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Abstract. This paper considers multivariate Gaussian fields with their as-
sociated matrix valued covariance functions. In particular, we characterize
the class of stationary-isotropic matrix valued covariance functions on d-
dimensional Euclidean spaces, as being the scale mixture of the characteristic
function of a d dimensional random vector being uniformly distributed on the
spherical shell of Rd , with a uniquely determined matrix valued and signed
measure. This result is the analogue of celebrated Schoenberg theorem, which
characterizes stationary and isotropic covariance functions associated to an
univariate Gaussian fields.

The elements C, being matrix valued, radially symmetric and positive def-
inite on R

d , have a matrix valued generator ϕ such that C(τ ) = ϕ(‖τ‖),
∀τ ∈ R

d , and where ‖ · ‖ is the Euclidean norm. This fact is the crux, to-
gether with our analogue of Schoenberg’s theorem, to show the existence of
operators that, applied to the generators ϕ of a matrix valued mapping C be-
ing positive definite on R

d , allow to obtain generators associated to other
matrix valued mappings, say C̃, being positive definite on Euclidean spaces
of different dimensions.

1 Introduction

The use of matrix valued covariances for modeling multivariate data indexed by
spatial coordinates has become ubiquitous, for instance, in environmental and cli-
mate sciences monitors collect information on multiple variables such as tempera-
ture, pressure, wind speed and particulate matter. The recent survey in Genton and
Kleiber (2015) puts emphasis on the output of climate models, and on physical
models in computer experiments, which often involve multiple processes that are
indexed by not only space and time, but also parameter settings. It is very common
to model these multivariate spatial (or space-time) data as being the realization
from a multivariate Gaussian field, with the clear implication that the first two
moments become the crux of accurate inference and prediction. For a vector val-
ued weakly stationary Gaussian field {Z1(x), . . . ,Zm(x)}, x ∈ R

d , the covariance
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function, denoted C(·) = [Cij (·)] hereafter, is a matrix valued mapping, so that
Cij (τ ) = Cov(Zi(x),Zj (x+τ )) is called cross covariance for i �= j , and for i = j

we have the autocovariances of the scalar processes Zi .
There is a fertile literature in the last five years on this kind of mappings, and we

refer the reader to Alonso-Malaver, Porcu and Giraldo (2015), Apanasovich and
Genton (2010), Apanasovich, Genton and Sun (2011), Daley, Porcu and Bevilac-
qua (2015), Gneiting, Kleiber and Schlather (2010), Hristopoulos and Porcu
(2014), Kleiber and Porcu (2015), Porcu et al. (2013) and Ruiz-Medina and Porcu
(2015), as well as to the survey in Genton and Kleiber (2015) with the references
therein.

In this paper, we use �m
d to denote the class of matrix valued functions

ϕ(·) = [ϕij (·)]mi,j=1, with ϕij : [0,∞) → R being continuous, ϕii(0) = 1, and
such that there exists a stationary Gaussian m-variate random field {Z(x) =
(Z1(x),Z2(x), . . . ,Zm(x))} with matrix valued covariance

C(τ ) = [
Cij (τ )

]m
i,j=1 = Cov

(
Z(x),Z(x + τ )

)
(1.1)

= diag{σ }[ϕ(‖τ‖)]m
i,j=1 diag{σ }, x,τ ∈ R

d

with ‖ · ‖ being the Euclidean norm and diag{σ } a m × m diagonal matrix with
0 < σj < ∞, j = 1, . . . ,m. We call ϕ the generator of C and, conversely, we
call C the radial version of ϕ. Also, �d shall be short notation for the class of
functions �1

d , being the celebrated Schoenberg class as used in Daley and Porcu
(2014), Gneiting (1999a) and Gneiting (1999b), which has a long history in prob-
ability and statistics [Schoenberg (1938)], Random Fields (RFs for short) theory
[Yaglom (1987)] and numerical analysis [e.g. Fasshauer (1995), Wendland (1995)
and Wendland (2005)].

Starting from Bochner–Khintchine representation of a stationary covariance
function on R

d—see Bochner (1933) and Khintchine (1934)—the class �d has
been characterized by Schoenberg (1938) as being the class of scale mixtures of
the characteristic function of a random vector being uniformly distributed on the
spherical shell of radius one in R

d , with a probability measure on the positive real
line (see subsequent Theorem A). A characterization of the class �m

d remained elu-
sive when m > 1 and the first part of the paper is devoted to show that a Schoenberg
type representation can be extended to the matrix covariance case, but this time the
probability measure in the scale mixture will be shown to be a matrix valued, with
positive definite realizations.

This new result will offer then the arguments to show the existence of operators
that allow for arbitrary walks through dimensions. Rephrased, this paper proposes
operators that, applied to generators ϕ in the class �m

d , allow to obtain new gen-
erators belonging to the classes �m

d ′ , for d �= d ′. The case m = 1 was originally
proposed in Wendland (1995) (and rephrased in Gneiting (2002)), on the basis of
Matheron (1965)’s tour de force. The importance of these operators relies in the
following facts:
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(a) By well-known results, the differentiability at the origin of the covariance
function is crucial to determine the properties in terms of differentiability (in the
mean square sense) of the associated Gaussian field, as well as in terms of fractal
dimension. This fact extends mutatis mutandis to vector valued fields. A matrix
valued and isotropic matrix valued mapping inherits the properties of its associated
generator in terms of differentiability at the origin, seen as even extension, since
generators are defined on the positive real line only. The operators proposed in
this paper allow to modify the differentiability at the origin of the generator, at the
expense of some walk through dimensions, exactly in the same way as obtained,
for the case m = 1, by Wendland (1995).

(b) These operators are then crucial in order to simulate Gaussian fields
through turning bands techniques, being well understood in the case m = 1, but
almost unexplored for the case m > 1.

It is necessary to notice that the representation given in equation (3.1)–
Theorem 3.1—is relating about the isotropic matrix correlations functions which
are Lebesgue integrable, and since all the results developed is this paper are based
on this representation—Theorems 4.1, 4.2 and 5.1—it is straight to deduce that all
the paper is restricted to the class of Lebesgue integrable isotropic matrix correla-
tions functions.

The remainder of this paper is organized as follow: Section 2 introduces the
background and notation, the analogue of Schoenberg theorem to the class �m

d is
presented in Section 3, Section 4 is dedicated to introduce the multivariate versions
of Montée and Descente with special attention to show this operators as dimen-
sional walks. At the end, Section 5, some dimensional operators are shown which
are the analogues of the Turning Bands equations introduced by Matheron—see
Matheron (1965, 1972, 1973)—result which opens a line to research in the simu-
lation of vector valued Gaussian fields.

2 Background and notation

Let Mm be the set of m × m-dimensional complex-matrices. A mapping K =
[Kij ]mi,j=1 : Rd × R

d → Mm is positive definite if for any finite dimensional col-

lection of points x1, . . . ,xn of Rd and the same number of m-dimensional vectors
c1, . . . , cn ∈ C

m, ci = (ci1, . . . , cim)′, the following inequality holds:
n∑

j,k

m∑
i,l

cjicklKil(xj ,xk) ≥ 0. (2.1)

Kolmogorov’s existence theorem—see Billingsley (1995), Theorems 36.1–36.2—
implies that, for any positive definite mapping K as defined above, there exists a
Gaussian vector valued field Z(x) = (Z1(x), . . . ,Zm(x))′ on R

d such that

Cov
(
Z(x),Z(y)

) = K(x,y) = [
Kij (x,y)

]m
i,j=1, x,y ∈ R

d .
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Under the additional assumption of stationarity, there exists a matrix function C,
such that K(x,y) = C(x − y).

As stated in the Introduction, the present paper deals with the class �m
d of gener-

ators ϕ : [0,∞) → Mm associated to positive definite, stationary and isotropic ma-
trix valued mappings C :Rd → Mm in a way that C(τ ) = diag{σ }ϕ(‖τ‖)diag{σ },
τ ∈R

d , where σj is the variance of the field Zj , j = 1, . . . ,m.
We shall equivalently use ϕ(·) = [ϕij (·)]mi,j=1 or ϕd(·) = [ϕ

d
ij (·)]mi,j=1 in order

to denote an element of the class �m
d as it will be apparent from the context. The

notation ϕ
d
ij will be especially important when dealing with projection operators

as those illustrated in Section 5.
Matheron (1965) proposed the terms Montée and Descente to describe opera-

tors that, applied to generators ϕ ∈ �d , offer respectively members of �d−2 (for
d ≥ 3) and �d+2. We present their multivariate analogues and show that similar
results yield for the case m > 1 within the classes �m

d . In particular, we call these
operators m-Montée and the m-Descente. Wendland (2005) adopts the illustrative
name walk through dimension for the case m = 1 and we make use of this even for
the m-variate case.

The class �m
d is non-increasing in d , and the following inclusion relations

�m
1 ⊃ �m

2 ⊃ · · · ⊃ �m∞
are strict. To show this, consider the following example. In the univariate
case (m = 1), Schaback (1995) defined Euclid’s hat function hd(·), as the self-
convolution of the indicator function of the d-dimensional ball of radius one in
R

d , and Gneiting (1999c) showed that the function hd(·) belongs to the class
of functions �d but is not in �d ′ for any integer d ′ > d . From this univari-
ate example, we can define the m-variate matrix covariance function H(τ ) :=
diag{hd(‖τ‖), . . . , hd(‖τ‖)}m×m, with τ ∈ R

d , which belongs to the class of func-
tions �m

d and the results in Gneiting (1999c) allow us to show that it does not
belong to �m

d ′ for any positive integer d ′ > d .
Closing this section, we present two celebrated results which are the starting

point of all developments, we report them for the sake of a self-contained ex-
position. The former is the Cramer’s generalization of the Bochner–Khintchine’s
theorem from univariate RF’s to multivariate RF’s, and the latter one is the Schoen-
berg’s integral representation of an isotropic correlation function.

Theorem A (Cramer, 1940). Let X(t) = (X1(t),X2(t), . . . ,Xm(t)) be a complex
continuous1 stationary process, then the matrix covariance function of X(t), are
for all real t given by the Fourier–Stieltjes integral of the form

C(t) = Cov
(
X(t + h),X(h)

) = [
Cij (t)

]m
i,j=1

(2.2)

=
[∫ ∞

−∞
eitxFij (dx)

]m

i,j=1
=:

∫ ∞
−∞

eitxF(dx),

1Continuity in mean square sense.
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where the Fij are functions of bounded variation in (−∞,∞), which we may
assume to be everywhere continuous to the right. And given a, b ∈ R with a ≤ b,
F(b) − F(a) = [Fij (b) − Fij (a)] is a positive definite matrix.

In the previous result, the functions Fjj are probability measures in R and, for
i �= j , Fij are in general signed measures in R.

Theorem B (Schoenberg, 1938). For every positive integer d ≥ 1, ϕ ∈ �d if and
only if there exists a probability measure λd on [0,∞), such that

ϕ(t) =
∫ ∞

0
�d(rt)λd(dr), (2.3)

where �d(t) = E(expit〈e1,η〉) for t ≥ 0, e1 is a unit vector in R
d , and η is a random

vector uniformly distributed on the unit spherical shell Sd−1 ⊂ R
d .

3 Multivariate version of Schoenberg’s theorem

In this section, we extend the Schoenberg’s Theorem B, to the m-variate case
(m ≥ 2).

Theorem 3.1 (Extension of Schoenberg’s representation to the class �m
d ).

Let m and d be positive integers. A matrix valued function ϕ(·) = [ϕij (·)]mi,j=1 :
[0,∞) → Mm with ϕij continuous, i, j = 1, . . . ,m, and ϕii(0) = 1, belongs to the
class �m

d if and only if it can be written as

ϕ(t) = [
ϕij (t)

]m
i,j=1 =

[∫ ∞
0

�d(rt)λij (dr)

]m

i,j=1
=:

∫ ∞
0

�d(rt)�d(dr), (3.1)

where λij (·) are functions of bounded variation on [0,∞), and given a, b ∈ [0,∞)

with 0 ≤ a ≤ b, �d(b) − �d(a) = [λij (b) − λij (a)]mi,j=1 is a positive definite ma-
trix, that is, the function

H(c1, c2, . . . , cm) =
m∑

i,j=1

cicj

[
λij (b) − λij (a)

]
, (3.2)

is non-negative for all c1, c2, . . . , cm ∈C.

Proof. Without lost of generality, we give a constructive proof assuming σ1 =
· · · = σm = 1—see equation (1.1)—that is, we shall work inside the class of matrix
valued correlation functions.

The proof is based on the following arguments: (i) first, we show that every
matrix valued function ϕ ∈ �m

d can be represented in the form (3.1) and the re-
striction (3.2) is satisfied, then (ii) we show the converse, that is, if a matrix valued
function ϕ can be written in the form (3.1) and the restriction (3.2) is fulfilled then
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ϕ belongs to �m
d (i.e., C(x) = ϕ(‖x‖) is a positive definite matrix valued function

on R
d ), and finally (iii) we show that the functions λij (·) are functions of bounded

variation on [0,∞).

(i) Let ϕ(·) = [ϕij (·)]mi,j=1 be a member of �m
d . Following Schoenberg

(1938), we define ω(dξ) as the area of an element of the spherical shell Sd−1 =
{ξ ∈ R

d : ‖ξ‖ = 1}, and ωd the total area of Sd−1. The mean value of eiτ ·ξ over
S

d−1 is invariant with respect to rotations in R
d about the origin and can be written

as

�d

(‖τ‖) = 1

ωd

∫
Sd−1

eiτ ·ξω(dξ ), τ ∈ R
d . (3.3)

By assumption the matrix valued function C(τ ) is rotation invariant, then we can
write

ϕ
(‖τ‖) = 1

ωd

∫
Sd−1

C
(‖τ‖ξ )

ω(dξ ). (3.4)

Using Cramer’s representation of C(·)—see equation (2.2)—equation (3.4) be-
comes

C(τ ) =
∫
Rd

[
1

ωd

∫
Sd−1

ei‖τ‖ξ ·αω(dξ)

]
F(dα)

=
∫
Rd

�d

(‖τ‖‖α‖)
F(dα), α ∈ R

d . (3.5)

Now, the components of the matrix F can be seen as signed measures, so that it is
well defined

�d(u) =
∫
‖α‖≤u,α∈Rd

F(dα) = F
(‖α‖ ≤ u

)
, u ∈ R, (3.6)

and equation (3.5) turns into equation (3.1) after a direct inspection.
In order to verify that the function H in equation (3.2) is non-negative for all

0 ≤ a ≤ b, we define a m-variate stationary-isotropic field Z(x) =
(Z1(x), . . . ,Zm(x))T , x ∈ R

d , with matrix valued covariance function C(τ ) =
ϕ(‖τ‖) = [ϕij (‖τ‖)]mi,j=1, τ ∈ R

d . Let

L(x) :=
m∑

i=1

ciZi(x)

be a univariate field with c1, c2, . . . , cm ∈ C. The covariance function of L(·) is

CL(τ ) =
m∑

i,j=1

cicjϕij

(‖τ‖)
,
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that is, CL is a stationary-isotropic univariate covariance function on R
d , and by

equation (2.3) in Theorem B, it can be written as

CL(t) =
∫
[0,∞)

�d(rt)λL(dr), (3.7)

where λL(r) is a bounded and non-decreasing function for r ≥ 0. The relation in
(3.7) is one-to-one, so that the function λL(·) is unique and

0 ≤ λL(b) − λL(a) =
m∑

i,j=1

cicj

[
λij (b) − λij (a)

]
,

for any a, b ∈ [0,∞) with 0 ≤ a ≤ b.
(ii) For the converse, we need to prove that, given the form

Q(t, c) =
n∑
i,j

m∑
k,l

cikcjlϕkl(tij )

with ϕkl(tij ) as in equation (3.1), and the set of functions λij ’s obeying the prop-
erty (3.2), Q(t, c) is a positive definitive form for all n ∈ N, for all cik ∈ C

(i = 1,2, . . . , n;k = 1,2, . . . ,m), and all tij ∈ (0,∞) (i, j = 1,2, . . . , n).
We suppose n locations x1,x2, . . . ,xn on R

d such that, ‖xi − xj‖ = tij . By
equation (3.1), we have

Q(t, c) =
∫
[0,∞)

n∑
i,j

m∑
k,l

cikcjl�d

(‖xi − xj‖u)
λkl(du), (3.8)

so that using the analytic expansion of �d(·) as in equation (3.3), we have

Q(t, c) = 1

ωd

∫
Sd−1

[∫
[0,∞)

m∑
k,l

n∑
i,j

cikcjle
iu(xi−xj )·ξλkl(du)

]
ω(dξ )

(3.9)

= 1

ωd

∫
Sd−1

[∫
[0,∞)

m∑
k,l

zkzlλkl(du)

]
ω(dξ ),

where zk = ∑n
i cike

iuxi ·ξ . By property (3.2), the inner integral in (3.9) is positive.
The proof is completed.

(iii) To verify that the function λij (t) is a function of bounded variation in
[0,∞), from equation (3.6), it is enough to write∣∣∣∣

∫
[0,∞)

λij (dt)

∣∣∣∣ =
∣∣∣∣
∫
Rd

Fij (dα)

∣∣∣∣ = ∣∣Cij (0)
∣∣ ≤ [

Cii(0)Cjj (0)
]1/2

. (3.10)

�

Under the assumption ϕ(·) ∈ L1([0,∞)), component-wise, we can represent ϕ
in equation (3.1) as an ordinary Fourier integral, see Yaglom (1987, pages 311–
312).
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Corollary 3.1.1 (m-variate version of Schoenberg’s Lemma 4). Let ϕ(·) ∈ �m
d ,

then ϕ(·) is [d−1
2 ]-differentiable, that is the function ϕ(v)(t) = [ϕ(v)

ij (t)]mi,j=1 is

well defined on (0,∞), for v ≤ [d−1
2 ], where [x] is the greatest integer less than

or equal to x.

Proof. For proving this result, it is enough to recall ∂v

∂tv
�d(t) = �

(v)
d (t) =

O(t−(d−1)/2) and hence �
(v)
d (tr) = O(rv−(d−1)/2)—see Schoenberg (1938)—so

that �
(v)
d (tr) converges absolutely, in r , for v ≤ [d−1

2 ]. �

4 Montée and Descente for the class 
m
d

This section extends the results in Matheron (1965), and subsequent results in
Gneiting (2002), Daley and Porcu (2014), Schaback (1995) and Wendland (1995)
to the class �m

d , for m > 1. Some definitions are needed, for a neater exposition.

Definition 4.1. Let f(t) = [fij (t)]mi,j=1 : [0,∞) → Mm, with fij : [0,∞) → R.
We define the m-Montée and m-Descente operators as, respectively,

Ĩmf(t) :=
[∫ ∞

t ufij (u)du

αiαj

]m

i,j=1
, t ≥ 0, (4.1)

where αj = (
∫ ∞

0 ufjj (u)du)1/2, j = 1, . . . ,m, and

D̃mf(t) :=
[−f ′

ij (t)

tβiβj

]m

i,j=1
, t > 0. (4.2)

where βj = (− limt↓0
f ′

jj (t)

t
)1/2, j = 1, . . . ,m.

The m-Montée operator can be written as

Ĩmf(t) = diag{α}Imf(t)diag{α}, (4.3)

with diag{α} a m × m diagonal matrix, where the m-vector α = (α−1
1 , . . . , α−1

m )

and

Imf(t) =
[∫ ∞

t
ufij (u)du

]m

i,j=1

can be thought as the non-standardized version of the m-Montée operator. Analo-
gously, for the m-Descente, we have

D̃mf(t) = diag{β}Dmf(t)diag{β}, (4.4)

with diag{β} a m × m diagonal matrix where β = (β−1
1 , . . . , β−1

m ), and

Dmf(t) =
[−f ′

ij (t)

t

]m

i,j=1
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is the non-standardized version of the m-Descente operator.
The arguments in Gneiting (1999b, page 89) and direct inspection show that if

the matrix valued function f(t) in (4.1) is componentwise 2k-times differentiable
at zero, k = 0,1,2, . . . , then Ĩmf(t) has 2k + 2 derivatives at zero. To show the
result, note that

(Ĩmf)(v+2)(t) = −(v + 1)f(v)(t) − tf(v+1)(t), v = 0,1, . . . ,2k, (4.5)

where f(v)(t) = [ ∂vfij (t)

∂tv
]mi,j=1.

Here, by derivative at zero we mean the even extension of the function f, because
these functions are supported on the positive real line.

In the next two theorems, we summarize two of the most important findings in
this paper. In the first one, we show that Ĩm is a descending dimensional walk, from
�m

d to �m
d−2 (d ≥ 3), and the second one says D̃m is an ascending dimensional

walk, from �m
d to �m

d+2. These two results are well known in the univariate case,
see Matheron (1965, 1972).

Theorem 4.1. Let m and d be positive integers. If ϕ(·) = [ϕij (·)]mi,j=1 belongs
to the class �m

d and
∫
[0,∞) tϕij (t)dt is finite (i, j = 1, . . . ,m), then for d ≥ 3 the

function �(t) := Ĩmϕ(t) belongs to �m
d−2, and

�(t) =
[∫

[0,∞)
�d−2(tu)ηij (du)

]m

i,j=1
=

∫
[0,∞)

�d−2(tu)��(du), (4.6)

where

��(du) = [
ηij (du)

]m
i,j=1 =

[
(d − 2)λij (du)

αiαju2

]m

i,j=1
, (4.7)

with λij (·) given in equations (3.1) and (3.2) (i, j = 1,2, . . . ,m), αj =
(
∫
[0,∞) uϕjj (u)du)1/2, j = 1, . . . ,m, and given a, b ∈ [0,∞), a ≤ b the function

K1(c1, c2, . . . , cm) =
m∑

i,j=1

cicj

[
ηij (b) − ηij (a)

]
, (4.8)

is non-negative for all c1, c2, . . . , cm ∈C.

In order to prove the assertion, we need to prove that given an element ϕ of
the class of functions �m

d , we have that �(·) = Ĩmϕ(·) satisfies the equations (4.6)
to (4.8), and

∫
[0,∞) uϕjj (u)du ≥ 0 so the standardization constants αj are well

defined (j = 1, . . . ,m). The rest of the proof will come from Theorem 3.1.

Proof. We make use of the next properties (see Daley and Porcu (2014)):
(i) 1 = �d(0) > |�d(x)| for all x > 0, (ii) limx→∞ �d(x) = 0 and (iii). �′

d(x) =
−x
d

�d+2(x), for d ≥ 1, and this derivative is uniformly bounded for all x ≥ 0. For
short, these properties will be recalled as P-(i), P-(ii) and P-(iii), respectively.
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Mimicking Daley and Porcu (2014), we have∫ t

0
zϕ(z)dz =

∫ t

0
z

[∫
[0,∞)

�d(zu)�d(du)

]
dz by (3.1)

(4.9)

=
∫
[0,∞)

[∫ t

0
z�d(zu)dz

]
�d(du) by Fubini’s theorem.

Here, we have to recall �d(·) is a matrix valued function of bounded variation—
componentwise—so we can write �d(·) = G(·) − H(·), with G and H matrices
componentwise non-decreasing functions,2 and use Fubini’s theorem over the dou-
ble integral of the difference G − H.

By P-(iii), equation (4.9) becomes∫ t

0
zϕ(z)dz =

∫
[0,∞)

u−2
[∫ tu

0
−(d − 2)�′

d−2(v)dv

]
�d(du)

(4.10)
=

∫
[0,∞)

(d − 2)u−2[
�d−2(0) − �d−2(tu)

]
�d(du).

Since
∫
[0,∞) tϕ(t)dt is finite by assumption, we have that u−2�d(du) is a function

of bounded variation on R+. By P-(ii), we can bound the difference �d−2(0) −
�d−2(tu) in (4.10) and writing �d(du) = G(du) − H(du), then we can use domi-
nated convergence theorem to justify taking the limit t → ∞ there. This provides
that

∫ ∞
0 zϕ(z)dz = (d − 2)

∫
[0,∞) u

−2�d(du).
Then, by complement,

Ĩmϕ(z) =
[∫

[0,∞)
�d−2(tu)ηij (du)

]m

i,j=1

with ηij (du) as stated, therefore (4.6) and (4.7) are satisfied. To prove the property
(4.8), given 0 ≤ a ≤ b, we have

ηij (b) − ηij (a) =
∫ b

a
ηij (du) = d − 2

αiαj

∫ b

a
u−2λij (du),

then

K1(c1, . . . , cm) =
m∑

i,j=1

cicj

[
ηij (b) − ηij (a)

]

= (d − 2)

m∑
i,j=1

cicj

αiαj

[∫ b

a
u−2λij (du)

]
(4.11)

= (d − 2)

∫ b

a
u−2

m∑
i,j=1

aiajλij (du) ≥ 0 by equation (3.2).

2In fact G(x) = V (�d , [0, x]) and H(x) = G(x) − �d (x), where V (f, [0, x]) denotes the total
variation of the function f in the set [0, x]. We may alternatively suppose that G(·) and H(·) are
strictly—component—increasing functions.
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Here aj = cj /αj (j = 1, . . . ,m). �

Remark A. By the same arguments leading to equation (4.10) and by P-(i), we
have

0 ≤ (d − 2)E
(
U−2)

= (d − 2)

∫
[0,∞)

u−2λjj (du) =
∫ ∞

0
zϕjj (z)dz < ∞, j = 1, . . . ,m,

where U is a random variable distributed on [0,∞) according the cumulative dis-
tribution function λjj , j = 1, . . . ,m.

Theorem 4.2. Let m and d be positive integers. If a matrix valued function ϕ(t) =
[ϕij (t)]mi,j=1 belongs to �m

d with each ϕij being differentiable (i, j = 1, . . . ,m),

then the function ν(t) = D̃mϕ(t) is well defined for t ≥ 0, it belongs to �m
d+2, and

ν(t) =
[∫

[0,∞)
�d+2(tu)κij (du)

]m

i,j=1
=

∫
[0,∞)

�d+2(tu)�ν(du), (4.12)

where

�ν(du) = [
κij (du)

]m
i,j=1 =

[
u2λij (du)

dβiβj

]m

i,j=1
, (4.13)

with λij (·) as in equations (3.1) and (3.2) (i, j = 1, . . . ,m), βj =:
(− limt↓0 ϕjj (t)/t)1/2 (j = 1, . . . ,m), and given a, b ∈ [0,∞), a ≤ b the func-
tion

K2(c1, c2, . . . , cm) =
m∑

i,j=1

cicj

[
κij (b) − κij (a)

]
, (4.14)

is non-negative for all c1, c2, . . . , cm ∈C.

Proof. Again, we need to prove that the equations (4.12)–(4.14) are satisfied for
ν(·) = D̃mϕ(·). Then, we need show that − limt↓0 ϕjj (t)/t ≥ 0, so that the con-
stants βj are well defined (j = 1, . . . ,m), and finally we can use Theorem 3.1 to
prove the assertion.

We have D̃mϕ(t) = [−ϕ′
ij (t)

tβiβj
]mi,j=1. Then working componentwise,

−ϕ′
ij (t)

tβiβj

= −1

tβiβj

∫
[0,∞)

∂�d(tu)

∂t
λij (du)

= −1

tβiβj

∫
[0,∞)

−tu2

d
�d+2(tu)λij (du) by P-(ii) (4.15)

=
∫
[0,∞)

�d+2(tu)κij (du).
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Here κij (du) = u2λij (du)/dβiβj . Given m and d positive integers, equation (4.15)
implies that the definition of D̃mf(·) can be extended to t = 0 whenever ϕ ∈ �m

d ,
understanding the differentiability of ϕ at zero as even extension of each compo-
nent ϕij (·), i, j = 1, . . . ,m.

Following the same arguments as in (4.11), we shall show that the form (4.14)
is non-negative. For this, we have

κij (b) − κij (a) =
∫ b

a
κij (du) = 1

dβiβj

∫ b

a
u2λij (du),

and

K2(c1, c2, . . . , cm) =
m∑

i,j=1

cicj

[
κij (b) − κij (a)

]
(4.16)

= 1

d

∫ b

a
u2

m∑
i,j=1

bibjλij (du) ≥ 0, by equation (3.2).

Here bj = cj /βj , j = 1, . . . ,m. �

Remark B. From arguments which lead us to equation (4.15) and by P-(i), we
have

0 ≤ 1

d
E

(
U2) = 1

d

∫
[0,∞)

u2λjj (du) = lim
t↓0

−ϕ′
ij (t)

t
, j = 1, . . . ,m,

where U is a random variable distributed on [0,∞) according the cumulative dis-
tribution function λjj , j = 1, . . . ,m.

Remark C. Let d and m be positive integers, suppose that ϕ = [ϕij ]mi,j=1 ∈ �m
d

is a matrix function differentiable (componentwise). Then by Theorem 4.2 η =
[ηij ]mi,j=1 := D̃mϕ ∈ �m

d+2 and it is well defined. Since η = −[hihj
ϕ′

ij (t)

t
]mi,j=1

with hj non-negative constants defined as Definition 4.1,
∫ ∞
t uη(u)du :=

[∫ ∞
t uηij (u)du] = [hihjϕij (t)] and

∫ ∞
0 uηjj (u)du = h2

j (i, j = 1, . . . ,m). So, the

conditions of Theorem 4.1 are satisfied, and we have Ĩm(D̃ϕ) = ϕ. Analogously,
given d and m positive integers, η ∈ �m

d+2 under conditions in Theorem 4.1, we

can show that D̃m(Ĩmη) = η, that is, D̃m and Ĩm are inverse operators. This result
is well known in univariate context, see Wendland (1995).

Remark D. As consequence of previous remark, we can generalize a well-known
result in the univariate context. Let ϕ be a element of the class �m

d —d ≥ 3—
with 2k derivatives at zero—componentwise—k = 1,2, . . . , then η(t) := D̃mϕ(t)

is (2k − 2)-times differentiable at zero. For proving this assertion is enough to
check equation (4.5) and the comment before it.
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5 Projection operators and walks trough dimensions

Let d and d∗ be positive integers, d �= d∗. We look for a potential one-to-one re-
lation between the classes �m

d and �m
d∗ through projection operators. This is par-

enthetical to the case of turning bands operators as proposed in Gneiting (1999b)
and Mantoglou (1987) for scalar valued RFs. For the univariate case, Gneiting
(1999a) and Gneiting (1999b) show dimension walks between the classes �d and
�1, as well as relations between �d and �d−2. In the subsequent section, we show
analogues of such relations for the classes �m

d and �m
d∗ , m > 1.

Throughout this section, we denote an element of the class �m
d as ϕd(·) =

[ϕ
d
ij (·)]mi,j=1 where the subindex d indicates the dimension of the space R

d .

Theorem 5.1. Let m and d be positive integers. For any element ϕd(·) =
[ϕ

d
ij (·)]mi,j=1 of the class �m

d , the relation

ϕd(t) = 2�(d/2)

π1/2�((d − 1)/2)

1

t

∫ t

0

(
1 − u2

t2

)(d−3)/2

ϕ1(u)du (5.1)

defines a bijection from �m
1 into �m

d .

Proof. Using the analytic expansion �d(t) = �(d
2 )(2

t
)(d−2)/2J(d−2)/2(t) and well

known facts, see Abramowitz and Stegun (1972), formula 9.1.20,

Jv(z) = 2(1/2z)v

π1/2�(v + 1/2)

∫ 1

0

(
1 − u2)v−1/2 cos(zu)du,

by Theorem 3.1, we have

(i) any element ϕ1 = [ϕ1ij (t)]mi,j=1 belonging to �m
1 admits, the integral rep-

resentation

ϕ1(t) =
[∫

[0,∞)
cos(tr)λij (dr)

]m

i,j=1
=:

∫
[0,∞)

cos(tr)�1(dr), (5.2)

with λij (·) as in equations (3.1) and (3.2). For the univariate case, see Gneiting
(1998).

(ii) And, given ϕd = [ϕ
d
ij (t)]mi,j=1 ∈ �m

d , ϕd can be represented as

ϕd(t) =
∫
[0,∞)

�d(tr)�d(dr)

(5.3)

= 2�(d/2)

π1/2�((d − 1)/2)

∫
[0,∞)

(∫ 1

0

(
1 − z2)(d−3)/2 cos(trz)dz

)
�d(dr).

Here, we recall that �d(·) is a matrix function of bounded variation—component-
wise—then we can write �d(·) = G(·)− H(·), for G and H m×m matrix compo-
nentwise non-decreasing functions. Using this decomposition, we can use Fubini’s
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theorem and equation (5.3) becomes

ϕd(t) = 2�(d/2)

π1/2�((d − 1)/2)

∫ 1

0

(
1 − z2)(d−3)/2

(∫
[0,∞)

cos(trz)�d(dr)

)
dz. (5.4)

The inner integral in (5.4) is analogue to that in equation (5.2), so that, a change of
variable—z = u/t—and direct computation leads to the result. �

In addition, for d ≥ 3, applying Leibniz rule for differentiation under the inte-
gral (5.1)—see Flanders (1973)—leads to the recursive formula

ϕd−2(t) = ϕd(t) + t

d − 2
ϕ′

d(t), (5.5)

which allow us to map �m
d into �m

d−2.
A well-known interpretation of equation (5.1) is as follows—see Gneiting

(1999a). Let Z(x) = (Z1(x), . . . ,Zm(x)), x ∈ R, be a m-variate stationary RF with
matrix correlation function ϕ1(| · |) on the real line. Let U be uniformly distributed
on S

d−1 and independent of Z. Then

Y(x) := Z
(
xT U

)
,

x ∈ R
d , defines a m-variate stationary-isotropic RF with matrix correlation func-

tion ϕd(‖ · ‖) on R
d .

As illustration, when d = 2,3, equation (5.1) reduces to

ϕ2(t) = 2

π

∫ t

0

ϕ1(u)

(t2 − u2)1/2 du = 1

π

∫ π/2

0
ϕ1(t sin θ)dθ (5.6)

and

ϕ3(t) = 1

t

∫ t

0
ϕ1(u)du. (5.7)

The former is an Abel type integral equation—see Gorenflo and Vessella (1991,
equation 3.a)—and the latter is an usual integral equation, which can be inverted
for ϕ1 by standard techniques as:

ϕ1(t) = d

dt

[∫ t

0

uϕ2(u)

(t2 − u2)1/2 du

]
(5.8)

and

ϕ1(t) = d

dt

[
tϕ3(t)

]
. (5.9)

Equations (5.8) and (5.9), are essential in turning bands simulations of univari-
ate Gaussian RFs in R

2 and R
3 respectively, and may lead to a multivariate ver-

sion of the Turning Bands simulation process. The reader is deferred to Gneiting
(1998), Journel and Huijbregts (2003), Mantoglou (1987), Mantoglou and Wilson
(1982) and Matheron (1973) for the Turning Bands developments in the univariate
case.
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