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Abstract: It is common knowledge that Akaike’s information criterion
(AIC) is not a consistent model selection criterion, and Bayesian infor-
mation criterion (BIC) is. These have been confirmed from an asymptotic
selection probability evaluated from a large-sample framework. However,
when a high-dimensional asymptotic framework, such that the dimension
of the response variables and the sample size are approaching ∞, is used
for evaluating the selection probability, there are cases that the AIC for
selecting variables in multivariate linear models is consistent, but the BIC
is not. The AIC and BIC are included in a family of information criteria de-
fined by adding a penalty term expressing the complexity of the model to a
negative twofold maximum log-likelihood. By clarifying the condition of the
penalty term to ensure the consistency, we derive conditions for consistency
of the AIC, BIC and other information criteria under the high-dimensional
asymptotic framework.

MSC 2010 subject classifications: Primary 62J05; secondary 62E20.
Keywords and phrases: AIC, bias-corrected AIC, BIC, consistent AIC,
high-dimensional asymptotic framework, multivariate linear model, selec-
tion probability, variable selection.

Received September 2013.

1. Introduction

Let Y be an n× p observation matrix of p response variables, and let X be an
n × k observation matrix of k nonstochastic explanatory variables, where n is
the sample size, and it is assumed that n− p− k− 1 > 0. In order to ensure the
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possibility of estimating the model, we also assume that rank(X) = k (< n).
Suppose that j denotes a subset of ω = {1, . . . , k} containing kj elements, and
Xj denotes the n × kj matrix consisting of the columns of X indexed by the
elements of j. For example, if j = {1, 2, 4}, then Xj consists of the first, second,
and fourth columns of X. Of course, it holds that Xω = X and kω = k. Also,
we let kA denote the number of elements of a set A, i.e., kA = #(A). Then the
following multivariate linear regression model with kj explanatory variables is
considered as the candidate model:

Y ∼ Nn×p(XjΘj ,Σj ⊗ In), (1.1)

where Θj is a kj×p unknown matrix of regression coefficients, and Σj is a p×p
unknown covariance matrix. Here, A⊗B denotes the Kronecker product of an
m× n matrix A and a p× q matrix B, which is an mp× nq matrix defined by

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






,

where aij is the (i, j)th element of A (see, e.g., [18, chap. 16]). In particular,
the model with Xω (namely X) is called the full model. We will assume that
the data are generated from the following true model:

Y ∼ Nn×p(Xj∗Θ∗,Σ∗ ⊗ In), (1.2)

where j∗ is a set of integers indicating the subset of explanatory variables in the
true model. Henceforth, for simplicity, we represent Xj∗ and kj∗ as X∗ and k∗,
respectively.

The multivariate linear regression model of (1.1) is one of basic models of
multivariate analysis. This model is introduced in many multivariate statistical
textbooks (see, e.g., [31, chap. 9], [33, chap. 4]), and even now is widely used in
chemometrics, engineering, econometrics, psychometrics, and many other fields,
for the prediction of multiple responses from a set of explanatory variables (see,
e.g., [10, 24, 25, 40]). Since it is important to specify factors affecting response
variables in regression analysis, searching for the optimal subset j is essential.

Akaike’s information criterion (AIC), proposed by [1, 2], is widely used for
selecting the best model. The AIC was proposed as an asymptotic unbiased
estimator of the risk function assessed by the expected Kullback-Leibler (KL)
loss [20] under the assumption that the candidate model includes the true model.
One purpose of a model selection method based on the AIC is to choose a model
that makes the risk function small. For that purpose, using the AIC for model
selection will be asymptotically efficient when the true model is infinite (see,
e.g., [27, 29, 39]). A Bayesian information criterion (BIC) proposed by [26] and
a consistent AIC (CAIC) proposed by [6] are also widely used for model selection
purposes. It is a well-known fact that, when the true model is included in a set
of the candidate models, these two criteria are consistent in model selection, i.e.,
the probability of selecting the true model goes to 1 asymptotically, although
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for the AIC is not. When using the AIC for model selection, this inconsistency
property sometimes becomes a target for criticism, although the purpose of the
AIC is not to choose the true model. The inconsistency property of the AIC
is confirmed from the asymptotic probability of selecting the model, which is
evaluated from the following asymptotic framework that represents an ordinary
asymptotic procedure [11, 12, 22, 28]:

• A large-sample (LS) asymptotic framework: the sample size is approaching
∞ under a fixed number of parameters. In this paper, limn→∞ means a limit
as n→ ∞ under the condition that the number of parameters is fixed.

In the case of multivariate linear models, although there are many bias-corrected
AICs for the risk function (see, e.g., [3, 14, 17, 37, 38]), such a bias-corrected
AIC is still not consistent for model selection.

In recent years, high-dimensional data analysis has been attracting the at-
tention of many researchers. It is known that the LS asymptotic framework
gives a poor approximation when the dimension is large. However, the following
asymptotic framework gives a better approximation than the LS asymptotic
framework when the dimension and the sample size are large, and sometimes
even when the dimension is not so large [13, 15, 16]:

• A high-dimensional (HD) asymptotic framework: the sample size and the
dimension of the response variables simultaneously approach ∞ under the
condition that cn,p = p/n→ c0 ∈ [0, 1). For simplicity, we will write “(n, p) →
∞ simultaneously under the condition that cn,p → c0” as “cn,p → c0”, and
limcn,p→c0 means a limit under the HD asymptotic framework. It should be
emphasized that we assume that p always goes to ∞ in the HD asymptotic
framework. Hence, the notation cn,p → 0 does not mean the LS asymptotic
framework.

When the HD asymptotic framework is used for evaluating the asymptotic
probability of selecting the true model, there is a possibility that the AIC can
become consistent. In fact, in this paper, we will prove that a variable selec-
tion method based on the AIC becomes consistent in multivariate linear models
under a HD asymptotic framework. The AIC is included in a family of informa-
tion criteria defined by adding a penalty term expressing the complexity of the
model to a negative twofold maximum likelihood. By clarifying the condition of
the penalty term to satisfy the consistency property, we will also prove that a
variable selection method based on the bias-corrected AIC (AICc), as proposed
by [3], becomes consistent under more non-restrictive situation than that based
on the AIC, and those based on the BIC and the CAIC are not necessarily
consistent when c0 ∈ (0, 1). Additionally, we derive a sufficient condition to sat-
isfy the consistency of the family of information criteria under an asymptotic
framework such that the number of candidate models may approach ∞.

In this paper, o(x), O(x), op(x), and Op(x) used in a vector or matrix having
finite dimension or size mean that the orders of all the elements in that vector or
matrix are o(x), O(x), op(x), and Op(x), respectively. Furthermore, the Landau
notations indicate the orders as n → ∞ under a fixed number of parameters
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when the LS asymptotic framework is considered. Meanwhile, those Landau
notations are also used for the orders as cn,p → c0 when the HD asymptotic
framework is considered. As stated already, we deal with not a strong consistency
but a weak consistency. Hence, throughout the paper, the word “consistency”
means weak consistency.

The remainder of the paper is organized as follows: In Section 2, we present
the necessary notation for evaluating an asymptotic selection probability. In
Section 3, the asymptotic probability of selecting the true model is calculated
under the HD asymptotic framework. In Section 4, we compare with variable
selection methods based on the AIC, AICc, BIC and CAIC by conducting nu-
merical experiments. In Section 5, we discuss our conclusions. Technical details
are provided in Appendix.

2. Preliminaries

In this section, we present and discuss the notation that we used for evaluating
the asymptotic selection probability. First, we describe several classes of the
set j. Let J be a set of candidate models denoted by J = {j1, . . . , jK}, where
K is the number of candidate models. We then separate J into two sets, one of
which is a set of overspecified models, candidate models that include the true
model, i.e., J+ = {j ∈ J |j∗ ⊆ j}, and the other is a set of underspecified
models that are not the overspecified models, i.e., J− = J c

+ ∩ J . We use the
same terminology, “overspecified model” and “underspecified model”, as was
used by [14].

Estimations for the unknown parameters Θj and Σj in the model (1.1) are
carried out by the maximum likelihood method, i.e., Θj and Σj are estimated
by

Θ̂j = (X ′
jXj)

−1X ′
jY , Σ̂j =

1

n
Y ′(In − Pj)Y ,

where Pj is the projection matrix to the subspace spanned by the columns of
Xj , i.e., Pj = Xj(X

′
jXj)

−1X ′
j . A family of information criteria in the model

(1.1) is
ICm(j) = L(j) + np(log 2π + 1) +m(j), (2.1)

where L(j) = n log det(Σ̂j) and m(j) is a positive constant expressing a penalty
for the complexity of the model (1.1). An information criterion included in this
family is specified by an individual penalty term m(j). This family contains
AIC, AICc, BIC and CAIC as a special case.

m(j) =















2{pkj + p(p+ 1)/2} (AIC)
2n{pkj + p(p+ 1)/2}/(n− kj − p− 1) (AICc)
{pkj + p(p+ 1)/2} logn (BIC)
{pkj + p(p+ 1)/2}(1 + logn) (CAIC)

. (2.2)

When p = 1, the AICc coincides with the bias-corrected AIC proposed by [32].
[9] showed that Sugiura’s bias-corrected AIC is a uniformly minimum-variance
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unbiased estimator (UMVUE) of the risk function consisting of the expected
KL loss when the candidate model includes the true model. By extending the
result to the multivariate case, this property can be proved even when p > 1.
The detailed proof is omitted because it can be obtained from the Lehman-
Scheffé theorem and the fact that Θ̂j and Σ̂j are complete sufficient statistics.

Complete efficiencies of Θ̂j and Σ̂j can be derived by slightly modifying the
results of [30, pp. 18–20]. This property indicates that, for all the overspecified
models, the AICc is better than the AIC at estimating the risk function. The
best subsets of ω is chosen by minimizing ICm(j), i.e., it is presented as

ĵm = argmin
j∈J

ICm(j).

Next, we describe a noncentrality matrix that plays a critical role for prov-
ing consistency. In fact, asymptotic behaviors of elements or eigen values of a
noncentrality matrix are one of important factors that determines whether an
information criterion is consistent or not. The noncentrality matrix is defined
by

Σ
−1/2
∗ Θ′

∗X
′
∗(In − Pj)X∗Θ∗Σ

−1/2
∗ .

In order to decompose the noncentrality matrix, the minimum overspecified
model including j is prepared as

j+ = j ∪ j∗, (j ∈ J ). (2.3)

If j∗ is arranged as j∗ = {{j∗ ∩ j}, {j∗ ∩ jc}}, (In − Pj)X∗ = (On,kj∗∩j
, (In −

Pj)Xj∗∩jc) is satisfied, where Ok,p is a k× p zero matrix. It is easy to see that
Xj∗∩jc is a full column rank matrix because it is assumed that X is the full
column rank matrix. Hence, the rank of X ′

∗(In − Pj)X∗ is calculated as

rank(X ′
∗(In − Pj)X∗) = kj∗∩jc = kj+ − kj ≤ k∗, (j ∈ J−).

This indicates that the rank of X ′
∗(In − Pj)X∗ is independent of p if k∗ is an

independent of p. Let the rank of the noncentrality matrix be denoted by γj . It
follows from the inequality rank(Θ∗Σ

−1
∗ Θ′

∗) ≤ min{p, k∗} and a knowledge of
an elementary linear algebra that

γj ≤ min{rank(X ′
∗(In − Pj)X∗), rank(Θ∗Σ

−1
∗ Θ′

∗)} ≤ min{p, kj+ − kj}.

It notes that γj = kj+−kj ifΘ∗ is a full row rank matrix. Since the noncentrality
matrix is a positive semidefinite matrix, and its rank is γj , it is decomposed as

Σ
−1/2
∗ Θ′

∗X
′
∗(In − Pj)X∗Θ∗Σ

−1/2
∗ = ΓjΓ

′
j , (2.4)

where Γj is a p×γj matrix. Γj is a full column rank matrix in the case of large p,
at least p ≥ k∗. If we assume that the orders of elements of X ′X are O(n) and
elements of Θ∗ and Σ∗ are independent of n, which are common assumptions
in papers dealing with an asymptotic theory on the regression model [14, 17],
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the orders of elements of ΓjΓ
′
j are O(n). Let (A)ab denote the (a, b)th element

of a matrix A. Notice that

p
∑

a=1

(ΓjΓ
′
j)aa = tr(ΓjΓ

′
j) = tr(Γ′

jΓj) =

γj
∑

a=1

(Γ′
jΓj)aa.

Hence, if we assume that all the orders of the elements of ΓjΓ
′
j are O(n), all the

orders of the elements of Γ′
jΓj are uniformly equal, and γj is constant, then all

the orders of the elements of Γ′
jΓj are O(np). From this fact and the inequality

{(Γ′
jΓj)ab}2 ≤ (Γ′

jΓj)aa(Γ
′
jΓj)bb, (Γ

′
jΓj)ab = O(np) is obtained. Consequently,

it is natural to assume that Γ′
jΓj = O(np) when X ′X = O(n) is assumed.

Let λj,1 ≥ · · · ≥ λj,γj
> 0 be eigen values of Γ′

jΓj . In order to evaluate
the probability of selecting the model j by the ICm, we introduce the following
assumptions:

Assumption 1. The true model is included in the set of candidate models, i.e.,
j∗ ∈ J .

Assumption 2. limn→∞ n−1X ′X = R0 exists and is positive definite, and
limn→∞ n−1ΓjΓ

′
j = Ψj,0 exists and is not the zero matrix for

all j ∈ J−.
Assumption 3. For all j ∈ J−, γj is constant, and lim supcn,p→c0(np)

−1λj,1 <

∞ and lim infcn,p→c0(np)
−1λj,γj

> 0.

For R0 in assumption 2, we write a limiting value of n−1X ′
jXℓ as Rj,ℓ,0 for

j, ℓ ∈ J . It is clear that Rj,ℓ,0 is a submatrix of R0, and Rj,ℓ,0 also exists if
R0 exists. Moreover, it notes that Ψj,0 still depends on p because Ψj,0 is the
convergent value under the LS asymptotic framework.

3. Main results

In this section, we evaluate an asymptotic probability of selecting a model by
the ICm in (2.1). First, we describe the asymptotic selection probabilities of
selecting the true model j∗ under the ordinary asymptotic framework, i.e., the
LS asymptotic framework. Using the ideas of [11, 12, 22, 28], we obtain the
following Theorem 3.1 (the proof is given in Appendix A.1):

Theorem 3.1. Suppose that assumptions 1 and 2 hold. A variable selection

method based on the ICm is consistent when n→ ∞ if the following conditions

are satisfied simultaneously:

C1-1. For all j ∈ J−,

lim
n→∞

m(j)−m(j∗)

n
= 0.

C1-2. For all j ∈ J+\{j∗},

lim
n→∞

{m(j)−m(j∗)} = ∞.
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If one of the above two conditions is not satisfied, a variable selection method

based on the ICm is not consistent when n → ∞. Additionally, when m(j) =
O(1) as n → ∞ and limn→∞{m(j) −m(ℓ)} = pm0(kj − kℓ) for all j, ℓ ∈ J+,

the asymptotic probability of selecting the model j by the ICm is

lim
n→∞

P (ĵm = j)

=

{

0 (j ∈ J−)
P (∩ℓ∈J+\{j}(z

′
ℓzℓ − z′

jzj) < m0p(kℓ − kj)) (j ∈ J+)
,

(3.1)

where zj ∼ Nkjp(0kjp, Ikjp), Cov[zj , zℓ] = Ip ⊗ R
−1/2
j,j,0 Rj,ℓ,0R

−1/2
ℓ,ℓ,0 , and 0p is

the p-dimensional zero vector.

These results include the results of [22, 35] etc. as a special case for p = 1.
Theorem 3.1 points out a well-known fact that, when n → ∞, the AIC and
the AICc are not consistent and the BIC and the CAIC are consistent in model
selection. However, when behaviors of the information criteria are evaluated
under the HD framework, we obtain new properties, as in Theorem 3.2 (the
proof is given in Appendix A.2).

Theorem 3.2. Suppose that assumptions 1 and 3 are satisfied. Then, a variable

selection method based on the ICm is consistent when cn,p → c0 if the following

conditions are satisfied simultaneously:

C2-1. For all j ∈ J−,

lim
cn,p→c0

m(j)−m(j∗)

n log p
> −γj .

C2-2. For all j ∈ J+\{j∗},

lim
cn,p→c0

m(j)−m(j∗)

p
> − 1

c0
(kj − k∗) log(1− c0).

If the sign “>” becomes “<” in one of the above two conditions, a variable

selection method based on the ICm is not consistent when cn,p → c0.

It notes that limc→0 c
−1 log(1− c) = −1 and c−1 log(1− c) is a monotonically

decreasing function in 0 ≤ c < 1. From Theorem 3.2, consistency properties
of specific criteria are clarified as the following corollary (the proof is given in
Appendix A.4):

Corollary 3.1. Suppose that assumptions 1 and 3 are satisfied.

(i) When cn,p → c0, a variable selection method based on the AIC is consistent

if c0 ∈ [0, ca), and is not consistent if c0 ∈ (ca, 1), where ca (≈ 0.797) is a

constant satisfying

log(1− ca) + 2ca = 0. (3.2)

(ii) When cn,p → c0, a variable selection method based on the AICc is consis-

tent
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(iii) When cn,p → c0, variable selection methods based on the BIC and the

CAIC are consistent if c0 ∈ [0, cb), and are not consistent if c0 ∈ (cb, 1),
where cb = min{1,minj∈S−

γj/(k∗ − kj)} and S− = {j ∈ J−|k∗ − kj > 0}.
Corollary 3.1 shows that, there is no restriction of c0 in the condition for

consistency of the AICc although it is restricted in the AIC. This indicates that
it is possible that the bias correction to the risk function has a positive effect on
selection of the true model. Moreover, Corollary 3.1 indicates that the BIC and
the CAIC are not always consistent in variable selection when cn,p → c0. If Θ∗ is
the full row rank matrix, γj becomes kj+−kj . Since c0 < 1 and kj+−kj > k∗−kj
for all j ∈ S−, γj > c0(k∗ − kj) is satisfied if Θ∗ is the full row rank matrix.
In contrast, if c0 = 0 then γj > c0(k∗ − kj) is satisfied. Therefore, we can see
that variable selection methods based on the BIC and the CAIC are consistent
as cn,p → c0 if Θ∗ is the full row rank matrix, or cn,p converges to 0. However,
if Θ∗ is not the full row rank matrix and c0 ∈ (0, 1), we cannot determine as
if variable selection methods based on the BIC and the CAIC are consistent as
cn,p → c0.

In order to clarify the condition to ensure inconsistency, assumption 3 is as-
sumed in Theorem 3.2, i.e., we assume that the orders of eigen values of Γ′

jΓj

are uniformly the same and γj is independent of n and p. If the aim is only
to derive a sufficient condition for consistency, such a strong assumption like
assumption 3 is unnecessary. In fact, for evaluating consistency, there is no need
to assume the same orders for all the eigen values of Γ′

jΓj . Whether an informa-
tion criterion is consistent strongly depends on the orders of divergence speeds
of several eigen values. Hence, we clarify condition of the orders of divergence
speeds of eigen values of Γ′

jΓj to ensure a consistency. In addition, most re-
cently, many researchers pay close attention to “big data analysis”, and thus
study on a theory of a variable selection when the number of candidate models
approaches ∞ (see, e.g., [19]). Hence, we derive a sufficient condition for the
consistency by using the following asymptotic framework:

• A high-dimensional and large-model (HD-LM) asymptotic framework: the HD
asymptotic framework under the condition that the following equations are
satisfied:

max
j∈J

kj
n

→ 0, ∃l > 0 s.t. K = o(pl), (3.3)

whereK is the number of candidate models. In the HD-LM asymptotic frame-
work, p always goes to ∞, and it makes no difference whether K is constant
or K goes to ∞. This indicates that the HD asymptotic framework is a spe-
cial case of the HD-LM asymptotic framework. For simplicity, we will write
“(n, p) → ∞ simultaneously under the HD-LM asymptotic framework” as
“cn,p → c0 under LM”, and limcn,p→c0,LM and lim infcn,p→c0,LM mean a limit
and a limit inferior under the HD-LM asymptotic framework, respectively.

Theorem 3.3. Suppose that assumption 1 holds. A variable selection method

based on the ICm is consistent under the HD-LM asymptotic framework if the

following conditions are satisfied:
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C3-1. For sufficiently large n, there exist positive constants δ1, δ2 such that for

all j ∈ J− there exists an integer q ∈ [1, γj] such that λj,q/q
2 > nδ1 and

log
βj,q

n− p− kj+ + (q + 1)/2
− 1

qn
{m(j+)−m(j)} > δ2,

where j+ is given by (2.3), γj = rank(Γj), and βj,q is the geometric mean

of the largest q eigen values of ΓjΓ
′
j , i.e.,

βj,q = (
∏q

i=1 λj,i)
1/q

. (3.4)

C3-2. For sufficiently large n, there exists a positive constant δ such that for all

j ∈ J+\{j∗},

m(j)−m(j∗)

p(kj − k∗)
+

1

cn,p
log (1− cn,p) > δ.

The proof is given in Appendix A.5. Roughly speaking, the existence of δ2 in
condition C3-1 is related to the order of noncentrality matrix. Assumption 3 is
equivalent to the condition that the orders of all the eigen values of Γ′

jΓj are

O(np). However, the condition λj,q/q
2 > nδ1 indicates that the orders of the

eigen values of Γ′
jΓj do not need to be the same orders uniformly. Moreover,

in Theorem 3.3, k∗, γj and K do not have to be bounded. Hence, Theorem 3.3
can be applied to more non-restrictive situations than Theorem 3.2.

Although we have derived sufficient conditions for consistency in Theorem
3.3, it is hard to check from the conditions whether an information criterion
considered is consistent. Hence, in order to establish an easy-to understand
formula, we rewrite the conditions by using a limit inferior. Besides, by using
1 as q, we simplify condition C3-1 although the sufficient conditions become
restrictive.

Corollary 3.2. Suppose that assumption 1 holds. A variable selection method

based on the ICm is consistent under the HD-LM asymptotic framework if the

following conditions are satisfied:

C3-1′. infj∈J−
lim infcn,p→c0,LM

log λj,1

log n > 0, and

inf
j∈J−

lim inf
cn,p→c0,LM

{

log
λj,1
n

− m(j+)−m(j)

n

}

> log(1− c0).

C3-2. infj∈J+\{j∗} lim infcn,p→c0,LM
m(j)−m(j∗)
p(kj−k∗)

> − 1
c0

log (1− c0).

The proof is given in Appendix A.9. It notes that not “min” but “inf” is
used for conditions C3-1′ and -2 because the number of candidate models may
go to ∞. Although we cannot check whether condition C3-1′ is satisfied from an
actual data, we can derive the order of the divergence speed of the maximum
eigen value of Γ′

jΓj to ensure a consistency. If the size of the order is small, we
can consider that a possibility that an information criterion is consistent is high.



878 H. Yanagihara et al.

Hence, the size of the order helps to assess a quality of an information criterion
in the sense of a possibility to have consistency.

Even if k∗ is not bounded, Theorem 3.3 and Corollary 3.2 hold. However,
in order to clarify the sufficient conditions to ensure consistency, we consider
the simple case that k∗ is bounded. Then, conditions to satisfy consistency
properties of specific criteria are simplified as the following corollary (the proof
is given in Appendix A.10):

Corollary 3.3. Suppose that assumption 1 is satisfied, and k∗ is bounded.

(i) A variable selection method based on the AIC is consistent when cn,p → c0
under LM if c0 ∈ [0, ca) and

inf
j∈J−

lim inf
cn,p→c0,LM

log
λj,1
n

> log(1− c0) + 2k∗c0, (3.5)

where ca is the constant given by (3.2).
(ii) A variable selection method based on the AICc is consistent when cn,p → c0

under LM if

inf
j∈J−

lim inf
cn,p→c0,LM

log
λj,1
n

> log(1− c0)+k∗c0
{

1

1− c0
+

1

(1− c0)2

}

. (3.6)

(iii) Variable selection methods based on the BIC and the CAIC are consistent

when cn,p → c0 under LM if

inf
j∈J−

lim inf
cn,p→c0,LM

log(λj,1/n)

logn
> k∗c0. (3.7)

An example of the noncentrality matrix is shown in Appendix A.11. From Cor-
ollary 3.3, we can see that the AICc is consistent if limcn,p→c0,LM log(λj,1/n) =
∞, and the BIC and the CAIC are consistent if limcn,p→c0,LM log(λj,1/n)/
logn = ∞. Moreover, the AIC is consistent if c0 < ca and limcn,p→c0,LM log(λj,1/
n) = ∞. Hence, the AIC and the AICc has a superiority over the BIC and the
CAIC in the sense of a possibility to have a consistency. Moreover, although the
AIC is consistent under the restriction c0 < ca, there is no such a restriction
in AICc. Consequently, we can judge that the AICc has a superiority over the
AIC, BIC and CAIC in the sense of a possibility to have a consistency.

4. Numerical study

In this section, we compare with the probabilities of selecting the true model by
AIC, AICc, BIC and CAIC in (2.2), which were evaluated by Monte Carlo
simulations based on 10,000 replications under several different values of n
and p. A set of candidate models was J = {j1, . . . , jk}, where jα = {1, . . . , α}
(α = 1, . . . , k). A 1000× 156 matrix MΦ(156)1/2 was generated, where an each
element of M was independent and identically chosen from U(−1, 1), and Φ(q)
is a q×q symmetric matrix whose the (a, b)th element was defined by (0.8)|a−b|.
Using this matrix, we constructed an n×k matrix of explanatory variables X as
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Table 1

Selection probabilities of the true model (%)

Case 1 Case 2 (c0 = 0.02)
n p k AIC AICc BIC CAIC p k AIC AICc BIC CAIC

100 2 10 75.8 84.5 98.7 99.5 2 10 75.8 84.5 98.7 99.5
200 2 10 79.0 83.2 99.5 99.9 4 10 86.0 90.3 99.9 100.0
500 2 10 79.4 81.2 99.8 99.9 10 10 96.3 97.4 100.0 100.0

1000 2 10 79.1 79.9 99.9 100.0 20 10 99.3 99.6 100.0 100.0
∞ 2 10 80.2 80.2 100.0 100.0 ∞ 10 100.0 100.0 100.0 100.0

Case 3 Case 4 (c0 = 0.1)
n p k AIC AICc BIC CAIC p k AIC AICc BIC CAIC

100 10 10 92.9 99.3 100.0 100.0 10 10 92.9 99.3 100.0 100.0
200 10 10 95.1 98.3 100.0 100.0 20 10 98.6 99.9 100.0 100.0
500 10 10 96.3 97.5 100.0 100.0 50 10 100.0 100.0 100.0 100.0

1000 10 10 96.5 97.1 100.0 100.0 100 10 100.0 100.0 100.0 100.0
∞ 10 10 96.8 96.8 100.0 100.0 ∞ 10 100.0 100.0 100.0 100.0

Case 5 Case 6 (c0 = 0.3)
n p k AIC AICc BIC CAIC p k AIC AICc BIC CAIC

100 30 10 97.0 40.1 0.0 0.0 30 10 97.0 40.1 0.0 0.0
200 30 10 99.4 100.0 100.0 55.8 60 10 99.8 100.0 0.0 0.0
500 30 10 99.7 100.0 100.0 100.0 150 10 100.0 100.0 0.0 0.0

1000 30 10 99.8 99.9 100.0 100.0 300 10 100.0 100.0 0.0 0.0
∞ 30 10 99.9 99.9 100.0 100.0 ∞ 10 100.0 100.0 0.0 0.0

Case 7 (c0 = 0.0) Case 8 (c0 = 0.0)
100 30 10 97.0 40.1 0.0 0.0 30 10 97.0 40.1 0.0 0.0
200 32 10 99.4 100.0 100.0 15.8 40 10 99.8 100.0 59.5 0.0
500 35 10 99.9 100.0 100.0 100.0 50 10 100.0 100.0 100.0 100.0

1000 40 10 100.0 100.0 100.0 100.0 60 10 100.0 100.0 100.0 100.0
∞ ∞ 10 100.0 100.0 100.0 100.0 ∞ 10 100.0 100.0 100.0 100.0

Case 9 (c0 = 0.1) Case 10 (c0 = 0.1)
100 10 10 92.9 99.3 100.0 100.0 10 10 92.9 99.3 100.0 100.0
200 20 14 98.8 99.9 100.0 100.0 20 31 98.7 100.0 100.0 100.0
500 50 22 100.0 100.0 100.0 100.0 50 84 100.0 100.0 100.0 100.0

1000 100 31 100.0 100.0 100.0 100.0 100 156 100.0 100.0 100.0 100.0
∞ ∞ ∞ 100.0 100.0 — — ∞ ∞ 100.0 100.0 — —

Case 11 (c0 = 0.3) Case 12 (c0 = 0.3)
100 30 10 97.0 40.1 0.0 0.0 30 10 97.0 40.1 0.0 0.0
200 60 14 99.8 100.0 0.0 0.0 60 31 99.7 100.0 0.0 0.0
500 150 22 100.0 100.0 0.0 0.0 150 84 100.0 100.0 0.0 0.0

1000 300 31 100.0 100.0 0.0 0.0 300 156 100.0 100.0 0.0 0.0
∞ ∞ ∞ 100.0 100.0 — — ∞ ∞ 100.0 100.0 — —

a submatrix ofMΦ(156)1/2 from rows 1 to n and columns 1 to k. The true model
was determined by Θ∗ = (1, 1, 3,−4, 5)′1′

p, j∗ = {1, 2, 3, 4, 5}, and Σ∗ = Φ(p),
where 1p was the p-dimensional vector of ones. Thus, jα with α = 1, . . . , 4 was
the underspecified model, and jα with α ≥ 5 was the overspecified model.

In our numerical study, γj = 1 and maxj∈S−
(k∗ − kj) = 4 hold. This implies

that when c0 > 1/4, the inequality γj > c0(k∗ − kj) was not always satisfied
for all j ∈ S−. Thus, the BIC and the CAIC were not consistent in variable
selection when c0 > 1/4 under the fixed k.

Table 1 shows the probability of selecting the true model by the AIC, AICc,
BIC, and CAIC. For n = ∞ or p = ∞, we list the theoretical values obtained
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from Theorems 3.1, 3.2 and 3.3. A symbol “—” means that theoretical values
are unclear because the sufficient condition for consistency does not hold. In the
table, Cases 1, 3, and 5 are the results when n→ ∞ under fixed p and k = 10,
and Cases 2, 4, 6, 7, and 8 are the results when (n, p) → ∞ under a fixed k = 10
and with c0 = 0.02, 0.1, 0.3, 0.0, and 0.0. Moreover, Cases 9, 10, 11 and 12 are the
results when (n, p) → ∞ and with c0 = 0.1 and 0.3, and k = 10+ [n1/2 − 101/2]
and k = 10 + [n3/4 − 103/4], where [ ] is the Gauss’ symbol. From the table, we
can see that in the cases of the AIC and the AICc, the greater the dimension and
sample size considered, the greater the probabilities became. Compared with the
results obtained from the AIC and the AICc, probabilities by the AICc tended
to be higher than those by the AIC when n was not small. In the cases of the
BIC and the CAIC, the greater the dimension and sample size considered, the
higher the selection probabilities became, with the exception of Case 6. This
was because variable selection methods based on the BIC and the CAIC were
not consistent in Case 6. Additionally, when n was small and p was large, the
selection probabilities of the BIC and the CAIC were both very low. However, if
the BIC and the CAIC were consistent in variable selection, these probabilities
became high as n and p increased. Moreover, we can see that above tendencies
were satisfied even if the number of explanatory variables becomes large.

We simulated several other models and obtained similar results. Since the
theoretical difference between using the AIC and the AICc occurs when cn,p >
0.8, we should list the numerical results for such a case. However, when cn,p is
close to 1, the convergence of selection probabilities was extremely slow. Thus,
we do not show simulation results for dimensions close to the sample size.

5. Conclusion and discussion

In this paper, we demonstrated that there is the case that the AIC for the
multivariate linear regression model is consistent in variable selection when we
approximate the probability of selecting the true model using the HD asymptotic
framework. Although the AIC becomes consistent under the restriction c0 < ca,
the AICc becomes consistent without the restriction of c0. This indicates that it
is possible that correcting the bias to the risk function may have a positive effect
on the selection of the true model. It is a well-known fact that variable selection
methods based on the BIC and the CAIC are consistent if we approximate
the probability of selecting the true model using the LS asymptotic framework.
However, we found that there is a possibility that the BIC and the CAIC become
inconsistent if we approximate the probability of selecting the true model using
the HD asymptotic framework.

It is known that the LS asymptotic theory gives a poor approximation when
the dimension is large. The HD asymptotic theory gives a better approxima-
tion than the LS asymptotic theory when the sample size and the dimension
are large, and sometimes even when the dimension is not so large. Hence, the
consistency property of the AIC that we demonstrated will be useful for high-
dimensional data analysis. Usually, the HD asymptotic theory is used to improve
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the approximations of the distributions of statistics. However, the results in this
paper suggest a possibility that new insight can be provided by applying the
HD asymptotic theory to high-dimensional data.

From the simulation study, we found that, the larger the dimension and sam-
ple size considered, the higher the selection probabilities became. This numerical
result naturally implies that using multiple response variables at the same time
as the model selection can increase the probability of selecting the true model.
In other words, we should not select variables using only each response variable.
That is a strong reason to apply the model selection procedure based on the
multivariate linear regression model to high-dimensional data.

In this paper, we considered the case of n > p because Σ̂j becomes singular
when p > n. Unfortunately, n > p is not always satisfied in the actual data.
If our results can be extended to the case of n ≤ p, we clarify the conditions
to satisfy consistency property in many infinite-dimensional statistics, e.g., the
time series analysis (see [4, 5]), spatiotemporal geostatistical analysis (see [7, 8])

and functional data analysis (see [23]). The singularity of Σ̂j can be avoided by
using a ridge-type estimator of the covariance matrix, as demonstrated by [36].
We can expect that an AIC consisting of such a ridge-type estimator will be
consistent in model selection.

Appendix

A.1. The proof of Theorem 3.1

Recall that the LS asymptotic framework is used for proving Theorem 3.1. We

can see that Σ̂j
p→ Σ∗ as n→ ∞ holds when j ∈ J+ and Σ̂j

p→ Σ
1/2
∗ Ψj,0Σ

1/2
∗ +

Σ∗ as n → ∞ holds when j ∈ J−, where Ψj,0 = limn→∞ n−1ΓjΓ
′
j and Γj

is given by (2.4). Notice that Ψj,0 is a positive semidefinite matrix. When
limn→∞{m(j)−m(j∗)}/n = 0 for all j ∈ J−, we have

1

n
{ICm(j)− ICm(j∗)}

p→ log det(Σ
1/2
∗ Ψj,0Σ

1/2
∗ +Σ∗)− log det(Σ∗)

= log det(Ip +Ψj,0) > 0.

This result implies that limn→∞ P (ICm(j∗) > ICm(j)) = 0 for any j ∈ J−.
Thus, we obtain

lim
n→∞

P (ĵm = j)

=

{

0 (j ∈ J−)
lim
n→∞

P (∩ℓ∈J+\{j}{ICm(ℓ) > ICm(j)}) (j ∈ J+)
.

(A.1)

From here to the end of proof, we assume j, ℓ ∈ J+. Let V and Zj be the p× p
and the kj × p matrices defined by

V =
1√
n
(E ′

E − nIp), Zj = (X ′
jXj)

−1/2X ′
jE,
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where
E = (Y −X∗Θ∗)Σ

−1/2
∗ . (A.2)

It is well known that V has an asymptotic normality as n → ∞, and Zj ∼
Nkj×p(Okj ,p, Ikjp). Furthermore, using

Σ
−1/2
∗ Σ̂jΣ

−1/2
∗ =

1

n
E
′(In − Pj)E =

1

n
(E ′

E −Z ′
jZj),

we have

Σ
−1/2
∗ Σ̂jΣ

−1/2
∗ = Ip +

1√
n
V − 1

n
Z ′

jZj .

From the above expression, the first term of the ICm(j) can be expanded as

L(j) = n log det(Σ∗) +
√
ntr(V )− {tr(V 2)/2 + tr(Z ′

jZj)} +Op(n
−1/2).

Let zj be a kjp-dimensional random vector defined by zj = vec(Zj), where
vec(A) is an operator that transforms a matrix to a vector by stacking the first
to the last columns of A, i.e., vec(A) = (a′

1, . . . ,a
′
m)′ when A = (a1, . . . ,am)

(see, e.g., [18, chap. 16.2]). Then, it follows from the expansion and the equality
tr(Z ′

jZj) = z′
jzj that

ICm(ℓ)− ICm(j) = −(z′
ℓzℓ − z′

jzj) +m(ℓ)−m(j) +Op(n
−1/2). (A.3)

Hence, when limn→∞{m(j)−m(j∗)} = ∞ holds for all j ∈ J+\{j∗} we derive

1

m(j)−m(j∗)
{ICm(j)− ICm(j∗)}

p→ 1 > 0. (A.4)

On the other hand, when limn→∞m(j) = m0{pkj + p(p + 1)/2} < ∞ holds,
limn→∞{m(ℓ)−m(j)} = m0p(kℓ − kj) is satisfied. Consequently, by combining
this result, and (A.3) and (A.4) with (A.1), Theorem 3.1 is proved.

A.2. The proof of Theorem 3.2

At first, we describe the lemma which is used for proving Theorems 3.2 and 3.3
(the proof of lemma is given after this subsection).

Lemma A.1. Let T = −l(pq)−1 log Λ where Λ is distributed according to the

Wilks’ lambda distribution Λq(p, l + q), and let κ
(s)
T be the sth order cumulant

of T . Suppose that p/l→ α (constant) and q/l → 0. If α > 0 then

κ
(1)
T → 1

α
log(1 + α),

(ql)s−1κ
(s)
T → 2s−1(s− 2)!

c

{

1−
(

1

1 + c

)s−1
}

(s ≥ 2).

If α = 0 then κ
(1)
T → 1 and (pq)s−1κ

(s)
T → 2s−1(s− 1)!. Hence whether α = 0 or

α > 0 for any positive integer m and any positive value δ,

P (|T − κ
(1)
T | > δ) ≤ 1

δ2m
E[(T − κ

(1)
T )2m] = O((pq)−m).
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Recall that the HD asymptotic framework is used for proving Theorem 3.2.
First, we consider the case of j ∈ J−. Let

Aj = (In − Pj)X∗Θ∗Σ
−1/2
∗ .

Notice that rank(Aj) = γj because A
′
jAj = ΓjΓ

′
j and rank(Γj) = γj , where Γj

is given by (2.4). By using a singular value decomposition, Aj can be rewritten
as

Aj = HjL
1/2
j G′

j,

where Hj and Gj are n × γj and p × γj matrices satisfying H ′
jHj = Iγj

and
G′

jGj = Iγj
, respectively, and Lj is a γj × γj diagonal matrix whose diagonal

elements are squared singular values of Aj . By using Aj and E given by (A.2),
we have

nΣ
−1/2
∗ Σ̂jΣ

−1/2
∗ = W1 +W2 +W3, nΣ

−1/2
∗ Σ̂j+Σ

−1/2
∗ = W1, (A.5)

where

W1 = E
′(In − Pj+)E, W2 = E

′(Pj+ −HjH
′
j − Pj)E ,

W3 = (Aj + E)′HjH
′
j(Aj + E).

It follows from the equations Pj∗X∗ = X∗ and PjPj+ = Pj that

A
′
jPj+ = Σ

−1/2
∗ Θ′

∗X
′
∗(Pj+ − Pj) = Σ

−1/2
∗ Θ′

∗X
′
∗Pj+(In − Pj)

= Σ
−1/2
∗ Θ′

∗X
′
∗(In − Pj) = A

′
j .

Using this result and A
′
jPj = Op,n yields H ′

jPj = Oγj ,n and H ′
jPj+ = H ′

j .
These imply that

HjH
′
j(In − Pj+) = On,n, HjH

′
j(Pj+ −HjH

′
j − Pj) = On,n,

(In − Pj+)(Pj+ −HjH
′
j − Pj) = On,n,

(Pj+ −HjH
′
j − Pj)

2 = Pj+ −HjH
′
j − Pj .

From the above results and the multivariate version of the Cochran theorem
(see, e.g., [30, chap. 2.8]), we can see that W1, W2, and W3 are p × p mutu-
ally independent random matrices distributed according to the Wishart or the
noncentral Wishart distributions;

W1 ∼Wp(n− kj+ , Ip), W2 ∼Wp(dj , Ip), W3 ∼Wp(γj , Ip;ΓjΓ
′
j), (A.6)

where dj = kj+ − kj − γj . It follows from (A.5) and (A.6), and the property of
the Wishart distributions (see [16, p. 57 th. 3.2.4]) that

1

n
{L(j)− L(j+)} = log

det(W1 +W2 +W3)

det(W1 +W2)
+ log

det(W1 +W2)

det(W1)

= − log
det(U1)

det(U1 +U2)
− log

det(U3)

det(U3 +U4)
,

(A.7)
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where U1, U2, U3, and U4 are random matrices distributed according to the
Wishart or the noncentral Wishart distributions;

U1 ∼Wγj
(n− kj − p, Iγj

),

U3 ∼Wdj
(n− kj − γj − p, Idj

),

U2 ∼Wγj
(p, Iγj

;Γ′
jΓj),

U4 ∼Wdj
(p, Idj

).
(A.8)

Here, U1 and U2 are mutually independent, and U3 and U4 are also mutually
independent. When cn,p → c0 ∈ [0, 1), we have

1

n− kj − p
U1

p→ Iγj
,

1

n− kj − γj − p
U3

p→ Idj
,

1

p
U4

p→ Idj
. (A.9)

From the definition of the noncentral Wishart distribution, a different expression
of U2 is given as U2 = (Z + Γj)

′(Z + Γj), where Z ∼ Np×γj
(Op,γj

, Ipγj
). Let

Γ′
jΓj)

1/2 = ∆j . Then, we have

∆−1
j U2∆

−1
j = ∆−1

j

(

Z ′Z + Γ′
jZ +Z ′Γj +∆2

j

)

∆−1
j . (A.10)

Recall that that lim supcn,p→c0 npλ
−1
j,γ < ∞ is derived from assumption 3. It

follows from the above result and E[Z ′Z] = pIγj
that

E
[

tr
(

∆−1
j Z ′Z∆−1

j

)]

= ptr(∆−2
j ) ≤ pγj

λj,γj

→ 0.

This equation implies that

∆−1
j Z ′Z∆−1

j

p→ Oγj ,γj
. (A.11)

Moreover, it is easy to see that E[Γ′
jZ] = Oγj ,γj

and E[Z ′Γj ] = Oγj ,γj
, and

E
[

tr
{

(∆−1
j Γ′

jZ∆−1
j )′(∆−1

j Γ′
jZ∆−1

j )
}]

= tr(Iγj
)tr(∆−2

j ) ≤ γj
λj,γj

→ 0.

These equations imply that

∆−1
j Γ′

jZ∆−1
j

p→ Oγj ,γj
, ∆−1

j Z ′Γj∆
−1
j

p→ Oγj ,γj
. (A.12)

From (A.10), (A.11) and (A.12), we derive the convergence in probability of
∆−1

j U2∆
−1
j as

∆−1
j U2∆

−1
j

p→ Iγj
. (A.13)

Notice that

E
[

tr
(

∆−1
j U1∆

−1
j

)]

= (n− kj − p)tr(∆−2
j ) ≤ (n− kj − p)γj

λj,γj

→ 0.

This equation implies that

∆−1
j U1∆

−1
j

p→ Oγj ,γj
. (A.14)
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Combining the equations (A.9), (A.13) and (A.14) yields

∆−1
j (U1 +U2)∆

−1
j

p→ Iγj
,

1

n− kj − γj − p
(U3 +U4)

p→ 1

1− c0
Idj

.

Using the results of the convergence in probability, the first and second terms
in (A.7) are expanded as

− log
det(U1)

det(U1 +U2)
= log

(

p

1− cn,p − kj/n

)γj

+ log det{(np)−1∆2
j}

− log
det{U1/(n− kj − p)}

det{∆−1
j (U1 +U2)∆

−1
j }

= γj log p− γj log(1− c0)

+ log det{(np)−1∆2
j}+ op(1),

(A.15)

and

− log
det(U3)

det(U3 +U4)
= − log

det{U3/(n− kj − γj − p)}
det{(U3 +U4)/(n− kj − γj − p)}

= −dj log(1− c0) + op(1). (A.16)

Notice that

γj log

(

λj,γj

np

)

≤ log det

(

1

np
∆2

j

)

≤ γj log

(

λj,1
np

)

.

It follows from the above result and assumption 3 that

lim inf
cn,p→c0

log det

(

1

np
∆2

j

)

> 0, lim sup
cn,p→c0

log det

(

1

np
∆2

j

)

<∞.

Therefore, we have

log det
{

(np)−1∆2
j

}

log p
→ 0.

Using the above equation after substituting the equations (A.15) and (A.16)
into (A.7) yields

1

n log p
{L(j)− L(j+)}

p→ γj > 0. (A.17)

Using the same idea as in the derivation of (A.16), it can be shown that

1

n log p
{L(j+)− L(j∗)}

p→ 0. (A.18)

From the results (A.17) and (A.18), when condition C2-1 holds, the difference
between the information criteria of the model j and the true model j∗ is con-
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vergent as

1

n log p
{ICm(j)− ICm(j∗)}

=
1

n log p
{L(j)− L(j+) + L(j+)− L(j∗) +m(j)−m(j∗)}

p→ γj + lim
cn,p→c0

m(j)−m(j∗)

n log p
> 0.

(A.19)

Next, we consider the case of j ∈ J+. Notice that

nΣ
−1/2
∗ Σ̂jΣ

−1/2
∗ ∼Wp(n− kj , Ip), nΣ

−1/2
∗ Σ̂j∗Σ

−1/2
∗ ∼Wp(n− k∗, Ip).

It follows from the property of the Wishart distributions (see [16, p. 57 th.
3.2.4]) that

L(j)− L(j∗) = n log Λ, (A.20)

where Λ is distributed according to the Wilks’ lambda distribution Λrj (p, n −
k∗ − p) and rj = kj − k∗. By using Lemma A.1, we have

1

p
{L(j)− L(j∗)} =

(

− nrj
n− k∗ − p− rj

)(

−n− k∗ − p− rj
prj

log Λ

)

p→ − rj
1− c0

(

c0
1− c0

)−1

log

(

1 +
c0

1− c0

)

=
rj
c0

log(1− c0).

Therefore, when condition C2-2 holds, the difference between the information
criteria of the model j and the true model j∗ is convergent as

1

p
{ICm(j)− ICm(j∗)} =

1

p
{L(j)− L(j∗) +m(j)−m(j∗)}

p→ rj
c0

log(1− c0) + lim
cn,p→c0

m(j)−m(j∗)

p
> 0.

(A.21)

Consequently, from (A.19) and (A.21), Theorem 3.2 is proved.

A.3. The proof of Lemma A.1

The limiting values are easily obtained by using the following bounds for the
cumulants of − logΛ. Let κ(s) be the sth cumulant of − logΛ then

b(s)(l + 1, p, q) < κ(s) < b(s)(l − 1/2, p, q), (s = 1, 2, . . . ),

b(1)(l, p, q) = l log

(

l

l + q

)

− (l + p) log

(

l + p

l + p+ q

)

− q log

(

l + q

l + p+ q

)

,

b(2)(l, p, q) = 2 log

{

1 +
pq

(l + p+ q)l

}

,

b(s)(l, p, q) =
2s−1(s− 3)!

ls−2

{

1−
(

l

l+ q

)s−2

−
(

l

l+ p

)s−2

+

(

l

l + p+ q

)s−2
}

.
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These bounds for s ≥ 2 are given by [34]. The bound for κ(1) is also obtained by
using the same method. The order of the 2mth order central moment is given
by

E[(T − κ
(1)
T )2m] =

m
∑

l=1

(2m)!

l!

∑

s1+···+sl=2m
s1≥2,...,sl≥2

κ
(s1)
T · · ·κ(sl)T

s1! · · · sl!
=

m
∑

l=1

O((pq)−(2m−l)).

A.4. The proof of Corollary 3.1

Recall that the HD asymptotic framework is used for proving Corollary 3.1.
First, we consider the cases of the AIC and the AICc. Notice that m(j)−m(j∗)
in the AICc can be expanded as

m(j)−m(j∗) =
p(kj − k∗)(2 − cn,p − 1/n)

{1− cn,p − (kj + 1)/n}{1− cn,p − (k∗ + 1)/n}

=
(kj − k∗)(2− cn,p)p

(1 − cn,p)2
+O(pn−1).

(A.22)

Hence, differences between the penalty terms of the AICs and the AICcs are
convergent as

lim
cn,p→c0

1

n log p
{m(j)−m(j∗)} = 0.

This indicates that condition C2-1 holds in AIC and AICc. Furthermore, it
follows from the equality (A.22) that

lim
cn,p→c0

1

p
{m(j)−m(j∗)} =

{

2(kj − k∗) (AIC)
(kj − k∗){(1− c0)

−1 + (1− c0)
−2} (AICc)

.

Notice that c−1 log(1 − c) + 2 and c−1 log(1 − c) + (1 − c)−1 + (1 − c)−2 are
monotonically decreasing and increasing functions in 0 ≤ c < 1, respectively.
Hence, when j ∈ J \{j∗}, the penalty terms in the AICc always satisfy condition
C2-2 and these in AIC satisfy condition C2-2 if c0 ∈ [0, ca), where ca is a constant
satisfying log(1− ca) + 2ca = 0.

Next, we consider the cases of the BIC and the CAIC. When j ∈ J+\{j∗},
the differences between the penalty terms of the BICs and the CAICs are

lim
cn,p→c0

1

p logn
{m(j)−m(j∗)} = kj − k∗ > 0.

Thus, condition C2-2 holds. Moreover, it is easy to obtain

1

n log p
{m(j)−m(j∗)} =







cn,p(kj − k∗)
(

− log cn,p

log p + 1
)

(BIC)

cn,p(kj − k∗)
(

1−log cn,p

log p + 1
)

(CAIC).

Since limc→0 c log c = 0 holds, we derive

lim
cn,p→c0

1

n log p
{m(j)−m(j∗)} = c0(kj − k∗).
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When j ∈ Sc
− ∩ J−, condition C2-1 is satisfied because c0(kj − k∗) ≥ 0 holds.

When j ∈ S−, condition C2-1 is satisfied if c0 < γj/(k∗−kj) holds for all j ∈ S−.

A.5. The proof of Theorem 3.3

At first, we describe two lemmas which are used for proving Theorem 3.3 (the
proofs of lemmas are given after this subsection).

Lemma A.2. Let χ2
n be a random variable distributed according to the chi-

square distribution with n degrees of freedom. If z > n,

P (χ2
n > z) < exp

{

−z
2

(

1− n

z
− n

z
log

n

z

)}

< exp

[

−z
2

{

1−
(n

z

)2
}]

.

Lemma A.3. Let T = q−1 log det(V ), where V ∼ Wq(n, Iq), and let κ
(s)
T be

the sth order cumulant of T . Then

log(n− q) < κ
(1)
T < log

(

n− q − 1

2

)

. (A.23)

Moreover if q/n→ 0 as n→ ∞

(qn)s−1κ
(s)
T → 2s−1(s− 2)! (s ≥ 2), (A.24)

and hence for any positive integer l,

P (|T − κ
(1)
T | > δ) ≤ 1

δ2l
E[(T − κ

(1)
T )2l] = O((qn)−l).

Recall that the HD-LM asymptotic framework is used for proving Theorem
3.3. First, we consider the case of j ∈ J−. Let dj = kj+ − kj . As in the proof of
Theorem 3.2, represent

1

n
{L(j)− L(j+)} = log

det(W1 +W2)

det(W1)
= log

det(U1 +U2)

det(U1)
, (A.25)

where W1 and W2 are independent, also U1 and U2 are independent, and

W1 ∼Wp(n− kj+ , Ip),

U1 ∼Wdj
(n− p− kj , Idj

),

W2 ∼Wp(dj , Ip;ΓjΓ
′
j),

U2 ∼Wdj
(p, Idj

;Ωj),

with Ωj = diag(λj,1, . . . , λj,dj
). It should be kept in mind that we recycle some

notations to denote different random matrices from those in the proof of Theo-
rem 3.2. Let q be the integer for j in condition C3-1. Express

U2 = (Z + Γj,q)(Z + Γj,q)
′ +U3,

where Z and U3 are mutually independent randam matrices defined by

Z ∼ Ndj×q(Odj ,q, Idj
⊗ Iq), U3 ∼Wdj

(p− q, Idj
;Ωj − Γj,qΓ

′
j,q),
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Here, Γj,q = (Ω
1/2
j,q ,Oq,dj−q)

′ and Ωj,q = diag(λj,1, . . . , λj,q). Then

det(U1 +U2)

det(U1)
>

det{U1 + (Z + Γj,q)(Z + Γj,q)
′}

det(U1)

=
det{V1 + (Z + Γj,q)

′(Z + Γj,q)}
det(V1)

,

(A.26)

where

V1 ={(Z + Γj,q)
′(Z + Γj,q)}1/2{(Z + Γj,q)

′U−1
1 (Z + Γj,q)}−1

× {(Z + Γj,q)
′(Z + Γj,q)}1/2.

We can show that V1 and Z are independent, and V1 ∼Wq(n− p− kj+ + q, Iq)
(see [16, p. 57 th. 3.2.4]). Let δ3 = δ2/2 and h = 1−exp(−δ2/2). Then 0 < h < 1
and

log
βq,j(1− h)

n− p− kj+ + (q + 1)/2
− 1

qn
{m(j+)−m(j)} > δ3, (A.27)

If an event

Aj,h : tr{(Γ′
j,qΓj,q)

−1/2Γ′
j,qZZ ′Γj,q(Γ

′
j,qΓj,q)

−1/2} < h2λj,q/4,

occurs, then for any unit vector b

|b′(Γ′
j,qΓj,q)

−1/2(Z ′Γj,q + Γ′
j,qZ)(Γ′

j,qΓj,q)
−1/2b|

≤ 2{b′(Γ′
j,qΓj,q)

−1bb′(Γ′
j,qΓj,q)

−1/2Γ′
j,qZZ ′Γj,q(Γ

′
j,qΓj,q)

−1/2b}1/2

≤ 2
[

λ−1
j,q tr

{

(Γ′
j,qΓj,q)

−1/2Γ′
j,qZZ ′Γj,q(Γ

′
j,qΓj,q)

−1/2
}]1/2

< h.

Hence

det{V1 + (Z + Γj,q)
′(Z + Γj,q)}

> det(Z ′Γj,q + Γ′
j,qZ + Γ′

j,qΓj,q)

> det(Γ′
j,qΓj,q)det(Iq − hIq) = βq

j,q(1− h)q,

(A.28)

where βj,q is given by (3.4). Using (A.25), (A.26), (A.28) and (A.27), we obtain

P (ĵm = j)

≤ P (ICm(j)− ICm(j+) < 0)

< P (Ac
j,h)

+ P (q log βj,q + q log(1 − h) + {m(j)−m(j+)}/n < log det(V1))

< P (Ac
j,h)

+ P (log{n− p− kj+ + (q + 1)/2}+ δ3 < q−1 log det(V1)).

(A.29)

Since tr{(Γ′
j,qΓj,q)

−1/2Γ′
j,qZZ ′Γj,q(Γ

′
j,qΓj,q)

−1/2} is distributed according to

the chi-square distribution with q2 degrees of freedom, using Lemma A.2 and
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condition C3-1 we obtain

P (Ac
j,h) < exp

[

−h
2λj,q
8

{

1−
(

4q2

h2λj,q

)2
}]

< exp

[

−h
2q2nδ1

8

{

1−
(

4

h2nδ1

)2
}]

,

for sufficiently large n. Using Lemma A.3, we obtain

P (log{n− p− kj+ + (q + 1)/2}+ δ3 < q−1 log det(V1))

< P (q−1| log det(V1)− E[log det(V1)]| > δ3)

= O({q(n− p− kj+ + q)}−l).

(A.30)

Next, we consider the case of j ∈ J+\{j∗}. Let Λ be a random variable
distributed according to Λrj(p, n− k∗ − p), which is given in (A.20). From the
equation in (3.3) and condition C3-2, by using Lemma A.1 we obtain that

P (ĵm = j)

≤ P (−(rjcn,p)
−1 log Λ > (rjp)

−1{m(j)−m(j∗)})
≤ P (−(rjcn,p)

−1 log Λ + c−1
n,p log(1− cn,p) > δ)

≤ P ((rjcn,p)
−1| log Λ − E[log Λ]| > δ/2) = O((rjp)

−l),

(A.31)

for sufficiently large n. In the last inequality, we used the fact that E[(rjcn,p)
−1

log Λ] + c−1
n,p log(1 − cn,p) → 0.

From (A.29), (A.30), (A.31) and the equation in (3.3),

max
j∈J\{j∗}

P (ĵm = j) = O(p−l).

Hence the equation in (3.3) leads that

P (ĵm = j∗) = 1−
∑

j∈J\{j∗}

P (ĵm = j) → 1.

A.6. The proof of Lemma A.2

Notice that

P (χ2
n > z) =

1

2Γ(n/2)

∫ ∞

z

e−x/2(x/2)n/2−1dx

=
1

2Γ(n/2)

∫ ∞

z

e−rx/2e−(1−r)x/2(x/2)n/2−1dx

<
e−rz/2

2Γ(a/2)

∫ ∞

0

e−(1−r)x/2(x/2)n/2−1dx =
e−rz/2

(1− r)n/2
,

where Γ(x) is the gamma function. Taking the minimum with respect to r we
get the first inequality. The second inequality can be obtained by the fact that
1 + log x < x.
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A.7. The proof of Lemma A.3

At first, we describe the lemma which is used for proving Lemma A.3 (the proof
of lemma is given after this subsection).

Lemma A.4. Let ψ(a) be the digamma function defined by ψ(a) = d log Γ(a)/da.
Then, ψ(z) > log(z − 1/2) holds if z > 1/2 and ψ(z) < log z if z > 0.

Using the fact that det(V ) ∼ ∏q
i=1 χ

2
n−p+i, where χ

2
n−p+1, . . . , χ

2
n−p+q are

independent random variables and χ2
n−p+i is distributed according to the chi-

square distribution with n−p+ i degrees of freedom (see [21, p. 100 th. 3.2.15]),
the moment generating function of log det(V ) is given by

g(t) = logE[det(V )t] = t(q log 2) +

q
∑

i=1

∞
∑

s=1

ts

s!
ψ(s−1)

(

n− q + i

2

)

,

where ψ(s)(a) is the sth order derivative of ψ(a). Hence the first order cumulant
of log det(V ) is given by

κ(1) = q log 2 +

q
∑

i=1

ψ

(

n− q + i

2

)

.

Using Lemma A.4 and the fact that log x is increasing and concave function
of x,

q log(n− q) <

q
∑

i=1

log(n− q + i− 1) < κ(1)

<

q
∑

i=1

log(n− q + i) < q log

(

n− q +
q + 1

2

)

.

The sth order cumulant of log det(V ) can be expressed as

κ(s) =

q
∑

i=1

∞
∑

k=0

(−1)s(s− 1)!

(n−q+i
2 + k)s

, (s ≥ 2).

Since f(x, y) = 2s(n − q + x + 2y)−s is a decreasing and convex function of x
and y,

∫ ∞

0

{∫ q+1

1

2s(s− 1)!

(n− q + x+ 2y)s
dx

}

dy < (−1)sκ(s)

<

∫ ∞

−1/2

{

∫ q+1/2

−1/2

2s(s− 1)!

(n− q + x+ 2y)s
dx

}

dy.

Calculating the integrals and taking the limits, we obtain (A.24). The 2lth order

central moment is the sum of the products of cumulants, κ
(s1)
T · · ·κ(sk)T such that

s1 + · · ·+ sk = 2l. Hence the order of the 2lth order central moment is equal to

the order of (κ
(2)
T )l.
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A.8. The proof of Lemma A.4

The digamma function can be expressed as

ψ(z) = −C +

∞
∑

k=0

(

1

1 + k
− 1

z + k

)

,

where C is the Euler’s constant defined by C = limn→∞(
∑n

k=1 k
−1 − logn).

Hence

lim
n→∞

{logn− ψ(n)} = lim
n→∞

{log(n− 1/2)− ψ(n)} = 0. (A.32)

Since f(x) = (z + x)−2 is convex and decreasing function of x,

1

z
=

∫ ∞

0

1

(z + x)2
dx <

∞
∑

k=0

1

(z + k)2
=

d

dz
ψ(z)

<

∫ ∞

−1/2

1

(z + x)2
dx =

1

(z − 1/2)
.

Hence log z − ψ(z) is decreasing function, and log(z − 1/2)− ψ(z) is increasing
function of z. Combining these properties with (A.32) we get the desired results.

A.9. The proof of Corollary 3.2

Recall that the HD-LM asymptotic framework is used for proving Corollary 3.2.
Notice that kj/n → 0 holds when the equation in (3.3) holds. It is easy to see
that condition C3-2 is rewritten as

inf
j∈J+\{j∗}

lim inf
cn,p→c0,LM

{

m(j)−m(j∗)

p(kj − k∗)
+

1

cn,p
log (1− cn,p)

}

> 0.

Recall that βj,1 = λj,1. Hence, when q = 1, condition C3-1 is rewritten as

inf
j∈J−

lim inf
cn,p→c0,LM

logλj,1
logn

> 0,

inf
j∈J−

lim inf
cn,p→c0,LM

{

log
λj,1

n− p− kj + 1
− m(j+)−m(j)

n

}

> 0.

Notice that

log
λj,1

n− p− kj + 1
= log

λj,1
n

+ log
n

n− p− kj + 1
,

and

lim
cn,p→c0,LM

1

cn,p
log (1− cn,p) =

1

c0
log(1− c0),

lim
cn,p→c0,LM

log
n

n− p− kj + 1
= − log(1− c0).

Hence, Corollary 3.2 is proved.
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A.10. The proof of Corollary 3.3

Recall that the HD-LM asymptotic framework is used for proving Corollary 3.3.
Notice that kj/n→ 0 holds for all j ∈ J when the equation in (3.3) holds. From
the above result and (A.22), we derive a limit of {m(j) −m(j∗)}/{p(kj − k∗)}
in each criterion as

lim
cn,p→c0,LM

m(j)−m(j)

p(kj − k∗)
=







2 (AIC)
(1− c0)

−1 + (1− c0)
−2 (AICc)

∞ (BIC,CAIC)
.

Therefore, condition C3-2 in the AICc, BIC and CAIC holds, and that in the
AIC holds if c0 < ca. Moreover, kj+ − kj is also bounded when k∗ is bounded.
It follows from kj+ − kj ≤ k∗ that

−m(j+)−m(j)

n
≥















−2cn,pk∗ (AIC)

− cn,p(2−cn,p−1/n)
{1−cn,p−(kj+1)/n}2 (AICc)

−cn,pk∗ log n (BIC)
−cn,pk∗(1 + logn) (CAIC)

.

Hence, we have

lim inf
cn,p→c0,LM

−m(j+)−m(j)

n
=

{

−2k∗c0 (AIC)
−k∗c0

{

(1− c0)
−1 + (1− c0)

−2
}

(AICc)
,

lim inf
cn,p→c0,LM

−m(j+)−m(j)

n logn
= −k∗c0 (BIC,CAIC).

Hence, condition C3-2 in the AIC and the AICc holds if (3.5) and (3.6) are sat-
isfied, respectively, and that in the BIC and the CAIC holds if (3.7) is satisfied.
Consequently, Corollary 3.2 is proved.

A.11. Example of the noncentrality matrix

Theoretically, it is natural to describe conditions in terms of the eigen values
of the noncentrality matrices, since the unknown parameters Θ∗ and Σ∗ affect
the distribution of each criterion only through the eigen values. However, the
effect of each Θ∗ and Σ∗ may be of interest. So we illustrate the conditions by
a two-way MANOVA model with a certain structure for the regression matrix
and the covariance matrix of the error term.

Suppose there are two factors A and B with a levels and b levels, respec-
tively. We consider the case that a characteristic is observed at time t (t =
1, . . . , p) for m individuals in the cell (l, k) (l = 1, . . . , a; k = 1, . . . , b). Let
yilk = (yilk1, . . . , yilkp)

′ be p-dimensional observation vector for the ith indi-
vidual from the cell (l, k) (i = 1, . . . ,m). Then two-way MANOVA model is
represented as
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yilkt = θt + θ
(A)
lt + θ

(B)
kt + θ

(AB)
lkt + ǫilkt,

(i = 1, . . . ,m; l = 1, . . . , a; k = 1, . . . , b; t = 1, . . . , p),

where θ
(A)
lt ’s and θ

(B)
kt ’s are the main effects of the factor A and B, respectively,

θ
(AB)
lkt ’s are the effects of the interaction, and ǫ = (ǫilk1, . . . , ǫilkp)

′ ∼ Np(0p,Σ).
In order to assure the model identifiability, we assume that

θ
(A)
1t = θ

(B)
1t = θ

(AB)
1kt = θ

(AB)
l1t = 0, (i = 1, . . . , p; l = 1, . . . , a; k = 1, . . . , b).

Let

Y = (y111, . . . ,y11m,y121, . . . ,y12m, . . . ,yab1, . . . ,yabm)′,

X =

[

1abm

∣

∣

∣

∣

∣

[

0′
a−1

Ia−1

]

⊗ 1bm

main effect of A

∣

∣

∣

∣

∣

1a ⊗
[

0′
b−1

Ib−1

]

⊗ 1m

main effect of B

∣

∣

∣

∣

∣

[

0′
a−1

Ia−1

]

⊗
[

0′
b−1

Ib−1

]

⊗ 1m

interaction

]

.

Then Y ∼ Nn×p(XΘ,Σ⊗ In), where n = abm and

Θ = (θ, θ
(A)
2 , . . . , θ(A)

a , θ
(B)
2 , . . . , θ

(B)
b , θ

(AB)
22 , θ

(AB)
23 , . . . , θ

(AB)
ab )′,

θ
(A)
l = (θ

(A)
l1 , . . . , θ

(A)
lp )′,

θ
(B)
k = (θ

(B)
k1 , . . . , θ

(B)
kp )′,

θ
(AB)
lk = (θ

(AB)
lkt , . . . , θ

(AB)
lkp )′,

(l = 2, . . . , a; k = 2, . . . , b),

Suppose that the true model has no interactions and the effects of the factor
B are parallel, that is

θ
(B)
k = ηkθB (k = 2, . . . , b)

with unknown parameters η2, . . . , ηb and a p × 1 vector θB = (θ
(B)
1 , . . . , θ

(B)
p )′.

Hence the true model is represented as j∗ = {1, 2, . . . , a+ b− 1} and

X∗ =

[

1abm

∣

∣

∣

∣

∣

[

0′
a−1

Ia−1

]

⊗ 1bm

∣

∣

∣

∣

∣

1a ⊗
[

0′
b−1

Ib−1

]

⊗ 1m

]

,

Θ∗ = (θ, θ
(A)
2 , . . . , θ(A)

a , θBη
′)′,

with η = (η2, . . . , ηb)
′. In order to distinguish the variations due to the difference

among individuals and the observation error we consider the case that ǫ
(t)
ilk =

u
(t)
ilk + vi, where vi, u

(t)
ilk (l = 1, . . . , a; k = 1, . . . , b; t = 1, . . . , p) are mutually

independent, u
(t)
ilk ∼ N(0, σ2), and vi ∼ N(0, τ2). Then

Σ∗ = σ2Ip + τ21p1
′
p.

Under the above setup, the noncentrality matrix of an underspecified model
j = {1, 2, . . . , a} is given by

ΓjΓ
′
j = amΣ

−1/2
∗ θBη

′(Ib−1 − b−11b−11
′
b−1)ηθ

′
BΣ

−1/2
∗ .
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Note that the structures of the regression matrix and the covariance matrix
are just for the illustration, and the user of the models does not assume these
structures. So the number of the unknown parameters of the model j is kjp +
p(p+ 1)/2 with kj = a.

Since γj = rank(Γj) = 1, q = 1 in condition C3-1, and some algebraic
calculation leads that

βj,q = λj,1 = Γ′
jΓj = (np)QBSB,

where

QB =
1

σ2

1

p

p
∑

t=1

(θ
(B)
t − θ̄B)

2 +
1

σ2 + pτ2
θ̄2B, θ̄B =

1

p

p
∑

t=1

θ
(B)
t ,

SB =
1

b

b
∑

k=1

(ηk − η̄)2, η1 = 0, η̄ =
1

b

b
∑

k=1

ηk.

If the factor B is a kind of medication for example, the effect is likely to diminish
as time goes by. In this case QB → 0 as p → ∞. However Theorem 3.3 says
that even in this case ICm has a possibility to have the consistency property.
Actually, Corollary 3.3 says that it is sufficient for the AIC and the AICc having
consistency if pQB → ∞.
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MR0483125

[2] Akaike, H. (1974). A new look at the statistical model identification.
IEEE Trans. Automatic Control AC-19 716–723. MR0423716

[3] Bedrick, E. J. and Tsai, C.-L. (1994). Model selection for multivariate
regression in small samples. Biometrics 50 226–231.

[4] Bosq, D. (2000). Linear Processes in Function Spaces. Theory and Appli-

cations. Springer-Verlag, New York. MR1783138
[5] Bosq, D. and Blanke, D. (2007). Inference and Prediction in Large Di-

mensions. John Wiley & Sons, Ltd., Paris. MR2364006
[6] Bozdogan, H. (1987). Model selection and Akaike’s information criterion

(AIC): The general theory and its analytical extensions. Psychometrika 52

345–370. MR0914460
[7] Christakos, G. (2000).Modern Spatiotemporal Geostatistics. Oxford Uni-

versity Press, New York.
[8] Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal

Data. John Wiley & Sons, Inc., Hoboken. MR2848400
[9] Davies, S. J., Neath, A. A. and Cavanaugh, J. E. (2006). Estimation

optimality of corrected AIC and modified Cp in linear regression model.
International Statist. Review 74 161–168.

http://www.ams.org/mathscinet-getitem?mr=0483125
http://www.ams.org/mathscinet-getitem?mr=0423716
http://www.ams.org/mathscinet-getitem?mr=1783138
http://www.ams.org/mathscinet-getitem?mr=2364006
http://www.ams.org/mathscinet-getitem?mr=0914460
http://www.ams.org/mathscinet-getitem?mr=2848400


896 H. Yanagihara et al.

[10] Dien, S. J. V., Iwatani, S., Usuda, Y. and Matsui, K. (2006). The-
oretical analysis of amino acid-producing Eschenrichia coli using a stoix-
hiometrix model and multivariate linear regression. J. Biosci. Bioeng. 102
34–40.

[11] Fujikoshi, Y. (1983). A criterion for variable selection in multiple dis-
criminant analysis. Hiroshima Math. J. 13 203–214. MR0693557

[12] Fujikoshi, Y. (1985). Selection of variables in two-group discriminant
analysis by error rate and Akaike’s information criteria. J. Multivariate

Anal. 17 27–37. MR0797518
[13] Fujikoshi, Y. and Sakurai, T. (2009). High-dimensional asymptotic ex-

pansions for the distributions of canonical correlations. J. Multivariate

Anal. 100 231–242. MR2460489
[14] Fujikoshi, Y. and Satoh, K. (1997). Modified AIC and Cp in multivariate

linear regression. Biometrika 84 707–716. MR1603952
[15] Fujikoshi, Y. and Seo, T. (1998). Asymptotic approximations for

EPMC’s of the linear and the quadratic discriminant functions when the
sample sizes and the dimension are large. Random Oper. Stochastic Equa-

tions 6 269–280. MR1631003
[16] Fujikoshi, Y., Shimizu, R. and Ulyanov, V. V. (2010). Multivariate

Statistics: High-Dimensional and Large-Sample Approximations. John Wi-
ley & Sons, Inc., Hoboken, New Jersey. MR2640807

[17] Fujikoshi, Y., Yanagihara, H. and Wakaki, H. (2005). Bias cor-
rections of some criteria for selection multivariate linear regression mod-
els in a general case. Amer. J. Math. Management Sci. 25 221–258.
MR2255869

[18] Harville, D. A. (1997). Matrix Algebra from a Statistician’s Perspective.
Springer-Verlag, New York. MR1467237

[19] Kim, Y., Kwon, S. and Choi, H. (2012). Consistent model selection cri-
teria on high dimensions. J. Mach. Learn. Res. 13 1037–1057. MR2930632

[20] Kullback, S. and Leibler, R. A. (1951). On information and sufficiency.
Ann. Math. Statist. 22 79–86. MR0039968

[21] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. John
Wiley & Sons, Inc., New York. MR0652932

[22] Nishii, R. (1984). Asymptotic properties of criteria for selection of vari-
ables in multiple regression. Ann. Statist. 12 758–765. MR0740928

[23] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis

(2nd. ed.). Springer, New York. MR2168993
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