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On the powers of polynomial logistic distributions

Sofiya Ostrovska
Atilim University

Abstract. Let P(x) be a polynomial monotone increasing on (−∞,+∞).
The probability distribution possessing the distribution function

F(x) = 1

1 + exp{−P(x)}
is called the polynomial logistic distribution associated with polynomial P

and denoted by PL(P ). It has recently been introduced, as a generalization
of the logistic distribution, by V. M. Koutras, K. Drakos, and M. V. Koutras
who have also demonstrated the importance of this distribution in modeling
financial data. In the present paper, for a random variable X ∼ PL(P ), the
analytical properties of its characteristic function are examined, the moment-
(in)determinacy for the powers Xm, m ∈ N and |X|p, p ∈ (0,+∞) depend-
ing on the values of m and p is investigated, and exemplary Stieltjes classes
for the moment-indeterminate powers of X are constructed.

1 Introduction

This paper deals with a new class of probability distributions called ‘polynomial
logistic’. Polynomial logistic distribution has been introduced in Koutras, Drakos
and Koutras (2014). It generalizes the classical logistic distribution, which has
a wide spectrum of applications in social sciences, economy, biology, agriculture,
and finance as well as other disciplines, see Balakrishnan (1992). Due to its high
degree of importance, logistic distribution has a considerable number of various
generalizations aiming to provide a better fitting to the available data sets. See, for
example, Gupta and Kundu (2010), where skew logistic and proportional reversed
hazard logistic distributions have been introduced and studied. The new general-
ization that is, polynomial logistic distribution, is found to be extremely helpful to
describe real data arising in finance. This is because using polynomials of degree
≥3 in place of linear ones provides additional flexibility to fit data by employing
a greater number of parameters. In the same paper by Koutras et al., a study of
the properties of the polynomial logistic distribution has also been initiated and,
afterwards, followed up in the present work. Having said so, let us introduce some
notions and definitions to be used throughout the paper.
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Definition 1.1. Let P(x) be a polynomial monotone increasing on (−∞,+∞).
The probability distribution with the distribution function

F(x) = 1

1 + exp{−P(x)} , −∞ < x < +∞ (1.1)

is called the polynomial logistic distribution associated with polynomial P .

We denote this distribution by PL(P ), and write X ∼ PL(P ) for a random vari-
able following a polynomial logistic distribution. Here, P can be viewed as an
underlying polynomial of the distribution. If P(x) = ∑r

i=0 aix
i , we can also write

PL(a0, a1, . . . , ar ) for PL(P ) to indicate explicitly the degree and the coefficients
of a polynomial P . Clearly, the degree r of an underlying polynomial P is odd
and the leading coefficient ar is positive. Meanwhile, P can serve as an underly-
ing polynomial for PL(P ) if and only if P ′(x) ≥ 0 for all x ∈ R. There are various
results related to the polynomials non-negative for all x ∈ R. The most commonly
known one states that any such polynomial is a sum of the squares of two polyno-
mials (see, for example, Polya and Szegő (1998), Part 6, Section 6, problem 44).
Nonnegative polynomials are also used in Bertsimas and Popescu (2002) for solv-
ing certain optimization problems of financial mathematics. Proposition 1(a) of
that work provides a necessary and sufficient condition for a polynomial to be
nonnegative on R in terms of positive semidefinite matrices.

In the particular case of P(x) = xr , the corresponding polynomial logistic dis-
tribution is called power logistic and is designated by PLr . In the case where r = 1,
distribution PL1 is the standard classical logistic distribution whose distribution
function equals F = 1/(1 + e−x), x ∈ R.

It can be readily seen that if X ∼ PL(P ), then the density of X equals:

f (x) = P ′(x) exp{−P(x)}
(1 + exp{−P(x)})2 = P ′(x)

4 cosh2{P(x)/2} , (1.2)

while for X ∼ PLr ,

f (x) = rxr−1 exp{−xr}
(1 + exp{−xr})2 . (1.3)

The aim of this paper is to study the moment determinacy and moment inde-
terminacy of the distributions of Xm,m ∈ N and |X|p,p ∈ (0,+∞). It should be
pointed out that the powers of random variables being involved in the Box–Cox
transformation are widely used in statistical practices, see Box and Cox (1964).

Let D be a probability distribution having finite moments of all orders. If the
moment problem for D has a unique solution, then D is said to be moment determi-
nate or M-determinate; otherwise, it is moment indeterminate or M-indeterminate.
A number of criteria is available both for M-determinacy and M-indeterminacy,
among which the mostly known ones are the Cramér, Carleman, and Krein con-
ditions (cf. Stoyanov (2000) and Stoyanov (2013), Section 11). However, in the
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case of M-indeterminacy, those criteria do not indicate the way to exhibit explic-
itly the distributions which are different from D but have the same moments. For
an absolutely continuous distribution, this can be achieved by finding a family of
probability densities called the Stieltjes class. The name “Stieltjes class” has been
implemented by J. Stoyanov and it reflects the contributions made by Stieltjes who
produced the first M-indeterminate distributions by the same method of perturba-
tion functions as used today to create Stieltjes classes. See Letter 325 in Vol. 2 of
Baillaud and Bourget (1905) and Stieltjes (1894). Before we begin, let us recall
the necessary notations and definitions introduced in Stoyanov (2004).

Definition 1.2. Let f be a probability density possessing finite moments of all
orders, and h be an integrable function on (−∞,∞), such that vraisup|h(x)| = 1.
If, for all n ∈ N0, ∫

R

xnh(x)f (x) dx = 0,

then h is called a perturbation of f . Equivalently, one can also say that the product
hf has its all moments vanishing.

Definition 1.3. Given a probability density f and its perturbation h, the set

S = S(f,h) := {
ωε(x) : ωε(x) = f (x)

[
1 + εh(x)

]
, x ∈ R, ε ∈ [−1,1]}

is said to be a Stieltjes class for density f based on perturbation h.

Evidently, S is an infinite family of probability densities all having the same
moments as f . Notice that, for a given probability density f , there exist different
Stieltjes classes based on different perturbation functions h. Currently, the investi-
gation of Stieltjes classes has been drawing the attention of many researchers and
new studies on the subject are constantly coming out. See, for example, Kleiber
(2013, 2014), Pakes (2007).

The present paper is organized as follows. In Section 2, the results on the an-
alytical properties of the characteristic functions of Xm and |X|p are presented.
These results imply that both Xm and |X|p are moment-determinate for m ≤ r

and p ≤ r . Further, in Section 3, it is shown that moment determinacy for |X|p is
valid for all p ≤ 2r , while for p > 2r , the distribution of |X|p becomes moment-
indeterminate. The situation concerning Xm is more subtle and somewhat similar
to the phenomenon described in Berg (1988). Namely, if m is even, then Xm is M-
determinate for m ≤ 2r and M-indeterminate otherwise. Meanwhile, if m is odd,
then Xm is M-determinate if and only if m ≤ r . For example, when r = 3, the dis-
tributions of X3,X4, and X6 are M-determinate, whereas the distribution of X5 is
M-indeterminate. Finally, in Section 4 examples of Stieltjes classes are constructed
pertinent to the M-indeterminate powers of X and |X| in the case when X has a
power logistic distribution.
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2 The characteristic functions of polynomial logistic distributions

Given a random variable X possessing the distribution function F , its characteris-
tic function is denoted by ϕ(t;F); that is,

ϕ(t;F) = E
[
exp{itX}], t ∈ R.

For any real-valued random variable X, its characteristic function exists for all
t ∈ R. What is more, it is uniformly continuous on (−∞,+∞). If, in addition,

∃a > 0 : ϕ(t;F) =
∞∑

k=0

ckt
k, t ∈ (−a, a), (2.1)

then ϕ(t;F) is said to be analytic on (−a, a), and with the help of the series
in (2.1) it admits an analytic continuation into the disc {z : |z| < a} ⊂ C. If the
power series expansion (2.1) holds for all t ∈ (−∞,+∞), then ϕ(t;f ) is an entire
characteristic function. In this case, the power series

∑∞
k=0 ckz

k converges for all
z ∈ C and defines an entire function of the complex variable.

The important characteristics of an entire function are its order, ρ, and type, σ ,
which describe its rate of growth. To be specific, if g(z) is an entire function and
M(r;g) = max|z|≤r |g(z)|, then the order and type of g are given by:

ρ = ρ(g) = lim sup
r→∞

ln lnM(r;g)

ln r
(2.2)

and

σ = σ(g) = lim sup
r→∞

lnM(r;g)

rρ
, (2.3)

provided 0 < ρ < ∞. Alternatively, the order and type of an entire function can
be expressed directly from the coefficient of its power series development. For de-
tailed information see, for example, Levin (1996), Lecture I, Sections 1.2 and 1.3.

Although, for every random variable X—or, equivalently, for every distribution
function F —its characteristic function exists for all t ∈ R, in many problems it is
more convenient to deal with the moment-generating function of X defined by

MX(z) := E
[
exp{zX}], z ∈ C. (2.4)

Evidently, MX(it) = ϕ(t) for t ∈ R. Notice that, in general, MX(z) may not exist
in any (arbitrarily small) neighborhood of 0. The existence of MX(z) is closely
related to the analyticity of the characteristic function ϕ(t;FX). To be specific,
MX(z) exists for |z| < a,a > 0 if and only if ϕ(t;FX) is analytic on (−a, a); and
MX(z) exists for all z ∈ C if and only if ϕ(t;FX) is entire. We refer to Stoyanov
(2013), Chapter 8, pp. 68–70.

The analytical properties of characteristic and moment-generating functions are
used widely not only within Probability Theory itself, but also in a variety of ap-
plications. See, for example, Del Baño Rollin, Ferreiro-Castilla and Utzet (2010),
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where the characteristic functions provide a main tool in investigating the densities
of the random variables appearing in volatility models of mathematical finance.

It is known that the characteristic function of the standard logistic distribution
equals:

ϕ(t) = πt

sinh(πt)
.

This function has an infinite number of poles at ±ik, k ∈ N, and, as such, is not
entire. Clearly, ϕ(t) is analytic on (−1,1) and admits an analytic continuation in
horizontal strip {z : −1 < Im z < 1}. The first theorem of this paper demonstrates
that, when degP ≥ 3, the characteristic function of the polynomial logistic distri-
bution is entire, unlike that in the classical case.

Theorem 2.1. Let P(x) = ∑r
i=0 aix

i be a polynomial of degree r ≥ 3 monotone
increasing on (−∞,+∞). If a random variable X ∼ PL(a0, a1, . . . , ar), then the
characteristic function ϕ(t;F) is entire of order ρ = r/(r − 1) and type σ = (r −
1)rρa

1/(r−1)
r .

Proof. Given a distribution function F , consider the “tail” function

WF (x) := 1 − F(x) + F(−x), x > 0. (2.5)

Obviously, WF (x) is a nonincreasing function which tends to 0 as x → +∞. It is
known (see Linnik and Ostrovskii (1977), Theorem 2.2.2) that the characteristic
function ϕ(t;F) is entire if and only if

∀a > 0, WF (x) = O
(
exp{−ax}) as x → +∞. (2.6)

If F ∼ PL(P ), then

WF (x) = exp{−P(x)}
1 + exp{−P(x)} + exp{P(−x)}

1 + exp{P(−x)} . (2.7)

Clearly, WF (x) ≤ exp{−P(x)} + exp{P(−x)} and hence, for degP = r ≥ 3, con-
dition (2.6) is satisfied, implying that ϕ(t;F) is an entire function. To determine
its order and type, we refer to Theorem 2.4.4 of the same book by Linnik and
Ostrovskii. First, evaluate

κ := lim
x→+∞

ln+ ln+(1/WF (x))

lnx
. (2.8)

To calculate the above limit, it can be noticed from (2.7) that

1/
[
1 + exp

{
P(x)

}] ≤ WF (x) ≤ exp
{−P(x)

} + exp
{
P(−x)

}
,

whence

− ln
[
exp

{−P(x)
} + exp

{
P(−x)

}] ≤ ln
(
1/WF (x)

) ≤ ln
[
1 + exp

{
P(x)

}]
.
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Writing P(x) := arx
r + q(x) and Q(x) := q(x) + q(−x), one has:

P(x) − ln
[
1 + exp

{
Q(x)

}] ≤ ln
(
1/WF (x)

) ≤ P(x) + ln
[
1 + exp

{−P(x)
}]

yielding

1 + o(1) ≤ ln(1/WF (x))

P (x)
≤ 1 + o(1), x → +∞.

As a result,

ln
(
1/WF (x)

) ∼ P(x) ∼ arx
r , x → +∞. (2.9)

Thence

ln ln
(
1/WF (x)

) = lnar + r lnx + o(1), x → +∞
and one obtains κ = r . By using κ−1 + ρ−1 = 1, see formula (2.4.3) in Linnik and
Ostrovskii (1977), we conclude that the order of the characteristic function of F

equals ρ = r/(r − 1), as stated.
To determine type σ(ϕ), one has to calculate the following:

λ := lim
x→+∞

ln+(1/WF (x))

xκ
. (2.10)

Using (2.9) and the fact that κ = r , it is immediate that λ = ar . Then, by applying
relation (2.4.4) from Linnik and Ostrovskii (1977), which states that (κλ)ρ−1 ×
σρ = 1, one obtains:

σ = r − 1

rr/(r−1) · a1/(r−1)
r

. �

The corollaries below once again emphasize the difference between the proper-
ties of the logistic distribution and the polynomial logistic associated with a poly-
nomial of degree at least 3.

Corollary 2.1. If X ∼ PL(P ),degP ≥ 3, then MX(z) exists for all z ∈ C.

Corollary 2.2. Polynomial logistic distribution associated with a polynomial of
degree ≥ 3 is not infinitely divisible.

Proof. It is known that a characteristic function of an infinitely divisible distri-
bution does not vanish—see Stoyanov (2013), Section 9, p. 78. Meanwhile, the
characteristic function of a polynomial logistic distribution PL(P ) with degP ≥ 3
is entire of a noninteger order and, consequently, it has infinitely many zeroes.
Thus, the corresponding distribution is not infinitely divisible. �

Following the same line of reasoning, one can reach results of similar nature for
the powers polynomial logistic distributions.
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Theorem 2.2. Let X ∼ PL(P ) = PL(a0, a1, . . . , ar). Denote by Fm,m ∈ N,
and Gp,p ∈ (−∞,+∞), the distribution functions of Xm and |X|p , respec-
tively. Then, for 1 ≤ m ≤ r − 1, and 0 < p < r , the characteristic functions
ϕ(t;Fm) and ϕ(t;Gp) are entire of orders rm = r/(r − m) and rp = r/(r −
p), whose types are σm = (r − m)r−r/(r−m)(ar/m)−m/(r−m) and σp = (r −
p)r−r/(r−p)(ar/p)−p/(r−p), respectively.

Proof. Straightforward calculations reveal that Fm(x) = F(x1/m) if m is odd and
Fm(x) = F(x1/m) − F(−x1/m), x > 0 if m is even, while Gp(x) = F(x1/p) −
F(−x1/p), x > 0. Therefore, in both cases, the tail function (2.5) can be expressed
in the form Wp(x) = WF (x1/p), x > 0, where for Fm only p ∈ N is allowed. Due
to the fact that

Wp(x) ≤ exp
{−P

(
x1/p)} + exp

{
P

(−x1/p)} = O
(
exp

{−arx
r/p})

as x → +∞,

the condition (2.6) is satisfied whenever p < r . This implies that, for these powers,
the characteristic functions ϕ(z;Fm) and ϕ(z;Gp) are entire. Since the order and
type of a characteristic function depend solely on the behavior of its tail, one may
use (2.9) to derive:

ln
(
1/Wp(x)

) = ln
(
1/WF

(
x1/p)) ∼ P

(
x1/p) ∼ arx

r/p, x → +∞. (2.11)

Therefore, by formulae (2.8) and (2.10), one may calculate κ = r/p and λ = ar

and derive the required values by applying Theorem 2.4.4 of Linnik and Ostrovskii
(1977). �

It is clear that condition (2.6) is not satisfied if p ≥ r . Therefore, for these values
of p (or m), the respective characteristic functions are not entire. However, in
the case m = r or p = r , the characteristic functions will be analytic in some
neighborhood of 0, as the next theorem shows.

Theorem 2.3. Let X ∼ PL(P ) = PL(a0, a1, . . . , ar),Fm and Gp be defined as in
Theorem 2.2. Then, the characteristic functions ϕ(t;Fr) and ϕ(t;Gr) are analytic
for |t | < ar .

Proof. It is known that a characteristic function ϕ(t;F) is analytic for |t | < R if
and only if

∀a < R, WF (x) = O
(
exp{−ax}) as x → +∞.

See, for example, Linnik and Ostrovskii (1977), formula (2.2.3). Meanwhile, since
Wr(x) = WF (x1/r ), it follows that, ∀ε > 0,

Wr(x) ≤ exp
{−P

(
x1/r)} + exp

{
P

(−x1/r)} = O(exp
{−(ar − ε)x

}
,

x → +∞.
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Therefore, functions ϕ(t;Fr) and ϕ(t;Gr) are analytic for |t | < ar . In addition,
they are not analytic on any interval (−R,R), where R > ar . �

Corollary 2.3. The characteristic functions ϕ(t;Fr) and ϕ(t;Gr) admit an ana-
lytic continuation in the strip {z : −ar < Im z < ar}.
Corollary 2.4. For 1 ≤ m ≤ r and 0 < p ≤ r , the moment-generating functions of
Xm and |X|p exist whenever |z| < ar . This means that the Cramér condition—see,
for example, Stoyanov (2013), Section 11, p. 100, is satisfied and, consequently the
distributions of these random variables are M-determinate. This fact can also be
established by the unicity theorem for analytic functions or, alternatively, with the
help the Carleman condition as in Theorem 3.1.

3 M-determinate and M-indeterminate powers of polynomial logistic
distributions

As it has been stated by Corollary 2.4, random variables Xm,m ∈ N and |X|p,p ∈
R+, are M-determinate whenever m ≤ r and p ≤ r as a consequence of the cor-
responding characteristic functions being analytic in some neighborhood of 0. In
this section, the M-(in)determinacy for the distributions of |X|p and Xm in the
case when m,p > r is investigated. As it turns out, despite the fact that the charac-
teristic functions are no longer analytic, the distributions |X|p are M-determinate
also for all p ≤ 2r . This bound proves to be sharp, that is, for p > 2r , the related
distributions are M-indeterminate. For the distributions of Xm,m > r the situation
appears to be more complicated, as Theorem 3.2 implies.

From here on, letter C (with or without indices) denotes positive constants
whose values do not need to be specified.

Theorem 3.1. Let X ∼ PL(P ),deg P = r . Then:

(i) For p ≤ 2r , the distribution of |X|p is M-determinate;
(ii) For p > 2r , the distribution of |X|p is M-indeterminate.

Proof.

(i) An explicit formula for the density of |X|p can be written as:

gp(x) = 1

4p
x1/p−1

{
P ′(x1/p)

cosh2(P (x1/p)/2)
(3.1)

+ P ′(−x1/p)

cosh2(P (−x1/p)/2)

}
, x > 0.

Consequently, the density enjoys the following estimate:

gp(x) ≤ C1x
r/p−1 exp

{−C2x
r/p}

, x ≥ x0. (3.2)
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Hence, the moments mn = E[(|X|p)n] satisfy the inequalities below:

mn ≤ xn
0 + C1

∫ +∞
0

xn+r/p−1 exp
{−C2x

r/p}
dx = xn

0 + C1 · C−np/r
2 
(np/r + 1)

≤ Cn
3 
(2n + 1) = Cn

3 (2n)! because p/r ≤ 2.

Therefore,
∑∞

n=0(mn)
−1/(2n) = ∞ and, by the Carleman criterion, the distribution

of |X|p is moment-determinate in the Stieltjes sense. Since the distribution of |X|p
is not discrete, by virtue of the Chihara theorem (cf. Chihara (1968)) it is also
moment-determinate in the sense of Hamburger, that is, M-determinate.

(ii) To prove M-indeterminacy for p > 2r , the Krein criterion will be applied
which provides a sufficient condition for a distribution to be M-indeterminate. To
satisfy this criterion, it has to be shown see, for example, Stoyanov (2013), Sec-
tion 11 that ∫ ∞

0

− lngp(x2)

1 + x2 dx < ∞. (3.3)

Formula (3.1) implies that lngp(x2) is integrable on any bounded interval. Hence,

it suffices to check that
∫ ∞
a

− lngp(x2)

1+x2 dx < ∞ for some a > 0. Select a > 0 in such

a way that gp(x2) �= 0 for x ∈ [a,∞). This is possible because gp(x) has at most
a finite number of zeroes. Since

gp

(
x2) ∼ C5x

2r/p−2 exp
{−P

(
x2/p)}

, x → +∞,

it follows that

− lngp

(
x2) ∼ P

(
x2r/p) ∼ arx

2r/p, x → +∞.

As 2r/p < 1, the logarithmic integral (3.3) converges. �

Corollary 3.1. Let m ∈ N be even. Then, the distribution of Xm is M-determinate
if and only if m ≤ 2r .

Remark 3.1. Similar to the classical case when r = 1, the distribution of Y =
|X|, x ∼ PLr , can be called half-power logistic. The results of Theorem 3.1 in
the case r = 1 coincide with the previously established ones for the half-logistic
distribution. See, for example, Lin and Stoyanov (2015).

Remark 3.2. At this stage, it is worth pointing out that part (i) of Theorem 3.1 can
also be established by using Hardy’s condition, stating that if X is a non-negative
random variable such that

∃C > 0 : E
[
exp{C√

X}] < ∞,

then the distribution of X is M-determinate. Here, we refer to Theorem 1 and
Corollary 3(i) of Stoyanov and Lin (2013). One can deduce that estimate (3.2) im-
plies Hardy’s condition for |X|p to be satisfied for C ∈ (0,C2) whenever p ≤ 2r .
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Now, what about the odd powers of X? By Corollary 2.5, if m ≤ r , then the
distribution of Xm is M-determinate. The next theorem shows that this bound is
sharp.

Theorem 3.2. Let m ∈ N be odd. If m > r , then the distribution of Xm is M-
indeterminate.

Proof. The statement can be derived from the application of the Krein condition
for distributions with support (−∞,+∞). See, for example, Stoyanov (2013),
Section 11. In the case when m is odd, the density of Xm equals:

fm(x) = 1

m
x1/m−1 · P ′(x1/m) exp{−P(x1/m)}

(1 + exp{−P(x1/m)})2 , −∞ < x < ∞.

The Krein condition, sufficient for the M-indeterminacy, is satisfied if the integral∫ +∞
−∞

− lnfm(x)

1 + x2 dx < ∞. (3.4)

The integrand of (3.4) is integrable on any bounded interval and, thence, it is suf-
ficient to show that

∫
|x|≥a

− lnfm(x)

1+x2 dx < ∞ for some a > 0. Obviously, fm(x) =
0 ⇔ P ′(x1/m) = 0, and, as such, fm(x) has at most (r − 1)/2 distinct real ze-
roes, say, a1, a2, . . . , as . Set a := 1 + max1≤j≤s |aj |. Then − lnfm(x)

1+x2 is continuous
whenever |x| ≥ a. In addition,

− lnfm(x) ∼ P
(|x|1/m) ∼ ar |x|r/m as x → ±∞.

Therefore, for r/m < 1 integral (3.4) converges, yielding that the distribution of
Xm is M-indeterminate when m > r . �

Remark 3.3. If r = 1, one can reveal the previously known results on the classical
logistic distribution, see Lin and Huang (1997), Stoyanov and Tolmatz (2005), Sec-
tion 6, and Stoyanov, Lin and Dasgupta (2013), Section 3.2. Meanwhile, tails (2.7)
of polynomial logistic distributions with r ≥ 3 are lighter than those of the standard
logistic one. Thereby justifying the fact that larger powers of X stay M-determinate
compared with powers of the classical (half)-logistic.

4 Stieltjes classes for powers of PLr distributions

In this part, the Stieltjes classes for M-indeterminate powers of PLr—that is, power
logistic—distribution will be constructed. This is done to avoid cumbersome cal-
culations, although a similar approach can be exploited in more general cases.
First, a Stieltjes class for |X|p,p > 2r , will be presented.
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Theorem 4.1. Let X ∼ PLr and p > 2r . If

h̃p(x) =
{(

1 + e−xr/p )2 sin
(
xr/p tan(πr/p) − πr/p

)
, x > 0,

0, x < 0,
(4.1)

and Mp := maxx≥0 |h̃p(x)|, then

hp(x) := h̃p(x)

Mp

(4.2)

is a perturbation for the density gp(x) of |X|p .

Proof. According to (3.1), the probability density of |X|p equals:

gp(x) = rxr/p−1

2p cosh2(xr/p/2)
, x > 0.

Then,

∀α ∈ (r/p,1/2),∃C > 0 : gp(x) ≥ C exp
{−xα}

, x > 0. (4.3)

A method to construct Stieltjes classes for densities on (0,+∞) having a lower
bound of the form (4.3) with α ∈ (0,1/2) is presented in Ostrovska (2014). For
the convenience of the readers, the procedure is outlined briefly below. Let

ϕ(z) = zr/p−1 exp
{
− zr/p

cos(πr/p)

}
, z ∈ C. (4.4)

Clearly, ϕ(z) is analytic in {z : Im z ≥ 0} \ {0}, where it enjoys the estimate:∣∣ϕ(z)
∣∣ ≤ |z|r/p−1 exp

{−|z|r/p}
. (4.5)

Select real numbers 0 < ρ < R and consider in the upper half-plane a closed
contour L := l1 ∪ l2 ∪ l3 ∪ l4, consisting of two segments: l1 = [ρ,R] and l3 =
[−R,−ρ], and two arcs: l2 = {z : |z| = R,0 < arg z < π}, and l4 = {z : |z| =
ρ,0 < arg z < π}. By virtue of the Cauchy theorem:∮

L
znϕ(z) dz = 0, ∀n ∈ N0,

where the positive (i.e., counterclockwise) direction of the path has been taken.
Obviously,∮
L

znϕ(z) dz = I1 +I2 +I3 +I4 where Ij :=
∫
lj

znϕ(z) dz, j = 1,2,3,4.

As under condition (4.5) the integrals along the arcs tend to 0 as R → ∞ and
ρ → 0 for each n ∈ N0, passing to limit as R → ∞ and ρ → 0 leads to:∫ ∞

0
xnϕ(x) dx + (−1)n

∫ ∞
0

xnϕ(−x)dx = 0, n ∈ N0.
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Taking the imaginary part of the latter equality yields:∫ ∞
0

xn[
Imϕ(−x)

]
dx = 0.

It can be readily seen that

Imϕ(−x) = xr/p−1e−xr/p

sin
(
xr/p tan

πr

p
− πr

p

)

and, therefore, (4.1) equals

2r

p
· Imϕ(−x)

gp(x)
,

implying that gph̃p has all vanishing moments. Thus, (4.2) is a perturbation func-
tion for gp . �

Corollary 4.1. Given p > 2r , the set

Sp = {
ωε : ωε(x) = gp(x)

[
1 + εhp(x)

]
, ε ∈ [−1,1]}

is a Stieltjes class for gp .

Remark 4.1. Function ϕ(z) in (4.4) can be chosen in different ways under the
stipulation that the necessary estimates are satisfied. Selecting

ϕ(z) = exp
{
− zβ

cosπβ

}
, β ∈ (r/p,1/2),

one obtains a perturbation function of the form

hp(x) = Cx1−r/p(
1 + e−xr/p)2 sin

(
xβ tanπβ

)
exp

{
xr/p − xβ}

, x > 0.

It should be mentioned that, for the case r = 1, the latter coincides with the per-
turbation function (18), obtained through other methods in Stoyanov and Tolmatz
(2005), for the M-indeterminate powers of the classical logistic distribution.

Now, let m ∈ N. Since Xm = |X|m for m being even, all that remains is to
construct a Stieltjes class only in the case when m is odd. Let us remind that the
situation is somewhat similar to the one described in Berg (1988) and Stoyanov
(2013), Section 11.1. Namely, if m > r is odd, then the distribution of Xm is M-
indeterminate, though for m being even, the distribution remains M-indeterminate
unless m > 2r . The proof of the next assertion is a slight modification of the pre-
ceding one, and it follows the ideas presented in Proposition 1 of Berg (1988),
where odd powers of the standard normal distribution have been studied. For this
reason, it will be presented without going into details.
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Theorem 4.2. Let X ∼ PLr and let m > r be an odd positive integer. If

h̃m(x) := m

r
sin

[
πr

2m
− xr/m tan

πr

2m

](
1 + e−xr/m)2

, x > 0,

and Km = max−∞<x<+∞ |h̃m(|x|)|, then

hm(x) = h̃m(|x|)
Km

(4.6)

is a perturbation for the density fm of Xm.

Proof. Given odd m ∈ N, the density of Xm is expressed by:

fm(x) = rxr/m−1e−xr/m

m(1 + e−xr/m
)2

. (4.7)

Obviously, for odd values of m, the density fm is symmetric and, therefore, if
h̃m(x) is a bounded function on [0,+∞) such that∫ +∞

0
x2nfm(x)h̃m(x) dx = 0 for all n ∈ N0, (4.8)

then (4.6) is a perturbation for fm. To find h̃m(x), a contour integration will be
used. However, since fm does not satisfy estimate (4.3), the direct application of
the result from Ostrovska (2014) is no longer possible and using the same approach
one has to consider a contour different from the one in Theorem 4.1. Denote α =
r/m ∈ (0,1) and put

ϕ(z) = zα−1 exp
{
− zα

cos(πα/2)

}
.

Clearly, ϕ(z) is analytic in C \ (−∞,0]. In addition, the following estimate is
valid: ∣∣ϕ(z)

∣∣ ≤ |z|α−1 exp
{−|z|α}

whenever 0 ≤ arg z ≤ π

2
. (4.9)

For real numbers 0 < ρ < R, consider in the first quadrant the closed contour
L := l1 ∪ l2 ∪ l3 ∪ l4, consisting of two segments: l1 = [ρ,R] and l3 = [iρ, iR], and
two arcs: l2 = {z : |z| = R,0 < arg z < π

2 }, and l4 = {z : |z| = ρ,0 < arg z < π
2 }. It

can be readily seen that, under condition (4.9), the integrals of z2nϕ(z) along the
arcs tend to 0 as R → ∞ and ρ → 0 for each n ∈ N0. Therefore, after applying the
Cauchy theorem to

∫
L z2nϕ(z) dz and passing to limit as R → ∞ and ρ → 0, one

obtains: ∫ +∞
0

x2nϕ(x) dx − (−1)ni

∫ +∞
0

x2nϕ(ix) dx = 0, n ∈ N0.
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Taking the imaginary part of the latter equality leads to:∫ +∞
0

x2n Re
[
ϕ(ix)

]
dx = 0, ∀n ∈N0.

By the straightforward calculations, Reϕ(ix) = xα−1 exp{−xα} sin[πα
2 − xα ×

tan πα
2 ], where α = r/m. Now, for x > 0, set:

h̃m(x) := Re[ϕ(ix)]
fm(x)

= m

r
sin

[
πr

2m
− xr/m tan

πr

2m

](
1 + e−xr/m)2

.

Obviously, h̃m(x) is bounded on [0,+∞) and satisfy (4.8). Thus, (4.6) is a pertur-
bation of density fm. �

Corollary 4.2. Given an odd positive integer m ≥ 2r + 1, the set

Sm = {
ωε : ωε(x) = fm(x)

[
1 + εhm(x)

]
, ε ∈ [−1,1]}

is a Stieltjes class for fm.
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