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Abstract: The Integrated Completed Likelihood (ICL) criterion was in-
troduced by Biernacki, Celeux and Govaert (2000) in the model-based clus-
tering framework to select a relevant number of classes and has been used
by statisticians in various application areas. A theoretical study of ICL is
proposed.

A contrast related to the clustering objective is introduced: the condi-
tional classification likelihood. An estimator and model selection criteria
are deduced. The properties of these new procedures are studied and ICL
is proved to be an approximation of one of these criteria. We contrast these
results with the current leading point of view about ICL, that it would
not be consistent. Moreover these results give insights into the class notion
underlying ICL and feed a reflection on the class notion in clustering.

General results on penalized minimum contrast criteria and upper-bounds
of the bracketing entropy in parametric situations are derived, which can
be useful per se.

Practical solutions for the computation of the introduced procedures
are proposed, notably an adapted EM algorithm and a new initialization
method for EM-like algorithms which helps to improve the estimation in
Gaussian mixture models.
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1. Introduction

Model-based clustering is introduced in Sections 1.1 and 1.3. Our purpose is to
better understand the ICL criterion of [9], which is presented in Section 1.4.
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The main topic of this work is the choice of the number of classes in the model-
based clustering framework, and then the choice of the number of components
of a Gaussian mixture. The reader is referred to [40] or [30] for comprehensive
studies on Gaussian mixture models. The latter also provides (Chapter 6) an
overview on the approaches for assessing the number of components, and par-
ticularly on the standard and widely used penalized likelihood criteria, such as
AIC [1] or BIC [37].

The ICL criterion is an alternative to BIC. Up to now it has been widely pre-
sented as a penalized likelihood criterion, which penalty involves an “entropy”
term. In contrast to this point of view, we prove that it is actually a penalized
contrast criterion with a contrast which is not the standard likelihood. This
justifies why this is not surprising, nor a drawback, that ICL does not asymp-
totically select the “true” number of components, even when the “true” model is
available. Even for data arising from a mixture distribution, a relevant number
of classes may differ from the true number of components of the mixture.

We prove (Section 4.2) that ICL is an approximation of a criterion deriving
from a new contrast: the conditional classification likelihood. We introduce this
contrast which is related to the clustering task. The notion of class underlying
ICL is proved to be a compromise between Gaussian mixture density estimation
and a strictly “cluster” point of view (Section 7).

We consider a model selection approach and technical methods as developed
by [4] and [28]. All proofs are gathered in Section 8.

1.1. Gaussian mixture models

LetX be a random variable in Rd with distribution f℘·λ, where λ is the Lebesgue
measure, and X = (X1, . . . , Xn) an i.i.d. sample of the same distribution. Unless
specified, all expectations E and probabilities P are taken with respect to f℘·λ.

MK is the Gaussian mixture model with K components:

MK =

{
f( . ; θ) =

K∑

k=1

πkφ( . ;ωk)
∣∣∣ θ = (π1, . . . , πK , ω1, . . . , ωK) ∈ ΘK

}
,

where φ is the Gaussian density and ΘK ⊂ ΠK × (Rd × Sd+)
K with ΠK =

{(π1, . . . , πK) ∈ [0, 1]K :
∑K

k=1 πk = 1} and Sd+ the set of symmetric positive
definite d× d real matrices. Constraints can be imposed by restricting ΘK [15].
“General” (no constraint) and “diagonal” (diagonal covariance matrices) models
are considered below as examples.

Mixture models are studied here as parametric models. It is then assumed
the existence of a parametrization ϕ : ΘK ⊂ RDK → MK . It is assumed that
DK is minimal and it is called the dimension of MK.

It will not be necessary to assume the parametrization to be identifiable,
i.e. that ϕ is injective. Indeed our purpose is twofold: identifying a relevant
number of classes to be designed; and actually designing these classes. Theorem
4.1 justifies that the first task can be achieved under a weaker “identifiability”
assumption. Theorem 3.1 then guarantees that our estimator converges to the
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set of the best parameters, any of which is as good as the others. There will be no
“true parameter” assumption. The classes can finally be defined either through
the Maximum A Posteriori (MAP) or the random labels rule (see Section 1.3).
Practically, the parameters themselves are never the quantities of interest here.
They only serve as a convenient notation and this is also why we expect that
the assumption about the Fisher information (see Theorem 4.1) is technical and
could maybe be avoided with other techniques. Please refer to [5, Chapter 4] for
a more comprehensive discussion about the identifiability question.

1.2. Complete data model

Assume that the studied population consists of K sub-populations which re-
spective proportions are π1, . . . , πK and which respective conditional distribu-
tions are φ( . ;ω1), . . . , φ( . ;ωK). Let the label of the sub-population to which
an individual belongs be modeled by a random variable Z ∈ {0, 1}K: Zk =
1 ⇔ X belongs to the kth sub-population, which by an abuse of notation
we will also denote by Z = k. Then we have PZ(k) = πk, fX|Z=k(x; θ) =

φ(x;ωk), and f(X,Z)(x, z; θ) =
∏K

k=1

(
πkφ(x;ωk)

)zk . Hence the complete data
model {f(X,Z)( . ; θ)|θ ∈ ΘK}. This is a natural model for a clustering problem
where X models the observation and Z the sub-population or group which has
to be infered. But since the label Z is not observed, only the marginal distri-
bution of X can be studied. Now as a matter of fact its density is fX(x; θ) =∑K

k=1 f(X,Z)(x, k; θ) = f(x; θ) as defined in Section 1.1. This links the complete
data model (with Gaussian conditional distributions) and the Gaussian mixture
model MK .

1.3. Model-based clustering

The process is standard [see 19]:

• estimate a mixture distribution in each considered model;
• select a model and a number of components on the basis of the results of
the first step;

• classify the observations through the MAP rule (recalled below) with re-
spect to the mixture distribution estimated in the selected model.

A class is identified with each fitted Gaussian component, which is the most
usual choice. Thus the number of classes is chosen at the second step. See for
example [22] or [8] for alternative approaches.

Let us recall the MAP classification rule. It involves the conditional probabil-
ities of the components

∀θ ∈ ΘK , ∀k, ∀x, τk(x; θ) =
πkφ(x;ωk)∑K

k′=1 πk′φ(x;ωk′ )
,

where τk(x; θ) is the probability that X belongs to the kth component condition-
ally to X = x under the distribution defined by θ (PZ|X=x(k; θ) in the complete
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data model). Let us also denote τik(θ) = τk(Xi; θ). The MAP classification rule
for x is

ẑMAP(θ) = argmax
k∈{1,...,K}

τk(x; θ).

Other classification rules are possible, such as drawing the class of x with proba-
bilities τ1(x; θ), . . . , τK(x; θ) (conforming then to the so-called fuzzy classification
approach). The latter is probably a better choice when the focus is on the study
of the classes (e.g. their shape, how much they overlap...) and the MAP should
rather be chosen when the focus is on the classification of single observations.
Remark that the classes obtained with the MAP cannot overlap, which is often
not realistic. But if the main concern is the class to which an observation should
be affected, then the MAP rule seems to be the most relevant choice.

Let us denote by L the observed likelihood associated to X:

∀θ ∈ ΘK , L(θ;X) =

n∏

i=1

( K∑

k=1

πkφ(Xi;ωk)
)
.

The maximum likelihood estimator in the model MK is denoted by θ̂MLE
K .

1.4. ICL

Our motivation is to better understand the ICL (Integrated Completed Likeli-
hood) criterion. Let us introduce the classification likelihood associated to the
complete data sample (X,Z) =

(
(X1, Z1), . . . , (Xn, Zn)

)
in the complete data

model:

∀θ ∈ ΘK , Lc

(
θ; (X,Z)

)
=

n∏

i=1

K∏

k=1

(
πkφ(Xi;ωk)

)Zik . (1)

To mimic the derivation of the BIC criterion [37] in a clustering framework,
[9] approximate the integrated classification likelihood through a Laplace’s ap-
proximation. Then they assume that the classification likelihood mode can be
identified with θ̂MLE

K as n is large enough and replace the unobserved Zik’s

by their MAP estimators under θ̂MLE
K . This is questionable, notably when the

components of θ̂MLE
K are not well separated. They derive the ICL criterion:

critICL(K) = log L(θ̂MLE
K ) +

n∑

i=1

K∑

k=1

ẐMAP
ik (θ̂MLE

K ) log τik(θ̂
MLE
K )− logn

2
DK .

[30] replace the Zik’s by their conditional expectations τik(θ̂
MLE
K ):

critICL(K) = log L(θ̂MLE
K ) +

n∑

i=1

K∑

k=1

τik(θ̂
MLE
K ) log τik(θ̂

MLE
K )− log n

2
DK . (2)

Both versions of the ICL appear to behave analogously, and the latter is con-
sidered from now on.
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The ICL differs from the standard and widely used BIC criterion of [37]
through the entropy term (see Section 2.2):

∀θ ∈ ΘK , ENT(θ;X) = −
n∑

i=1

K∑

k=1

τik(θ) log τik(θ). (3)

The BIC is known to be consistent, in the sense that it asymptotically selects
the true number of components, at least when the true distribution actually
lies in one of the considered models and under regularity conditions [23, 32].
This nice property may however not suit a clustering purpose. In many appli-
cations, there is no reason to assume that the distribution conditional on the
(unobserved) labels Z is Gaussian. The BIC in this case tends to overestimate
the number of components since several Gaussian components are necessary to
approximate each non-Gaussian component of the true mixture distribution f℘.
And the user may rather be interested in a cluster notion which also includes
a separation notion and which is robust to non-Gaussian components. It may
be of interest to discriminate into two different classes a group of observations
of which the best fit is reached with a mixture of two Gaussian components
having quite different parameters (we particularly think of the covariance ma-
trices parameters). BIC tends to do so. But it may also be more relevant and
it may conform to an intuitive notion of cluster, to identify two very close—
or largely overlapping—Gaussian components as a single non-Gaussian shaped
cluster (see for example Figure 1)...

ICL has been derived with this viewpoint. It is widely understood and ex-
plained [for instance in 9] as the BIC criterion with a supplementary penalty,
which is the entropy (Section 2.2). However we do not think that the entropy
should be considered as a penalty term and another point of view will be devel-
oped in this paper. A first reason supporting this point of view is that the order
of the entropy is O(n), such as log L, whereas a penalty term is expected to be
of order o(n), such as logn

2 DK .
The behavior of ICL has been studied through simulations and real data stud-

ies by [9], [30, Section 6.11], [38] and in several simulation studies [see 5, Chap-
ter 4]. Several authors chose to use it in various application areas: [20] (fMRI
images); [34] (image collection automatic sorting); [21] (protein structure predic-
tion); [16] (robots learning); [27] (uncovering groups of nodes in valued graphs
and application to host-parasite interaction networks in forest ecosystems anal-
ysis); [36] (comparative genomic hybridization profile); etc. ICL appears to be
more robust than BIC to non-Gaussian components.

This practical interest for ICL lets us think that it meets an interesting notion
of cluster, corresponding to what some users expect. But no theoretical study
is available. Our main motivation is to propose one. This leads to considering
new estimation and model selection procedures for clustering. They are in the
same spirit as ICL and are derived by developping the point of view underlying
it to its conclusion, from the very estimation step to the model selection step,
instead of introducing the MLE. We prove that ICL is an approximation of a
criterion which is consistent for a particular loss function.



1046 J.-P. Baudry

2. A new contrast: Conditional classification likelihood

The contrast minimization framework turns out to be a fruitful approach. It
enables to fully understand that ICL is not a penalized likelihood criterion, on
the contrary to the usual point of view. It should rather be linked to another
contrast: the conditional classification likelihood.

2.1. Origin, definition

In a clustering context, the classification likelihood (1) is an interesting quantity
but neither the labels Z are observed, nor do we even assume that they exist
(in case several models with different numbers of components are considered,
at most one can correspond to the true number of classes). An approach for
model-based clustering consists of involving the classification likelihood instead
of the observed likelihood and to estimate Z as well as θ, i.e. to consider them as
parameters of the model (see for example [39, 14], or [2] where a fuzzy classifica-
tion likelihood, between the classification likelihood and the observed likelihood,
is considered). The classification likelihood has also been considered to select the
number of classes, by estimating the labels (in [9] as mentioned in Section 1.4;
see also [11]). We propose here to consider its conditional expectation given the
observed sample X.

Let us consider the following algebraic relation between L and Lc:

∀θ ∈ ΘK , log Lc(θ) = log L(θ) +

n∑

i=1

K∑

k=1

Zik log τik(θ). (4)

Then the Conditional Classification log Likelihood (log Lcc) is given by

log Lcc(θ) = Eθ [log Lc(θ)|X]

= log L(θ) +

n∑

i=1

K∑

k=1

τik(θ) log τik(θ)

︸ ︷︷ ︸
−ENT(θ;X)

,

which is obviously linked to the clustering objective. We consider in the following
−log Lcc as an empirical contrast to be minimized.

2.2. Entropy

The contrast log Lcc differs from log L in an entropy term (3).
First, consider ENT(θ;xi) for a single observation. Figure 1 represents a

dataset simulated from a four-component Gaussian mixture f℘ = f( . ; θ). Re-
mark that ENT(θ;xi) ≈ 0 if and only if there exists k0 such that τik0

≈ 1
and τik ≈ 0 for k 6= k0. There is no difficulty to classify xi in such a case (for
example xi1). But ENT(θ;xi) is all the greater that (τi1, . . . , τiK) is closer to
( 1
K , . . . , 1

K ), i.e. that the classification through the MAP or random labels rule
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Fig 1. A dataset example.

is uncertain. The worst case is reached as the conditional distribution over the
components 1, . . . ,K is uniform. For example xi2 has about the same poste-
rior probability 1

2 to arise from each one of the components surrounding it. Its
individual entropy is about log 2.

In conclusion, the individual entropy is a measure of the assignment confi-
dence of the considered observation through the MAP or random labels rule. The
total entropy ENT(θ;x) is the empirical mean assignment confidence, and then
measures the MAP or random labels classification quality for the whole sample.

Involving the entropy means that one expects the classification to be con-
fident. The class notion underlying the choice of the conditional classification
likelihood as a contrast is then a compromise between the fit (and then the idea
of Gaussian-shaped classes) because of the likelihood term on the one hand,
and the assignment confidence because of the entropy term on the other hand
(which is rather a cluster point of view).

Notice that θ 7→ ENT(θ;x) is not differentiable, and not Lipschitz, at any
point θ such that any τik(θ) is zero, which will be the cause of analysis difficulties
which do not occur in the study of log L.

2.3. logLcc as a contrast

The reader is referred to [28] for an introduction to contrast minimization. Let
us consider the distribution minimizing the loss function associated to Lcc in a
model Mm = {f( . ; θ) : θ ∈ Θm}:

θm ∈ argmin
θ∈Θm

{
dKL

(
f℘, f( . ; θ)

)
+ E [ENT(θ;X)]

}

︸ ︷︷ ︸
argmin
θ∈Θm

E [−log Lcc(θ)]

︸ ︷︷ ︸
this set is denoted by Θ0

m

.
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The existence of E [−log Lcc(θ)] is a very mild assumption. The non-emptiness
of Θ0

m may be guaranteed for example by assuming Θm to be compact. Let K
be fixed and consider the minimization of the loss function in the model MK

(Section 1.1). First, remark that log Lcc = log L if K = 1: Θ0
1 is the set of

parameters of the distributions which minimize the Kullback-Leibler divergence
to f℘. If K > 1, θ0K ∈ Θ0

K may almost minimize the Kullback-Leibler divergence
if the corresponding components do not overlap since then the entropy is about
zero. Otherwise this is not the case (Example 2.1).

Now, from the Lcc point of view, the (population) best distribution is given
by argminθ∈U E [−log Lcc(θ)]. The universe U must be chosen with care. There
is no natural relevant choice, on the contrary to the density estimation frame-
work where the set of all densities may be chosen. First the considered contrast
is defined in a parametric mixture setup such as considered in this article, but
not over any mixture density set (different parameterizations may lead to differ-
ent values of the entropy term since the definition of each component cannot be
recovered from the mixture density alone). However, this would still enable to
consider mixtures much more general than mixtures of Gaussian components.
To overcome some limitations of these, authors consider mixtures of different
families of distributions [see for example 26]. The ideas developed in [22] or
[8] may even suggest to involve mixtures which components are Gaussian mix-
tures. But this latter idea would not make sense here. The mixture with one
component which is a mixture of K Gaussian components, and then which
yields a single non-Gaussian-shaped class, always has a smaller −log Lcc value
than the corresponding Gaussian mixture yielding K classes. The choice of the
components is a very strong modelization choice: allowing for example the com-
ponents to be any mixture of Gaussian mixtures means that a class may be
almost anything and may notably contain two Gaussian-shaped clusters very
far from each other! The final MAP classification depends on this choice and
the same problem studied by two different researchers who made two different
choices for U can produce two different solutions. The components should at
least be chosen with respect to the corresponding cluster shape. A most natu-
ral idea is then mostly to involve only Gaussian mixtures: U may be chosen as
∪1≤K≤KM

MK .

Example 2.1. f℘ is the normal density N (0, 1) (d = 1). The model M2 =
{ 1
2φ( . ;−µ, σ2) + 1

2φ( . ;µ, σ
2);µ ∈ R, σ2 > 0} is considered.

Let us study Θ0
2 in this simple situation. We numerically obtain that Θ0

2 =
{(−µ0, σ

2
0), (µ0, σ

2
0)}, so that, up to a label switch, there exists a unique mini-

mizer of E
[
−log Lcc(µ, σ

2)
]
in Θ2 in this case (see Figure 2), with µ0 ≈ 0.83 and

σ2
0 ≈ 0.31. This solution is obviously not the same as the one minimizing the

Kullback-Leibler divergence (see Figure 3). This illustrates that the objective
with the −log Lcc contrast is not to recover the true distribution, even when it
is available in the considered model.
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3. Estimation: MLccE

Let us fix the number of components K and the model MK . The subscript K
is omitted in the notation of this section. A new minimum contrast estimator
in M is considered (Definition 5). This section’s main result is the consistency
of this estimator (Theorem 3.1). It relies on bracketing entropy upper bounds
(Lemma 3.2). Since they could be useful in other situations, general statements
are provided (Section 3.2).

Let M = {f( . ; θ); θ ∈ Θ} be any parametric model with Θ compact (in Sec-
tion 3.1 and when specified M is a Gaussian mixture model). Let ΘO an open
subset of RD such that Θ ⊂ ΘO and γ : ΘO × Rd −→ R a contrast (in Sec-
tion 3.1, γ = −log Lcc) such that θ ∈ ΘO 7→ γ(θ;x) be C1 for f℘dλ-almost
all x and θ ∈ Θ 7→ E [γ(θ;X)] be continuous. Let its empirical version be
given by γn(θ) = 1

n

∑n
i=1 γ(θ;Xi). RD is equipped with the infinite norm:

∀θ ∈ RD, ‖θ‖∞ = max1≤i≤D |θi|. For any r ∈ N∗ ∪{∞} and for any measurable

g : Rd → R, ‖g‖r = E [|g(X)|r]
1
r if r < ∞ and ‖g‖∞ = ess supX∼f℘ |g(X)|. For

any linear form l : RD → R, ‖l‖∞ = max‖θ‖∞=1 l(θ).

3.1. Definition, consistency

In this subsection M is a Gaussian mixture model with compact parameter
space Θ ⊂ ΘO ⊂ RD and γ = −log Lcc.

The Maximum conditional classification Likelihood Estimator is defined:

θ̂MLccE ∈ argmax
θ∈Θ

log Lcc(θ). (5)

The compactness of Θ guarantees the existence of θ̂MLccE. This is a strong
assumption, but it will be natural and necessary for the following results to hold.
That the covariance matrices be bounded from below is a reasonable and neces-
sary assumption: without it, neither L nor Lcc would be bounded (for K ≥ 2).
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Besides it is necessary to impose positive lower bounds on the proportions to
guarantee the existence of ΘO. Insights to practically choose lower bounds on
the proportions and the covariance matrices are suggested in [5, Section 5.1].
The upper bound on the covariance matrices and the compactness condition on
the means, although not necessary in the standard likelihood framework, do not
seem to be avoidable here. This results from the behavior of the entropy term
when a component vanishes.

Theorem 3.1 (Weak Consistency of MLccE). Assume that Θ is compact
and contains no parameter with a zero-proportion component. Let Θ0 =
argmaxθ∈Θ E [logLcc(θ)] and θ̂MLccE ∈ Θ an estimator s.t.:

∀θ0 ∈ Θ0, ∀n ∈ N∗, logLcc(θ̂
MLccE) ≥ logLcc(θ

0) + oP(n).

Then d(θ̂MLccE,Θ0)
P−−−−→

n−→∞
0 (with d(θ,Θ0) = infθ0∈Θ0 ‖θ − θ0‖).

θ̂MLccE is strongly consistent if it minimizes the empirical contrast almost
surely. Let us insist that it converges to the set of parameters minimizing the
loss function, which has no reason to contain the true distribution—except for
K = 1—even if the latter lies in M.

3.2. Bracketing entropy and Glivenko-Cantelli property

The results of this section hold for any model and contrast which fulfill the
assumptions they involve. We will justify their application to Gaussian mixture
models and the contrast −log Lcc but they hold much more generally.

The reader is referred to [41, Chapter 19] or [18, Chapter 7] for thorough treat-
ments of these topics. Recall a class of functions G is P–Glivenko-Cantelli if it ful-
fills a uniform law of large numbers for the distribution P (supg∈G

∣∣ 1
n

∑n
i=1 g(Xn)−

EP[g(X)]
∣∣ P–a.s.−−−−→

n→∞
0). A sufficient condition for a family G to be P–Glivenko-

Cantelli is that it is not too complex, which can be measured through its entropy
with bracketing:

Definition 3.1 (Lr(P)-entropy with bracketing). Let r ∈ N∗ and l, u ∈ Lr(P).
The bracket [l, u] is the set of all functions g ∈ Lr(P) with l ≤ g ≤ u. The bracket
[l, u] is an ε-bracket if ‖l−u‖r ≤ ε. The bracketing number N[ ](ε,G, Lr(P)) is the
minimum number of ε-brackets needed to cover G. The entropy with bracketing
of G with respect to P is E[ ](ε,G, Lr(P)) = logN[ ](ε,G, Lr(P)).

It is quite natural that the behavior of all functions lying inside a bracket
can be uniformly controlled by the behavior of the extrema of the bracket. If
those endpoints belong to L1(P), they fulfill a law of large numbers, and if the
number of them needed to cover G is finite, then this is no surprise that G can
be proved to fulfill a uniform law of large numbers:

Theorem 3.2. Every class G of measurable functions such that
E[ ](ε,G, L1(P)) < ∞ for every ε > 0 is P–Glivenko-Cantelli.
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This is a generalization of the usual Glivenko-Cantelli theorem. We shall
provide f℘ · λ–bracketing entropy upper bounds for {γ( . ; θ) : θ ∈ ΘK}.

The following hypotheses will be repeatedly involved in the following:

‖M‖r < ∞ with M(x) = sup
θ∈Θ

|γ(θ;x)| < ∞ f℘dλ-a.e. (Hγ,Θ,r)

‖M ′‖r < ∞ with M ′(x) = sup
θ∈Θ

∥∥∥∥
(
∂γ

∂θ

)

(θ;x)

∥∥∥∥
∞

< ∞ f℘dλ-a.e. (H ′
γ,Θ,r)

These assumptions when r < ∞ are not a difficulty with γ = −log Lcc under
the assumptions of Section 3.1. H ′

γ,ΘO,r with ΘO as in Section 3.1 holds too
since ΘO itself can be chosen to be included in a compact subset of the set of
possible parameters.

The stronger assumption Hγ,Θ,∞, which is involved below, is not always
fulfilled in the general Gaussian mixtures framework. A sufficient condition for
it to hold is that the support of f℘ be bounded. This is a reasonable modeling
assumption: most phenomena are bounded. Actually, our results can be expected
to hold all the same when f℘ has reasonably low tails (see p. 1054)... We did not
prove it yet though. Another sufficient condition to guarantee this assumption is
that the contrast be upper-bounded. This is actually not the case of the contrast
−log Lcc, but we could replace −log Lcc by (−log Lcc ∧C) and, provided that C
is large enough, this new contrast behaves like log Lcc.

Lemma 3.1 guarantees that the bracketing entropy of {γ( . ; θ) : θ ∈ Θ} is
finite for any ε, if Θ is convex and bounded. The lemma is written for any Θ̃
bounded and included in Θ (which is not assumed to be bounded itself) since
it will be applied locally around θ0 in Section 4.

For any Θ̃ ⊂ RD, diam Θ̃ = sup
{
‖θ1 − θ2‖∞ : θ1, θ2 ∈ Θ̃

}
.

Lemma 3.1 (Bracketing Entropy, Convex Parameter Space). Let r ∈ N∗ and
assume that Θ is convex. Assume that H ′

γ,Θ,r holds. Then

∀Θ̃ ⊂ Θ, ∀ε > 0, N[ ](ε, {γ(θ) : θ ∈ Θ̃}, ‖ · ‖r) ≤
(
‖M ′‖r diamΘ̃

ε

)D

∨ 1.

Remark that Θ is not assumed to be compact. The natural parameter space
of diagonal Gaussian mixture models, with equal volumes or not, for instance, is
convex (Examples 8.1 and 8.2). The natural parameter space of general Gaussian
mixture models is convex too, since the set of definite positive matrices is.
However, Θ is not always convex.

The convexity assumption can be relaxed if we assume Θ to be compact and
H ′

γ,ΘO,r to hold. The upper bound is then increased by a multiplying factor Q
which only depends on Θ and roughly measures its “nonconvexity”. Since our
main concern is the power of ε in the upper bound, this weakens the result ever
so slightly.

Lemma 3.2 (Bracketing Entropy, Compact Parameter Space). Let r ∈ N∗ and
assume that Θ is compact. Assume that H ′

γ,ΘO,r holds. Then
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∃Q ∈ N∗, ∀Θ̃ ⊂ Θ, ∀ε > 0,

N[ ](ε, {γ(θ) : θ ∈ Θ̃}, ‖ · ‖r) ≤ Q

(
‖M ′‖r diam Θ̃

ε

)D

∨ 1.

Q is a constant which depends on the geometry of Θ (Q = 1 if Θ is convex).

In Section 4 we need a slight modification of Lemma 3.1. Since it is applied
locally there, the convexity assumption is not a problem.

Lemma 3.3 (Bracketing Entropy, Convex Parameter Space). Let r ≥ 2, D ∈
N∗ and assume that Θ is convex. Assume that Hγ,Θ,∞ and H ′

γ,Θ,2 hold. Then

∀Θ̃ ⊂ Θ, ∀ε > 0,

N[ ](ε, {γ(θ) : θ ∈ Θ̃}, ‖ · ‖r) ≤
(
2r−2 ‖M‖

r−2
2∞ ‖M ′‖2 diam Θ̃

ε
r
2

)D

∨ 1.

Let us remark that these results are quite general. We are interested here in
their application to the conditional classification likelihood, but they hold all
the same in the standard likelihood framework. [29] provide bracketing entropy
results in this framework. Our results cannot be directly compared to theirs
since they consider the Hellinger distance. The dependency they get on the
parameter space bounds and the variable space dimension d is explicit, which is
helpful to derive an oracle inequality. But they could not derive a local control of
the entropy (i.e. corresponding to a small subset of Θ around some θ), hence an
unpleasant logarithm term in their expression of an optimal penalty. Moreover,
their results suggest the necessity of assuming the contrast to be bounded: see
the discussion after Theorem 4.1 below. Our results achieve the same rate with
respect to ε. They depend on more opaque quantities (‖M‖∞ and ‖M ′‖2) but
it should be possible to control them with respect to the bounds on Θ if needed.
And beside their simplicity, they provide a local control of the entropy.

4. Model selection

As illustrated by Example 2.1, model selection is a crucial step. The number of
classes may even be the purpose of the study.

Results are stated in Section 8.3 generally, for any contrast and family of
models. Here we apply them to −log Lcc and the Gaussian mixture models in-
troduced in Section 1.1 and derive penalized conditional classification likelihood
criteria written as

crit(K) = −log Lcc(θ̂
MLccE
K ) + pen(K).

In Section 4.1, the consistency of a class of penalties is proved. Sufficient
conditions are given in Theorem 8.1, which is applied to the framework we are
interested in, in Theorem 4.1. The strongest condition of Theorem 8.1 (B4) is
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discussed in Section 8.4 and can be guaranteed under regularity and (weak)
identifiability assumptions. Our approach is adapted from [28] and [4] and is a
first step to reach non-asymptotic results.

4.1. Consistent penalized criteria

Assume that K0 exists such that

and
∀K < K0, sup

θ∈ΘK0

E [log Lcc(θ)] > sup
θ∈ΘK

E [log Lcc(θ)]

∀K ≥ K0, sup
θ∈ΘK0

E [log Lcc(θ)] ≥ sup
θ∈ΘK

E [log Lcc(θ)]

which means that the bias of the models is stationary for K ≥ K0: MK0
is the

“best” model. Remark that the last property should hold mostly in the mix-
tures framework, in particular if the models are nested. Under this assumption,
a model selection procedure is expected to asymptotically select K0, i.e. to be
consistent. This is an identification aim [see 31, Chapter 1]. It would be disas-
trous to select a model which does not (almost) minimize the bias and then a
smaller value than K0. And it is assumed that the model MK0

contains all the
relevant information (typically, the structure of the classes).

Let us stress that the “true” number of components of f℘ is not of direct
concern: it is not assumed that it equals K0, and it is not even assumed to be
defined (f℘ does not have to be a Gaussian mixture). K0 is the best choice from
the point of view introduced by using log Lcc, which is neither density estimation
nor identification of the “true” number of components.

The following theorem is an application of the more general Theorem 8.1
(stated for any contrast and collection of models):

Theorem 4.1. Assume that the support of f℘ is bounded.
(MK)1≤K≤KM

are Gaussian mixture models with compact parameter spaces
ΘK ⊂ RDK which contain no parameter with a zero-proportion component,
Θ0

K = argmaxθ∈ΘK
E[logLcc(θ)] and K0 = min argmax1≤K≤KM

E[logLcc(Θ
0
K)].

For any K, assume that

∀θ ∈ ΘK , ∀θ0K0
∈ Θ0

K0
,

E [logLcc(θ)] = E
[
logLcc(Θ

0
K0

)
]

⇐⇒ logLcc(θ;x) = logLcc(θ
0
K0

;x) f℘dλ− a.e. (C1)

Assume that ∀θ0K ∈ Θ0
K , Iθ0

K
= ∂2

∂θ2 (E [logLcc(θ)])|θ0
K

is nonsingular.

Let θ̂MLccE

K ∈ ΘK with logLcc(θ̂
MLccE

K ) ≥ logLcc(θ
0
K) + oP(n).

Let pen : {1, . . . ,KM} → R+ (which may depend on n, (ΘK)1≤K≤KM
and

the data) such that

∀K ∈ {1, . . . ,KM},




pen(K) > 0 and pen(K) = oP(n) when n → +∞
(
pen(K)− pen(K ′)

)
P−−−−−→

n→+∞
∞ for any K ′ < K.
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Define K̂ such that K̂ = min argmin1≤K≤KM
{−logLcc(θ̂

MLccE

K ) + pen(K)}.
Then P[K̂ 6= K0] −−−−→

n−→∞
0.

The “identifiability” assumption (C1) is reasonable: as expected the label
switching phenomenon [see 30, Section 1.14] is not a problem here. But it is
necessary for the identification point of view to make sense, that a single value of
the contrast function x 7−→ γ(θ;x) minimizes the loss. Remark that in the stan-
dard likelihood framework, this holds at least if any model contains the sample
distribution, since it is then the unique Kullback-Leibler divergence minimizer.
Several parameter values, perhaps in different models, may represent it, besides
the label switching. We do not know any such result for log Lcc and hypothesize
that the assumption holds.

Hopefully the assumption about the non-singularity of Iθ0 could be weakened.
The analogous result of [28] (Theorem 7.11) which inspires this, and is available
for the standard likelihood context, does not require such an assumption since
it does not rely on a study of the link between the contrast and the parameters
but on a smart choice of the distance (Hellinger distance), and on properties of
the log function. However, this is a usual assumption [see 35, or below].

Moreover [28] does not require the contrast he considers (log L) to be bounded.
Remark however that the application of his Lemma 7.23 to obtain a genuine ora-
cle inequality involves an assumption similar to the boundedness of the contrast.
So that it seems reasonable that the assumptionsHlog Lcc,ΘK ,∞ andH ′

log Lcc,ΘK ,2

be necessary. In the theorem, they are guaranteed by the boundedness of the
support of f℘ but it could be replaced by other assumptions: please refer to
the discussion p. 1051. Let us justify why we claim there that our results are
expected to hold when f℘ has reasonably low tails.

This claim is supported by the fact that

P (K̂ 6= K0) ≤ P (K̂ 6= K0 and (X1, . . . , Xn) ∈ Cn) + P ((X1, . . . , Xn) /∈ Cn),

with C a compact. Let η > 0. Then, Theorem 4.1 holds conditionally to (X1, . . . ,
Xn) ∈ Cn (since then, conditionally, “the support of f℘ is bounded”) and for
n > N ∈ N, P (K̂ 6= K0 and (X1, . . . , Xn) ∈ Cn) < η

2 . Now, for n > N fixed,
we can find C such that P ((X1, . . . , Xn) /∈ Cn) < η

2 . The problem of course is
that N depends on C, and that we need to choose C with respect to n... But
we see that the conclusion of Theorem 4.1 must still hold without the support
boundedness assumption, provided that C does not grow too fast as n grows...
i.e. provided that “f℘ has reasonably low tails”.

Our results can be compared to those of [32] and [23]. Both study consistency
conditions for penalized criteria in the standard maximum likelihood frame-
work. Assuming the convexity of ΘK , strong identifiability (Θ0

K = {θ0K}), non-
singularity of the Fisher information (analogous to our Iθ0

K
) and other regularity

conditions which are not designed for the particular case of mixture models, [32]
proves procedures with penalties of the form cnDK to be weakly consistent as
soon as cn

n → 0 and cn → ∞. In a general mixture model framework, assuming
the model family to be well-specified, the same identifiability condition as we do,
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and a condition about the Fisher information which does not seem to be directly
comparable to ours but sounds roughly the same (might be milder), [23] proves

procedures with any penalty form to be consistent if pen(K)
n → 0, pen(K) → ∞

and lim inf pen(K)
pen(K′) > 1 if K > K ′ (which is equivalent to the conditions of [32]

if pen(K) = cnDK). The assumptions are proved to hold for log L for Gaussian
mixture models with lower bounded, spherical covariance matrices which are
constrained to be equal for all the components and if the means belong to a
compact subset.

In comparison our conditions (applied here for the log Lcc contrast or more
generally, including the log L contrast, in Theorem 8.1) about the penalties are
a little weaker than those of [23] but quite analogous, as expected. For the
application to log Lcc we have to introduce a supplementary assumption, that
the mixing proportions be kept away from zero. It does not seem easy to extend
the methods used by [23] to our framework.

To get strong consistency, both [32] and [23] had to assume moreover that
pen(K)
log logn → ∞. By analogy it can then be conjectured that the strong version of

Theorem 4.1 would probably involve penalties a little stronger.

4.2. A new light on ICL

The previous section suggests analogies between model selection penalized cri-
teria based on L on the one hand and on Lcc on the other hand. Therefore,
by analogy with the standard likelihood framework, it is expected that penal-
ties proportional to DK conform a prediction point of view (think of AIC), and
that penalties proportional to DK log n are optimal for an identification purpose
(think of BIC). This possibility to derive an identification procedure from a pre-
diction procedure by a logn factor is notified for example in [3, Section 1.2.3].

Let us then consider by analogy with BIC the penalized criterion

critLcc−ICL(K) = log Lcc(θ̂
MLccE
K )− logn

2
DK .

We almost recover ICL (replace θ̂MLE
K by θ̂MLccE in (2)), which may then be re-

garded as an approximation of this Lcc-ICL criterion. The corresponding penalty
is log n

2 DK , and the derivation of Lcc-ICL illustrates that the entropy should not
be considered as part of the penalty. This notably justifies why ICL does not
select the same number of components as BIC or any consistent criterion in the
standard likelihood framework, even asymptotically. Actually, it should not be
expected to do so.

When θ̂MLccE
K differs from θ̂MLE

K , the former provides more separated clusters.
The compromise between the Gaussian component and the cluster viewpoint is
achieved with θ̂MLccE

K from the very estimation step. However, ICL and Lcc-ICL
usually behave analogously in the simulations (Section 6).

Finally, Lcc-ICL is quite close to ICL and enables to better understand the
concepts underlying ICL. ICL remains attractive though, notably because it is
easier to implement than Lcc-ICL.
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4.3. Slope heuristics

Another interesting approach for model selection by penalized criteria is the
slope heuristics of [12, 13]. It has been successfully applied to many situations
and particularly to model-based clustering with the usual likelihood [see 7, for
an overview and practical considerations].

Since we define a new contrast adapted to the clustering objective we can
apply this heuristics to calibrate penalties of the form suggested in Section 4.1.
No definitive theoretical justification that the penalty should be chosen propor-
tional to the dimension of the model is available up to now, but we have hints in
that direction. Simulations (Section 6) seem to confirm this choice. Criteria of
the following form, with κ unknown, are then considered and expected to have
an oracle-like behavior:

crit(K) = −log Lcc(θ̂
MLccE
K ) + κDK ,

The slope heuristics provides a practical data-driven approach to choose κ.
The slope heuristics relies on the assumption that the bias of the models

decreases as their complexity increases and is stationary for the most complex
models. In our framework, this requires the family of models to be roughly
nested, which does not always hold depending on the constraints on the models.

5. Practical

We introduce practical solutions for the computation of θ̂MLccE: an algorithm
adapted from the EM algorithm [17] and a new initialization procedure (“Km1”)
which can also be useful for the usual EM algorithm. Details are beyond the
scope of this article: they are presented and discussed in [5, Chapter 5].

5.1. Definition and fundamental property of Lcc-EM

The Lcc-EM algorithm we introduce is inspired by the BEM algorithm [25].
The steps of the jth algorithm iteration (θj−1 → θj) are:

E step For all θ ∈ ΘK ,

Q(θ, θj−1) = Eθj−1 [log Lc(θ)|X]

=
n∑

i=1

K∑

k=1

τik(θ
j−1) log πkφ(Xi;ωk).

M step Maximize Q(θ, θj−1)− ENT(θ;X) with respect to θ ∈ ΘK :

θj ∈ argmax
θ∈ΘK

{
Eθj−1 [log Lc(θ)|X] − ENT(θ;X)︸ ︷︷ ︸

log L(θ)+
∑

n
i=1

∑
K
k=1

(τik(θj−1)+τik(θ)) log τik(θ)

}
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On the contrary to many situations with the EM algorithm [15], we do not
know any case of closed-form M step for Lcc-EM. Therefore it has to be per-
formed by means of numerical maximization.

Proposition 5.1 (Fundamental Property of the Lcc-EM algorithm).

∀θ, θ′ ∈ ΘK , Q(θ′, θ)− ENT(θ′;X) > Q(θ, θ)− ENT(θ;X)

=⇒ logLcc(θ
′) > logLcc(θ).

The proof is straightforward. This property suggests the interest of the algo-
rithm to maximize log Lcc, which is assessed by simulations studies.

Note that the monotonicity of the contrast still holds if the M-step is weak-
ened into an increase (instead of a maximization) of Q(θ, θj)−ENT(θ;X), which
is a good point about the algorithm stability despite numerical optimization.

5.2. Initialization: Known and new methods

The choice of θ0 is crucial for the Lcc-EM, as for the EM algorithm. The reader
is referred to [10] for initialization methods for the standard EM. Our approach
is inspired by the same idea: try different methods and keep the best result to
initialize Lcc-EM. We involve in our initializations:

• Solutions obtained through partial standard likelihood optimization rely-
ing on the standard EM and initialization methods from [10]:

– Classification EM (CEM);

– EM with random starts or small EM starts;

– K-means.

• Solutions obtained through a procedure directly inspired by [10] and adapted
for log Lcc:

– Small Lcc-EM. Choose the best solutions θ0small among those obtained
after short runs of Lcc-EM from random starts.

• Solutions obtained by a new procedure called Km1 and introduced below.

Km1 “Km1” stands for “K minus 1”. Figure 4 illustrates this strategy. Sup-
pose K ≥ 2 and θ̂MLccE

K−1 is available. Then, choose one of the classes designed

(through MAP) from θ̂MLccE
K−1 (say, the k0

th) and divide it into two classes by
applying to the corresponding observations the Lcc-EM algorithm with a two-
component Gaussian mixture model. Now, θ0k0

Km1 is built by keeping the parame-

ters of components with label different from k0 as in θ̂MLccE
K−1 and by introducing

the parameters obtained by splitting k0 for the kth0 and the Kth components.
Run a few iterations of Lcc-EM and get θ1k0

Km1.
Apply the same procedure with any k0. Then, apply Lcc-EM to the parameter

which maximizes log Lcc among {θ11Km1, . . . , θ
1K−1
Km1 } and get θ0Km1.
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1, ..., k0, ...,K − 1

1, ..., k0, ...,K − 1,K

Split into two components

Fig 4. The Km1 Strategy.

This strategy can be related to the X-means algorithm of [33], which is an
extension to the k-means. An adaptation of it to the Alter algorithm, which
relies on quantization techniques, has been introduced by [24].

The Km1 method works well in practice, particularly as the number of com-
ponents is larger than the sensible number of classes. When the number of
components is low it is not always able to find a sensible solution since it can
be far from the one with one less component. This is why we do not recommend
to use Km1 as the only initialization method. Initializing Lcc-EM from the best
solution among θ0small and θ0Km1 provides sensible enough results for the appli-
cation of the slope heuristics. As expected, θ0small is often more sensible than
θ0Km1 for small values of K and the situation is reversed for large values of K.

Let us remark that the Km1 procedure can be applied for the EM algorithm
all the same and does not seem to correspond to any known procedure. It helps
improving the results in particular for the slope heuristics, since models with
high numbers of components have to be involved. Km1 is longer to run than
small EM though: it can be expected to be at worst K times longer (depending
on both procedures parameters). Figure 5 illustrates the difference between both
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Fig 5. Toy Dataset: Optimization of the Likelihood for Each Model. (a) Initialization Without
Km1. (b) Initialization With Km1.
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procedures results (i.e. with or without Km1) on a toy dataset: we stress that the
likelihood values reached with Km1 are higher than those obtained without it;
that Km1 avoids some severe failures to find a good maximizer of the likelihood
(K = 21 and K = 24) and that this can obviously be crucial so as to get a good
estimation of the slope of the linear part of the graph.

6. Simulations

6.1. Consistency of the MLccE

Example 6.1 (Example 2.1 continued). The consistency of θ̂MLccE stated by
Theorem 3.1 can be empirically observed for Example 2.1: see Figure 6.

6.2. Model selection criteria

For each simulation setting, at least 100 datasets have been simulated (details

available in [5, Section A.2]). θ̂MLE
K and θ̂MLccE

K have been computed for each
K ∈ {1, . . . ,KM} and the percentage of selection of each possible number of
classes is reported for each one of the following criteria:

• critAIC(K) = log L(θ̂MLE
K )−DK ;

• critBIC(K) = log L(θ̂MLE
K )− log n

2 DK ;

• critSHL(K) = log L(θ̂MLE
K )− 2× ŝlopeL ×DK (Slope Heuristics applied to(

DK , log L(θ̂MLE
K )

)
K∈{1,...,KM});

• critICL(K) = log Lcc(θ̂
MLE
K )− logn

2 DK ;

• critLcc−ICL(K) = log Lcc(θ̂
MLccE
K )− logn

2 DK ;

• critSHLcc
(K) = log Lcc(θ̂

MLccE
K )− 2× ŝlopeLcc ×DK (Slope Heuristics ap-

plied to
(
DK , log Lcc(θ̂

MLccE
K )

)
K∈{1,...,KM}).

10 50 100 150 200 500 1000 2000

0

0.5

1

1.5

2

2.5

‖θ̂
M

L
c
c
E
−

θ
0
‖
2

n

Fig 6. ‖θ̂MLccE − θ0‖2 boxplots for 100 experiences with respect to n (Example 2.1 setting).
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According to the slope heuristics ŝlopeL (resp. ŝlopeLcc) is the estimated slope

of the “linear part” of the graph DK 7→ − log L(θ̂MLE
K ) (resp. DK 7→

−log Lcc(θ̂
MLccE
K )), which occurs for large values of K.

6.2.1. The “Cross” experiment

f℘ is a four-component Gaussian mixture in R2, n = 200 (Figure 7). Diago-
nal models are fitted: the true distribution is available in the model with four
components.

According to Table 1, AIC clearly overestimates the number of classes; the
criteria based on log L (BIC, SHL) select four classes: one for each Gaussian
component needed to fit the data; the criteria associated to log Lcc (Lcc-ICL,
ICL and SHLcc) select three classes: the two components of the “cross” overlap
too much to be considered as two separated classes.

The expected oracle number of components for log L (argmin1≤K≤20 E[dKL(f
℘,

f( . ; θ̂MLE
K ))]) is four and for log Lcc (argmin1≤K≤8 EX1,...,Xn

EX [−log Lcc(θ̂
MLccE
K ;

X)]) it is three.

The solutions θ̂MLE
4 and θ̂MLccE

4 for an example dataset (chosen for its illus-

trative quality) have been represented (Figure 8). Remark that θ̂MLccE
4 does not

nearly match the true distribution, on the contrary to θ̂MLE
4 . The former dislikes

solutions with overlapping components.
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Fig 7. Simulated datasets with isodensities of f℘.

Table 1

“Cross” Experiment. Blank cells: Lcc-based criteria computed for K ∈ {1, . . . , 8}

Selected Number of Components 2 3 4 5 6 7 8 9 10–20
AIC 0 0 1 1 2 2 3 3 88
BIC 0 4 91 5 0 0 0 0 0
SHL 0 2 84 10 3 0 0 0 1
ICL 0 96 3 1 0 0 0 0 0
Lcc-ICL 0 99 1 0 0 0 0
SHLcc 2 79 8 8 3 0 0
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Fig 8. “Cross” Experiment. MAP classifications.

Table 2

“Cross” Experiment. Risk of each criterion in
terms of Kullback-Leibler divergence to the
true distribution, estimated by Monte Carlo

simulations

Risk ×103 Risk of the criterion

Risk of the oracle

Oracle 59 1
AIC 506 8.03
BIC 65 1.10
(ICL) 156 2.62
SHL 69 1.17

Table 3

“Cross” Experiment. “Risk” of each
criterion for the Lcc contrast,
estimated by Monte Carlo

simulations

“Risk” ×103

Oracle 3618
ICL 3622
Lcc-ICL 3623
SHLcc 3632

Tables 2 and 3 compare the risk of each criterion with the corresponding
trajectory oracle (Koracle = argmin1≤K≤20 dKL(f

℘, f( . ; θ̂MLE
K )) for log L and

Koracle = argmin1≤K≤8 EX [−log Lcc(θ̂
MLccE
K ;X)] for log Lcc). Remark that ICL

should rather be compared to the Lcc oracle.
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Fig 9. “Cross” Experiment. Examples of DK 7→ logL(θ̂MLE

K ) (a) and of DK 7→

logLcc(θ̂MLccE

K
) (b) graphs.
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A few graphs DK 7→ log L(θ̂MLE
K ) and DK 7→ log Lcc(θ̂

MLccE
K ) are plotted

(Figure 9) to check that linear parts occur for large values of K. This is a
necessary condition for the slope heuristics to be confidently applied.

6.2.2. Misspecified models

f℘ is a four-component Gaussian mixture in R2, n = 200 (Figure 7). The two
left-hand side components are diagonal, but the two others are not. Diagonal
models are fitted: this experiment illustrates a misspecified models situation.

From Table 4, BIC tends to select quite a high number of components. Indeed,
the number of diagonal components needed to approximate f℘ is larger than
four, because of the two non-diagonal components. See Figure 10 for an example.
SHL yields the selections of K̂ the closest to the oracle’s (Table 4). However,
it does not yield better risk results than BIC (Table 5): both get good results.
ICL and Lcc-ICL select the expected four classes half of the time. The number
of observations does not always enable them to decide that some components
of the five- or six-component fitted solution overlap. SHLcc reaches the “best”
results (from the clustering point of view), in the sense that it recovers the
expected four classes the most often.

The expected oracle number of components is six or seven for log L and four
for log Lcc.

Table 4

“Misspecified” Experiment. Blank cells: Lcc-based criteria computed for K ∈ {1, . . . , 8}

Selected number of components 4 5 6 7 8 9–16 17 18 19 20
Oracle (for log L) 4 10 30 43 12 1 0 0 0 0
AIC 0 0 0 0 0 20 14 12 26 28
BIC 3 43 38 13 3 0 0 0 0 0
SHL 2 19 26 32 11 10 0 0 0 0
ICL 49 35 9 5 2 0 0 0 0 0
Lcc-ICL 54 29 13 4 0
SHLcc 81 17 2 0 0

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

X
1

X
2

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

X
1

X
2

MLE (K̂BIC = 5) MLccE (K̂ICL = 4)

Fig 10. “Misspecified” Experiment. MAP classifications.
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Table 5

“Misspecified” Experiment. Risk of each
criterion in terms of Kullback-Leibler

divergence to the true distribution, estimated
by Monte Carlo simulations

Risk ×103 Risk of the criterion

Risk of the oracle

Oracle 206 1
AIC 712 3.45
BIC 240 1.16
(ICL) 272 1.32
SHL 249 1.21

Table 6

“Misspecified” Experiment. “Risk”
of each criterion for the Lcc

contrast, estimated by Monte Carlo
simulations

“Risk” ×103

Oracle 3910
ICL 3926
Lcc-ICL 3928
SHLcc 3915

6.2.3. Distorted component

f℘ is a four-component Gaussian mixture in R2, n = 200 (Figure 11). The fourth
is smaller than the others (size: π = 0.1 against 0.3 and volume: detΣ = 0.01
against 1 or 0.5). Diagonal mixture models are fitted: the true distribution is
available for K = 4.

From the table in Figure 11, BIC and SHL mostly recover the four Gaussian
components. This is what they are expected to do. ICL, Lcc-ICL and SHLcc

mostly select three classes, as expected too.
The expected oracle number of components is four for log L and three for

log Lcc.
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12

X
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X
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K 3 4 5 6 7 8
AIC 0 24 30 23 3 20
BIC 42 57 0 0 0 1
SHL 22 67 10 1 0 0
ICL 93 7 0 0 0 0
Lcc-ICL 98 2 0 0 0 0
SHLcc 78 17 4 1 0 0

Fig 11. “Distorted” Experiment. Simulated dataset with isodensity of f℘ (left) and Selected
numbers of components for each criterion (right).

Table 7

“Distorted” Experiment. Risk of each
criterion in terms of Kullback-Leibler

divergence to the true distribution, estimated
by Monte Carlo simulations

Risk ×103 Risk of the criterion

Risk of the oracle

Oracle 58.3 1
AIC 108.5 1.9
BIC 73.7 1.3
(ICL) 99.9 1.7
SHL 68.0 1.2

Table 8

“Distorted” Experiment. “Risk” of
each criterion for the Lcc contrast,

estimated by Monte Carlo
simulations

“Risk” ×103

Oracle 3857
ICL 3859
Lcc-ICL 3857
SHLcc 3863
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Fig 12. “Distorted” Experiment. MAP classifications.

7. Discussion

The Simulations section illustrates what the theoretical works suggest: BIC and
ICL belong to two different families of criteria. Before the choice of the penalty,
the most decisive choice is the contrast. The purpose of L-based criteria (BIC,
SHL...) is of a different nature than that of Lcc-criteria (Lcc-ICL, SHLcc...).
The former rely on a density estimation approach and thus the assumption
that the conditional distributions of the classes are Gaussian is strong: each
group of observations that requires a Gaussian component to be fitted deserves
to be considered as a class. The latter aim at discovering classes matching a
subtle compromise between the notions of well separated clusters and Gaussian-
shaped classes: observations which cannot be confidently discriminated from
each other, should belong to the same class. They enjoy the flexibility and
modeling possibilities of the model-based clustering approach and still do not
break an expected notion of cluster.

Once a contrast is chosen, then a penalty has to be chosen. We want to stress
that the choice among criteria based on a same contrast, though important, is a
second order choice. As expected, BIC and ICL (regarded as an approximation of
Lcc-ICL) in their respective families of criteria, perform pretty well, while being
quite easy to run, notably as compared to the slope heuristics methods. But
the latter are interesting for their data-driven and non-asymptotic properties,
at least in some experiments.

As a practical conclusion a user should rather consider ICL if he is interested
in finding well-separated clusters, which conditional distribution can possibly
not clearly be Gaussian-shaped, whereas a user who is confident that the con-
ditional distribution of the components are Gaussian and for whom this is not
a problem to get overlapping clusters should rather consider BIC. [8] propose a
way to get the most of both criteria.

The first aim of this study was to better understand the ICL criterion. A
step further in this direction now means better understanding the contrast
Lcc.
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A further theoretical step would be to derive non-asymptotic results and
oracle inequalities. This should give more precise insights about the optimal
penalty shape to use, and then justify the use of the slope heuristics of [13]
(see also [7] or [5] for partial results, simulations, and discussions on this).

It should also be further studied how the complexity of the models should
be measured, particularly when several kinds of models are compared. The di-
mension of the model as a parametric space works for the reported theoretical
results. But we are not convinced that it is the finest measure of the complexity
of Gaussian mixture models. As a matter of fact this simple parametric point of
view amounts to considering that all parameters play an analogous role. This is
not really intuitive.

Finally, let us stress that the implementation of the considered procedures is
quite challenging. Some work has been done in this direction already: see [6] and
Section 5 above. But the resulting algorithms are longer to run than standard
EM procedures up to now: further work in that direction is necessary and ICL
in the standard MLE version can be a good practical compromise for now.

8. Proofs

8.1. Proof of Theorem 3.1

Proof of Theorem 3.1. Let ε > 0. Since θ 7→ E [−log Lcc(θ)] is continuous
and {θ ∈ Θ : d(θ,Θ0) ≥ ε} is compact, η = 1

nE
[
log Lcc(θ

0)
]
−

1
n infθ∈Θ:d(θ,Θ0)≥ε E [log Lcc(θ)] > 0. Since from Lemma 3.2 (under the assump-
tionH ′

log Lcc,ΘO,1 which holds since the components conditional probabilities are
kept away from zero by the assumption that Θ is compact and contains no zero-
proportion component, as discussed p. 1051) and Theorem 3.2, {−log Lcc(θ; ·) :
θ ∈ Θ} is f℘ · λ–Glivenko-Cantelli on the one hand; by the definition of θ̂MLccE

on the other hand, with high probability for n large enough,

1

n
sup
θ∈Θ

∣∣−log Lcc(θ) − E [−log Lcc(θ)]
∣∣ < η

3

1

n
log Lcc(θ̂

MLccE) ≥ 1

n
log Lcc(θ

0)− η

3

for any θ0 ∈ Θ0 and then

E
[
log Lcc(θ

0)
]
− E

[
log Lcc(θ̂

MLccE)
]

=
(
E
[
log Lcc(θ

0)
]
− log Lcc(θ

0)
)
+
(
log Lcc(θ

0)− log Lcc(θ̂
MLccE)

)

+
(
log Lcc(θ̂

MLccE)− E
[
log Lcc(θ̂

MLccE)
])

< nη,

hence

∀ε > 0, ∀u ∈ [0, 1], ∃N ∈ N s.t. ∀n ≥ N,P
(
d(θ̂MLccE,Θ0) < ε

)
≥ u,

i.e. d(θ̂MLccE,Θ0)
P−→ 0.
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8.2. Proofs of the bracketing entropy upper-bounds

Proof of Lemma 3.1. This is a calculation which relies on the mean value theo-
rem, hence the convexity assumption. Let ε > 0, and Θ̃ ⊂ Θ, with Θ̃ bounded.
Let Θ̃ε be a grid in Θ which “ε-covers” Θ̃ in any dimension with step ε. Θ̃ε is
for example Θ̃1

ε × · · · × Θ̃D
ε with

∀i ∈ {1, . . . , D}, Θ̃i
ε =

{
θ̃imin, θ̃

i
min + ε, . . . , θ̃imax

}
,

where

∀i ∈ {1, . . . , D},
{
θi : θ ∈ Θ̃

}
⊂
[
θ̃imin −

ε

2
, θ̃imax +

ε

2

]
.

This is always possible since Θ is convex. With the ‖ · ‖∞ norm, the step of the

grid Θ̃ε is the same as the step over each dimension, ε:

∀θ̃ ∈ Θ̃, ∃θ̃ε ∈ Θ̃ε/‖θ̃− θ̃ε‖∞ ≤ ε

2
.

And the cardinal of Θ̃ε is at most

D∏

i=1

(supθ∈Θ̃ θi − infθ∈Θ̃ θi)

ε
∨ 1 ≤

(
diam Θ̃

ε

)D

∨ 1.

Now, let θ1 and θ2 in Θ and x ∈ Rd.

∣∣γ(θ1;x)− γ(θ2;x)
∣∣ ≤ sup

θ∈[θ1;θ2]

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞

‖θ1 − θ2‖∞

≤ sup
θ∈Θ

∥∥∥∥∥

(
∂γ

∂θ

)

(θ;x)

∥∥∥∥∥
∞︸ ︷︷ ︸

M ′(x)

‖θ1 − θ2‖∞,

since Θ is convex. Let θ̃ ∈ Θ̃ and choose θ̃ε ∈ Θ̃ε such that ‖θ̃− θ̃ε‖∞ ≤ ε
2 . Then

and
∀x ∈ Rd,

∣∣γ(θ̃ε;x)− γ(θ̃;x)
∣∣ ≤ M ′(x)

ε

2

γ(θ̃ε;x) −
ε

2
M ′(x) ≤ γ(θ̃;x) ≤ γ(θ̃ε;x) +

ε

2
M ′(x).

The set of ε‖M ′‖r-brackets (for the ‖ · ‖r-norm)

{
[γ(θ̃ε)−

ε

2
M ′; γ(θ̃ε) +

ε

2
M ′] : θ̃ε ∈ Θ̃ε

}

then has cardinal at most (diam Θ̃
ε )D ∨ 1 and covers {γ(θ̃) : θ̃ ∈ Θ̃}.
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Example 8.1 (Diagonal Gaussian Mixture Model Parameter Space is Convex).
Following [15], we write [pλkBk] for the model of Gaussian mixtures with diago-
nal covariance matrices and equal mixing proportions. To keep simple notation,
let us consider the case d = 2 and K = 2 (d = 1 or K = 1 are obviously partic-
ular cases!). A natural parametrization of this model (which dimension is 8) is

θ ∈ R4 × R+∗4 ϕ7−→ 1

2
φ

(
. ;

(
θ1
θ2

)
,

(
θ5 0
0 θ6

))
+

1

2
φ

(
. ;

(
θ3
θ4

)
,

(
θ7 0
0 θ8

))

Then [pλkBk] = ϕ(R4 × R+∗4) and the parameter space R4 × R+∗4 is convex.

Example 8.2 (The Same Model with Equal Volumes is Convex, too...). [pλBk]
is the same model as in the previous example, but the covariance matrices
determinants have to be equal. With d = 2 andK = 2, a natural parametrization
of this model of dimension 7 is

θ ∈ R4 × R+∗3 ϕ7−→ 1

2
φ

(
. ;

(
θ1
θ2

)
,
√
θ7

(
θ5 0
0 1

θ5

))

+
1

2
φ

(
. ;

(
θ3
θ4

)
,
√
θ7

(
θ6 0
0 1

θ6

))

Then [pλBk] = ϕ(R4 × R+∗3) and the parameter space R4 × R+∗3 is convex.

Proof of Lemma 3.2. Θ is not supposed to be convex as in Lemma 3.1 but
since it is compact it can be covered with a finite number Q of open balls. Let
O1, . . . , OQ be such a covering of Θ consisting of open balls such that Θ ⊂
∪Q
q=1Oq ⊂ ΘO. Remark that

Θ = ∪Q
q=1(Oq ∩Θ) ⊂ ∪Q

q=1conv(Oq ∩Θ).

Now, for any q, conv(Oq ∩ Θ) is convex and supθ∈conv(Oq∩Θ) ‖(∂γ∂θ )(θ;x)‖∞ ≤
M ′(x) since conv(Oq ∩ Θ) ⊂ Oq ⊂ ΘO (Oq may not be included in Θ, hence
the introduction of ΘO in the assumptions of this lemma). Therefore, for any

Θ̃ ⊂ Θ, Lemma 3.1 applies to Oq ∩ Θ̃ ⊂ conv(Oq ∩Θ):

∀ε > 0, N[ ](ε, {γ(θ) : θ ∈ Θ̃ ∩Oq}, ‖ · ‖r) ≤
(‖M ′‖r diam Θ̃

ε

)D

∨ 1.

Since N[ ](ε, {γ(θ) : θ ∈ Θ̃}, ‖ · ‖r) ≤ N[ ](ε,∪Q
q=1{γ(θ) : θ ∈ Θ̃ ∩ Oq}, ‖ · ‖r), the

result follows.

Proof of Lemma 3.3. Consider the grid Θ̃ε of the proof of Lemma 3.1. Let θ1
and θ2 in Θ and x ∈ Rd. Since Θ is convex,

∣∣∣γ(θ1;x)− γ(θ2;x)
∣∣∣
r

≤ sup
θ∈[θ1;θ2]

∥∥∥∥
(
∂γ

∂θ

)

(θ;x)

∥∥∥∥
2

∞
‖θ1 − θ2‖2∞

(
2 sup
θ∈{θ1,θ2}

|γ(θ;x)|
)r−2

≤ M ′(x)2‖θ1 − θ2‖2∞(2‖M‖∞)r−2 f℘dλ-a.e.
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Let θ̃ ∈ Θ̃ and choose θ̃ε ∈ Θ̃ε such that ‖θ̃ − θ̃ε‖∞ ≤ ε
2 . Then

∣∣∣γ(θ̃ε;x) − γ(θ̃;x)
∣∣∣ ≤ M ′(x)

2
r

(ε
2

) 2
r

(2‖M‖∞)
r−2
r f℘-a.e.

and the set of brackets

{[
γ(θ̃ε;x)− ε

2
rM ′(x)

2
r ‖M‖

r−2
r∞ 21−

4
r ; γ(θ̃ε;x) + ε

2
r M ′(x)

2
r ‖M‖

r−2
r∞ 21−

4
r

]

: θ̃ ∈ Θ̃ε

}

(of ‖·‖r-norm length (22−
4
r )‖M‖

r−2
r∞ ‖M ′‖

2
r

2 ε
2
r ) has cardinal at most (diam Θ̃

ε )D∨1
and covers {γ(θ̃) : θ̃ ∈ Θ̃}, which yields Lemma 3.3.

8.3. Proof of Theorem 4.1

Theorem 4.1 is an application of Theorem 8.1, written for a general contrast
and family of models:

Theorem 8.1. {ΘK}1≤K≤KM
a collection of models with ΘK ⊂ RDK (D1 ≤

· · · ≤ DKM
) and let θ0K ∈ Θ0

K , with Θ0
K = argminθ∈ΘK

E [γ(θ)]. Assume

K0 = min argmin
1≤K≤KM

E
[
γ(Θ0

K)
]

(B1)

∀K, θ̂K ∈ ΘK is such that γn(θ̂K) ≤ γn(θ
0
K) + oP(1)

and fulfills γn(θ̂K)
P−→ E

[
γ(θ0K)

] (B2)

∀K,




pen(K) > 0 and pen(K) = oP(1) when n → +∞
n
(
pen(K)− pen(K ′)

)
P−−−−−→

n→+∞
∞ when K > K ′ (B3)

n
(
γn(θ̂K0

)− γn(θ̂K)
)
= OP(1) for any K ∈ argmin

1≤K≤KM

E
[
γ(Θ0

K)
]
. (B4)

Define K̂ such that

K̂ = min argmin
1≤K≤KM

{
γn(θ̂K) + pen(K)︸ ︷︷ ︸

crit(K)

}
.

Then P[K̂ 6= K0] −−−−→
n−→∞

0.

Assumption (B3) defines the range of possible penalties. Regarding (B2),

Lemma 8.1. For a fixed K, assume supθ∈ΘK

∣∣γn(θ)− E [γ(θ)]
∣∣ P−−→ 0. Then

(B2) holds.
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Proof of Lemma 8.1. For any ε > 0, with high probability for n large enough:

γn(θ̂)− Ef℘

[
γ(θ̂)

]
︸ ︷︷ ︸

≥−ε

+Ef℘

[
γ(θ̂)

]
− E

[
γ(θ0)

]
︸ ︷︷ ︸

≥0

= γn(θ̂)− E
[
γ(θ0)

]

= γn(θ̂)− γn(θ
0)︸ ︷︷ ︸

≤ε

+ γn(θ
0)− E

[
γ(θ0)

]
︸ ︷︷ ︸

≤ε

.

Section 8.4 is devoted to deriving sufficient conditions so that (B4) holds.
Theorem 4.1 is a direct consequence of Theorem 8.1, Lemma 8.1, Theorem

3.1, and Corollary 8.2 (below).

Proof of Theorem 8.1. Let K = argmin1≤K≤KM
E
[
γ(θ0K)

]
. K0 = minK.

It is first proved that K̂ does not asymptotically “underestimate” K0. Let
K /∈ K. Let ε = 1

2

(
E
[
γ(θ0K)

]
−E

[
γ(θ0K0

)
])

> 0. From (B2) and (B3) (pen(K) =
oP(1)), with high probability for n large enough:

∣∣γn(θ̂K)− E
[
γ(θ0K)

]∣∣ ≤ ε

3
;
∣∣γn(θ̂K0

)− E
[
γ(θ0K0

)
]∣∣ ≤ ε

3
; pen(K0) ≤

ε

3
.

Then

crit(K) = γn(θ̂K) + pen(K) ≥ E
[
γ(θ0K)

]
− ε

3
+ 0

= E
[
γ(θ0K0

)
]
+

5ε

3
≥ γn(θ̂K0

) + pen(K0)︸ ︷︷ ︸
crit(K0)

+ε.

Then, with high probability for n large enough, K̂ 6= K.
Let now K ∈ K (hence K > K0). Assumption (B4) implies that ∃V > 0 such

that with high probability for n large enough,

n
(
γn(θ̂K0

)− γn(θ̂K)
)
≤ V.

Increase n enough so that n
(
pen(K) − pen(K0)

)
> V with high probability

(B3). Then, with high probability for n large enough,

crit(K) = γn(θ̂K) + pen(K) ≥ γn(θ̂K0
)− V

n
+ pen(K) > crit(K0).

And then, with high probability for n large enough, K̂ 6= K.
Conclude: P[K̂ 6= K0] =

∑
K/∈K P[K̂ = K] +

∑
K∈K, K 6=K0

P[K̂ = K].

8.4. Sufficient conditions to ensure Assumption (B4)

Let us introduce the notation Snγ(θ) = n
(
γn(θ)−E [γ(θ)]

)
. The main result of

this section is Lemma 8.2. Some intermediate results which enable to link Lemma
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8.2 to Theorem 8.1 via Assumption (B4) are stated as corollaries and proved

subsequently. Lemma 8.2 povides a control of supθ∈Θ
Sn(γ(θ

0)−γ(θ))
‖θ0−θ‖2

∞
+β2 (with respect

to β) and then of Sn(γ(θ
0)−γ(θ̂))

‖θ0−θ̂‖2
∞

+β2
. With a good choice of β, and if Sn

(
γ(θ0)−γ(θ̂)

)

can be linked to ‖θ0 − θ̂‖2∞, it is proved in Corollary 8.1 that it may then be

assessed that n‖θ̂ − θ0‖2∞ = OP(1). Plugging this last property back into the

result of Lemma 8.2 yields (Corollary 8.2) n
(
γn(θ

0
K) − γn(θ̂K)

)
= OP(1) for

any model K ∈ argmin1≤K≤KM
E
[
γ(θ0K)

]
and then, under mild identifiability

condition, n
(
γn(θ

0
K0

)− γn(θ̂K)
)
= OP(1), which is Assumption (B4).

Lemma 8.2. Let D ∈ N∗ and Θ ⊂ RD convex. Let ΘO ⊂ RD open such that
Θ ⊂ ΘO and γ : ΘO × Rd → R. θ ∈ ΘO 7→ γ(θ;x) is assumed to be C1 over
ΘO for f℘dλ-almost all x. Let θ0 ∈ Θ such that E

[
γ(θ0)

]
= infθ∈Θ E [γ(θ)].

Assume that Hγ,Θ,∞ and H ′
γ,Θ,2 hold.

Then ∃α > 0/∀n, ∀β > 0, ∀η > 0, with probability larger than (1− exp−η),

sup
θ∈Θ

Sn(γ(θ
0)− γ(θ))

‖θ0 − θ‖2∞ + β2
≤ α

β2

(
‖M ′‖2β

√
nD +

(
‖M‖∞ + ‖M ′‖2β

)
D

+ ‖M ′‖2
√
nηβ + ‖M‖∞η

)

Note that α is an absolute constant which notably does not depend on θ0.

Sketch of the proof of Lemma 8.2. The proof relies on results of [28]. Lemma 3.3
provides a local control of the bracketing entropy of the class of functions we
consider and hence, through Theorem 6.8 in [28], a control of the supremum of
Sn(γ(θ

0)−γ(θ)) as ‖θ−θ0‖2∞ < σ, with respect to σ. The “peeling” Lemma 4.23
[28] then enables to take advantage of this local control to derive a fine global

control of supθ∈Θ
Sn(γ(θ

0)−γ(θ))
‖θ−θ0‖2+β2 , for any β. This control in expectation, which

can be derived conditionally to any event A, yields a control in probability
thanks to Lemma 2.4 in [28], which can be thought of as an application of
Markov’s inequality.

Corollary 8.1. Same assumptions as Lemma 8.2, but the convexity of Θ. Be-

sides assume that Iθ0 = ∂2

∂θ2 (E [γ(θ)])|θ0 is nonsingular. Let (θ̂n)n≥1 such that

θ̂n ∈ Θ, γn(θ̂n) ≤ γn(θ
0) +OP(

1
n ) and θ̂n

P−−−−→
n→∞

θ0. Then

n‖θ̂n − θ0‖2∞ = OP(1).

The constant involved in OP(1) depends on D, ‖M‖∞, ‖M ′‖2 and Iθ0 .

This is a direct consequence of Lemma 8.2: it suffices to choose β well. The
dependency of OP(1) in D, ‖M‖∞, ‖M ′‖2 and Iθ0 is not a problem since we aim
at deriving an asymptotic result: we are interested in the order of ‖θ − θ0‖2∞
with respect to n when the model is fixed.

The assumption that Iθ0 is nonsingular ensures that E [γ(θ)] cannot be close
to E

[
γ(θ0)

]
if θ is not close to θ0. It guarantees that the rate of the relation
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between E [γ(θ)]− E
[
γ(θ0)

]
and ‖θ − θ0‖ can then be controlled... Should this

assumption fail, ∃θ̃ ∈ Θ/θ̃′Iθ0 θ̃ = 0 ⇒ E[γ(θ0 + λθ̃)] = E
[
θ0
]
+ o(λ2) and then

there is no hope to have α > 0 such that E [γ(θ)]−E
[
γ(θ0)

]
> α‖θ− θ0‖2: this

approach cannot be applied without this—admittedly unpleasant—assumption.
Perhaps another approach (with distances not involving the parameters but
directly the contrast values) might enable to avoid it, as [28] did in the likelihood
framework.

Corollary 8.2. Let (ΘK)1≤K≤KM
be models with, for any K, ΘK ⊂ RDK .

Assume that D1 ≤ · · · ≤ DKM
. For any K, assume there exists an open set

ΘO
K ⊂ RDK such that ΘK ⊂ ΘO

K and such that with ΘO = ΘO
1 ∪ · · · ∪ ΘO

KM
,

γ : ΘO × Rd −→ R is defined and C1 for f℘dλ-almost all x. Assume that
Hγ,ΘO,∞ and H ′

γ,ΘO,2 hold. Let, for any K, Θ0
K = argminθ∈ΘK

E [γ(θ)] and
θ0K ∈ Θ0

K .
Let K0 = min argmin1≤K≤KM

E
[
γ(Θ0

K)
]
and assume ∀K, ∀θ ∈ ΘK ,

E [γ(θ)] = E
[
γ(θ0K0

)
]
⇐⇒ γ(θ) = γ(θ0K0

) f℘dλ− a.e.

Let K = {K ∈ {1, . . . ,KM} : E
[
γ(θ0K)

]
= E

[
γ(θ0K0

)
]
}.

For any K ∈ K, let θ̂K ∈ ΘK such that

γn(θ̂K) ≤ γn(θ
0
K) +OP

( 1
n

)
and θ̂K

P−−−−→
n→∞

θ0K .

Assume that Iθ0
K
= ∂2

∂θ2 (E[γ(θ)])|θ0
K

is nonsingular for any K ∈ K.

Then ∀K ∈ K, n
(
γn(θ̂K0

)− γn(θ̂K)
)
= OP(1).

This last corollary states conditions under which assumption (B4) of Theorem
8.1 is ensured.

Proof of Lemma 8.2. Actually, the proof as it is written below holds for an at
most countable model (because this assumption is necessary for Lemma 4.23
and Theorem 6.8 in [28] to hold). But it can be checked that both these re-
sults may be applied to a dense subset of {γ(θ) : θ ∈ Θ} containing θ0 and
their respective conclusions generalized to the entire set: choose Θcount a count-
able dense subset of Θ. Then, for any θ ∈ Θ, let θn ∈ Θcount −−−−→

n→∞
θ.

Then, γ(θn;X)
a.s.−−−−→

n→∞
γ(θ;X). Now, whatever g : RD ×

(
Rd
)n → R such that

θ ∈ RD 7→ g(θ,X) continue a.s., supθ∈Θ g(θ;X) = supθ∈Θcount g(θ;X) a.s. Hence,
E [supθ∈Θ g(θ;X)] = E [supθ∈Θcount g(θ;X)]. Remark that the models which are
actually considered in practice are discrete anyway, because of the computation
limitations.

Let us introduce the centered empirical process

Snγ(θ) = nγn(θ)− nE [γ(θ;X)] .a(θ;Xi)− Ef℘ [γ(θ;X)]
)
.

Here and hereafter, α stands for a generic absolute constant, which may differ
from a line to another. Let θ0 ∈ Θ such that E

[
γ(θ0)

]
= infθ∈Θ E [γ(θ)]. Let us
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define

∀σ > 0,Θ(σ) = {θ ∈ Θ : ‖θ − θ0‖∞ ≤ σ}.
On the one hand, for all r ∈ N∗\{1},

∀θ ∈ Θ(σ),
∣∣γ(θ0;x)− γ(θ;x)

∣∣r ≤ M ′(x)2‖θ0 − θ‖2∞(2M(x))r−2

since Θ(σ) ⊂ Θ is convex. And thus,

∀θ ∈ Θ(σ),E
[
|γ(θ0)− γ(θ)|r

]
≤ ‖M ′‖22 ‖θ0 − θ‖2∞(2‖M‖∞)r−2

≤ r!

2
(‖M ′‖2σ)2

( 62‖M‖∞
62

)r−2

.
(6)

On the other hand, from Lemma 3.3, for any r ∈ N∗\{1}, for any δ > 0, there
exists Cδ a set of brackets which cover {(γ(θ0) − γ(θ)) : θ ∈ Θ(σ)} (deduced
from a set of brackets which cover {γ(θ) : θ ∈ Θ(σ)}...) such that:

∀r ∈ N∗\{1}, ∀[gl, gu] ∈ Cδ, ‖gu − gl‖r ≤
(
r!

2

) 1
r

δ
2
r

(
4‖M‖∞

3

) r−2
r

and such that, writing expH(δ,Θ(σ)) the minimal cardinal of such a Cδ,

expH(δ,Θ(σ)) ≤




≤2σ︷ ︸︸ ︷
diamΘ(σ) ‖M ′‖2

δ




D

∨ 1. (7)

Then, according to Theorem 6.8 in [28], ∃α, ∀ε ∈ ]0, 1], ∀A measurable such that
P[A] > 0,

EA

[
sup

θ∈Θ(σ)

Sn

(
γ(θ0)− γ(θ)

)
]
≤ α

ε

√
n

∫ ε‖M ′‖2σ

0

√
H
(
u,Θ(σ)

)
du

+ 2
(4
3
‖M‖∞ + ‖M ′‖2σ

)
H
(
‖M ′‖2σ,Θ(σ)

)

+ (1 + 6ε)‖M ′‖2σ
√

2n log
1

P[A]
+

8

3
‖M‖∞ log

1

P[A]
· (8)

Now, we have

∀t ∈ R+,

∫ t

0

√
log

1

u
∨ 0 du =

∫ t∧1

0

√
log

1

u
du

≤
√
t ∧ 1

√∫ t∧1

0

log
1

u
du = (t ∧ 1)

√
log

e

t ∧ 1
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by the Cauchy-Schwarz inequality. Together with (7), this yields

∀t ∈ R+,

∫ t

0

√
H(u,Θ(σ))du ≤

√
D

∫ t

0

√
log

2‖M ′‖2σ
u

∨ 0 du

≤
√
D
(
t ∧ 2‖M ′‖2σ

)√
log

e
t

2‖M ′‖2σ
∧ 1

(9)

after a simple substitution.
Next, let us apply Lemma 4.23 in [28]: From (7), (8) and (9),

∀σ > 0,E

[
sup

θ∈Θ(σ)

Sn

(
γ(θ0)− γ(θ)

)
]
≤ ϕ(σ)

with ϕ(t) =
α

6ε
√
n
√
D 6ε ‖M ′‖2t

√
log

2e

ε
+ 2
(4
3
‖M‖∞ + ‖M ′‖2t

)
D log 2

+ (1 + 6ε)‖M ′‖2t
√
2n log

1

P[A]
+

8

3
‖M‖∞ log

1

P[A]
.

As required for Lemma 4.23 in [28] to hold, ϕ(t)
t is nonincreasing. It follows

∀β > 0,EA

[
sup
θ∈Θ

Sn

(
γ(θ0)− γ(θ)

)

‖θ0 − θ‖∞ + β2

]
≤ 4β−2ϕ(β).

We then choose ε = 1 and apply Lemma 2.4 in [28]: for any η > 0 and any
β > 0, with probability larger than 1− exp−η,

sup
θ∈Θ

Sn

(
γ(θ0)− γ(θ)

)

‖θ0 − θ‖2∞ + β2
≤ α

β2

(√
nD‖M ′‖2β

√
log 2e

+
(
‖M‖∞ + ‖M ′‖2β

)
D log 2 + ‖M ′‖2β

√
nη + ‖M‖∞η

)
.

Proof of Corollary 8.1. Let ε > 0 such that B(θ0, ε) ⊂ ΘO. Then, since θ̂n
P−→

θ0, there exists n0 ∈ N∗ such that, with high probability, for n ≥ n0, θ̂n ∈
B(θ0, ε). Now, B(θ0, ε) is convex and Lemma 8.2 applies to θ̂n: ∀n ≥ n0, ∀β >
0, with great probability as η is large,

Sn

(
γ(θ0)− γ(θ̂n)

)

‖θ0 − θ̂n‖2∞ + β2
≤ α

β2

(√
nD‖M ′‖2β +

(
‖M‖∞ + ‖M ′‖2β

)
D

+ ‖M ′‖2β
√
nη + ‖M‖∞η

)
. (10)

But since Iθ0 is supposed to be nonsingular, ∀θ ∈ B(θ0, ε),

E [θ]− E
[
θ0
]
= (θ − θ0)′Iθ0(θ − θ0) + r(‖θ − θ0‖∞)‖θ − θ0‖2∞

≥
(
2α′ + r(‖θ − θ0‖∞)

)
‖θ − θ0‖2∞
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where α′ > 0 depends on Iθ0 and r : R+ −→ R fulfills r(x) −−−→
x→0

0. Then, for

‖θ − θ0‖∞ small enough (ε may be decreased...),

∀θ ∈ B(θ0, ε),E [θ]− E
[
θ0
]
≥ α′‖θ − θ0‖2∞. (11)

Sn

(
γ(θ0)− γ(θ̂n)

)
= n

(
γn(θ

0)− γn(θ̂n)
)
+ nEf℘

[
γ(θ̂n)− γ(θ0)

]
Since

≥ OP(1) + nEf℘

[
γ(θ̂n)− γ(θ0)

]
,

(10) together with (11) leads (with great probability) to

n‖θ̂n − θ0‖2∞ ≤ ‖M ′‖2(
√
nD +

√
ηn+D)β + ‖M‖∞(D + η) +OP(1)

α′

α − 1
nβ2

(
‖M ′‖2(

√
nD +

√
ηn+D)β + ‖M‖∞(D + η)

) ,

as soon as the denominator of the right-hand side is positive. It then suffices to
choose β such that this condition is fulfilled and such that the right-hand side
is upper-bounded by a quantity which does not depend on n to get the result.
Let us try β = β0√

n
with β0 independent of n:

n‖θ̂n − θ0‖2∞ ≤ ‖M ′‖2(
√
D +

√
η +D)β0 + ‖M‖∞(D + η) +OP(1)

α′

α − 1
β2
0

(
‖M ′‖2(

√
D +

√
η +D)β0 + ‖M‖∞(D + η)

) ·

This only holds if the denominator is positive. Choose β0 large enough so as to
guarantee this, which is always possible. The result follows: with high probability
and for n larger than n0, we have n‖θ̂n − θ0‖2∞ = COP(1) with C depending on
D, ‖M‖∞, ‖M ′‖2, Iθ0 and η.

Proof of Corollary 8.2. This is a direct application of Corollary 8.1. Let K ∈ K:
E
[
γ(θ0K)

]
= E

[
γ(θ0K0

)
]
. ΘK can be assumed to be convex: if it is not, θ̂K lies in

B(θ0K0
, ε) ⊂ ΘO with high probability for large n and ΘK may be replaced by

B(θ0K0
, ε). According to Lemma 8.2, with probability larger than (1 − exp−η)

for n large, with β = β0√
n
for any β0 > 0:

Sn

(
γ(θ0K)− γ(θ̂K)

)
≤ α

n‖θ0K − θ̂K‖2∞ + β2
0

β2
0

(
‖M ′‖2

(√
DK +

√
η +

≤DK︷︸︸︷
DK√
n

)
β0

+ ‖M‖∞(DK + η)

)
.

But, according to Corollary 8.1, n‖θ0K− θ̂K‖2∞ = OP(1). Moreover, by definition,

Sn

(
γ(θ0K)− γ(θ̂K)

)
= n

(
γn(θ

0
K)− γn(θ̂K)

)
+ n

(
Ef℘

[
γ(θ̂K)

]
− E

[
γ(θ0K)

]
︸ ︷︷ ︸

≥0

)

Thus, n
(
γn(θ

0
K) − γn(θ̂K)

)
= OP(1). This holds for any K ∈ K and then in

particular for K0 and K. Besides γn(θ
0
K) = γn(θ

0
K0

) since, by assumption,

γ(θ0K) = γ(θ0K0
) f℘dλ-a.e. Hence n

(
γn(θ̂K0

)− γn(θ̂K)
)
= OP(1).
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[4] Barron, A., Birgé, L. and Massart, P. (1999). Risk bounds for model
selection via penalization. Probability Theory and Related Fields 113 301–
413. MR1679028

[5] Baudry, J. P. (2009). Model selection for clustering. Choosing the number
of classes. PhD thesis, Univ. Paris-Sud. http://tel.archives-ouvertes.
fr/tel-00461550/fr/.

[6] Baudry, J. P., Celeux, G. and Marin, J. M. (2008). Selecting mod-
els focussing on the modeler’s purpose. In COMPSTAT 2008: Proceed-
ings in Computational Statistics 337–348. Physica-Verlag, Heidelberg.
MR2509588

[7] Baudry, J.-P., Maugis, C. and Michel, B. (2011). Slope heuristics:
overview and implementation. Statist. Comput. 22 455–470. MR2865029

[8] Baudry, J. P., Raftery, A. E., Celeux, G., Lo, K. and Got-

tardo, R. (2010). Combining mixture components for clustering. J. Com-
put. Graph. Statist. 19 332–353. MR2758307

[9] Biernacki, C., Celeux, G. and Govaert, G. (2000). Assessing a mix-
ture model for clustering with the integrated completed likelihood. IEEE
Trans. PAMI 22 719–725.

[10] Biernacki, C., Celeux, G. and Govaert, G. (2003). Choosing starting
values for the EM algorithm for getting the highest likelihood in multivari-
ate Gaussian mixture models. Computational Statistics & Data Analysis
41 567–575. MR1968069

[11] Biernacki, C. and Govaert, G. (1997). Using the classification likeli-
hood to choose the number of clusters. Computing Science and Statistics
29 451–457.
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