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Slash-elliptical nonlinear regression model
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Abstract. The aim of this paper is to develop nonlinear regression models
with error distribution having the slash-elliptical family. A slash-elliptical
random variable is defined as the quotient of two independent random vari-
ables, Z and U1/q , where Z has an elliptical contoured distribution and U has
a uniform distribution. A key advantage of the slash-elliptical distribution is
the simplicity by which the well-known elliptical contoured distribution can
be modified to support increase in kurtosis. The main properties of the slash-
elliptical distribution is symmetry, heavy tails and convergence to the ellipti-
cal contoured distribution as the limiting case of the shape parameter. One of
the advantages of this distribution is to allow larger kurtosis than the elliptical
contoured distribution. In this paper, we propose estimation method, residual
analysis and generalized leverage for the new class of regression models. We
also develop diagnostic measures under local influence approach and present
a real data analysis.

1 Introduction

In the context of data modelling with real support, the class of symmetri-
cal models has been broadly studied, including the methods of estimation and
diagnostic analysis for the linear models (Galea, Paula and Bolfarine, 1997,
Galea, Paula and Uribe-Opazo, 2003, Cysneiros, Paula and Galea, 2007, Villegas
et al., 2013) and nonlinear models (Galea, Paula and Cysneiros, 2005, Cysneiros
and Vanegas, 2008, Vanegas and Cysneiros, 2010). The regression models in the
univariate elliptical contoured family can be considered as an alternative to mod-
elling with normal errors when the data has light (for example, logistic I distribu-
tion) or heavy tails (for instance, Student-t, power exponential, logistic II and slash
distribution). A complete review on the symmetrical distributions can be found in
Chmielewski (1981).

Among the elliptical distributions, the slash distribution allows for larger flex-
ibility in the fit of real data and it has the normal distribution as a limit case. We
say that a random variable Y has the slash distribution with location μ and scale φ

parameters if it can be expressed as

Y = μ +√φ
Z

U1/q
, (1.1)

Key words and phrases. Slash-elliptical distribution, nonlinear model, residual, local influence.
Received October 2014; accepted November 2015.

87

http://imstat.org/bjps/
http://dx.doi.org/10.1214/15-BJPS304
http://www.redeabe.org.br/


88 I. C. Alcantara and F. J. A. Cysneiros

where Z and U1/q are two independent random variables, Z having the standard
normal distribution, U having the standard uniform distribution and q > 0 is a pa-
rameter that is related to the kurtosis of the slash distribution. When μ = 0, φ = 1
and q = 1, Y follows the standard slash distribution. Discussions about the slash
distribution properties can be found in Rogers and Tukey (1972) and Mosteller
and Tukey (1977). The maximum likelihood estimators (MLEs) for the location
and scale parameters of the slash distribution were presented by Kafadar (1982).
Lange and Sinsheimer (1993) developed a multivariate version where the variable
Z in (1.1) is the multivariate normal distribution. In the same approach, Wang and
Genton (2006) proposed the multivariate skew-slash distribution considering that
the variable Z has a multivariate asymmetrical normal distribution in (1.1). A new
class of distributions was introduced by Arslan (2008) by taking the variable Z

having the generalized hyperbolic distribution. Arslan and Genç (2009) general-
ized the family of distributions proposed by Wang and Genton (2006) by construct-
ing a family of multivariate distributions through of the scale mixture models of
the multivariate Kotz type and uniform distributions.

The slash-elliptical distribution was proposed by Gómez, Quintana and Torres
(2007) by replacing the distribution of Z by the family of univariate and multivari-
ate elliptical distributions in (1.1). A key advantage of the slash-elliptical distri-
bution is the simplicity by which the well-known symmetrical distribution can be
modified to support increase in kurtosis. The main properties of the slash-elliptical
distribution are symmetry, heavy tails and convergence to the elliptical distribution
when q → ∞.

The methods of estimation, hypothesis testing for the parameters, residuals and
diagnostic analysis under the local influence approach and generalized leverage for
linear regression models with univariate slash-elliptical errors were proposed by
Alcantara and Cysneiros (2013). The aim of this paper is to extend their method-
ology for the class of nonlinear models with errors distribution in the family of
univariate slash-elliptical distributions.

The paper is organized as follows. In Section 2, we present the slash-elliptical
distribution. In Section 3, we define the slash-elliptical nonlinear regression model
and develop the estimation procedure and inference methods. In addition, we pro-
pose a residual analysis and perform a simulation study for evaluating its behavior.
In Section 4, we define some diagnostic measures for the class of slash-elliptical
nonlinear models. In Section 5, we present an application to a real data set to illus-
trate the proposed methodology. Finally, in Section 6, we offer some conclusions.

2 Slash-elliptical distribution

We say that a random variable Y has the slash-elliptical distribution with location
μ ∈ R and scale φ > 0 parameters if Y can be expressed as Y = μ + √

φV U−1/q ,
where V and U are independent random variables, V has the standard elliptical
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contoured distribution, U has uniform distribution on (0,1) and q is the shape
parameter of slash-elliptical distribution (Gómez, Quintana and Torres, 2007). We
denote a slash-elliptical random variable for Y ∼ SEL(μ,φ, q, g) and its density
function is defined by

f (y;μ,φ, q) = 1√
φ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

qH(z2)

2|z|q+1 , z �= 0,

qg(0)

q + 1
, z = 0,

where z = (y − μ)/
√

φ and H(z2) = ∫ z2

0 t (q−1)/2g(t) dt , for some density gen-
erator function g with g(t) > 0 for t > 0 and

∫∞
0 t−1/2g(t) dt = 1. The density

generator function of some slash-elliptical distribution can be found in Table 1,
where ν > 0, σ > 0, 0 < λ < 1, g′(t) is the derivative of g(t) with respect to t ,
γ (ς1;ς2) is incomplete gamma function evaluated in ς2 with ς1 shape parameter
and

2F1(ι1, ι2; ι3; ι4) = 	(ι3)

	(ι2)	(ι3 − ι2)

∫ 1

0

xι2−1(1 − x)ι3−ι2−1

(1 − ι4x)ι1
dx

is hypergeometric function as defined by Bailey (1935). In this paper, the slash-
contaminated normal distribution is named Slash-CN. The plots of some slash-
elliptical distributions, with μ = 0, φ = 1, q = 1 (dashed line), q = 4 (dotted line)
and q = 20 (dash-dot line), compared with the standard normal distribution (solid
line) are displayed in Figure 1.

3 Slash-elliptical nonlinear regression model

Let εi , i = 1, . . . , n, be independent random variables with slash-elliptical distri-
butions, where εi ∼ SEL(0, φ, q, g), φ is the scale parameter and g is a density
generator function that satisfies: g(t) > 0 for t > 0, and

∫∞
0 t−1/2g(t) dt = 1. The

nonlinear regression model is expressed as

Yi = μi(β,xi) + εi, i = 1,2, . . . , n,

where Yi is the response variable, β = (β1, . . . , βp)	 is the unknown parameter
vector (p × 1), xi = (1, xi2, . . . , xip)	 is the regressor vector (p × 1), μi(β,xi)

is a nonlinear function of β that is twice continuously differentiable, such that the
derivative matrix Dβ = ∂μ/∂β has rank p (p < n) for all β and fixed or known q .

3.1 Parameter estimation

The MLE of θ = (β	, φ)	 for the slash-elliptical nonlinear model class is defined
by θ̂ = arg maxθ (θ), where (θ) is the log-likelihood function given by

(θ) = −n

2
log(φ) +∑

i∈A

a(zi) + Kq,
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Table 1 The g(t), g′(t) and H(z2) functions of some slash-elliptical distributions

Distribution g(t) g′(t) H(z2)

Slash-normal e−t/2√
2π

−e−t/2

2
√

2π

2q/2√
π

γ (
q+1

2 ; z2

2 )

Slash-logistic II e−√
t

(1+e−√
t )2

e−√
t (e−√

t−1)

2
√

t(1+e−√
t )3

∫ z2

0
t (q−1)/2e−√

t

(1+e−√
t )2

dt

Slash-Student-t (ν+t)−(ν+1)/2

ν−ν/2B(1/2,ν/2)
− (ν+1)(ν+t)−(ν+3)/2

2ν−ν/2B(1/2,ν/2)

22F1((ν+1)/2,(q+1)/2;(q+3)/2;−z2/ν)

(q+1)z−(q+1)
√

νB(1/2,ν/2)

Slash-CN (1−λ)√
2πet/2 + λe−t/2σ2

σ
√

2π
− (1−λ)

2
√

2πet/2 − λe−t/2σ2

2σ 3
√

2π

(1−λ)γ ((q+1)/2;z2/2)+λσqγ ((q+1)/2;z2/(2σ 2))

2−q/2√π
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Figure 1 Plots of the standard normal density (solid line) and slash-elliptical densities with μ = 0,
φ = 1, q = 1 (dashed line), q = 4 (dotted line) and q = 20 (dash-dot line) for: (a) slash-normal,
(b) slash-logistic II, (c) slash-Student-t (ν = 1) and (d) slash-CN (λ = 0.9, σ = 4).

where A = {i : zi �= 0}, zi = (yi − μi)/
√

φ, μi = μi(β,xi ), a(zi) = log(H(z2
i )) −

(q + 1) log |zi |, H(z2
i ) = ∫ z2

i

0 t (q−1)/2g(t) dt , Kq = nA log(q/2) + (n − nA) ×
log(qg(0)/(q + 1)) and nA is the number of elements in the set A. The
score function of θ is given by Uθ = (U	

β ,Uφ)	, Uβ = −(1/
√

φ)D	
β D(a′) and

Uφ = −(1/(2φ))z	v(l), where Dβ = (d	
1 , . . . ,d	

n )	, di = μ′
i(β,xi ), μ′

i (β,xi)

is the derivative of the function μi(β,xi ) with respect to β , z = (z1, . . . , zn)
	,

D(a′) = diag(a′(z1), . . . , a
′(zn)), a′(zi) = 2|zi |qg(z2

i )/H(z2
i )− (q +1)/zi , v(l) =

(l(z1), . . . , l(zn))
	 and l(zi) = n/(nAzi) + a′(zi). The observed information ma-

trix of the slash-elliptical nonlinear model is given by

−L̈
θ̂ θ̂

= −
(

∂2(θ)

∂θ ∂θ	
)∣∣∣∣

θ=θ̂

= −
[

L̈ββ L̈βφ

L̈φβ L̈φφ

] ∣∣∣∣
θ=θ̂

,

L̈ββ = − 1

φ

(
D	

β BDβ

)
,
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L̈βφ = L̈	
φβ = 1

2φ3/2 D	
β v(m) and

L̈φφ = − 1

4φ2

[∑
i∈A

zi

(
zic(zi) − a′(zi)

)− 2n

]
= −d,

where B = C[√φ
∑

i∈A Dββ(i)a′(zi)]C	 + D(c), C = D(c)Dβ(D	
β D(c)Dβ)−1,

c(zi) = 4z
2q
i g2(z2

i )H
−2(z2

i )−2|zi |q−1[qg(z2
i )−2z2

i g
′(z2

i )]H−1(z2
i )−(q +1)z−2

i ,
D(c) = diag(c(z1), . . . , c(zn)), Dββ(i) = ∂2μi(β,xi )/∂β ∂β	, m(zi) = a′(zi) −
zic(zi) and v(m) = (m(z1), . . . ,m(zn))

	. The Kq , a(z), a′(z), c(z), m(z) and o(z)

functions of some slash-elliptical distributions can be seen in Tables 2 and 3.
The system of equations Uθ = 0 does not have closed form solutions. In this

study, we use the quasi-newton optimization method to obtain estimates of the
parameter vector θ . The initial values for the estimates of the iterative process can
be obtained from the fitted normal nonlinear regression.

Table 2 The Kq , a(z) and a′(z) functions for some slash-elliptical distributions

Distribution Kq

Slash-normal log(
qn(q+1)−(n−nA)

2(n+nA)/2π(n−nA)/2 )

Slash-logistic II log(
qn2−(2n−nA)

(q+1)n−nA
)

Slash-Student-t log(
qnν−(n−nA)/2(q+1)−(n−nA)

2nA (B(1/2,ν/2))n−nA
)

Slash-CN log(
qn(σ (1−λ)+λ)n−nA

2(n+nA)/2π(n−nA)/2(q+1)(n−nA) )

a(z)

Slash-normal log(
2q/2γ ((q+1)/2;z2/2)

|z|q+1√π
)

Slash-logistic II log(
H(z2)

|z|q+1 )

Slash-Student-t log(
22F1((ν+1)/2,(q+1)/2;(q+3)/2;−z2/ν)

(q+1)
√

νB(1/2,ν/2)
)

Slash-CN log(
(1−λ)γ ((q+1)/2;z2/2)+λσqγ ((q+1)/2;z2/(2σ 2))

|z|q+12−q/2√π
)

a′(z)

Slash-normal zqe−z2/2

2(q−1)/2γ ((q+1)/2;z2/2)
− q+1

z

Slash-logistic II 2zqe−|z|
(1+e−|z|)2H(z2)

− q+1
z

Slash-Student-t (q+1)ν(ν+1)/2(ν+z2)−(ν+1)/2

z2F1((ν+1)/2,(q+1)/2;(q+3)/2;−z2/ν)
− q+1

z

Slash-CN zq

2(q−1)/2 [ (1−λ)e−z2/2+λe−z2/2σ2

(1−λ)γ ((q+1)/2;z2/2)+λσqγ ((q+1)/2;z2/(2σ 2))
] − q+1

z
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Table 3 The c(z), m(z) and o(z) functions of some slash-elliptical distributions

Distributions c(z)

Slash-normal z2qe−z2

2q−1γ 2((q+1)/2;z2/2)
− zq−1(q+z2)e−z2/2

2(q−1)/2γ ((q+1)/2;z2/2)
− q+1

z2

Slash-logistic II 4z2qe−2|z|
H 2(z2)(1+e−|z|)4 − 2zq−1(q−z)e−|z|

H(z2)(1+e−|z|)2 − q+1
z2

Slash-Student-t (q+1)2(1+z2/ν)−(ν+1)

z2
2F

2
1 ((ν+1)/2,(q+1)/2;(q+3)/2;−z2/ν)

− (q+1)(z2(q+ν+1)+qν)(1+z2/ν)−(ν+3)/2

z2ν2F1((ν+1)/2,(q+1)/2;(q+3)/2;−z2/ν)
− q+1

z2

Slash-CN 4z2q [(1−λ)e−z2/2+λe−z2/2σ2 ]2

[(1−λ)γ ((q+1)/2;z2/2)+λσqγ ((q+1)/2;z2/(2σ 2))]2 − zq−1[(1−λ)(q+z2)e−z2/2+(λ/σ )(q+z2/σ 2)e−z2/2σ2 ]
2(q−1)/2[(1−λ)γ ((q+1)/2;z2/2)+λσqγ ((q+1)/2;z2/(2σ 2))] − q−1

z2

m(z)

Slash-normal zq (q+1+z2)e−z2/2

2(q−1)/2γ ((q+1)/2;z2/2)
− z2q+1e−z2

2q−1γ 2((q+1)/2;z2/2)

Slash-logistic II 2zq (q+1−z)e−|z|
H(z2)(1+e−|z|)2 − 4z2q+1e−2|z|

H 2(z2)(1+e−|z|)4

Slash-Student-t (q+1)(z2(q+ν+2)+ν(q+1))(1+z2/ν)−(ν+3)/2

zν2F1((ν+1)/2,(q+1)/2;(q+3)/2;−z2/ν)
− (q+1)2(1+z2/ν)−(ν+1)

z2F
2
1 ((ν+1)/2,(q+1)/2;(q+3)/2;−z2/ν)

Slash-CN zq [(1−λ)(q+1+z2)e−z2/2+(λ/σ )(q+1+z2/σ 2)e−z2/2σ2 ]
2(q−1)/2[(1−λ)γ ((q+1)/2;z2/2)+λσqγ ((q+1)/2;z2/(2σ 2))] − 4z2q+1[(1−λ)e−z2/2+λe−z2/2σ2 ]2

[(1−λ)γ ((q+1)/2;z2/2)+λσqγ ((q+1)/2;z2/(2σ 2))]2

o(z)

Slash-normal zq+1e−z2/2

2(q−1)/2γ ((q+1)/2;z2/2)
− q

Slash-logistic II 2zq+1e−|z|
(1+e−|z|)2H(z2)

− q

Slash-Student-t (q+1)ν(ν+1)/2(ν+z2)−(ν+1)/2

2F1((ν+1)/2,(q+1)/2;(q+3)/2;−z2/ν)
− q

Slash-CN zq+1

2(q−1)/2 [ (1−λ)e−z2/2+λe−z2/2σ2

(1−λ)γ ((q+1)/2;z2/2)+λσqγ ((q+1)/2;z2/(2σ 2))
] − q
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3.2 Simulation study 1

In order to evaluate the empirical behavior of the estimator θ̂ , we conduct a simu-
lation study in the model

Yi = β0 + exp(β1 + β2xi) + εi, i = 1,2, . . . , n, (3.1)

where β0 = 1, β1 = 1, β2 = 1 and φ = 2 and xi ∼ N(0,1) are kept fixed among
10,000 replications. Six study scenarios for the error distribution εi are consid-
ered: slash-normal, slash-Student-t (ν = 5) and slash-CN (λ = 0.3, σ = 2) distri-
butions, all three with q = 5 and q = 25. We use the programming language Ox
(Doornik, 2007) to implement all the functions developed in this paper. Codes in
Ox can be obtained from the authors upon request. We generate 10,000 Monte
Carlo replicates of the slash-elliptical nonlinear model in (3.1) and evaluated the
MLEs θ = (β0, β1, β2, φ)	 for each scenario, with the sample size n = 50 and
n = 100. Empirical statistical measures for parameter estimates on the simulated
models are obtained and presented in Table 4. In all scenarios, we observe that
the MLEs of the parameters, β0, β1 and τ present good statistical properties as n

increases, as expected, for the true values taken for these parameters, in particular
the biases are close to zero.

3.3 Goodness of fit and hypothesis testing

Galea, Paula and Cysneiros (2005), Vanegas and Cysneiros (2010) and Villegas
et al. (2013) showed that the MLEs from symmetrical nonlinear regression mod-
els with heavy tails are less sensitive to extreme observations than the estimates
from the normal models The similiar behaviour is also noted for the slash nonlin-
ear regression model Lucas (1997) developed an interesting study on the robust
aspects of the Student-t model. He showed that the protection against outliers is
preserved only if the degrees of freedom extra parameter ν is fixed. Otherwise,
if the degrees of freedom parameter is also estimated by maximum likelihood, the
influence functions for φ and ν and the change-of-variance function of the location
parameter are not bounded. In this direction, we keep all extra parameters, δ, fixed
or known. For instance, q in the slash-normal and slash-logistic II, (q, ν)	 in the
slash-Student-t and (q, λ, σ )	 in the slash-CN keep fixed.

We adopt a profile likelihood function defined by δ(θ) = (θ; δ), where δ is
a parameters vector known or fixed. Thus, the MLE θ for δ fixed or known is
θ̂ δ = arg maxθ δ(θ). We use a selection procedure based on the AIC (Akaike,
1974) and BIC (Schwarz, 1978) information criteria, for which the δ̂AIC and δ̂BIC

estimators are the δ values that minimizes the quantities AIC = −2δ(θ̂) + 2(p +
1) and BIC = −2δ(θ̂) + (p + 1) log(n), respectively. The other method is plug in
a consistent estimator for extra parameter, for example, moment estimator.
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Table 4 Means, standard errors (SE), biases and mean square errors (MSEs) for the parameter estimates on the simulated models

Slash-normal Slash-Student-t (ν = 5) Slash-CN (λ = 0.3, σ = 2)

n q β0 β1 β2 τ β0 β1 β2 τ β0 β1 β2 τ

50 5 Mean 0.96 1.00 1.00 1.89 0.95 1.00 1.00 1.90 0.94 0.99 1.00 1.89
SE 0.55 0.20 0.09 0.44 0.66 0.19 0.07 0.52 0.71 0.26 0.12 0.51

Bias −0.04 0.00 0.00 −0.11 −0.05 0.00 0.00 −0.10 −0.06 −0.01 0.00 −0.11
MSE 0.56 0.20 0.10 0.45 0.44 0.04 0.01 0.28 0.71 0.26 0.10 0.52

25 Mean 0.97 1.00 1.00 1.88 0.97 1.00 1.00 1.90 0.96 1.00 1.00 1.88
EP 0.46 0.17 0.08 0.39 0.56 0.16 0.06 0.50 0.60 0.22 0.10 0.47

Bias −0.03 0.00 0.00 −0.12 −0.03 0.00 0.00 −0.10 −0.04 −0.01 0.00 −0.12
MSE 0.46 0.17 0.10 0.41 0.31 0.03 0.00 0.26 0.60 0.22 0.10 0.49

100 5 Mean 0.98 1.00 1.00 1.95 0.98 1.00 1.00 1.95 0.97 1.00 1.00 1.95
SE 0.44 0.15 0.07 0.31 0.45 0.15 0.06 0.37 0.55 0.19 0.09 0.37

Bias −0.02 0.00 0.00 −0.05 −0.02 0.00 0.00 −0.05 −0.03 0.00 0.00 −0.05
MSE 0.45 0.14 0.10 0.32 0.20 0.02 0.00 0.14 0.55 0.20 0.10 0.37

25 Mean 0.99 1.00 1.00 1.94 0.99 1.00 1.00 1.95 0.98 1.00 1.00 1.94
EP 0.37 0.13 0.06 0.28 0.38 0.12 0.05 0.35 0.46 0.16 0.07 0.34

Bias −0.01 0.00 0.00 −0.06 −0.01 0.00 0.00 −0.05 −0.02 0.00 0.00 −0.06
MSE 0.36 0.14 0.00 0.28 0.15 0.02 0.00 0.13 0.46 0.17 0.10 0.35
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The inclusion or not of the explanatory variables in the model can be tested
using likelihood ratio, Wald and score tests as presented in Li (2001). The like-
lihood ratio (ξRV), Wald (ξW ) and score (ξRV) statistics for the hypotheses tests,
H0 : β = β0 versus H1 : β �= β0, for a particular known vector β0 of dimension
(s × 1), respectively, are given by

ξRV = 2
{
(β̂, φ̂) − 

(
β0, φ̂0)},

ξW = [
β̂ − β0]	V̂ar(β̂)−1[β̂ − β0] and

ξSR = U	
β̂

0V̂ar0
(
β̂

0)
U

β̂
0,

where β̂ and φ̂ are the unrestricted MLEs of β and φ, respectively, φ̂0 is the re-

stricted MLE of φ, V̂ar(β̂) = φ̂(D	
β ŴDβ)−1 and V̂ar0(β̂

0
) = φ̂0(D	

β Ŵ0Dβ)−1 are
respectively, the variance and covariance matrices of β under the unrestricted and

restricted models where Ŵ = B− v(m)v	(m)

4φ̂2d
. Under standard regularity conditions,

Cox and Hinkley (1974, Cap. 9), demonstrated that the statistics ξRV, ξW , and ξSR,
under H0, follow an asymptotic chi-square distribution with s degrees of freedom.

3.4 Residuals

The residual analysis is part of the modelling that seeks to measure the discrepancy
between the observed values yi and the fitted values ŷi is statistically significant.
In this study, we define a residual for the class of slash-elliptical nonlinear models
based on the standardized residual proposed by Pregibon (1981). This residual is
based on the statistic

LRi = 2
[
(μ̃i) − (μ̂i)

]
, (3.2)

where i(μi) is the logarithm of the slash-elliptical density evaluated at μi =
μi(β,xi ) and μ̃i is the MLE of μi on the saturated model, that is, μ̃i = yi . There-
fore, replacing μ̃i = yi in (3.2), we obtain

LRi = 2I(yi �=μ̂i )

{
log
(

q

q + 1
g(0)

)
− log

(
q

2

)
− a(ẑi)

}
,

where ẑi = (yi − μ̂i)/φ̂ and I (·) is indicator function and the deviance component
residual defined by rdi

= sign(ẑi)
√

LRi .

3.5 Simulation study 2

We conduct a simulation study to evaluate the empirical behavior of the proposed
deviance component residual of the slash-elliptical nonlinear model. We use the
same setup in Section 3.2, modifying only the scenarios for the error distribution
εi , and considered to be: slash-normal, slash-logistic II, slash-Student-t (ν = 5)
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and slash-CN (λ = 0.3, σ = 2), all four with q = 5 and q = 25. We generate 10,000
Monte Carlo replicates of the slash-elliptical nonlinear model in (3.1) and evaluate
the deviance component residual for each scenario, with the sample size at n = 20.
Empirical statistical measures, mean (r̄), standard deviation (S), skewness (b1)

and kurtosis (b2) of the simulated residual are obtained and presented in Tables 5
and 6.

Overall, this simulation study proves empirically that the deviance component
residual has mean close to zero, standard deviation less than 1.1, slightly asymmet-
rical and positive kurtosis. We observe that the mean simulated residuals are close
to zero within the range of −0.029 to 0.033. Furthermore, the mean and asymmetry
coefficient tend to zero when q increases. The slash-normal model has the lowest
standard deviation in the range of 0.8 to 0.9, while for the other current models, the
standard deviations less than 1.1 and positive kurtosis are slightly asymmetrical.

4 Diagnostics analysis

The purpose of the diagnostic analysis is to detect observations that exert a dis-
proportionate influence on the modelling. The analysis of local influence is a di-
agnostic method that aims to evaluate the effect of small perturbations in the data
or model based on deviation measures, for example, likelihood displacement. In
this study, we consider the likelihood displacement proposed by Cook (1986). Let
ω = (ω1,ω2, . . . ,ωn)

	 a perturbation vector (n×1) restricted to some open set �.
The local influence measures aimed at comparing θ̂ and θ̂ω based on an influence
measure when ω varies on �. We also consider a generalized leverage measure
proposed by Wei, Hu and Fung (1998), which identifies observations with high
influence on their predicted values.

4.1 Local influence

Consider the likelihood displacement LD(ω) = 2{(θ̂) − (θ̂ω)}, where (θ) and
(θω) are log-likelihood functions of the postulate and perturbed models, respec-
tively. If ω0 is the nonperturbation vector, then LD(ω0) = 0 and LD(ω) ≥ 0 for
ω �= ω0, then ω0 is a local minimum point of LD(ω).

The normal curvature of the surface (ω	,LD(ω))	 in the direction of a vector
d is equal to Cd(θ) = 2|d	F̈d| (Cook, 1986), where

F̈ = ∂2 LD(ω)

∂ω ∂ω	 = �	(−L̈θθ )
−1�

is the local influence matrix and � = ∂2(θω)/∂θ ∂ω	 is evaluated at θ = θ̂ and
ω = ω0. One can also obtain the normal curvature of LD(ω) for the parameters
β and φ separately through the following expressions: Cd(β) = 2|d	�	(L̈−1

θθ −
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Table 5 Empirical statistical measures of the proposed residuals for some slash-eliptical models with q = 5

Slash-normal Slash-logistic II Slash-Student-t (ν = 5) Slash-CN (λ = 0.3, σ = 2)

Obs. r̄ S b1 b2 r̄ S b1 b2 r̄ S b1 b2 r̄ S b1 b2

1 −0.007 0.9 −0.004 0.5 −0.014 1.0 0.058 0.2 0.004 1.1 0.005 0.2 −0.012 1.1 0.001 0.3
2 0.007 0.9 0.023 0.6 0.008 1.0 0.007 0.3 −0.007 1.1 0.049 0.4 −0.029 1.0 −0.006 0.4
3 0.001 0.9 0.086 0.7 −0.023 1.0 0.002 0.2 −0.019 1.1 0.017 0.3 −0.004 1.0 −0.023 0.4
4 0.008 0.9 −0.012 0.5 −0.017 1.0 −0.052 0.2 0.018 1.1 0.021 0.5 −0.013 1.0 0.041 0.1
5 −0.002 0.9 −0.017 0.7 0.022 1.0 −0.015 0.4 0.012 1.0 −0.032 0.6 0.033 1.0 −0.016 0.6
6 0.010 0.9 −0.006 0.8 −0.003 1.0 −0.027 0.4 0.019 1.0 0.017 0.6 0.015 1.0 −0.019 0.6
7 0.009 0.8 −0.040 0.8 0.018 1.0 −0.028 0.8 0.007 1.0 0.007 0.7 −0.001 1.0 −0.063 0.7
8 −0.006 0.9 0.017 0.7 −0.010 1.0 0.054 0.2 −0.028 1.1 0.035 0.4 −0.013 1.0 0.018 0.4
9 −0.010 0.9 0.091 0.6 −0.024 1.0 0.044 0.2 −0.012 1.0 −0.013 0.6 −0.015 1.0 −0.021 0.5

10 0.009 0.9 0.052 1.0 0.031 1.0 −0.077 0.5 0.009 1.0 −0.026 0.6 0.031 1.0 −0.031 0.7
11 0.004 0.8 −0.048 0.6 0.031 1.0 0.073 0.4 0.015 1.0 −0.054 0.7 0.026 1.0 −0.020 0.7
12 −0.006 0.9 0.114 0.6 −0.011 1.0 0.033 0.4 −0.010 1.1 0.007 0.3 −0.003 1.0 −0.001 0.3
13 0.018 0.9 0.099 0.7 0.021 1.0 0.028 0.3 0.000 1.0 0.005 0.5 0.010 1.0 0.013 0.5
14 0.004 0.9 0.030 0.7 −0.014 1.0 −0.012 0.5 0.013 1.0 −0.054 0.4 0.001 1.0 −0.005 0.5
15 −0.002 0.9 0.002 0.6 −0.014 1.0 −0.045 0.3 0.000 1.1 −0.032 0.4 −0.014 1.1 −0.044 0.5
16 −0.010 0.9 −0.013 0.6 0.001 1.0 0.032 0.2 −0.002 1.1 0.009 0.3 −0.028 1.0 0.039 0.4
17 0.007 0.9 −0.094 0.9 0.001 1.0 −0.006 0.4 −0.004 1.0 0.001 0.5 0.006 1.0 0.024 0.6
18 −0.009 0.9 −0.017 0.5 0.005 1.0 −0.042 0.3 −0.010 1.1 0.029 0.5 −0.005 1.0 −0.036 0.5
19 0.003 0.9 0.008 0.8 0.016 1.0 0.014 0.4 0.007 1.1 0.018 0.3 0.022 1.0 0.009 0.4
20 −0.015 0.9 0.027 0.6 −0.024 1.0 −0.033 0.3 0.002 1.1 0.047 0.3 −0.005 1.0 0.067 0.3
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Table 6 Empirical statistical measures of the proposed residuals for some slash-eliptical models with q = 25

Slash-normal Slash-logistic II Slash-Student-t (ν = 5) Slash-CN (λ = 0.3, σ = 2)

Obs. r̄ S b1 b2 r̄ S b1 b2 r̄ S b1 b2 r̄ S b1 b2

1 −0.006 0.9 −0.036 0.1 −0.009 1.0 0.069 0.1 0.007 1.0 0.009 0.2 −0.009 1.0 0.004 0.2
2 0.004 0.9 −0.014 0.1 0.010 1.0 0.021 0.1 −0.005 1.0 0.057 0.5 −0.029 1.0 −0.015 0.4
3 0.001 0.9 0.045 0.0 −0.017 1.0 0.004 0.2 −0.016 1.0 0.025 0.3 0.000 1.0 −0.003 0.3
4 0.012 0.9 0.001 0.0 −0.016 1.0 −0.051 0.2 0.017 1.0 0.038 0.6 −0.009 1.0 0.045 0.2
5 −0.005 0.8 −0.014 0.1 0.018 0.9 0.002 0.3 0.010 1.0 −0.032 0.6 0.028 1.0 −0.039 0.6
6 0.005 0.8 −0.022 0.1 −0.005 0.9 −0.016 0.3 0.016 1.0 0.032 0.5 0.010 1.0 −0.039 0.5
7 0.005 0.7 −0.027 0.2 0.014 0.9 −0.039 0.5 0.006 1.0 0.009 0.7 −0.003 0.9 −0.064 0.7
8 −0.006 0.9 0.021 0.2 −0.010 1.0 0.054 0.2 −0.025 1.0 0.028 0.5 −0.010 1.0 0.016 0.3
9 −0.006 0.9 0.049 0.1 −0.020 1.0 −0.007 0.2 −0.010 1.0 −0.038 0.7 −0.012 1.0 −0.011 0.6

10 0.005 0.8 0.061 0.1 0.023 0.9 −0.072 0.3 0.006 1.0 −0.049 0.6 0.027 0.9 −0.004 0.6
11 0.003 0.8 −0.006 0.0 0.025 0.9 0.058 0.3 0.016 1.0 −0.008 0.7 0.022 1.0 −0.010 0.6
12 −0.006 0.8 0.066 0.0 −0.010 1.0 0.013 0.2 −0.007 1.0 0.003 0.3 −0.002 1.0 −0.002 0.3
13 0.012 0.8 0.040 0.0 0.021 1.0 0.049 0.2 0.000 1.0 0.023 0.5 0.007 1.0 −0.004 0.5
14 0.004 0.8 0.037 0.1 −0.014 0.9 −0.004 0.3 0.010 1.0 −0.050 0.4 −0.001 1.0 −0.020 0.4
15 −0.003 0.8 −0.015 0.2 −0.011 1.0 −0.032 0.2 −0.001 1.0 −0.032 0.5 −0.015 1.0 −0.048 0.3
16 −0.007 0.9 0.005 0.1 0.003 1.0 0.024 0.2 0.001 1.0 0.002 0.3 −0.024 1.0 0.019 0.3
17 0.007 0.8 −0.061 0.1 0.001 1.0 −0.002 0.3 −0.005 1.0 −0.006 0.5 0.006 1.0 0.026 0.5
18 −0.007 0.8 −0.005 0.1 0.005 1.0 −0.044 0.2 −0.009 1.0 0.044 0.5 −0.004 1.0 −0.028 0.4
19 0.002 0.8 0.036 0.1 0.016 0.9 0.018 0.3 0.005 1.0 0.006 0.4 0.018 1.0 0.008 0.3
20 −0.012 0.9 0.045 0.1 −0.019 1.0 −0.027 0.2 0.002 1.0 0.046 0.3 −0.004 1.0 0.065 0.2



100 I. C. Alcantara and F. J. A. Cysneiros

L1)�d| and Cd(φ) = 2|d	�	(L̈−1
θθ − L2)�d|, respectively, where L1 = [0

0
0

L̈−1
φφ

]
and L2 = [ L̈−1

ββ

0
0
0

]
. The index plot of the vector dmax, which is defined as the eigen-

vector corresponding to higher absolute eigenvalue of F̈, can reveal the most influ-
ential observations in θ̂ . Another approach for diagnostic analysis was proposed by
Lesaffre and Verbeke (1998), which is based on index plot of Ci = Cdi

, where di is
a vector formed by zeros with one in the ith position for each i = 1,2, . . . , n, tak-
ing as atypical observations those which are superior to 2C with C =∑n

i=1 Ci/n.

4.2 Curvature calculation

The matrix � = (�	
β ,�φ)	, where �β = ∂2(θω)/∂β ∂ω	 and �φ = ∂2(θω)/

∂φ ∂ω	, defines the curvature Cd(θ) = 2|d	F̈d| of the local influence measure on
likelihood displacement. Hereafter, we define the matrix � for the slash-elliptical
nonlinear model according to the perturbation schemes: cases-weight, scale and
response.

Cases-weight perturbation. The log-likelihood function under perturbed model
is given by ωi in the ith case, that is,

(θω) =
n∑

i=1

ωi log
[
fyi

(yi)
]
,

for 0 ≤ ωi ≤ 1. According to this perturbation scheme, the matrix � is estimated
by

�̂ =

⎛
⎜⎜⎜⎝

− 1√
φ̂

D	
β̂

D
(
â′)

− 1

2φ̂
v	(ô)

⎞
⎟⎟⎟⎠ ,

where D(â′) = diag(a′(ẑ1), . . . , a
′(ẑn)), o(ẑi) = 1 + ẑia

′(ẑi) and v	(ô) = (o(ẑ1),

. . . , o(ẑn)).

Scale perturbation. In scale perturbation scheme where the scale parameter
φωi = φ/ωi for ωi > 0 and i = 1,2, . . . , n, the log-likelihood function under per-
turbed model is given by

(θω) = −n

2
logφ − 1

2

n∑
i=1

logωi +∑
i∈A

a(ziω) + Kq,

where ziω = √
ωi(yi − μi)/

√
φ = √

ωizi . Note that, when ωi = 1, φi = φ and
the perturbed model reduces to the postulate one. For 0 < ωi < 1, inflating occurs
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in φ, and when ωi > 1, there is a reduction of φ. In this case, the matrix � to scale
perturbation is estimated by

�̂ =

⎛
⎜⎜⎜⎝

− 1

2
√

φ̂

D	
β̂

D(m̂)

− 1

4φ̂
ẑ	D(m̂)

⎞
⎟⎟⎟⎠ ,

where the D(m̂) = diag(m(ẑ1), . . . ,m(ẑn)).

Response perturbation. Finally, let us consider an additive perturbation in re-
sponse variable expressed as yiω = yi + ωi , so as that when ωi = 0, the perturbed
model is equal to postulate model. The log-likelihood function for the perturbed
model is given by

(θ ,ω) = −n

2
log(φ) +∑

i∈A

a(ziω) + Kq,

where ziω = (yi + ωi − x	
i β)/

√
φ = zi + ωi/

√
φ. The matrix � for the response

perturbation is estimated by

�̂ =

⎛
⎜⎜⎝

1

φ̂
D	

β̂
D(ĉ)

− 1

2φ̂3/2
v	(m̂)

⎞
⎟⎟⎠ .

4.3 Generalized leverage

The leverage is a measure that allows to verify the influence of the response vari-
able yi on its own predicted value ŷi . In linear regression model, the leverage is
defined by ∂ŷi/∂yi , that is, the leverage reflects the instantaneous rate of change
of the predicted value ŷi when the response variable yi is increased by an infinites-
imal value. Furthermore, the ith leverage coincides with the ith element of the
diagonal of the projection matrix H = X(X	X)−1X	.

A general expression for ∂ŷi/∂yi has been proposed by Wei, Hu and Fung
(1998) for the case where the log-likelihood function (θ ,y) has continuous
second-order derivatives with respect to θ and y, and the MLE of θ exists and is
unique. The generalized leverage matrix is defined by GL(θ) = Dθ (−L̈θθ )

−1L̈θy ,

where Dθ = ∂μ̂

∂θ	 |
θ=θ̂(y)

is a matrix (n × (p + 1)) and L̈θy = ∂2(θ)

∂θ ∂y	 |
θ=θ̂(y)

is a
matrix ((p + 1) × n). For the class of slash-elliptic nonlinear models, we have
Dθ = [Dβ,0n×1],

(−L̈θθ )
−1 =

⎡
⎢⎢⎢⎣

φ
(
D	

β WDβ

)−1 (D	
β WDβ)−1D	

β v(m)

2
√

φd

v(m)	Dβ(D	
β WDβ)−1

2
√

φd

1

d
+ v(m)	Dβ(D	

β WDβ)−1D	
β v(m)

4φ2d2

⎤
⎥⎥⎥⎦
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and L̈θy =
[

φ−1D	
β D(c)

− 1
2φ3/2 v(m)	

]
. Therefore, the generalized leverage matrix of the slash-

elliptical nonlinear model is defined by

GL(θ̂) = D
β̂

(
D	

β̂
ŴD

β̂

)−1D	
β̂

Ŵ∗,

where Ŵ∗ = (D(c) − v(m)v	(m)/4φ2d) is evaluated at θ = θ̂ . The matrix GL(θ̂)

is not symmetrical and neither idempotent. Suppose φ is given, we can write a re-
lationship between the generalized leverage matrix with the local influence matrix
on likelihood displacement F̈ = 2�	(−L̈ββ)−1�, for response additive perturba-
tion scheme yiω = yi + ωi . We obtain

F̈|
θ=θ̂

= 2�̂
	
(−L̈

β̂β̂
)−1�̂

= 2�̂
	(

D	
β̂

D
β̂

)−1D	
β̂

[
D

β̂
(−L̈

β̂β̂
)−1�̂

]
= 2

φ
D(ĉ)D

β̂

(
D	

β̂
D

β̂

)−1D	
β̂

D
β̂

(
D	

β̂
ŴD

β̂

)−1D	
β̂

W∗

= 2

φ
D(c)D

β̂

(
D	

β̂
D

β̂

)−1D	
β̂

GL(θ̂).

Consequently, the total local influence Ci reduces to the simple form 2φ−1cih̃ii ×
GLii (θ̂), if cih̃ii/φ and (or) GLii(θ̂) where h̃ii is ith element of the diagonal
H̃ = Dβ(D	

β Dβ)−1D	
β is an orthogonal projection matrix on subspace spanned by

the columns of D
β̂

.

5 Application

We apply the proposed methods to the data set due to Dudzinski and Mykytowycz
(1961), where the dry weight of the eye lens w (in mg) was measured for 71 free-
living wild rabbits with age x (in days). The ecological motivation of the study of
Dudzinski and Mykytowycz (1961) was to propose a method to determine the age
of European rabbits (Oryctolagus cuniculus) caught in the wild from the weight
of the eye lens. Eye lens weight tends to vary less with environmental conditions
than does total body weight, and therefore may be a more accurate indicator of
the age. The nonlinear model fitted by Dudzinski and Mykytowycz (1961) to these
data was

yi = log(wi) = α − κ

xi + ψ
+ εi, i = 1,2, . . . ,71, (5.1)

where εi is the random error and β = (α, κ,ψ)	 is the unknown parameter vector.
Based on the least square estimates, they concluded that the weight of the eye
lens is a reliable indicator of the age of the rabbit for the first 150 days of the
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Table 7 MLEs (approximated SE) for the parameters of the fitted slash-elliptical models

Model α κ ψ φ BIC AIC

Normal 5.64 130.58 37.60 0.004 −148.43 −157.48
(0.02) (5.60) (2.27) (0.0006)

Logistic II 5.63 127.26 35.86 0.001 −180.99 −190.05
(0.02) (4.99) (2.01) (0.0002)

Student-t (ν = 4) 5.63 126.28 35.29 0.002 −182.20 −191.25
(0.02) (4.65) (1.87) (0.0004)

CN (λ = 0.2, σ = 2) 5.63 125.86 35.20 0.002 −182.44 −191.49
(0.02) (4.61) (1.86) (0.0004)

Slash-normal (q = 3) 5.63 125.77 35.16 0.0014 −181.56 −190.61
(0.02) (4.65) (1.89) (0.0003)

Slash-logistic II (q = 3) 5.63 126.29 35.26 0.0005 −182.14 −191.19
(0.02) (4.48) (1.77) (0.0001)

Slash-Student-t (q = 7, ν = 4) 5.63 126.31 35.28 0.0015 −182.33 −191.38
(0.02) (4.49) (1.78) (0.0003)

Slash-CN (q = 5, λ = 0.2, σ = 2) 5.63 125.92 35.19 0.0014 −182.54 −191.59
(0.02) (4.58) (1.84) (0.0003)

animal. This data set has been used to illustrate various types of nonlinear models,
such as the nonlinear regression model (Ratkowsky, 1983), the exponential family
nonlinear model (Wei, 1998) and the symmetrical nonlinear model (Galea, Paula
and Cysneiros, 2005, Vanegas and Cysneiros, 2010, Cao, Lin and Zhu, 2010). The
statistical motivation of these data is the suspicion that the observations 4, 5, 16
and 17 are the influential points in the nonlinear model with symmetrical errors
(Galea, Paula and Cysneiros, 2005).

In this study, we propose for the error of the model defined in (5.1) some dis-
tributions belonging to the slash-elliptical class. Based on the BIC criterion to
select the extra parameters as discussed in Section 3.3, we choose the models:
slash-normal (q = 3), slash-logistic II (q = 3), slash-Student-t (q = 7, ν = 4) and
slash-CN (q = 5, λ = 0.2, σ = 2). Statistical measures for the selected models are
given in Table 7.

For all cases, we note that the MLEs in the slash-elliptical and symmetri-
cal models are similar. However, the asymptotic standard error estimates of the
slash-elliptical models are always smaller. Furthermore, the estimates of the slash-
Student-t (q = 7, ν = 4) model have the lowest estimated asymptotic standard er-
rors. All parameters are significant for the proposed models with p-values close to
zero in all cases.

Figure 2 displays the fitted curve plot to the data set of the age and eye lens
weight of European rabbits in Australia according to the slash-CN model. The
influential points are highlighted in this figure.
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Figure 2 Fitted curve plot of the slash-CN (q = 5, λ = 0.2, σ = 2).

5.1 The deviance component residual

We conduct a residual and diagnostic analysis of this data set in order to illustrate
the proposed methods for the class of slash-elliptical nonlinear models. The index
plot of the deviance component residual is given in Figure 3, where we can verify
that the residual had a random behaviour and between −3.1 and 3. The points
�4, �5, �16 and �17 are the most distant from zero in the slash-elliptical models,
as they occur in symmetrical models (see Figure 1 in Galea, Paula and Cysneiros
(2005)). For investigating possible violations of the homoscedastic assumptions,
the plots of the fitted values versus the deviance component residuals are displayed
in Figure 3. For all plots, we note that there is no systematic behaviour of the
residuals compared to the fitted values, indicating that the assumption of constant
variance is reasonable.

5.2 The generalized leverage and the local influence under response
perturbation

In Section 3.3, we show analytically that the local influence measure with response
perturbation is proportional to the generalized leverage measure. This result is
showed for the European rabbits data set, when comparing the index plots: general-
ized leverage (Figure 3) and local influence under response perturbation (Figure 4).
The observations highlighted, �1, �2 and �3, are considered as high leverage for the
slash-normal and slash-CN models. For the slash-logistic II model, we highlight
the observations �2 and �3. For the slash-Student-t model, the other observations
are highlighted. However, as noted in Table 8, the slash-Student-t model is not as
sensitive to the observations �4, �5, �16 and �17.
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Figure 3 Index plot deviance component residual (first column), deviance component residual
versus fitted values (second column) and generalized leverage (third column) of the distributions:
slash-normal (q = 3) (first row), slash-logistic II (q = 3) (second row), slash-Student-t (q = 7, ν = 4)
(third row) and slash-CN (q = 5, λ = 0.2, σ = 2) (fourth row).
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Figure 4 Index plot Ci under response perturbation (first column), under scale perturbation (sec-
ond column) and under case-weight perturbation (third column) of the distributions: slash-normal
(q = 3) (first row), slash-logistic II (q = 3) (second row), slash-Student-t (q = 7, ν = 4) (third row)
and slash-CN (q = 5, λ = 0.2, σ = 2) (fourth row).
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Table 8 Sensitivity analysis when dropout the influential points

Removed
Models points α κ ψ φ SE(α̂) SE(κ̂) SE(ψ̂) SE(φ̂)

Slash-normal 4, 5, 16, 17 −0.07 −1.55 −3.09 −24.29 −11.68 −14.22 −16.26 −28.53
Slash-logistic II 4, 5, 16, 17 −0.04 −1.16 −2.34 −25.82 −9.88 −11.84 −13.82 −27.60
Slash-Student-t 4, 5, 16, 17 −0.05 −1.20 −2.43 −26.48 −13.45 −10.46 −8.40 −1.20
Slash-CN 4, 5, 16, 17 −0.06 −1.49 −2.93 −26.32 −11.16 −12.99 −14.70 −22.75

Slash-normal 1 0.06 1.28 2.88 1.92 3.49 7.98 15.11 3.30
Slash-logistic II 1 0.05 1.02 2.30 0.83 2.09 5.59 11.43 1.56
Slash-Student-t 1 0.05 1.04 2.33 0.70 2.65 5.78 9.05 4.30
Slash-CN 1 0.05 1.14 2.54 0.48 2.40 6.13 11.95 2.34

Slash-normal 1, 4 0.02 0.26 0.37 −6.66 −1.70 −0.12 2.75 −7.79
Slash-logistic II 1, 4 0.02 0.41 0.70 −7.08 −1.81 −0.71 1.19 −6.80
Slash-Student-t 1, 4 0.02 0.40 0.67 −7.19 −0.96 3.88 12.46 −6.79
Slash-CN 1, 4 0.02 0.34 0.52 −6.49 −1.32 0.61 4.14 −4.97

5.3 The local influence under scale perturbation

In Figure 4, we display the index plot Ci under scale perturbation according to
the current models. We observe that only the observation �1 appears as a possi-
ble influential point for slash-normal, slash-logistic II and slash-CN models and
observations �4, �5, �16 and �17 for slash-Student-t model.

5.4 The local influence under cases-weight perturbation

The index plot Ci under cases-weight perturbation are given in Figure 4, in which
we note that the observations �1 and �4 are highlighted in the four models used for
European rabbits data set.

5.5 Sensitivity analysis

In order to verify if the observations �4, �5, �16 and �17 are outliers for slash-
elliptical models, we conduct a sensitivity analysis of these observations. We re-
move these observations and refit the models, and then we evaluate the rates of
change of the estimates of the parameters and their respective asymptotic standard
errors estimated by

RC(τ ) =
(

τ (j) − τ

τ

)
× 100,

where τ and τ (j) are the estimates of the parameters of the models with all obser-
vations and with excluded points, respectively, and τ = α,κ,ψ , or φ. The rates of
change in the estimates after removing the points �4, �5, �16 and �17 are listed in
Table 8 (values in %).
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We observe that there is a small reduction in the estimates of the parameters α,
κ , ψ and φ, as well as their estimated asymptotic standard errors. This analysis
was also done by Galea, Paula and Cysneiros (2005) for the symmetrical mod-
els. In comparative terms, the rates of change of the estimates in slash-elliptical
models are smaller than those of the corresponding symmetrical models. Thus, we
conclude that the points �4, �5, �16 and �17 are not considered as influence points
under the fitted slash-elliptical model.

We also evaluate the rate of changes on the estimates when the observation �1
is removed. The results are displayed in Table 8 (values in %). We observe a small
increase in the parameter and asymptotic standard errors estimates after removing
the observation �1, indicating that this observation is not an influential point on
location and the scale parameters.

In order to verify if the observations �1 and �4 are influencing the model with
respect of cases-weight perturbations, we remove these observations and estimated
the models again, obtaining the results given in Table 8 (values in %). Note that
removing these two observations, we obtain small variation in these rates, less than
12%, thus indicating that the observations �1 and �4 are not influential as cases-
weight perturbation.

6 Concluding remarks

In this paper, we propose a methodology for estimation, inference, and diagnos-
tic analysis for the class of nonlinear models with slash-elliptical error distribution.
We develop an inferential methodology based on asymptotic standard error estima-
tors obtained from the observed information matrix. We suggest the AIC and BIC
criteria for choosing the extra parameters, when these are not known. We present
the asymptotic tests (likelihood ratio, Wald and score) that can be used to test for
inclusion and exclusion of explanatory variables in the slash-elliptical nonlinear
model.

We developed deviance component residual for the proposed regression model
and conduct a simulation study to evaluate the behaviour of the residuals. We con-
clude that the deviance component residual has good statistical properties. In par-
ticular, the mean and standard deviation are close to zero and one, respectively,
and a small asymmetry.

We also develop generalized leverage and local influence measures for slash-
elliptical nonlinear models, considering perturbation scheme in the response, scale
and cases-weight. We show that there is a relationship between the local influence
matrix under the response perturbation and the generalized leverage matrix. The
data analysis on the age and eye lens weight of European rabbits in Australia re-
veals that for the slash-elliptical models the standard error are smaller than those
for the estimates of the symmetrical models. The observations �4, �5, �16 and
�17 are considered as influential observations in the symmetrical models Galea,
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Paula and Cysneiros (2005) but in slash-elliptical models, these observations are
not confirmed as an influential observations.
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