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1. Introduction

We commend authors Cai, Ren and Zhou for this fine article that provides a
comprehensive review of the burgeoning literature on the estimation of covari-
ance and precision matrices from high-dimensional data. The main focus of their
article is on the different methods for estimating structured covariance and pre-
cision matrices, where the assumed structure is usually sparse in an appropriate
sense, and on the analytical tools for deriving the optimal risk bounds for those
statistical procedures. In this respect, they were exceptionally thorough and the
paper provides a fine technical guide for dealing with these complex problems.
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In this context, the authors also point out the link between the estimation of
the covariance and that of the behavior of the eigenvalues and eigenvectors for
high-dimensional sample covariance matrices. Results on the latter have been
exploited in detecting number of significant components in a factor model, and
in deriving hypothesis tests for covariance matrices. In particular, important
insights about the limitations of classical PCA for high-dimensional data is de-
rived from the phase transition results on the behavior of the leading sample
eigenvalues and eigenvectors.

One of the scenarios which Cai and coauthors could potentially touch upon
is the behavior of summary statistics for high-dimensional observations that are
time-dependent, and the inference on quantities such as autocovariance matri-
ces and autoregressive or moving average coefficients for high-dimensional time
series. These problems pose challenges associated with both dimensionality and
the additional structures governed by temporal dependence. In this discussion,
we give a brief overview of some recent works related to these two topics, and
present two results on asymptotic behavior of eigenvalues of sample covariance
and autocovariance matrices for a class of high-dimensional time series. The
latter results demonstrates that there are considerable similarities and some
important differences in the phenomena associated with i.i.d. observations and
time-dependent data. It is hoped that this discussion will illustrate the scope
of further research in the direction of statistical inference for structured high-
dimensional time series. It would be interesting to know if Professor Cai and
coauthors have any suggestion on formulating inference procedures in any of
the regularized estimation schemes mentioned at the end of Section 2 of this
discussion.

2. Brief review of inference on high-dimensional time series

Explorations of asymptotic behavior of sample covariance and autocovariance
matrices of high-dimensional time series have started relatively recently. Credit
for an early work in this direction, in the context of a factor model, goes to
Onatski ([11]) who extended the phase transition results for the leading eigen-
values and corresponding eigenvectors of the sample covariance matrix based on
i.i.d. observations from a “spiked covariance model” (see, e.g., [2, 4, 12]) to the
set up of a time-dependent factor model with “weak factors”. He assumed that
the factor scores are independent of the isotropic background noise, while the
dimension p and sample size n both increase to infinity such that p/n converges
to a finite positive constant. A slightly simplified version of this result appears in
[8] who assumed that the finite dimensional factor scores have a joint Gaussian
distribution with a “weak” correlation across the observations, e.g., when the
factor scores form a stationary vector autoregressive process with short range
dependence. The assumption that the background noise is independent across
time means that the time series characteristic is not dominant in these analyses.

As the analyses in the i.i.d. case by [4] and [12] show, asymptotic behavior of
the empirical spectral distribution (ESD), i.e., the empirical distribution of the
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eigenvalues, form an important component in describing the behavior of leading
eigenvalues and eigenvectors of sample covariance matrices. Among the early
works in this direction, [9] proved existence of a limiting ESD of the symmetrized
sample autocovariance matrix of any given lag order τ ≥ 0, defined as

Sτ :=
1

2(n− τ)

n−τ∑
t=1

(XtX
∗
t+τ +Xt+τX

∗
t ), (2.1)

where Xt are i.i.d. p-dimensional observations with independent entries having
zero mean, unit variance and bounded fourth moments, and p/n → c ∈ (0,∞) as
p, n → ∞. They used this result to test for the presence of factors in a dynamic
factor model. [10] extended this result to the setting of a linear process of the
form

Xt = Zt +

∞∑
l=1

AlZt−l (2.2)

under the following conditions. (A0) {Zt} is a sequence of p-dimensional vectors
with i.i.d. coordinates that have zero mean, unit variance and finite fourth mo-
ment; the moving average coefficients {Al} satisfy (A1) Al = A∗

l = UDlU
∗,

for all l ≥ 1, for a unitary/orthogonal matrix U and diagonal matrices Dl

with j-th diagonal element fl(αj); where (A2) the functions fl : R
m → R are

bounded and continuous; (A3) the empirical distribution of {αj}pj=1 converge

to a distribution in R
m, denoted by FA; and (A4)

∑∞
l=1 l

2 ‖ fl ‖∞< ∞.
In moderately large dimensional settings, i.e., when p, n → ∞ such that

p/n → 0, Wang [15] explored the fluctuations of the sample autocovariances
from their population counterparts. Specifically, she proved the existence of the
limiting ESD of the matrices of the form

√
n/p(Sτ − Γτ ) under the model

studied by [10], where Γτ is the lag-τ autocovariance matrix of the process.
We state the main result in [15] below, which is described in terms of Stieltjes
transforms. Note that, for a measure μ on R, the Stieltjes transform of μ is

defined as sμ(z) =
∫ dμ(x)

x−z , where z ∈ C
+, where C

+ denotes the upper half
of the complex plane. They are used extensively in random matrix theory to
characterize the convergence of ESDs, see, for example [1] for an overview.

Theorem 2.1. Suppose that the process {Xt} is given by (2.2), and satisfy
(A0)–(A3) and (A4′)

∑∞
l=1 l

4 ‖ fl ‖∞< ∞ and (A5) the functions {fl} are
uniformly Lipschitz. Further, assume that n, p → ∞ such that p/n → 0. Then,
for each integer τ ≥ 0, with Sτ defined through (2.1) and Γτ denoting lag-τ
population autocovariance matrix, the ESD of

√
n/p(Sτ −Γτ ) converges almost

surely to a nonrandom distribution, whose Stieltjes transform is given by sτ and
satisfies the equation

sτ (z) = −
∫

dFA(a)

z + βτ (z, a)
, z ∈ C

+ (2.3)

where the Stieltjes kernel βτ (z, a) is determined by

βτ (z, a) = −
∫ Rτ (a, b)dF

A(b)

z + βτ (z, b)
, z ∈ C

+, a ∈ R
m (2.4)
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in which the kernel Rτ (a, b) :=
1
2π

∫ 2π

0
cos2(τθ)ψ(a, θ)ψ(b, θ)dθ, where ψ(a, θ) =

|1 +
∑∞

l=1 fl(a)e
ilθ|2, θ ∈ [0, 2π].

Theorem 2.1, like the result by [10], demonstrates the complex interplay
between the dimensional and temporal correlation structures, and also serves
to highlight some inherent difficulties in extending results from the i.i.d. to the
time-dependent settings. The limiting distribution in Theorem 2.1 can be seen
as a certain generalization of the well-known semi-circle law. This result can be
used to test hypotheses about certain specific restrictions on the time series.
Details will be provided in a forthcoming paper ([16]).

There have been several works extending the scope of existing approaches and
deriving rates of convergence of estimators for covariance and precision matrices
under time dependence of the observations, while others deal with regularized es-
timation of parameters directly linked to the time series structure. For example,
[7] investigated the banded and tapered estimates of high-dimensional covari-
ance matrices when the observations are weakly dependent and showed that
these estimators remain consistent in the operator norm with appropriate rates
of convergence under suitable classes of models. [17] investigated the behavior
of the sparse PCA estimator proposed by [14] when the observations follow a
stationary first order vector autoregressive process. [13] considered the problem
of jointly estimating multiple graphical models, through estimation of corre-
sponding precision matrices, when data are collected from n subjects, each of
which consists of observations forming a first order autoregressive process whose
parameters change smoothly across subjects. In related works, [5] and [6] con-
sidered sparse estimation of the autoregression coefficients of a high-dimensional
vector autoregressive model under different forms of sparsity constraints.

3. Phase transition phenomena in a VAR model

We present our analysis of a problem where the observations constitute a sta-
tionary time series with a first order vector autoregressive process, with i.i.d. and
isotropic innovations. The key assumption is that the autoregression coefficient
is symmetric and of low rank, while the dimensionality p of the process increases
with sample size n in such a way that p/n → c ∈ (0, 1). We are interested in
studying the behavior of the leading eigenvalues of the sample covariance ma-
trix. In this respect, the problem is closely related to the one studied by [17].
Our result, a simplified version of which is presented here, demonstrates the
precise interplay of signal-to-noise and p/n ratios in determining the detection
limit of the signal, i.e., the presence of the autoregressive term.

Let Xt be the p-dimensional process be defined by

Xt = AXt−1 + Zt, t ∈ Z (3.1)

where A = AT and {Zt} is a sequence of real-valued i.i.d. random variables
having N(0, Ip) distribution. We assume that ‖A‖ < 1 to ensure that the
process {Xt} is stationary with short range dependence. Suppose further that
rank(A) = M , a fixed nonnegative integer (<p). Indeed, M = 0 means that
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the process {Xt} is i.i.d. white noise with covariance equal to Ip. Note that, the
assumptions on A imply that there exists a p × p orthogonal matrix U such
that the process Yt := UTXt can be expressed as

Yt =

[
Y

(1)
t

Y
(2)
t

]
=

[
ΘY

(1)
t−1 + ε

(1)
t

ε
(2)
t

]
(3.2)

where {ε(1)t } are i.i.d. N(0, IM ), {ε(2)t } are i.i.d. N(0, Ip−M ), and Θ is an M×M
diagonal matrix with diagonal elements θ1 ≥ · · · ≥ θM satisfying the constraint
max1≤j≤M |θj | < 1. It should be noted that Σ := Var(Xt) = (I−A2)−1, and that

Var(Y
(1)
t ) = (I −Θ2)−1. Thus, Σ can be seen as a rank M perturbation of the

identity matrix, which falls in the class of “spiked” covariance matrices studied
by [4] and [12], though under i.i.d. setting. We suppose that we have a sequence
of realizations X1, . . . , Xn from such processes such that p, n → ∞ and p/n →
c ∈ (0, 1). Let S denote the sample covariance matrix S := 1

n

∑n
t=1 XtX

T
t ,

and let λ̂j denote the j-th largest eigenvalue of S. Then, we have the following
eigenvalue phase transition result.

Theorem 3.1. Under the assumptions above, as n, p → ∞ such that p/n →
c ∈ (0, 1), the following holds.

(i) For all 1 ≤ j ≤ M such that |θj | ≤ (
√
c

1+
√
c
)1/2, λ̂j → (1 +

√
c)2 almost

surely.

(ii) For all 1 ≤ j ≤ M such that |θj | > (
√
c

1+
√
c
)1/2, λ̂j → ρj almost surely,

where ρj = βj(1 +
c

βj−1 ) with βj = (1 − θ2j )
−1. Moreover, if in addition,

√
n|p/n − c| → 0, and θj has multiplicity 1, then

√
n(λ̂j − ρj) converges

in distribution to N(0, σ2(θj , c)), for an appropriate σ2(θj , c) > 0.

Theorem 3.1 parallels the main result in [12] and can be proved by making

use of the same technique, while taking into account the fact that Y
(1)
t is a

stationary Gaussian process. The key feature is that, only if the time dependence

in a coordinate of {Y (1)
t } is sufficiently strong, as is indicated by the magnitude

of θj exceeding the threshold (
√
c/(1 +

√
c))1/2, the corresponding eigenvalue

of S can be distinguished from the largest noise eigenvalue. It should be noted
further that it is the structure of the process as given by (3.2), namely, up
to a rotation, the large dimensional, i.i.d., isotropic noise and the (possibly
non-isotropic and time-dependent) finite dimensional signal are independent,
that determines the phenomena, rather than the precise nature of the time
dependence. This result can be extended to the setting of stationary linear
processes (2.2) with symmetric, commuting coefficients {Al}, as studied by [10],
if we assume further that the j-th diagonal elements of the matrices Dl =
UTAlU are zero for j > M , for some finite M , where U is a p × p orthogonal
matrix. The results can be generalized further to the setting of linear processes
with non-symmetric coefficients, provided the time dependent component of
the process belongs to a finite dimensional subspace and is independent of the
corresponding orthogonal component which forms an i.i.d. process. In the case of
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the AR(1) model, it is conjectured that the when |θj | < (
√
c/(1+

√
c))1/2, after

appropriate normalization, and scaling of n2/3, λ̂j will have a Tracy-Widom type
limiting distribution, as is observed in the spiked covariance model with i.i.d.
observations (see, e.g., [3] for corresponding results in the complex-valued case).
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