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1. Introduction

Consider stratified data y = (y1,...,¥yq), where y; is a realization of a ran-
dom variable Y; of dimension m; and with density p;(y:;1, A;). Suppose that
Yi,...,Y, are independent and consider ¢ as the parameter of interest, with
A= (M1,...,Ay) as a nuisance parameter. We assume that each stratum-specific
A; has the same meaning and the same parameter space, A.

It is well known that in models in which the dimension of the nuisance param-
eter is large relative to the sample size, many methods of likelihood inference,
such as those based on the profile likelihood, can perform poorly. Sometimes, the
model structure allows one to base inference on a conditional or marginal likeli-
hood, which is a genuine likelihood for the parameter of interest, not depending
on the nuisance parameters, and therefore satisfies all the standard properties of
a likelihood (Severini, 2000, Chapter 8). Unfortunately, these special likelihoods
are often not available outside special families of distributions and, even when
they exist, they may be difficult to compute. To deal with these issues, several
modifications to the profile likelihood have been proposed; see Barndorff-Nielsen
and Cox (1994, Chapter 8) and Severini (2000, Chapter 9) for general discussion
of these methods and further references.

An alternative, and more general, solution is offered by integrated likelihood
functions, which are formed by integrating the likelihood function with respect
to a weight function for the nuisance parameter (Kalbfleisch and Sprott, 1970);
specifically, an integrated likelihood Lj is of the form

L) = /A L(, \g(As ),

where L(v, \) denotes the likelihood function and g(+; ) is a weight function for
the nuisance parameter . It is not necessary for g(-;%) to be a genuine density
function. Therefore, in this respect the approach here differs substantially from
a random-effects modelization of A, in which the density for A; would typically
depend also on additional parameters. Because integrated likelihoods are based
on averaging, they often avoid the problems related to maximization that some-
times arise with methods based on the profile likelihood, or its modifications;
see, for example, Berger, Liseo and Wolpert (1999). Furthermore, for appropri-
ate choices of the weight function g, integrated likelihoods have a number of
attractive frequentist properties (Severini, 2007, 2010, 2011). In addition, the
wide availability of reliable routines for numerical integration have made this
approach even more appealing.
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Inference for ¢ based on an integrated likelihood proceeds by treating Ly(v))
as a genuine likelihood for . In particular, we will study the properties of the
usual quantities such as the integrated log likelihood ¢;(v) = log L;(v), its max-
imizer ¥, and the integrated likelihood ratio statistic, Wy = 2{¢;(¢) — £1(¢))}.

In the following, we consider an asymptotic scenario in which both m;, the
within-stratum sample sizes, and ¢, the number of strata, approaches infinity.
This type of “two-index asymptotics” is more relevant to cases in which the
number of strata is large relative to the total sample size; see, e.g., Barndorff-
Nielsen (1996) for a general discussion of two-index asymptotics and Sartori
(2003) for discussion of the properties of profile and modified profile likelihoods
in this setting. In this framework, under the frequentist paradigm a thorough
analysis of the asymptotic properties of the inferential quantities derived from
the integrated likelihood is missing and the aim of this paper is to fill this
gap. In practice, our work represents an extension to the results provided by
Severini (2007, 2010), who studied integrated likelihoods in the standard one-
index asymptotic setting (q fixed).

Although the present paper does not deal with Bayesian inference, we note
that the proposed integrated likelihood may be used in conjunction with a prior
for ¢ in order to obtain an approximate marginal posterior distribution for 1,
as suggested, e.g., in Efron (1993) and Ventura, Cabras and Racugno (2009).

The paper is organized as follows. In Section 2 we discuss the properties of
integrated likelihood functions and consider the selection of the weight function.
The asymptotic properties of the statistics based on the integrated likelihoods,
such as the maximum integrated likelihood estimator and the integrated like-
lihood ratio statistic, are studied in Section 3. Examples are presented in Sec-
tion 4, in which comparisons with profile and modified profile likelihoods are
considered. Section 5 contains some final remarks.

2. Integrated likelihood functions

Let L (1, \;) = p;i(yi; 4, \i) denote the likelihood function for the ith stratum
so that, due to independence between strata, L(1, \) = [, L (¢, \;), with
A= (A1, Ag)s et £(, N) = S8 €@ (3, \;), where £0) (1), \;) = log LD (3, \;)
denotes the log-likelihood function. For the results in the paper it is not nec-
essary for the components of Y; to be independent. Indeed, some form of de-
pendence among the components of Y; can also be accommodated, such as in
longitudinal data, as long as a central limit theorem for the score statistic as-
sociated with £() (¢, \;) can be established; see, for instance, Reid (2003) and
Wooldridge (1994). Let Ay, denote the maximum likelihood estimator of \;
for fixed ¢ and let £p(¢)) = Y7, (D (4, 5\“1,) denote the profile log-likelihood.
Derivatives will be denoted by subscripts; e.g., £y (1, A) = 0¢(w, X) /0. For no-
tational simplicity, we will consider scalar nuisance parameters; the results are
easily extended to the case in which the \; are vectors.

In the following, for simplicity of notation in the theoretical development we
will assume m; = m, but we could otherwise assume that each m; can be written
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in the form m; = K; m, with A < K; < B and where A and B are positive finite
numbers (see also Sartori, 2003). This assumption guarantees that the strata
sample sizes are asymptotically balanced, in the sense that each m; is of order
O(m), but not o(m). In the examples of Section 4 we will consider the case
with m; that can vary among the strata and in the final section we will discuss
further the above assumptions.

A central role in the construction of an integrated likelihood is played by the
weight function g(\;; ¢). We consider weight functions of the form [7_; g(Ai; ¢),
leading to an integrated likelihood of the form

L) =] /A L9 (g, M) g (N ) dA.

In order to derive the theoretical results when both ¢ and m diverge, we
will use the Laplace approximation (see, for instance, Pace and Salvan, 1997,
Section 9.3.3), which leads to a manageable asymptotic form for the integral.
On the other hand, in practical applications, in particular with moderate values
of m, alternative approaches are used to evaluate the integrated likelihood. In
particular, even exact integration of the likelihood function may be possible,
although this happens only in exceptional cases, as in the examples of Sections
4.1 and 4.3. More generally, we will rely on some form of numerical integration
(see, for instance, Press et al., 2007, Chapter 4), as in the binomial example of
Section 4.2.

Since each \; appears only in a single stratum, an analytic approximation to
L7 () can be obtained by using a Laplace approximation in each stratum and
then combining the results

q q
N, 3 1/2 q,.
Cr(y) =Lp(y) + Z;lOgg(Aw, ¥) — Z;log{*@m (¥, Aig) }1/2 + Op(a),
see, e.g., Evans and Swartz (2000, Chapter 4).
The properties of £; heavily depend on the choice of weight function used in
its construction. For instance, in general, the score bias within each stratum is
of order O(1) so that, summing across strata,

E{l1y(¥);¢, A} = O(q).

However, suppose that the model is parameterized so that, for eachi =1,... ¢,
¥ and A; are orthogonal parameters and the weight function for A\; does not
depend on 1. Then the score bias within each stratum is of order O(1/m)
(Severini, 2007; Sweeting, 1987) so that

B{lry ()i, A} = (L),

The construction of the orthogonal parametrization can be based on the
expected information matrix, as discussed in detail by Cox and Reid (1987), or
on the zero-score expectation (ZSE) parametrization, as suggested by Severini
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(2007). In the latter case, the solution of the equation
E{C (¥, Xi); to, i} =0 (2.1)

leads to an expression for the ZSE parameter ¢; in terms of ¥, \;, ¥g; ¥ is then
replaced by an estimator, such as the maximum likelihood estimator. Therefore,
the ZSE parameter requires a reliable estimator of 1, which may not be available
in the setting considered here. The information-orthogonal parameter requires
the solution to a differential equation, which may be difficult to find, and which is
not guaranteed to exist unless ¢ is a scalar. Hence, in general, the ZSE parameter
is easier to obtain; however, in some specific models, the reverse is true. Thus,
both approaches are useful in practice and the asymptotic theory presented in
this paper applies to either choice.

Hereafter, we refer only to an integrated likelihood function with orthogonal
parametrization and weight function not depending on . Although under these
conditions the integrated likelihood is relatively insensitive to the specific choice
of the weight function, a constant weight function is typically convenient. This
integrated likelihood is closely related to the modified profile likelihood (Sev-
erini, 2007; Sweeting, 1987). Let 6(;) (1) and 65\? (1) denote the integrated and
modified profile log-likelihoods, respectively, for the ith stratum. Because of the
separability of the nuisance parameters,

) =3 60() and () =360 @)

i=1 i=1

Let LZAJM denote the maximizer of £);(1)). The asymptotic properties of &M
in models with stratum nuisance parameters are considered in Sartori (2003)

where it is shown ¢y = 1 + O,(1/,/mq) provided that gq/m® = o(1) and
Vp =0+ O, (1/m?) otherwise. If we define

then

(W) = Lr(har) = € () — Lar(Pr) + > _{DD () — D (Par)}-

i=1
By a Taylor’s series expansion,

q q

> DOW) =3 DO War) =Y D () lhar — 1|+ Oplallins = ¥1%), (22)

i=1 i=1 i=1
where ij) (1) denotes the first derivative of D (1) with respect to ¢. In par-
ticular, its sum in ¢ may be written as

ZDf;)(w) _ ZE{DEZ)(w);¢7 it + Z[Df;)(zp) — E{Dg)(¢)§w7)\i}]7

i=1 i=1
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where the first term on the right-hand side is O(q/m) and the second term is

0,(v/g/m), due to the fact that D'}’ () = O,(1//m) and E{D® (v);9, \;} =

O(1/m). These results follow from the relationship between the integrated like-

lihood and the modified profile likelihood in the single-stratum case.
Substituting in (2.2), we obtain that

> D) = 3 DO an) + 0y ias — 1) + Oply [ L s — )
=1 =1

+ Op(alldnr = ¥I),

from which, for ¢ = {5, + 0,(1//mq),
q 1
Cr(¥) =t () + Op(4/ @) + Op(a)v
ignoring terms not depending on ¢. Note that the true value of 1 is of the form
Y + Op(1/,/mq) provided that g/m? = o(1).
Similar analyses show that, for 1) = ¢y, + Op(1//mq),

1 1 1
St = St 0,/ O, (23
and
e trgp) = —barus () + Oy, (24)

3. Asymptotic properties of statistics based on an integrated
likelihood

3.1. Introduction

In this section, the properties of the maximum integrated likelihood estimator
and the integrated likelihood ratio statistic are established by showing that these
statistics have the same asymptotic distribution as the corresponding statistics
based on the modified profile likelihood and then using the results of Sartori
(2003), which establishes the properties of inferences based on the modified
profile likelihood in models for stratified data.

3.2. Mazximum integrated likelihood estimator

Let ’(/AJ 1 denote the maximizer of ¢;(1)). Using the usual expansions for the max-
imizer of a log-likelihood (e.g., Severini, 2000, Ch. 5),

) 01y () 1
)= g
Vmq(r — 1) _quéww(dJ)

and Ly, (w)
A — ) = LT o (L

szt (V)
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It now follows from (2.3) and (2.4) that

VA =) = Vit -0+ 0 [ 0,5 )

that is, 1&1 has the same asymptotic distribution as &M provided that ¢/m?® =
o(1). In particular, under this condition, 1/3 1 has the same asymptotic distribution
as the maximum conditional or marginal likelihood estimators, if either exists.

The asymptotic properties of 1& M in models with stratum nuisance parameters
are considered in Sartori (2003) and are described in the previous section. Given
the relationship between 1[}1 and 1&]\/[, these results may be used to derive the
asymptotic properties of ¥;. Specifically, 1; = 1 + 0,(1/,/mq) provided that
q/m? = o(1) and 9y = ¥ + O,(1/m?) otherwise. Furthermore, when ¢/m? =

o(1), j; (11 — 1) is asymptotically normally distributed with error

1
Oyl )+ Oli) + O

here j; denotes the observed information based on £; (1)), evaluated at ;.
For comparison, the maximum likelihood estimator ¢ satisfies ¢ = 9 +
0,(1/,/mq) provided that ¢/m = o(1) and ¢ = ¢ + O,(1/m) otherwise. When
Al A
g/m = o(1), 73(¢ — ) is asymptotically distributed according to a standard
normal distribution with error O,(y/q/m); here jp denotes the profile observed

information evaluated at 1[}
In terms of the total sample size n = mgq and the number of strata, q,

=

~ l ~

JE(pr — 1) is asymptotically normally distributed provided that ¢/n = o(1).
On the other hand, j P(w ) is asymptotically normally distributed provided
that ¢/4/n = o(1). Furthermore, even when both z/JI and 1) are asymptotically

normal, the error in the normal approximation to 1/)1 is smaller than the error
~ 1
1n the normal approximation to 1. For instance, suppose that ¢ = n3. Then

7 P(l/) ) is asymptotically normally distributed with error O,(1 /ne) while
J 7 (1/)1 — 1)) is asymptotically normally distributed with error Op(1/y/n).

3.3. Integrated likelihood ratio statistics

We now consider likelihood-ratio-type statistics based on an integrated likeli-
hood. Let

Wr = 2{£:(¢r) — ()}
denote the likelihood ratio statistic based on the integrated likelihood. It is
straightforward to show that

Wi = (r — )1 (br — ¥){1 + Op(thy — )}

Al .
Using the asymptotic properties of j7 (¢r — ¢) described in the previous
subsection, it follows that W is asymptotically distributed according to a chi-
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squared distribution with p degrees-of-freedom, where p denotes the dimension

of v, with error
q 1 1
O(\/ ﬁ) + O(E) + O(\/T_q)’

provided that ¢/m? = o(1). That is, W; is asymptotically distributed according
to a chi-squared distribution with p degrees-of-freedom provided that q/m? =
o(1).

For comparison, the standard likelihood ratio statistic

W =2{(p(s) — p(¥)}

is asymptotically distributed according to a chi-squared distribution with p
degrees-of-freedom provided that q/m = o(1). As is the case for the estima-
tors ¢y and 1, even when the condition q/m = o(1) holds, the error in the
chi-squared approximation to the distribution W7 is of smaller order than is the
error in the chi-squared approximation to the distribution of W.

It is worth noting that, when p = 1, similar results hold for the signed
likelihood ratio statistic

Ry = sgn(r — )/ Wr;

e.g., when ¢/m?3 = o(1), Ry is asymptotically distributed according to a standard
normal distribution.

4. Examples
4.1. Gamma with common shape parameter

Let Yi;, i = 1,...,q, j = 1,...,m;, be independent gamma random vari-
ables with shape parameter 1 and scale parameter 1/);, as in Sartori (2003,
Example 2). The solution of equation (2.1) gives the ZSE parameter ¢; =
LZAJ)\l- /¥, which allows us to derive the integrated log-likelihood with orthogo-

nal parametrization and constant weight function, ¢;(¢) = Y7, égi)(dz), where

600) = og | exp{v3_logi; - gqmz yig +matplog g@—mi log ()} do.
j=1

j=1

After some algebra, we obtain

1/J Z{Z 1Og Yiz — My 1ngym} Z{ml IOgF IOgF(miqp)}a

=1 j=1

which is the conditional log-likelihood for . It is worth noting that the condi-
tional likelihood for the shape parameter of a gamma is also a marginal likeli-
hood. Hence, the same result can be achieved also using as a weight function ¢, L
the weight function related with the right invariant measure (see Pace and Sal-
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van, 1997, Example 7.29). Conversely to the above integrated likelihood, in this
example the modified profile likelihood is not exactly equivalent to the condi-
tional likelihood (Sartori, 2003, Example 2). The same is true for the integrated
likelihood based on the information orthogonal nuisance parameter.

4.2. Matched binomzals

Let us consider Y;; and Y;2,i = 1,...,q, two independent random variables with
distribution Bi(m;,p;1) and Bi(1, p;2) respectively. Let A\; = log{p;1/(1 — pi1)}
be the stratum nuisance parameter and ¢ = log{pi2/(1—pi2) } —log{pi1/(1—pi1)}
be the parameter of interest, common among strata. We may deal with a model
like this in case-control studies where we are interested in analyzing the effect
of a certain factor by the comparison among one case and m; controls (Sartori,
2003, Example 3). The likelihood is

g eWirtyiz) Nityiae)
H 1 + 6 ml 1+ ew—i-/\i)’

z=1

while the conditional likelihood is a noncentral hypergeometric distribution (see,
for instance, Davison, 1988, Example 6.1). In order to obtain an integrated like-
lihood, we use here an idea suggested by Cox and Reid (1993), i.e., we choose
a weight function based on the original parameterization that would act like a
uniform one in an orthogonal parameterization, (¢, &;). Since the model is a full
exponential family, (1, £;) might be given by the so-called mixed parameteriza-
tion. Hence, we have [9&; /0| = meti /(1 + €)% 4 e¥+Ai /(1 + e¥T2)2] which
is a model-dependent weight function for the original parameter )\;, which also
depends on . This leads to the integrated likelihood

(yi1+yiz)Ni+yizy
e . .
H/ 1+ e})mit2(1 4 ethi)3 {e}(1+e"HA)2 4 e (1 e)?FdAs.

After a change of variable \;(w;) = log{w;/(1—w;)} and some algebra, we obtain

q
Lo(p) = l_Iewyi2 {2Fi(Lya +yiz +1,mi +2,1—¢?)
i=1

Y ol (3,yn +yiz+1,mi+2a1*€w)}v (4.1)

where 2F(a,b,c,2); = [['(c)/{T(b)I'(c — b)} fo 21 — 2)7 (1 — za) "%
(Abramowitz and Stegun, 1964, formula 15.3.1, page 558)

We also use the procedure based on the ZSE parameterization given by (2.1).
Exploiting the exponential family framework, the new nuisance parameter ¢; is
the solution of the implicit equation

K/\i (1/;7 ¢1) - Kki (wv Al) = 05 (42)

where K (¢, \;) = m;log(1 + e) + log(1 + e¥*?¢) is the cumulant function,
the subscript denotes the derivative with respect to \;, and ¥ is the maximum
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TABLE 1
Ezample 2. Empirical coverage (%) of R, Rc, Rr, Ro, and Rarp in three different settings:
m; =7, ¢ =300 (top rows); m; =5,7,9, each replicated 100 times (middle rows); 30 strata
with m; = 3 and 270 strata with m; =7 (lower rows)

Nominal (%) 1.0 25 5.0 10.0 250 50.0 750 90.0 95.0 97.5 99.0

R 0.0 00 0.1 0.5 2.6 104 263 47.1 604 709 815
Rc 1.0 23 50 102 250 49.7 744 89.5 946 97.3 98.8
Ry 06 17 36 7.8 21.0 448 706 874 935 969 985
Ro 05 16 33 73 19.8 429 68.6 858 925 96.0 98.2
Ryp 06 18 37 80 211 448 702 871 932 965 983
R 00 01 02 06 2.8 99 254 46.1 59.7 704 80.7
Rc 1.0 28 51 102 251 498 751 90.2 947 973 99.0
Ry 08 21 40 80 205 444 704 875 934 965 985
Ro 06 19 38 76 19.8 432 694 86.5 929 96.0 98.2
Ryp 07 20 4.1 8.1 20.8 445 704 874 932 96.3 984
R 00 00 02 06 2.2 84 23.0 429 56.3 678 79.0
Rc 1.0 24 48 94 247 492 747 89.8 945 975 99.0
Ry 07 15 33 6.8 19.6 425 69.1 86.8 928 96.4 985
Ro 07 15 33 6.8 19.5 420 683 86.2 925 96.0 98.3
Ryp 07 16 35 72 203 433 69.6 86.8 928 96.2 984

likelihood estimate. Then we can obtain the integrated likelihood by a change
of variable from ¢; to A; in the integrals,
09i(1, \i; )

[T [zt 5

ﬁ/Li(wJ\i) o) g (4.3)
i=1

L;(v) dX;

Koo, (0, i (00, Xi 00))

where the Jacobian ¢;(1h, A;; 1) /&) is obtained by differentiating (4.2) with
respect to A;. This Jacobian can be seen as a model and data-dependent weight
function for the original parameter \;, and for this reason may depend on .
Note that the dependence on the data is only through 1/3 Of course we need ¢;
as well in the integrand function; but for fixed \;, ¥» and 1, it is possible to solve
(4.2) numerically and get the corresponding ¢;. Finally, the integrals in (4.3)
are computed numerically using adaptive quadrature (Piessens et al., 1983).
We perform some simulation studies, each based on 8,000 replications and
with ¢ = log(5), and A; equal to 1/8 plus a standard normal random noise. In
particular, we consider three different settings with ¢ = 300. The first setting
has balanced strata with m; = 7; the second setting has unbalanced strata,
with m; taking values 5, 7 and 9, each replicated 100 times. The average value
of the m; is the same as in the previous setting, i.e. m = 7. Finally, the third
setting is like the first one, but with 10% of the strata, i.e. 30, with a reduced
sample size (m; = 3), thus leading to m = 6.6. Table 1 reports the empirical
coverage probabilities of signed root likelihood ratio statistics based on profile
likelihood (R), on conditional likelihood (R¢), on integrated likelihood with
ZSE parameterization and uniform weight function (Ry), on (4.1) (Ro), and
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TABLE 2
Ezample 2. Bias and root mean squared error (RMSE) of different estimators in three
stmulation settings: m; =7, ¢ = 300 (left columns); m; = 5,7,9, each replicated 100 times
(middle columns); 30 strata with m; = 3 and 270 strata with m; =7 (right columns)

Estimator bias RMSE bias RMSE bias RMSE
P 0.250 0.320 0.258 0.329 0.275 0.343
be 0.006 0.171 0.005 0.173 0.008 0.173
by 0.026 0.170 0.028 0.173 0.035 0.174
Yo 0.035 0.176 0.034 0.178 0.038 0.178
Yup 0.027 0.174 0.028 0.176 0.033 0.177

on modified profile likelihood (Rpsp). Bias and root mean squared error of the
corresponding estimators are reported in Table 2.

The empirical coverages of Ry and R are comparable, with the former being
slightly more accurate and very close to the behavior of Rjy;p. Both R; and
Rpsp give a reasonable approximation for R¢ and improve substantially over R.
The close agreement between R; and Rj;p can be explained by the results
for exponential families in Severini (2007). The same indication can be found
looking at bias and root mean squared error of the corresponding estimators in
Table 2, although 7,/; 1 has a smaller variance than 7,/; M P, thus leading to a reduced
RMSE. The comments above apply equally to all three settings considered. On
the other hand, the accuracy of the various methods is basically the same for
the first two settings, i.e. those with the same average strata sample size m = 7,
while it is slightly worse in the last setting, probably due to the smaller amount
of information (m = 6.6).

4.3. First-order non stationary autoregressive model

Consider the first-order autoregressive model defined by
Yij = Ni + pYij-1 + €ij, (4.4)

where ¢;; are independent normal random variables with zero mean and variance
o2, j=1,....my,i=1,...,q.

When the time series in each stratum are stationary, that is when we assume
yio ~ N{0,0%/(1 — p?)}, then )\; is orthogonal to ¥ = (p,o?), and the modi-
fied profile likelihood and the integrated likelihoods proposed in this paper are
equivalent and they all coincide with a marginal likelihood. The latter yields
consistent estimates for ¢ when ¢ diverges, even for fixed m; (Bartolucci et al.,
2015, Example 1).

Here, we consider the non stationary case, which appears to be the dominant
one in the econometric literature (see, for instance, Lancaster, 2002, Section 3).
This means that we condition on the observed initial value ;9 and permit the
autoregressive parameter to equal or exceed unity. Without loss of generality, in
the following we will assume that y;0 = 0,4 =1,...,q. Indeed, this corresponds
to assuming model (4.4) for the differences y;; — yi0, with A; reparameterized as
Ai —Yio(1 — p). While the initial conditions have no influence in the definition of



Integrated likelihoods in models with stratum nuisance parameters 1485

the various methods presented below, they might have an effect on the amount of
information in the sample; a detaild discussion is given in Dhaene and Jochmans
(2014).

The log likelihood for model (4.4) is the sum of ¢ independent components
of the form

Z(1)(p7 Uza)‘i) = __1 2 5 92 Z Yij — pyij—l)z'

Lancaster (2002, page 655) shows that an information orthogonal parameteri-
zation is given by & = \; exp{b(p)}, where

i

:mizzj

The parameter &; is orthogonal to both p and o2, with the latter two being
orthogonal to each other.
Alternatively, we can use the ZSE parameterization (2.1), with ¢; solution of

Epo,og,)\io {E)\z (p7 02? Ai)}|(p0,dg,)\io):(ﬁ,§2,¢i) = O (46)

Using again the results in Lancaster (2002), we find ¢; = A;/{1 + (p — p)b(p)},
where b;(p) = (1/m;) Z;n:fl(mz — 7)p?~ ! is the first derivative of (4.5) and p
is the maximum likelihood estimate. For this model computation of profile and
integrated log likelihoods is straightforward since all maximization and integra-
tion involved can be easily done analytically. In particular, focusing interest on

the parameter p, we have

(4.5)

q

lp(p) = leogSS()
lo(p) = —%msg +Zb (4.7)
i) =~ 550 Zlogm D), (49)

where SS(p) = 30, 3211 {wij(p) — @i(p)}?, with wy;(p) = yij — pyij—1, and
w;i(p) = m; 1 Z;"Zl w;;(p). Formulae (4.7) and (4.8) are the integrated log-
likelihoods with the orthogonal parameters &; and with the ZSE parameters ¢;,
respectively. In both cases we used a constant weight function for the incidental
parameters and for log o. These integrated log likelihoods could also be obtained
by first integrating out the incidental parameters, thus obtaining the integrated
log likelihoods for (p,0?), and then profiling out o2.

Since the maximum likelihood estimate is generally highly biased, this could
have an effect on the accuracy of the integrated likelihood (4.8). A possible
solution could be given by using in (4.6) alternative estimates for p and o2 in
place of p and 2. One solution could be the use of a parametric bootstrap bias
corrected version of p and 2. Alternatively, one could use a different estimate,
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such as for instance the maximizer of (4.7), or the maximizer of (4.8) itself,
leading to a two-step solution. In the numerical example and in the simula-
tions below we used the former option, thus obtaining the new ZSE parameter
o = N/{1 + (po — p)V'(po)}, where po denote the maximizer of (4.7). The
corresponding integrated log-likelihood has the form (4.8), with p replaced by
po, and will be denoted by £7(p).

Sometimes ¢o(p) can be monotonic increasing for large values of p. On the
other hand, for values of m;, g and p of practical interest, it has a local maximum
for p € (—pi, pu), where p;, p, > 0 are threshold values that can exceed one.
Lancaster (2002), developing the integrated likelihood from a Bayesian perspec-
tive, shows that such a local maximum is a consistent estimator of p for large g,
even for fixed m;; see also Dhaene and Jochmans (2014). Also £;(p) and ¢;(p)
can be monotonic increasing for large values of p, and this problem seems to
occur “sooner” than for £o(p) for moderate values of m;. On the other hand, for
larger values of m; this problem tends to disappear for ¢;(p) and l 1(p), while
it is accentuated for £p(p), given the polinomial form of the last term on the
right hand side of (4.7). Instead, the second term in the right hand side of (4.8)
cannot be computed for values of p greater than a certain threshold depending
on p (which is however simple to determine and always greater than 1). A sim-
ilar comment also applies to l 1(p). Even in these cases, in practice, this has not
proven to be a problem for maximization and inference.

As a numerical illustration, Figure 1 shows the relative log likelihoods for a
simulated sample with m; = 8,7 =1,...,500, p = 0.9, 02 = 1 and \; generated
from a normal distribution with mean and variance equal to 1. The left panel
shows the monotonicity issue for the integrated log likelihoods, while the right
panel gives a zoomed version in an interval of values of practical interest for
inference.

We also run some simulation studies, each with 10,000 simulated samples,
p=0.9, 02 =1 and \; generated from a normal with mean and variance equal
to 1, comparing the empirical coverage probabilities for the signed likelihood
ratio statistics based on £p(p), £o(p), £1(p), and £1(p), which are denoted by R,
Ro, Ry and R 1, respectively. Bias and mean squared errors of the corresponding
estimators have also been considered. Tables 3 and 4 report the results for three
different settings with ¢ = 500. The first setting is the same as that used in the
example of Figure 1, i.e. with balanced strata of size 8. The second setting has
unbalanced strata, with m; taking ten different values ranging from 3 to 12, each
repeated 50 times. The average value of the m; is the same as in the previous
setting, i.e. m = 8. The third setting is like the first one, but with 10% of the
strata, i.e. 50, with a reduced sample size (m; = 4), thus leading to m = 7.6.

The results confirm the findings of Lancaster (2002) about £o(p). Indeed, this
integrated likelihood provides consistent estimates and very accurate inference
in all settings. On the other hand, ¢;(p), although largely improving over £p(p),
does not have the same accuracy of £o(p). Such accuracy is better in the second
setting with very unbalanced strata sample sizes. Instead, having a few strata
with moderate sample size, as in the third setting, does not seem to lead to a
significant loss of accuracy. Finally, we note that l 1(p), while giving essentially
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Fic 1. Example 2. Relative log likelihoods for simulated data of the nonstationary autoregres-
sive model: m; = 8, ¢ = 500, p = 0.9, 02 = 1 and \; ~ N(1,1). The solid line corresponds
to £p(p), the dashed line to Lo(p), the dot-dashed line to £1(p), and the long-dashed line to
L1(p). The vertical dotted line indicates the true parameter value, while the horizontal dot-
ted line provides confidence intervals of level 0.95 based on the corresponding likelihood ratio
statistics. The left panel shows the uncostrained plot, while the right panel shows a zoomed
version in a region of interest.

TABLE 3
Ezample 3. Empirical coverage (%) of R, Ro, R; and Ry in three simulation settings:
m; =8, ¢ =500 (top rows); m; = 3,4,...,12, each replicated 50 times (middle rows); 50
strata with m; = 4 and 450 strata with m; = 8 (lower rows)

Nominal (%) 1.0 2.5 50 10.0 25.0 50.0 750 90.0 95.0 97.5 99.0

R 100 100 100 100 100 100 100 100 100 100 100
Ro 1.1 27 55 10.7 257 498 742 89.2 943 970 98.6
Ry 0.2 0.6 1.4 3.4 11.5 29.4 54.7 758 854 91.3 95.7
Ry 09 24 49 100 250 49.8 749 900 950 974 989
R 100 100 100 100 100 100 100 100 100 100 100
Ro 1.0 27 51 10.1 251 499 740 89.0 939 969 98.6
Ry 04 1.0 22 5.0 15.2 35.8 62.1 81.2 89.3 93.7 97.1
Ry 0.8 23 4.7 96 246 500 745 89.5 944 97.2 98.9
R 100 100 100 100 100 100 100 100 100 100 100
Ro 1.2 3.1 58 11.2 26.3 499 743 89.1 942 96.9 98.7
}31 02 0.7 16 3.6 116 29.2 53.7 754 85.0 909 954
Ry 1.0 27 53 104 255 498 750 89.9 948 973 99.0
TABLE 4

Ezample 3. Bias and root mean squared error (RMSE) of various estimators of p in three
simulation settings: m; = 8, ¢ = 500 (left columns); m; = 3,4,...,12, each replicated 50
times (middle columns); 50 strata with m; = 4 and 450 strata with m; = 8 (right columns)

Estimator bias RMSE bias RMSE bias RMSE
p —5.6-10%2  0.0562 | —4.4-10=%2 0.0444 | —5.7-10~2  0.0590
p0 4.0-107°  0.0070 | 1.2-10~% 0.0064 | —1.4-10~5 0.0074
pr 4.0-1073 0.0084 | 2.4-10-3 0.0070 | 4.4-108 0.0090
pr 2.6-10"°  0.0070 | 1.1-10=*  0.0064 | —2.7-10~% 0.0074
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the same estimates as o (p), has R; which is slightly more accurate than Ro,
in particular in the tails.

Results, not shown here, with p = 0.5 and/or with ¢ = 250 show minor
differences among the three integrated likelihoods. On the other hand, results
in more extreme settings, such as with m = 4 and ¢ = 1000, qualitatively
confirm the findings of the case with ¢ = 500.

As a final remark, we note that the modified profile likelihood is not straight-
forward to obtain in this model. A possibility is to use the approximation of
Severini (1998), avoiding the sometimes cumbersome analytical calculation of
required expected value by means of Monte Carlo simulation. This approach is
quite general, although computationally more intensive, and was also used by
Bartolucci et al. (2015) for a dynamic regression model for binary data. Clau-
dia Di Caterina, in an unpublished Master Thesis of the University of Padova,
proved that Severini’s approximation of the mixed derivative is linear in p. This
implies that the modified profile log likelihood does not exist for certain values
of p, similarly to £;(p). Moreover, it also shares the other drawbacks of £;(p),
i.e., it could be monotonic increasing for not very large values of p, and the
normal approximation for the corresponding signed likelihood ratio statistic has
an accuracy very close to that of Ry, which is not very satisfactory for practical
purposes when m; is small and ¢ is very large. We note that also the modified
profile likelihood depends on the maximum likelihood estimates. Therefore it is
possible that the use of better estimates could improve also its accuracy, as for
the integrated likelihood ¢;(p), although, to our knowledge, this has not been
investigated yet.

5. Discussion

In this paper we studied the frequentist asymptotic properties of the inferential
quantities derived from integrated likelihoods in models with stratum nuisance
parameters, in a two-index asymptotic setting with both sample size and number
of nuisance parameters going to infinity. In particular, we showed that quan-
tities based on an integrated likelihood, constructed using a properly chosen
weight function, may have asymptotic behaviours close to the standard ones,
and largely improving the accuracy of inference based on the corresponding
quantities computed from the profile likelihood. Moreover, we showed that this
kind of integrated likelihood has asymptotic properties similar to those of higher
order methods such as the modified profile likelihood; the example in Section
4.1 shows that they can sometimes perform better in practice.

The weight function that guarantees good asymptotic properties is that ap-
plied to an orthogonal nuisance parameter, either based on the expected infor-
mation or on the ZSE parameterization, and not depending on the parameter of
interest. A constant weight function is typically a convenient choice, although
both the theory and numerical examples, not shown here, indicate that the
integrated likelihood is reasonably robust with respect to the chosen weight
function. As shown in the example of Section 4.2, the construction of the inte-
grated likelihood proposed here corresponds to using a model-dependent weight
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function for the original nuisance parameter, in the case of expected information
orthogonality, and a model and data-dependent weight function, in the case of
ZSE orthogonality. Data-dependent weight functions for stratified models were
also considered in Arellano and Bonhomme (2009). Although their proposal has
some similarities with the one here, it seems less accurate, at least comparing
simulation results for the binomial case.

The integrated likelihood is a tool for inference that can be applied in wide
generality. On the other hand, the computation of integrals is required. This may
seem a limitation, but the wide availability of numerical integration methods and
the fact that the strata are independent allows one to parallelize the computation
of many low dimensional integrals, thus increasing accuracy and substantially
reducing the computational time.

Another possible issue is related to the need of an orthogonal parameteri-
zation in the construction of the integrated likelihood. Indeed, the information
orthogonal parameterization may be not straightforward to compute or may
not even exist for a vector parameter of interest. On the other hand, the ZSE
parameterization can always be defined and has an algorithmic form that can
be easily implemented, as shown in the example of Section 4.2.

The ZSE parameterization depends on the data through an estimate, typi-
cally the maximum likelihood estimate. The example of Section 4.3 shows that
the use of alternative estimates may lead to more accurate inference. Another
instance is given by an application of integrated likelihood in meta analysis,
where the maximum likelihood estimate is often numerically unstable. Bellio
and Guolo (2015) show that an integrated likelihood based on the ZSE pa-
rameterization constructed using an alternative estimate leads to very accurate
inference. More work in this direction would be worthwhile.

We conclude with a comment on the assumptions of the two-index asymptotic
setting. In Section 2 we assumed that the strata sample sizes m; are asymptoti-
cally balanced, in the sense that they are of order O(m) but not o(m). This as-
sumption implies that maxi<;<qm;/n — 0 for ¢ — 0o, where n = m; +---+my,
is the total number of observations. However, the latter condition holds even
if some strata have m; = o(m), provided the number of such strata does not
increase with ¢. The results in the paper hold even under this weaker condition.
The simulation results in the third asymptotic setting of both Sections 4.2 and
4.3 seem to confirm this claim. On the other hand, simulation results for the ex-
ample in Section 4.2, not reported here, in the opposite scenario with many very
small strata and only a few very large strata, indicate that it is not sufficient to
have only a limited number of strata with a lot of information to guarantee a
reasonable accuracy of the asymptotic approximations.
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