. (1) Observe that |λTωing(Xi, θ)| ≤ ||λ||2|ωin|||g(Xi, θ)||2 �√
d(n)/n|ωin|||g(Xi, θ)||2. It suffices to show that√

d(n)/nmax
i≤n

|ωin|||g(Xi, θ)||2 = oP∗
n(·|Zn)(1)

wpa1-P, uniformly in θ ∈ N . Since weights are uniformly bounded, it suffices
to show that

√
d(n)/nmaxi≤n supθ∈N ||g(Xi, θ)||2 = oP(1). By the Markov in-

equality

P(max
i≤n

sup
θ∈N

||g(Xi, θ)||2 ≥ Kn) ≤
n

K2α
n

EP[sup
θ∈N

||g(Xi, θ)||2α2 ].
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Thus by Assumption 4.2(i) and Kn = n1/(2α)
√
d(n) it follows that

√
d(n)/nmax

i≤n
sup
θ∈N

||g(Xi, θ)||2 � d(n)

n0.5(1−1/α)

since d(n)4/n = o(1) and α ≥ 2 this implies the desired result.

(2) It follows that

R∗
n(θ, λ)

≤ ||λ||22

∥∥∥∥∥
∫ 1

0

n−1
n∑

i=1

s′′(tλTωing(Xi, θ))ω
2
ing(Xi, θ)g(Xi, θ)

T dt− s′′(0)Ω

∥∥∥∥∥
2

≤ ||λ||22s′′(0)
∥∥∥∥∥n−1

n∑
i=1

ω2
ing(Xi, θ)g(Xi, θ)

T − Ω

∥∥∥∥∥
2

+ ||λ||22

∥∥∥∥∥n−1
n∑

i=1

∫ 1

0

(s′′(tλTωing(Xi, θ))− s′′(0))dtω2
ing(Xi, θ)g(Xi, θ)

T

∥∥∥∥∥
2

≤ ||λ||22s′′(0)
∥∥∥∥∥n−1

n∑
i=1

ω2
in{g(Xi, θ)g(Xi, θ)

T − g(Xi, θ0)g(Xi, θ0)
T }
∥∥∥∥∥
2

+ ||λ||22s′′(0)
∥∥∥∥∥n−1

n∑
i=1

(ω2
in − 1)g(Xi, θ0)g(Xi, θ0)

T

∥∥∥∥∥
2

+ ||λ||22s′′(0)
∥∥∥∥∥n−1

n∑
i=1

g(Xi, θ0)g(Xi, θ0)
T − Ω

∥∥∥∥∥
2

+ ||λ||22

∥∥∥∥∥n−1
n∑

i=1

∫ 1

0

(s′′(tλTωing(Xi, θ))− s′′(0))dtω2
ing(Xi, θ)g(Xi, θ)

T

∥∥∥∥∥
2

≡ ||λ||22{s′′(0)(T1,n + T2,n + T3,n) + T4,n(λ)}.

Regarding T1,n, it is easy to see that

T1,n = OP∗
n(·|Zn)

(
n−1

n∑
i=1

∥∥g(Xi, θ)g(Xi, θ)
T − g(Xi, θ0)g(Xi, θ0)

T
∥∥
2

)
.

Hence, by Lemma C.3 and after some algebra it follows that it suffices to show
that n−1

∑n
i=1 ||g(Xi, θ)− g(Xi, θ0)||22 = OP(Δ

2
nd(n)) and

n−1
n∑

i=1

||g(Xi, θ)− g(Xi, θ0)||2||g(Xi, θ0)||2 ≤

√√√√n−1

n∑
i=1

||g(Xi, θ)− g(Xi, θ0)||22

×

√√√√n−1

n∑
i=1

||g(Xi, θ0)||22

=OP(Δnd(n)).
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These two results follow because under Assumption 4.2(ii),

||g(Xi, θ)− g(Xi, θ0)||2 ≤
∫ 1

0

||∇θg(Xi, θ0 + t(θ − θ0))||2dt||θ − θ0||2

≤ sup
θ∈N

||∇θg(Xi, θ)||2Δn.

And under Assumption 4.2(iii) and the Markov inequality,

n−1
n∑

i=1

sup
θ∈N

||∇θg(Xi, θ)||2 = OP(d(n)
1/2).

Finally, under Assumption 4.2(i) and the Markov inequality,

n−1
n∑

i=1

||g(Xi, θ0)||22 = OP(d(n)).

Therefore n||λ||22T1,n = OP∗
n(·|Zn)

(
d(n)2Δn

)
wpa1-P.

Regarding T2,n and T3,n it can be shown that are OP∗
n(·|Zn)(d(n)/

√
n) wpa1-

P and OP(d(n)/
√
n) resp.; the calculations are analogous to those in the proof

of Lemma A.6 in DIN and thus omitted. It thus follows, n||λ||22(T2,n + T3,n) =

OP∗
n(·|Zn)(

d(n)2√
n

) = oP∗
n(·|Zn)(

√
d(n)) wpa1-P, since (d(n))3/2/

√
n = o(1) by

assumption.
Regarding the term T4,n, since s′′ is Lipschitz at 0, it follows that

|
∫ 1

0

(s′′(tλTωing(Xi, θ))− s′′(0))dt| � |λTωing(Xi, θ)|

for all t ∈ [0, 1]. Therefore,

T4,n(λ) ≤
∥∥∥∥∥n−1

n∑
i=1

|ωin|3|λT g(Xi, θ)|g(Xi, θ)g(Xi, θ)
T

∥∥∥∥∥
2

�
∥∥∥∥∥n−1

n∑
i=1

|λT g(Xi, θ)|g(Xi, θ)g(Xi, θ)
T

∥∥∥∥∥
2

≤n−1
n∑

i=1

|λT g(Xi, θ)|
∥∥g(Xi, θ)g(Xi, θ)

T
∥∥
2

≤

√√√√λTn−1

n∑
i=1

g(Xi, θ)g(Xi, θ)Tλ

√√√√n−1

n∑
i=1

‖g(Xi, θ)g(Xi, θ)T ‖22

where the second line follows from the weights being uniformly bounded. By
analogous arguments to those in Lemma A.6 in DIN it can be shown that
λmax(n

−1
∑n

i=1 g(Xi, θ)g(Xi, θ)
T ) ≤ C < ∞ wpa1-P and thus√

λTn−1
∑n

i=1 g(Xi, θ)g(Xi, θ)Tλ �
√

d(n)
n wpa1-P. It follows that
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n−1
∑n

i=1

∥∥g(Xi, θ)g(Xi, θ)
T
∥∥2
2

≤ n−1
∑n

i=1 ‖g(Xi, θ)‖42 = OP(d(n)
2) by As-

sumption 4.2(i) (observe that θ ∈ N eventually). Therefore, by Lemma C.3,

n||λ||22T4,n(λ) = OP∗
n(·|Zn)(d(n)

√
d(n)
n d(n)) = OP∗

n(·|Zn)(
√

d(n)d(n)
2

√
n

), and since

d(n)2√
n

= o(1) by assumption, equals = oP∗
n(·|Zn)(

√
d(n)).

Proof of Lemma C.3. (1) We want to establish that for any ε > 0, there exists
a M = M(ε) and N(ε) such that

P (P∗
n (|Wn| ≥ cnM | Zn) ≤ ε) ≥ 1− ε, ∀n ≥ N(ε).

This is equivalent to establishing that P (P∗
n (|Wn| ≥ cnM | Zn) ≥ ε) ≤ ε. Let

An ≡ {Zn : P∗
n (|Wn| ≥ cnM | Zn) ≥ ε} and Bn ≡ {Xn : |Xn| ≤

√
Mcn}. Given

Xn ∈ Bn, then {Wn : |Wn| ≥ cnM} ⊆ {Wn : |Wn| ≥ |Xn|
√
M}, therefore

P(An) ≤ Pn(An ∩Bn) +P(BC
n ) ≤P

(
P∗

n

(
|Wn| ≥ |Xn|

√
M | Zn

)
≥ ε
)

+P({Xn : |Xn| ≥
√
Mcn}).

Since Wn = OP∗
n(·|Zn)(|Xn|), the first term in the RHS can be made less than ε

for sufficiently large M ; similarly since Xn = OP(cn) the second term can also
be made arbitrary small.

(2) The proof for this result is analogous to (1) and thus omitted.

Appendix D: Proof of Proposition 7.1

Proof of Proposition 7.1. By assumption over Vn, it follows that Wn(Pn,P) =

n ‖c(θPn)− c(θP)‖2V (1+oP(1)). Henceforth in the proof, we abuse notation and

use Wn(Pn,P) to denote n ‖c(θPn)− c(θP)‖2V .
Let an ≡ 1 +

√
n||c(θPn) − c(θP)||2. Under the null c(θP) = 0, the repre-

sentation 21 and our assumption over eigenvalues of V , it follows that an �
1 +
√

Wn(Pn,P) and∥∥√n(c(θPn)− c(θP))−
√
nEPn [ψ(X, θP)]

∥∥
V
= oP(1 +

√
Wn(Pn,P)).

Note that for any x and y, ||x − y|| = o(1 + ||y||), implies |||x|| − ||y||| ≤
o(1+ ||y||) and thus ||y||(1+ o(1)) ≤ ||x||+ o(1) and ||x|| ≤ ||y||(1+ o(1))+ o(1).
Thus applying this to x =

√
nEPn [ψ(X, θP)] and y =

√
n(c(θPn) − c(θP)), it

follows that√
Wn(Pn,P)(1 + oP(1)) ≤

∥∥√nEPn [ψ(X, θP)]
∥∥
V
+ oP(1)

and √
Wn(Pn,P)(1 + oP(1)) ≥

∥∥√nEPn [ψ(X, θP)]
∥∥
V
− oP(1).

Therefore, after simple algebra and squaring at both sides,

Wn(Pn,P)(1 + oP(1)) =
∥∥√nEPn [ψ(X, θP)]

∥∥2
V
+ oP(1 +

∥∥√nEPn [ψ(X, θP)]
∥∥
V
).
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It thus remains to show that ‖√nEPn [ψ(X, θP)]‖V � ‖√nEPn [ψ(X, θP)]‖2 =

OP(
√

d(n)). Note that E[‖EPn [ψ(X, θP)]‖22] =
∑d(n)

j=1 E
[(
EPn [ψ[j](X, θP)]

)2]
,

and

E

⎡
⎣(n−1

n∑
i=1

ψ[j](Xi, θP)

)2
⎤
⎦ =E

[
n−2

n∑
i=1

(
ψ[j](Xi, θP)

)2]

≤n−1E
[
|ψ[j](X, θP)|2

]
�n−1

where the first equality follows because for i �= l

E
[
ψ[j](Xi, θP)ψ[j](Xl, θP)

]
= E

[
ψ[j](Xi, θP)

]
E
[
ψ[j](Xl, θP)

]
= 0.

Thus, by the Markov inequality the result follows.
The proof of the representation forWn(P

∗
n , Pn) is analogous and omitted; it is

worth pointing out, however, that for this the null hypothesis is not imposed.
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