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Abstract. We introduce the univariate two-piece sinh–arcsinh distribution,
which contains two shape parameters that separately control skewness and
kurtosis. We show that this new model can capture higher levels of asymmetry
than the original sinh–arcsinh distribution [Biometrika 96 (2009) 761–780],
in terms of some asymmetry measures, while keeping flexibility of the tails
and tractability. We illustrate the performance of the proposed model with
real data, and compare it to appropriate alternatives. Although we focus on
the study of the univariate versions of the proposed distributions, we point
out some multivariate extensions.

1 Introduction

Univariate parametric flexible distributions that can capture departures from nor-
mality in terms of asymmetry and kurtosis have been widely studied. This interest
is often motivated by the fact that these distributions can produce robust models.
Flexible distributions are typically, but not exclusively, obtained by adding pa-
rameters to a symmetric distribution. These methods can be classified either as
parametric transformations of a distribution function (Ferreira and Steel, 2006) or
as parametric changes of variable (Ley and Paindaveine, 2010). We do not pro-
vide an extensive overview of the literature on these classes, but only present a
brief summary of the methods that are relevant to this work. We refer the reader to
Jones (2015) for a good survey of flexible distributions. One of the most popular
distributions obtained as a transformation of a symmetric distribution is the skew
normal (SN) proposed by Azzalini (1985). Its construction consists of multiplying
the normal density by a parametric skewing function, as follows:

g(x;λ) = 2φ(x)�(λx), (1.1)

where λ ∈ R, φ and � denote the standard normal density and distribution func-
tion, respectively. It is easy to see that density (1.1) is asymmetric for λ �= 0 and
converges to the right/left half-normal as λ → ±∞. Wang, Boyer and Genton
(2004) showed that this idea can be extended to any symmetric probability density
function (p.d.f.) f with support on R through the transformation:

g(x;λ) = 2f (x)π(λx),
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where π is a nonnegative function satisfying π(x) + π(−x) = 1. The distribu-
tions obtained with this technique are usually referred to as skew-symmetric mod-
els. Although this method leads to a tractable expression for the density function,
some skew-symmetric models have inferential problems. For instance, Azzalini
(1985) showed that the Fisher information matrix of the SN distribution is singu-
lar when the skewness parameter λ is zero, which also leads to the presence of
flat ridges in the likelihood surface (Pewsey, 2000). Another strategy for adding
shape parameters to a distribution F(x) consists of raising this function to a pos-
itive power α, leading to the class of power distributions. We refer the reader to
Pewsey, Gómez and Bolfarine (2012) for a survey of the properties of this transfor-
mation as well as some inferential properties. Another popular method is the two-
piece transformation (Fechner, 1897; Fernández and Steel, 1998; Mudholkar and
Hutson, 2000; Arellano-Valle, Gómez and Quintana, 2005; Jones, 2006), which
consists of using different scale parameters on either side of the mode of the den-
sity under several parameterisations. Although standard likelihood theory is not
applicable in the family of two-piece distributions, due to the lack of differentia-
bility (of second order) of the corresponding density function at the mode, it has
been shown that maximum likelihood (ML) estimation is well-behaved (Jones and
Anaya-Izquierdo, 2010), especially under certain parameterisations that induce pa-
rameter orthogonality. Further, some asymptotic results have been proven for the
maximum likelihood estimators of the parameters of some of these distributions
(Mudholkar and Hutson, 2000; Arellano-Valle, Gómez and Quintana, 2005; Zhu
and Galbraith, 2010; Jones and Anaya-Izquierdo, 2010). The sinh–arcsinh (SAS)
distribution (Jones and Pewsey, 2009) represents an interesting model obtained as
a parametric change of variable. This distribution, which is described in the next
section, contains two shape parameters that can be interpreted as skewness and
kurtosis parameters, and has tractable expressions for the density and distribution
functions. Another appealing property is that it contains models with both heavier
or lighter tails than those of the normal distribution. However, we will show in the
next section that this model cannot accommodate high levels of skewness in terms
of some interpretable measures of asymmetry.

We propose a flexible distribution obtained by applying the two-piece trans-
formation to the symmetric sinh–arcsinh distribution, which we call the two-piece
sinh–arcsinh distribution (TP SAS). The reader may naturally question the need for
another model and the value of this approach to modelling asymmetry. Our justi-
fication is modest but still valid: we try to produce a distribution that can capture
higher levels of skewness than the original SAS distribution while keeping the tail
flexibility, ease of use, and appealing inferential properties. We also argue in favour
of the proposed distribution using the interpretability of its parameters. Concern-
ing the value of this approach, we compare it to the skew-symmetric extension of
the symmetric SAS distribution. The resulting distribution, denoted SS SAS, can
also capture higher levels of asymmetry than the SAS distribution, but also inherits
the inferential issues of the skew normal distribution, which is a particular case of
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the SS SAS. This raises another question: which of the three versions of the sinh–
arcsinh distribution (SAS, TP SAS, SS SAS) should we use? There are, of course,
many formal model selection tools for use in applications. However, we argue that
other features such as ease of use, inferential properties, and interpretability of
the model parameters have to be considered as well, especially in cases when the
model selection tools do not clearly favour one of the competitors.

The paper is organised as follows. In Section 2, we provide a brief summary of
the SAS distribution. We also study the flexibility of this distribution in terms of
some measures of skewness. In Section 3, we introduce the TP SAS and SS SAS
distributions and discuss some basic distributional properties. The performance of
the proposed models is illustrated with an example in Section 5.

2 The original sinh–arcsinh distribution

The SAS cumulative distribution function (c.d.f.) (Jones and Pewsey, 2009)
is obtained by applying the parametric change of variable H(x;μ,σ, ε, δ) =
sinh(δ arcsinh(

x−μ
σ

) − ε) to a normal random variable, as follows:

S0(x;μ,σ, ε, δ) = �
[
H(x;μ,σ, ε, δ)

]
, (2.1)

where x ∈ R, μ ∈ R is the location parameter, σ ∈ R+ is the scale parameter,
ε ∈ R, and δ ∈ R+. The corresponding density function can be obtained in closed
form by differentiating (2.1) as follows:

s0(x;μ,σ, ε, δ) = φ
[
H(x;μ,σ, ε, δ)

]
h(x;μ,σ, ε, δ), (2.2)

where h(x;μ,σ, ε, δ) = δ cosh(δ arcsinh((x−μ)/σ)−ε)

σ
√

1+((x−μ)/σ)2
. Jones and Pewsey (2009) show

that density (2.2) is unimodal and that (ε, δ) can be interpreted as skewness and
kurtosis parameters, respectively, if they are studied separately. The density (2.2)
contains the normal distribution as a particular case when (ε, δ) = (0,1). By fix-
ing ε = 0, a symmetric density is obtained with the property that values of δ < 1
produce distributions with heavier tails than those of the normal one; values of
δ > 1 produce distributions with lighter tails. On the other hand, fixing δ = 1 yields
an asymmetric distribution that contains the normal distribution when ε = 0. An-
other appealing feature is that moments of any order exist for this distribution,
for any combination of the parameters. Simulation from this model is straightfor-
ward by using the expression (2.1) together with the probability integral transform.
Rosco, Jones and Pewsey (2011) proposed using the sinh–arcsinh transformation
H(x;μ,σ,1, ε) as a method to induce skewness in the Student-t distribution with
unknown degrees of freedom. We call this the T SAS distribution. More recently,
Fischer and Herrmann (2013) proposed applying the sinh–arcsinh transformation
to the hyperbolic secant distribution, in a similar fashion to (2.2), to produce a flex-
ible distribution centred at the hyperbolic secant distribution. Similarly, Pewsey
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Figure 1 AG measure of skewness as a function of ε: δ = 0.25 (dotted line); δ = 0.5 (short dashed
line); δ = 1 (continuous line); δ = 2 (dot-dashed line); δ = 4 (long dashed line).

and Abe (2015) combined the sinh–arcsinh transformation with the logistic distri-
bution, producing a distribution that can be multimodal.

To quantify the asymmetry levels captured by the SAS distribution, we con-
sider two measures of skewness: (i) the AG measure of skewness (Arnold and
Groeneveld, 1995), which is defined as the difference of the mass cumulated to
the right of the mode minus the mass cumulated to the left of the mode, hence
taking values in (−1,1); and (ii) the Critchley–Jones (CJ) functional asymme-
try measure (Critchley and Jones, 2008), which measures discrepancies between
points located on either side of the mode (xL(p), xR(p)) of a density s such that
s(xL(p)) = s(xR(p)) = ps(mode), p ∈ (0,1), with formula:

CJ(p) = xR(p) − 2 × mode + xL(p)

xR(p) − xL(p)
. (2.3)

This measure also takes values in (−1,1); negative values of CJ(p) indicate that
the values xL(p) are further from the mode than the values xR(p), and analogously
for positive values. Critchley and Jones (2008) show that the scalar AG measure
of skewness can be seen as an average of the asymmetry function CJ.

Figure 1 shows the AG measure of (2.2) obtained by varying the parameter ε

for different values of the parameter δ. This figure indicates that this model covers
different ranges of AG for different values of δ, and that these ranges are narrower
for larger values of δ. Figure 2 shows the CJ asymmetry functional measure for
different values of δ and ε. The range of values of CJ covered by varying ε is also
narrower for larger values of δ, and that δ and ε have a joint role in controlling the
shape of the density.

3 Two-piece sinh–arcsinh distribution

In order to produce a model that can cover the whole range of the AG and CJ
measures of skewness, while keeping some of the original appealing properties of
the SAS distribution, we propose a modification obtained by fixing the parameter
ε = 0 in (2.2) and then introducing skewness through the two-piece transformation.
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Figure 2 CJ functional measure of asymmetry: (a) δ = 0.5, (b) δ = 0.75, (c) δ = 1, (d) δ = 2,
and (e) δ = 4. The curves represent the CJ for different values of ε: ε = −5,5 (dashed bold line),
ε = −4,4 (dashed-dotted line), ε = −3,3 (dotted line), ε = −2,2 (dashed line), ε = −1,1 (contin-
uous line), and ε = 0 (bold line).
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Definition 1. A random variable X is said to be distributed as a two piece sinh–
arcsinh (TP SAS) if its p.d.f. is given by:

s1(x;μ,σ1, σ2, δ) = 2

σ1 + σ2

[
f0

(
x − μ

σ1
; δ

)
I (x < μ)

(3.1)

+ f0

(
x − μ

σ2
; δ

)
I (x ≥ μ)

]
,

where f0(x; δ) = s0(x;0,1,0, δ) is the symmetric SAS density, μ ∈ R, and σ1, σ2,
δ ∈R+.

The density (3.1) joins two symmetric SAS half-densities at the mode with dif-
ferent scale parameters. This p.d.f. is unimodal, with mode at μ, contains the sym-
metric SAS distribution for σ1 = σ2, and is asymmetric for σ1 �= σ2. Given that the
symmetric SAS distribution is an identifiable model (Jones and Pewsey, 2009),
it follows that the TP SAS distribution is identifiable as well. Moreover, the tail
behaviour of the TP SAS distribution is the same in each direction given that it
is obtained as a transformation of scale (Jones, 2015). A useful family of repa-
rameterisations of distributions of the type (3.1) was proposed by Arellano-Valle,
Gómez and Quintana (2005) as follows:

s1(x;μ,σ, γ, δ) = 2

σ [a(γ ) + b(γ )]
[
f0

(
x − μ

σb(γ )
; δ

)
I (x < μ)

(3.2)

+ f0

(
x − μ

σa(γ )
; δ

)
I (x ≥ μ)

]
,

where a(γ ) > 0, b(γ ) > 0, γ ∈ �. The space � depends on the parameterisation
{a(γ ), b(γ )}. Perhaps, the most popular parameterisations correspond to the cases
when {a(γ ), b(γ )} = {1/γ, γ }, γ > 0, termed inverse scale–factors parameterisa-
tion (Fernández and Steel, 1998), and {a(γ ), b(γ )} = {1 − γ,1 + γ }, γ ∈ (−1,1),
termed ε-skew parameterisation (Mudholkar and Hutson, 2000). Some other pa-
rameterisations were studied in Rubio and Steel (2014). For δ = 1, we obtain the
two-piece normal distribution (Mudholkar and Hutson, 2000), and for a(γ ) = b(γ )

we obtain the symmetric sinh–arcsinh distribution (Jones and Pewsey, 2009). Fig-
ure 3 shows some examples of the shapes of density (3.2) for the ε-skew parame-
terisation.

For two-piece distributions, Klein and Fischer (2006) showed that the parameter
γ can be interpreted as a skewness parameter in a more fundamental sense (often
called “van Zwet ordering”, van Zwet, 1964). This means that (γ, δ) in (3.2) can
also be interpreted as skewness and kurtosis parameters, respectively, in the same
way that Jones and Pewsey (2009) interpreted (ε, δ) for the SAS distribution. The
AG and the CJ measures coincide for this model, and depend only on γ , as follows:

AG(γ ) = CJ(p, γ ) = a(γ ) − b(γ )

a(γ ) + b(γ )
.
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Figure 3 Two-piece sinh–arcsinh density (3.2) under the ε-skew parameterisation with μ = 0,
σ = 1, δ = (0.25,0.5, . . . ,1.5) and: (a) γ = −0.25; (b) γ = −0.5; (c) γ = −0.75.

For instance, under the ε-skew parameterisation AG(γ ) = CJ(p, γ ) = −γ ∈
(−1,1). From this expression, it is clear that model (3.2) includes the whole range
of AG and CJ measures.

One important difference between models (2.2) and (3.2) is that in (2.2), the
parameter ε also controls the tail behaviour. In fact, values of ε �= 0 produce asym-
metric densities with different tail behaviour in each direction (Jones and Pewsey,
2009). This type of asymmetry (with different tails) was recently denoted “tail
asymmetry” by Jones (2015). On the other hand, (3.2) has the same tail behaviour
in each direction, denoted “main-body asymmetry” by Jones (2015). This differ-
ence between the TP SAS and SAS distributions is neither an advantage of one
over the other nor a disadvantage: these models capture different types of asym-
metry. However, in practice, the data may favour one of these types of asymmetry.
Therefore, a model comparison between the TP SAS and SAS models could also
provide information about the type of asymmetry that better fits the data. Distri-
butions that can capture both types of asymmetry have been recently studied in
Rubio and Steel (2015).

3.1 Some properties of the two-piece sinh–arcsinh distribution

We now discuss some basic properties of the TP SAS distribution which show
the tractability of this model. These properties are largely inherited from the well-
known properties of the two-piece transformation.

The c.d.f. of the TP SAS distribution is given by the following expression.

S1(x;μ,σ, γ, δ)

= 2b(γ )

a(γ ) + b(γ )
F0

(
x − μ

σb(γ )
; δ

)
I (x < μ) (3.3)

+
[
b(γ ) − a(γ )

a(γ ) + b(γ )
+ 2a(γ )

a(γ ) + b(γ )
F0

(
x − μ

σa(γ )
; δ

)]
I (x ≥ μ),

where F0(x; δ) = S0(x;0,1,0, δ) is the symmetric SAS c.d.f. The quantile func-
tion can be easily obtained by inverting this expression.



492 F. J. Rubio, E. O. Ogundimu and J. L. Hutton

Moments. Given that the moments of any order of the symmetric SAS distri-
bution exist (Jones and Pewsey, 2009), and that the two-piece transformation pre-
serves the existence of moments (Arellano-Valle, Gómez and Quintana, 2005),
it follows that moments of any order of the TP SAS distribution (3.3) exist, for
any combination of the parameters. Expressions for the moments of (3.2) can be
derived by combining the expressions for the moments of the symmetric SAS dis-
tribution from Jones and Pewsey (2009) and the expression for the moments of
two-piece distributions in Arellano-Valle, Gómez and Quintana (2005). However,
these expressions are slightly cumbersome and difficult to interpret. The moments
can be fairly easily calculated using numerical integration, so we do not give the
formulae.

Inference. Although two-piece distributions are not twice differentiable at the
mode, a (sufficient) regularity condition required in some classical results, this fea-
ture does not preclude ML estimation methods in this family. Asymptotic results
(consistency and asymptotic normality) for ML estimators have been obtained us-
ing direct proofs (in some specific cases) (Mudholkar and Hutson, 2000; Arellano-
Valle, Gómez and Quintana, 2005). Jones and Anaya-Izquierdo (2010) also show
that certain parameterisations of the two-piece family of distributions, such as the
ε-skew parameterisation, induce partial parameter orthogonality which improves
some asymptotic properties of ML estimators. The expression for ML estimators
of the TP SAS distribution is not available in closed-form, hence numerical meth-
ods are required.

Multivariate extensions. Although there is no “natural” extension of the two-
piece transformation to the multivariate case, multivariate extensions of these mod-
els have been explored using Copulas (Rubio and Steel, 2013) and affine transfor-
mations (Ferreira and Steel, 2007). Bauwens and Laurent (2005) propose a method
to construct 2k-piece distributions which can be applied to k-variate distributions
with a certain type of symmetry. These ideas can be immediately applied to the TP
SAS distribution in order to produce multivariate extensions of the model.

3.2 Skew-symmetric sinh–arcsinh distribution

Since our motivation for introducing the TP SAS distribution consists of producing
a model that can cover the whole range of some interpretable measures of asym-
metry for any value of δ, an immediate question is whether there are other trans-
formations for doing so. The answer is positive, the skew-symmetric construction
being a natural candidate among the most popular skewing mechanisms. Other
popular density-based transformations such as the Marshall-Olkin and the power
transformations have been shown to induce little flexibility on the symmetric SAS
distribution (Chapter 2, Rubio, 2013).
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Figure 4 Skew-symmetric sinh–arcsinh density (3.4) with μ = 0, σ = 1, δ = (0.25,0.5, . . . ,1.5)

and: (a) λ = 1; (b) λ = 2; (c) λ = 5.

Definition 2. A random variable is said to be distributed as a skew-symmetric
sinh–arcsinh (SS SAS) if its p.d.f. is given by:

s2(x;μ,σ,λ, δ) = 2

σ
f0

(
x − μ

σ
; δ

)
F0

(
λ
x − μ

σ
; δ

)
, (3.4)

where μ,λ ∈R, and σ, δ ∈ R+.

This density contains the symmetric SAS distribution for λ = 0, it is asymmet-
ric for λ �= 0, and it converges to the right/left half symmetric SAS as λ → ±∞.
This property is typically used to interpret λ as a skewness parameter, and it also
implies that the model can cover the full range of the AG measure. However, AG
is not an injective function of the parameter λ for δ ≥ 1, as shown in Figure 5.
Figure 4 shows the shapes of this model for different values of the parameters. We
can observe that the parameter λ also controls the mode and the tails of the density.
In fact, it can be shown that the distribution has different tails in each direction,
a property shared by all skew-symmetric distributions, implying also that the SS
SAS capture “tail asymmetry”. Even though the SS SAS covers the whole range
of AG, it also inherits all the inferential properties of the skew-normal distribution
(Azzalini, 1985), which is a particular case of (3.4). This might represent a draw-
back for some practitioners given the inferential problems with the skew-normal
discussed earlier. However, these problems mainly related to small samples (see
Jones, 2015 for a discussion on this point).

4 A short simulation study

We conducted a short simulation study to evaluate the performance of the ML es-
timators of the parameters of the TP SAS distribution. We simulated N = 10,000
samples from a TP SAS distribution (with the ε-skew parameterisation) for a range
of parameter values and sample sizes, and calculated the bias, variance and root-
mean-square error (RMSE) of the ML estimators for each scenario. Results are



494 F. J. Rubio, E. O. Ogundimu and J. L. Hutton

Figure 5 AG measure of skewness as a function of λ: (a) δ = 0.25; (b) δ = 0.5; (c) δ = 1; (d) δ = 4.

presented in Tables 1 and 2. The simulation study reveals that the skewness level
does not seem to affect the behaviour of the ML estimators. However, the tail pa-
rameter is clearly difficult to estimate whether the samples come from a distribu-
tion with lighter or heavier tails than normal. The results suggest that lighter tails
are harder to estimate in the sense that larger samples are required to accurately
estimate the tail parameter. This is an intriguing behaviour that require further gen-
eral research. We would like to quote a discussion from Jones (2015) with respect
to this point: “I suspect we do not understand very light-tailed distributions very
well, perhaps reasonably so given their relative scarcity in practice”. The simula-
tion suggested that to estimate the tail parameter accurately we may need at least
a couple of hundred observations. This is not a surprising phenomenon since tail
parameters are known to be difficult to estimate, such as the tail parameters in the
Student-t distribution, the exponential power distribution and generalised hyper-
bolic distribution (Fonseca, Migon and Ferreira, 2012).
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Table 1 Behaviour of ML estimators for the TP SAS distribution; δ > 1, light tails

Parameters μ = 0 σ = 1 γ = 0.25 δ = 1.25 μ = 0 σ = 1 γ = 0.5 δ = 1.25 μ = 0 σ = 1 γ = 0.75 δ = 1.25

n μ̂ σ̂ γ̂ δ̂ μ̂ σ̂ γ̂ δ̂ μ̂ σ̂ γ̂ δ̂

Bias 50 −0.039 −962.5 −0.040 −1075 −0.068 −531.7 −0.073 −586.5 −0.052 −573.6 −0.075 −638.8
100 −0.027 −287.7 −0.023 −310.5 −0.046 −299.9 −0.042 −327.5 −0.047 −112.6 −0.050 −129.92
250 −0.005 −5.2 −0.005 −5.566 −0.011 −2.24 −0.010 −2.41 −0.016 −1.33 −0.016 −1.45
500 −0.001 −0.049 −0.001 −0.051 −0.004 −0.050 −0.004 −0.052 −0.006 −0.051 −0.006 −0.054

1000 −2.7 × 10−5 −0.002 −2.5 × 10−4 −0.021 −9.0 × 10−4 −0.020 −0.001 −0.021 −0.002 −0.020 −0.002 −0.021

Var. 50 0.234 4.2 × 108 0.149 5.4 × 108 0.157 7.9 × 107 0.101 1.1 × 108 0.007 2.5 × 108 0.048 3.1 × 108

100 0.083 5.3 × 107 0.049 6.1 × 107 0.067 1.0 × 108 0.040 1.2 × 108 0.037 2.3 × 107 0.023 3.2 × 107

250 0.022 6.4 × 104 0.001 7.1 × 104 0.002 8.8 × 103 0.001 1.1 × 104 0.013 3.1 × 103 0.008 3.6 × 103

500 0.010 0.043 0.005 0.039 0.008 0.044 0.004 0.041 0.005 0.046 0.003 0.043
1000 0.005 0.016 0.002 0.014 0.004 0.016 0.002 0.015 0.002 0.016 0.001 0.014

RMSE 50 0.486 2.0 × 104 0.388 2.3 × 104 0.402 8.9 × 103 0.327 1 × 104 0.277 1.6 × 104 0.232 1.8 × 104

100 0.289 7323.8 0.222 7824.8 0.264 1.0 × 104 0.205 1.1 × 104 0.198 4825 0.159 5679
250 0.148 252.9 0.111 265.2 0.139 94.08 0.104 103.0 0.117 55.3 0.089 60.4
500 0.101 0.213 0.075 0.205 0.092 0.217 0.069 0.209 0.073 0.222 0.055 0.214

1000 0.071 0.129 0.052 0.121 0.064 0.130 0.047 0.123 0.050 0.130 0.037 0.123
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Table 2 Behaviour of ML estimators for the TP SAS distribution; δ < 1, heavy tails

Parameters μ = 0 σ = 1 γ = 0.25 δ = 0.75 μ = 0 σ = 1 γ = 0.5 δ = 0.75 μ = 0 σ = 1 γ = 0.75 δ = 0.75

n μ̂ σ̂ γ̂ δ̂ μ̂ σ̂ γ̂ δ̂ μ̂ σ̂ γ̂ δ̂

Bias 50 −0.043 −91.6 −0.023 −51.69 −0.071 71.1 −0.042 −37.9 −0.058 −11.33 −0.050 −5.82
100 −0.018 −0.415 −0.009 −0.219 −0.033 −0.509 −0.018 −0.259 −0.037 −0.232 −0.025 −0.126
250 −0.003 −0.035 −0.002 −0.018 −0.006 −0.035 −0.005 −0.018 −0.009 −0.034 −0.007 −0.018
500 −0.001 −0.016 −0.001 −0.008 −0.003 −0.016 −0.002 −0.008 −0.003 −0.017 −0.003 −0.008

1000 4 × 10−4 −0.006 −2.8 × 10−5 0.004 7 × 10−5 −0.006 5 × 10−4 −0.003 −7 × 104 −0.007 −0.001 −0.003

Var. 50 0.384 1.7 × 107 0.068 6.4 × 106 0.266 9.5 × 106 0.049 2.6 × 106 0.129 2.6 × 105 0.025 5.8 × 104

100 0.114 232.8 0.020 69.93 0.098 856.7 0.017 215.0 0.063 96.47 0.011 29.90
250 0.034 0.039 0.006 0.007 0.029 0.039 0.005 0.007 0.019 0.039 0.003 0.007
500 0.017 0.016 0.003 0.003 0.014 0.016 0.002 0.003 0.008 0.016 0.001 0.003

1000 0.008 0.007 0.001 0.001 0.006 0.007 0.001 0.001 0.004 0.007 7 × 104 0.001

RMSE 50 0.621 4139 0.262 2533 0.521 3085 0.227 1618 0.364 513.8 0.167 241.8
100 0.338 15.2 0.144 8.36 0.315 29.27 0.135 14.66 0.254 9.82 0.110 5.47
250 0.186 0.201 0.080 0.087 0.171 0.200 0.073 0.086 0.140 0.201 0.059 0.087
500 0.130 0.130 0.055 0.055 0.118 0.130 0.050 0.055 0.093 0.130 0.039 0.055

1000 0.091 0.087 0.038 0.037 0.082 0.087 0.035 0.037 0.064 0.088 0.027 0.037
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5 Illustrative example: Internet traffic data

Data on Internet traffic is analysed to illustrate and compare the performance of
the SAS, TP SAS, and SS SAS distributions. For the TP SAS model, we adopt the
ε-skew parameterisation.

The teletraffic data set studied in Ramirez-Cobo et al. (2010) contains n = 3143
observations, which represent the measured transferred bytes/sec within consecu-
tive seconds. Ramirez-Cobo et al. (2010) propose the use of a Normal-Laplace
(NL) distribution to model these data after a logarithmic transformation. This
model is the convolution of a Normal distribution and a two-piece Laplace dis-
tribution with location 0, which is typically parameterised in terms of two parame-
ters (α,β) that jointly control the scale and the skewness. The NL distribution has
tails heavier than those of the normal distribution (Reed and Jorgensen, 2004). We
compare the fit of the NL against the TP SAS and the SS SAS distributions, as well
as some other competitors. The corresponding estimators and model comparison
are presented in Table 3. We first observe that the SAS, TP SAS, and the SS SAS
models suggest that the data presents lighter tails than normal, a feature that can-
not be captured by the other competitors, including the NL model. An approximate
95% confidence interval of δ in the TP SAS model (obtained as the 0.147 profile
likelihood interval) is (1.15,1.38), which emphasises the need for a model that
can capture lighter tails than normal. Moreover, the AIC and BIC largely favour
the models with lighter tails than normal. Figure 6(a) shows some fitted densities
with the histogram of the data, and Figure 6(b) shows envelope QQ-plots for the
fitted TP SAS model. This graphical goodness of fit tool is obtained by generat-
ing N = 10,000 samples of size n = 3143 (same size as the original data) from
the fitted TP SAS distribution and creating N QQ-plots for each simulated sample
against the original data. Using these N QQ-plots, we can generate an envelope, by
taking the minimum and maximum values of the QQ-plots at each quantile point,
which is shown in the shaded area. This envelope is compared against a straight
line with intercept 0 and slope 1, which represents a perfect fit. From Figure 6(c)

Table 3 Internet data: Estimation and model comparison (95% likelihood-confidence intervals are
in brackets)

Model μ̂ σ̂ γ̂ δ̂ AIC BIC

TP SAS 11.80 0.85 0.14 (0.08,0.20) 1.26 (1.15,1.38) 5884.95 5909.16
SS SAS 11.53 0.85 0.26 (0.04,0.52) 1.24 (1.14,1.36) 5900.26 5924.47
SAS 11.78 0.84 −0.16 (−0.24,−0.08) 1.26 (1.16,1.38) 5886.84 5911.05
NL 11.78 0.56 (α̂) 8.39 (6.20,9.04) (β̂) 4.09 (3.44,6.82) 5922.73 5946.94
Skew-t 12.07 0.75 −0.98 (−1.36,−0.64) 1057.37 (108.39,6531.52) 5919.52 5943.73
SN 12.09 0.76 −1.04 (−1.34,−0.67) − 5917.04 5935.20
Normal 11.65 0.62 − − 5925.37 5937.47
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Figure 6 Internet traffic data: (a) Fitted densities: TP SAS (bold line), SS SAS (dashed bold line),
SAS (solid line), NL (dashed line), ST (dotted line); (b) Profile likelihood of δ for the TP SAS model;
(c) Envelope QQ-plots for the TP SAS model; (d) Envelope QQ-plots for the Normal model.

we can observe that, although the TP SAS beats the other competitors, the fit in
the left tail is not entirely satisfactory. Figure 6(d) shows that the normal model
produces a poor fit on both tails. In fact, in the latest version of Rubio and Steel
(2015) it is shown that a more flexible (five-parameter) model is necessary to fit
this data set adequately.

6 Concluding remarks

We have introduced and studied the two-piece sinh–arcsinh (TP SAS) distribution,
which contains the normal distribution as well as symmetric and asymmetric mod-
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els with varying tail-weight. The distribution was derived by applying the two-
piece transformation to the symmetric sinh–arcsinh distribution (SAS) proposed
by Jones and Pewsey (2009). Unlike the SAS distribution, the TP SAS distribu-
tion can produce models that cover the whole range of some common measures
of skewness, and we have shown that its shape parameters have interpretable sep-
arate roles. The performance of the proposed distribution was illustrated using a
publicly available data set. We have developed the ‘TPSAS’ R package, where we
implement the density function, distribution function, quantile function, and ran-
dom number generation for the TP SAS model. We have also emphasised the need
for conducting an integral model selection in which both a model selection tool
and the inferential properties of the models in question are taken into considera-
tion. As noted by Charemza, Vela and Makarova (2013), it is sensible to decide on
the distribution to be used in modelling data on the basis of interpretation of its pa-
rameters rather than only the best fit, especially when competitor models produce a
similar fit. A similar discussion, although in a more general context, was recently
presented by Jones (2015). We recommend the use of the profile likelihood for
the construction of confidence intervals for parameters, rather than standard devia-
tions based on asymptotic normality, given that the likelihood function is typically
asymmetric for moderate sample sizes. Hence, the use of standard errors would
lead to confidence intervals with the wrong coverage.

We conclude by pointing out other contexts where the proposed models can be
of interest. Wang and Dey (2010) employ a Generalised Extreme Value distribu-
tion as a link function in binary regression. They mention that it would be desirable
to use “a distribution such that one parameter would purely serve as skewness pa-
rameter while the other could purely control the heaviness of the tails”: we have
shown that the TP SAS distribution has this property. In addition, the TP SAS link
avoids a problem pointed out by Jiang et al. (2013) with their proposed flexible
link: “One potential problem with the proposed power link is that the power pa-
rameter r influences both the skewness and the mode of the link function p.d.f.”:
for the TP SAS distribution, the parameter μ controls the mode, while γ controls
the mass cumulated on each side of the mode of the density. However, one has to
be careful when using links with skewness and kurtosis parameters, as binary data
typically carry little information about the tails of the link. Another potential use
of the TP SAS distribution is to model the residual errors in a linear regression
model. Linear regression models with parametric flexible errors have been mainly
studied using the skew-t distribution (Azzalini and Genton, 2008).
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