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Continuity results and estimates for the Lyapunov exponent
of Brownian motion in stationary potential

Johannes Rueß
Eberhard Karls Universität Tübingen

Abstract. We collect some applications of the variational formula estab-
lished by Schroeder [J. Funct. Anal. 77 (1988) 60–87] and Rueß [ALEA Lat.
Am. J. Probab. Math. Stat. 11 (2014) 679–709] for the quenched Lyapunov
exponent of Brownian motion in stationary and ergodic nonnegative poten-
tial. We show, for example, that the Lyapunov exponent for nondeterministic
potential is strictly lower than the Lyapunov exponent for the averaged po-
tential. The behaviour of the Lyapunov exponent under independent pertur-
bations of the underlying potential is examined. And with the help of coun-
terexamples, we are able to give a detailed picture of the continuity properties
of the Lyapunov exponent.

1 Introduction

Schroeder (1988) and Rueß (2014) established a variational formula for the ex-
ponential decay rate of the Green function of Brownian motion evolving in a sta-
tionary and ergodic nonnegative potential. The purpose of this article is to collect
some applications of this variational formula. A special focus is laid on continuity
properties of the Lyapunov exponent. We give counterexamples in the last section
in order to complete the picture.

We consider Brownian motion in R
d , d ∈ N. Let Px be the law of standard

Brownian motion with start in x ∈ R
d on the space � := C([0,∞),Rd) equipped

with the σ -algebra generated by the canonical projections, and let Ex be the asso-
ciated expectation operator. With (Zt )t≥0 we denote the canonical process on �.

We assume that the Brownian motion is moving in a random potential: Let
(�,F,P) be a probability space and assume (Rd,+) is acting as a group on �

via τ : Rd × � → �, (x,ω) �→ τxω. We always assume that X := (�,F,P, τ )

is a metric dynamical system, which means that τ is product measurable and
P is invariant under τx for all x ∈ R

d . Often P is required to be ergodic under
{τx : x ∈ R

d}. Then X is called ergodic dynamical system. We denote the space
of p-integrable functions on � by Lp , p ≥ 1. Any nonnegative V ∈ L1 is called
potential throughout this article.
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Let V be a potential. We assume that Brownian motion Z is killed at rate V :
Introduce the Green function as

g(x, y,ω) :=
∫ ∞

0
pt(x, y)Et

x,y

[
exp

{
−

∫ t

0
V (τZsω)ds

}]
dt,

where x, y ∈ R
d , ω ∈ �, Et

x,y denotes the Brownian bridge measure, and pt(x, y)

is the transition probability density of Brownian motion in R
d . g can be inter-

preted as density for the expected occupation times measure for Brownian motion
killed at rate V . Under natural assumptions, the Green function is the fundamental
solution to

−1

2
�g(x, ·,ω) + Vωg(x, ·,ω) = δx,

where δx denotes the Dirac measure at x ∈ R
d , see, for example, (Pinsky, 1995,

Theorem 4.3.8).
If X is an ergodic dynamical system and V satisfies certain boundedness and

regularity assumptions, then it is shown in (Rueß, 2014, Theorem 1.2) that the
Green function decays exponentially fast with a deterministic exponential decay
rate called Lyapunov exponent, see also Theorem 1 below.

Deterministic exponential decay has been shown previously, for example, for
periodic potentials by Schroeder (1988), and for Poissonian potentials by Sznitman
(1994). Armstrong and Souganidis (2012) give analogous results in the con-
text of Hamilton–Jacobi–Bellman equations. In discrete space, Zerner (1998) and
Mourrat (2012) establish existence of Lyapunov exponents for random walks in
random potentials.

Measurable functions f on � give rise to functions fω on R
d , called realisations

of f , defined by fω(x) = f (τxω) for x ∈ R
d and ω ∈ �. If fω is differentiable for

all ω ∈ �, we call f (classically) differentiable and we denote the derivative by
(Df )(ω) := D(fω)(0). Let y ∈ R

d . We recall the variational expression as intro-
duced in (Rueß, 2014, (1.4)),

	V (y) := 2 inf
f ∈F

[(∫ |∇f |2
8f

+ Vf dP

)(
inf

φ∈�y

∫ |φ|2
2f

dP

)]1/2

.

Here the space F is the space of probability densities f ∈ L1 with the following
properties:

• Ef = 1 and there exists cf > 0 such that f ≥ cf ,
• fω is differentiable of any order for all ω, and sup� |Dnf | < ∞ for n ∈ N0.

The space �y is the space of divergence-free vector fields φ ∈ (L1)d such that:

• φω is differentiable of any order for all ω, and sup� |Dnφ| < ∞ for all n ∈ N0,
• Eφ = y, and ∇ · φ = 0 for all ω.
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The Lyapunov exponent can be expressed by 	V under the following conditions
on the potential V , see Theorem 1 below:

(i) sup� V < ∞.
(ii) inf� V > 0.

(iii) g(0, ·,ω) ∈ C2(Rd \ {0}) for ω ∈ �, Lωg(0, ·,ω) = 0 on R
d \ {0}, where

Lω := (1/2)� − Vω, for ω ∈ �.
(iv) Vω(x) is uniformly continuous in x and ω, that is

lim
δ→0

sup
|x|≤δ

sup
ω∈�

∣∣Vω(x) − Vω(0)
∣∣ = 0.

Slightly more general but more complicated versions of assumptions (ii) and
(iv) are given by Rueß (2014). That (iv) implies (Rueß, 2014, (E1)) follows from
homogenisation as outlined in (Rueß, 2014, Section 4.1).

Like in the article of Rueß (2014) we call a potential satisfying this set of as-
sumptions shortly a regular potential. Note that the convolution of a potential satis-
fying the boundedness conditions (i) and (ii) with a compactly supported, nonneg-
ative, smooth kernel leads to regular potentials, use, for example, (Pinsky, 1995,
Theorem 4.2.5) and (Rueß, 2014, (4.13)). One has the following representation of
the Lyapunov exponent.

Theorem 1 ((Schroeder, 1988, (1.1)), (Rueß, 2014, Theorem 1.2)). If X is an
ergodic dynamical system and V a regular potential, then for all y ∈ R

d \ {0}
P-a.s. the limit in the following exists and is given as

αV (y) := lim
r→∞−1

r
lng(0, ry,ω) = 	V (y). (1.1)

In Sections 2–4, we derive properties of the Lyapunov exponent αV from its
variational representation 	V . Among others, we derive a strict inequality αV <

αEV and we establish continuity properties of the Lyapunov exponent. We state
the results for the variational expression 	V having in mind that as soon as the
underlying dynamical system is ergodic and the considered potentials are regular
these results do hold by Theorem 1 for αV as well.

Section 5 does not rely on the variational representation for the Lyapunov ex-
ponent. It consists of counterexamples which show, for example, that the Lya-
punov exponent is not continuous with respect to Lp convergence of the potential,
1 ≤ p < ∞, even for regular potentials.

Notation

At some point, we use notation of Rueß (2014) and in order to keep this note
compact we introduce several objects in a short way and refer the reader to the
first two sections of the article of Rueß (2014) for more detailed descriptions.
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We denote by Sd−1 the set of unit vectors in R
d . The Lebesgue measure on R

d

is denoted by L . We write | · | for the Euclidean norm on R
d , d ∈N.

We need the concept of weak differentiability on X: A measurable function
f : � → R

d is called weakly differentiable in direction i if P-a.e. realisation of
f is weakly differentiable in direction i, and if there exists a measurable function
g on � such that P-a.s. L -a.e. gω = ∂i(fω). Then g is called the weak derivative
∂if of f in direction i. The weak derivative is uniquely determined P-a.s., and
coincides with the classical derivative if the realisations of f are classically differ-
entiable. We have the differential operator ∇f = (∂if )i , if the weak derivatives in
any direction exist. We introduce

D(∂i) := {
f ∈ L2 : f weakly differentiable in direction i, ∂if ∈ L2}

.

On
⋂

i D(∂i) we have the norm ‖f ‖∇ := ‖f ‖2 + ∑
i ‖∂if ‖2. In addition to F and

�y , we need the following function spaces: Let y ∈ R
d , define Dw := ⋂d

i=1 D(∂i),
and

D :=
{
f ∈ L1 : fω ∈ C∞(

R
d) ∀ω ∈ �, sup

�

∣∣Dnf
∣∣ < ∞ ∀n ∈N0

}
,

D := {
D ⊂ Dw : D dense in Dw w.r.t. ‖ · ‖∇

}
,

Fw := {
f ∈ Dw : Ef = 1,∃cf > 0 s.t. f > cf P-a.s.,‖f ‖∞,‖∇f ‖∞ < ∞}

,

F :=
{
F ⊂ Fw : ∀f ∈ Fw ∃(fn)n ⊂ F and c > 0 s.t.

fn → f w.r.t. ‖ · ‖∇ and inf
n

fn > c P-a.s.
}
,

�w
y := {

φ ∈ (
L2)d : E[φ · ∇w] = 0 ∀w ∈ D,Eφ = y

}
,

Py := {
φy ⊂ �w

y : φy dense in �w
y w.r.t. ‖ · ‖2

}
.

Examples

We give two main examples for dynamical systems X = (�,F,P, τ ) which fit
into our framework. As a special example in Section 5, we encounter the Poisson
line process.

XT,d—the d-dimensional torus T
d : Choose � := T

d , let F := B(Td) be the
Borel σ -algebra on T

d , and set τxω := ω + x(mod 1) for x ∈ R
d , ω ∈ T

d . With P

being the Lebesgue measure L , the dynamical system X becomes stationary and
ergodic.

Stationary ergodic random measures: Let � := M(Rd) be the set of locally
finite measures on (Rd,B(Rd)) equipped with the topology of vague conver-
gence. Let F be the Borel σ -algebra on �, and set τxω[A] := ω[A + x] for
x ∈ R

d , A ∈ B(Rd) and ω ∈ �. Then for any distribution P of a stationary er-
godic random measure on (M(Rd),F) the dynamical system X becomes an er-
godic dynamical system, use (Daley and Vere-Jones, 2008, Exercise 12.1.1(a)).
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Let W : Rd → [0,∞) be a Borel measurable function and set

V (ω) :=
∫
Rd

W(x)ω(dx).

Under suitable conditions on W and the random measure, V is a potential. If P is a
Poisson point process with constant intensity this leads to the so called Poissonian
potentials, see (Sznitman, 1998). We denote such a dynamical system where P is
a Poisson point process with constant intensity ν > 0 by Xpoi,ν .

2 Elementary properties

We deduce elementary properties of 	V :

Proposition 2. Assume V is a potential. For c ≥ 0, for y ∈ R
d ,

	V (cy) = c	V (y). (2.1)

Let c ≥ 1, then

	2
cV ≤ c	2

V . (2.2)

Analogously if 0 ≤ c ≤ 1, one has 	2
cV ≥ c	2

V . In constant potential c ≥ 0, for
y ∈ R

d ,

	c(y) = √
2c|y|. (2.3)

	 is concave in the following sense: Let λi , 1 ≤ i ≤ k, be positive real numbers s.t.∑k
i=1 λi = 1. Let V1, . . . , Vk be potentials on �, then 	2∑k

i=1 λiVi
≥ ∑k

i=1 λi	
2
Vi

, in

particular,

	∑k
i=1 λiVi

≥
k∑

i=1

λi	Vi
. (2.4)

For sums of a constant potential and some other potential V

	2
c+V ≥ 	2

V + 	2
c . (2.5)

If σs(0) := inff ∈F E[|∇f |2/(8f ) + Vf ] > 0, we have for x, y ∈ R
d ,

	V (x + y) ≤ 	V (x) + 	V (y). (2.6)

	V is monotone in V : Assume V1 ≤ V2 are potentials, then

	V1 ≤ 	V2 . (2.7)

For y ∈ R
d \ {0},

	2
V

(
y/|y|) ≥ 2σs(0). (2.8)
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For completeness, we restated (2.1) which is shown in (Rueß, 2014, Lem-
ma 3.1). Many of these properties are already established for the Lyapunov ex-
ponent of Brownian motion in Poissonian potential, see, for example, (Sznitman,
1998, Chapter 5). In the discrete space setting of random walk in random poten-
tial, such results are obtained in (Zerner, 1998, Proposition 4). Formula (2.3) for
the Lyapunov exponent of constant potential is well known, a calculation can be
found in (Rueß, 2012, (2.9)).

Inequality (2.2) is stronger than inequality αcV ≤ cαV , c ≥ 1, which one obtains
applying Jensen inequality to the representation of the Lyapunov exponent given
in (Rueß, 2014, (1.9)). This here allows to deduce the correct asymptotics given in
(4.9). In the same way (2.4) could be deduced with Hölder inequality from (Rueß,
2014, (1.9)). The “squared” inequality however is a stronger result.

Inequality (2.8) can be interpreted as a relation between the Lyapunov exponent
and the quenched free energy

�ω(0) := lim sup
t→∞

1

t
lnE0

[
exp

{
−

∫ t

0
Vω(Zs) ds

}]
.

For example, in (Rueß, 2014, Corollary 1.4) under suitable assumptions, we could
relate the quenched free energy of Brownian motion with drift λ ∈ R

d in potential
V to the variational expression σs with an additional “drift term”.

Proof of Proposition 2. For (2.2), note that
∫ |∇f |2

8f
+ cVf dP ≤ c

∫ |∇f |2
8f

+ Vf dP.

For (2.3) recall the “inverse” Hölder inequality: If g, h are measurable, h �= 0
P-a.s., then for r ∈ (1,∞),

E
[|g|1/r ]r

E
[|h|−1/(r−1)]−(r−1) ≤ E

[|gh|]. (2.9)

This follows by an application of Hölder’s inequality ‖f1f2‖1 ≤ ‖f1‖p‖f2‖q , 1 ≤
p,q ≤ ∞, p−1 + q−1 = 1 to f1 := |gh|1/r , f2 := |h|−1/r , p = r , q = r/(r − 1).
(2.9) applied to r = 2, g := |φ|2, h := f −1, and Jensen inequality give

inf
φ∈�y

∫ |φ|2
2f

dP ≥ |y|2/2. (2.10)

Estimate with (2.10)

	2
c (y) = 4 inf

f ∈F

(∫ |∇f |2
8f

+ cf dP

)(
inf

φ∈�y

∫ |φ|2
2f

dP

)

≥ 4c inf
f ∈F inf

φ∈�y

∫ |φ|2
2f

dP ≥ 2c|y|2.
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On the other hand, choosing f ≡ 1 and φ ≡ y in the variational expression for
	2

c (y), one has 	2
c (y) ≤ 2c|y|2.

For the inequality preceding (2.4), observe that:

	2∑
i λiVi

(y) = 4 inf
f ∈F inf

φ∈�y

(∫ ∑
i

λi

( |∇f |2
8f

+ Vif

)
dP

)(∫ |φ|2
2f

dP

)

≥ ∑
i

λi4 inf
f ∈F inf

φ∈�y

(∫ |∇f |2
8f

+ Vif dP

)(∫ |φ|2
2f

dP

)

= ∑
i

λi	
2
Vi

(y).

Since the square root is concave and monotone the “non-squared” inequality (2.4)
is valid.

For (2.5) use (2.10), (2.3) and

	2
c+V (y) ≥ 4 inf

f ∈F

{(∫ |∇f |2
8f

+ Vf dP

)
inf

φ∈�y

(∫ |φ|2
2f

dP

)}

+ 4c inf
f ∈F inf

φ∈�y

∫ |φ|2
2f

dP

≥ 	V (y) + 2c|y|2.
For (2.6), we argue with the representation of 	V given in (Rueß, 2014, Propo-

sitions 3.13, 3.15): For f ∈ F, η ∈ Sd−1 let K(f ) := E[|∇f |2/(8f ) + Vf ] and
H(η,f ) := infw∈D E[|∇w − η|2f ]. Then

	V (x + y) = sup
η∈Sd−1

∣∣〈x + y,η〉∣∣ inf
f ∈F

[
2K(f )

H(η,f )

]1/2

≤ sup
η∈Sd−1

(∣∣〈x,η〉∣∣ + ∣∣〈y,η〉∣∣) inf
f ∈F

[
2K(f )

H(η,f )

]1/2

≤ 	V (x) + 	V (y).

For (2.7) note that E[|∇f |2/(8f ) + Vf ]E[|φ|2/(2f )] is monotone in V for all
f ∈ F.

For (2.8) use (2.10) and (2.1). �

3 Inequalities

3.1 Effect of randomness

In (Rueß, 2014, Corollary 1.3) as a direct consequence of Theorem 1, we have
seen that

	V ≤ 	EV . (3.1)

The following theorem is a refinement of (3.1).
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Theorem 3. Let X := (�,F,P, τ ) and Y := (�,G,P|G, τ ) be metric dynamical
systems with G ⊂ F . Let V be a potential on X. Then with obvious notation,

	X
V ≤ 	Y

E[V |G].

Proof. Let FX
s , �X

y and F
Y
s , �Y

y denote the spaces F, �y for the dynamics of X

and Y , respectively. One has FY
s ⊂ F

X
s and �Y

y ⊂ �X
y . Hence,

inf
f ∈FX

s

E

[ |∇f |2
8f

+ Vf

]
inf

φ∈�X
y

E

[ |φ|2
2f

]

≤ inf
f ∈FY

s

E

[ |∇f |2
8f

+E[V |G]f
]

inf
φ∈�Y

y

E

[ |φ|2
2f

]

which shows the statement. �

3.2 Strict inequality

It is natural to ask whether the randomness of the potential has significant effect
on the Lyapunov exponent. The following theorem gives a positive answer to this
question.

Theorem 4. Assume V is nondeterministic and weakly differentiable with
‖∇V ‖∞ < ∞. Assume 0 < vmin ≤ V ≤ vmax < ∞. Then for y �= 0,

	V (y) < 	EV (y).

Proof. Without restriction, we consider the set of functions Fw instead of F in the
definition of 	V . This is possible by Rueß (2014, Proposition 2.2). Let 0 < p < ∞
and choose fp := βV −p with β := E[V −p]−1. Then fp ∈ Fw . One has

∇fp = −βpV −p−1∇V,

using the chain rule for weak derivatives, see (Gilbarg and Trudinger, 1983,
Lemma 7.5). Choosing φ ≡ y, we get

	2
V (y) ≤ 2|y|2E

[ |∇fp|2
8fp

+ Vfp

]
E

[
1

fp

]

= 2|y|2E
[
βp2 |∇V |2

8V p+2 + βV 1−p

]
E

[
V p

β

]
(3.2)

= 2|y|2E
[
p2 |∇V |2

8V p+2 + V 1−p

]
E

[
V p]

.

We start considering ψ(p) := E[V 1−p]E[V p]. ψ is differentiable on R with
derivative

ψ ′(p) = −E
[
V 1−p lnV

]
E

[
V p] +E

[
V 1−p]

E
[
V p lnV

]
,
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where we used the theorem on differentiation under the integral sign, see, for ex-
ample, (Bauer, 2001, Lemma 16.2). At p = 0 one has

ψ ′(0) = −E[V lnV ] +E[V ]E[lnV ] = −Cov(V , lnV ).

One has Cov(V , lnV ) > 0 by FKG-inequality, see, for example, (Rinott and Saks,
1992, Theorem 1.2). Therefore, choosing a constant Cov(V , lnV ) > C1 > 0 one
has for p > 0 small enough,

ψ(p) = E
[
V 1−p]

E
[
V p]

< E[V ] − C1p. (3.3)

On the other hand, there is a constant C2 > 0 such that for p > 0,

E

[
p2 |∇V |2

8V p+2

]
E

[
V p] ≤ 8−1p2vmin

−2(vmax/vmin)
p‖∇V ‖2

2 ≤ C2p
2. (3.4)

Estimates (3.2), (3.3) and (3.4) give for p > 0 small

	2
V (y) ≤ 2|y|2(

E[V ] − C1p + C2p
2)

,

which for p > 0 small enough is strictly lower than 	2
EV (y) = 2E[V ]|y|2, see

(2.3). �

3.3 Perturbation and extension

The potential V may be perturbed by an external input or extended into “new” di-
mensions. Extensions are of interest if one considers for example, random chess-
board potentials, see, for example, Dal Maso and Modica (1986). In the following,
we elaborate a framework for external input and extensions and give estimates on
Lyapunov exponents for perturbed or extended potentials.

Let X := (�1,F1,P1, τ
(1)) and Y := (�2,F2,P2, τ

(2)) be metric dynamical
systems of dimensions d1 and d2, respectively. Consider some measure P on
(�,F) := (�1 × �2,F1 ⊗ F2) with marginal distributions P1 and P2. We in-
troduce two possible actions on �:

Extension of X: Define for x = (x1, x2) ∈ R
d1 ×R

d2 and ω ∈ � the action

τ e
xω := (

τ (1)
x1

ω1, τ
(2)
x2

ω2
)
.

Perturbation of X: Assume d1 = d2, define for x ∈ R
d1 and ω ∈ �

τp
x ω := (

τ (1)
x ω1, τ

(2)
x ω2

)
.

Note that τ e as well as τp are indeed product measurable actions on the respective
spaces.

If P is invariant under τp or τ e, then P is called a joining of P1 and P2. We
denote the set of joinings with respect to τp by Jp(X,Y ) and the set of joinings
with respect to τ e by Je(X,Y ). The product measure P1 ⊗ P2 is always a joining
with respect to τp and τ e.
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Note that joinings of ergodic dynamical systems are not necessarily ergodic any
more. For example consider the torus XT,d , see page 438. On (Td ×T

d,B(Td) ⊗
B(Td),L ⊗ L ) the shift τp is not ergodic.

Joinings are discussed in literature in great extent. Existence and ergodicity of
joinings in general, and the question when the product measure leads to an er-
godic joining are addressed, for example, in (Furstenberg, 1981, Chapter 5,6),
(Cornfeld, Fomin and Sinaı̆, 1982, Chapter 10), (Rudolph, 1990, Chapter 6),
Ryzhikov (1991). However, we want to mention that often in literature actions of
only one transformation or actions of Z on � are considered, instead of studying
the action of more general groups.

We recall a result in this direction: The definition of weak mixing for one shift
can be found in (Rudolph, 1990, Definition 4.1).

Lemma 5 (See, e.g., (Rudolph, 1990, Proposition 4.19)). Let φ be a measurable
transformation of a probability space (�̃, F̃, P̃). Then φ is weakly mixing under
P̃, if and only if the product φ × ψ of φ with any other ergodic transformation ψ

of some probability space (�̂, F̂, P̂) is an ergodic transformation on (�̃× �̂, F̃ ⊗
F̂, P̃⊗ P̂).

Here the product of φ and ψ is defined by φ ×ψ : �̃× �̂ → �̃× �̂, (ω1,ω2) �→
(φ(ω1),ψ(ω2)). On page 438 we have introduced the ergodic dynamical system
Xpoi,ν , where P is a Poisson point process. We can construct the following exam-
ple.

Example 1. The perturbation or extension of Xpoi,ν with any other ergodic dy-
namical system is again an ergodic dynamical system under the product measure.

In fact, with (Daley and Vere-Jones, 2008, 12.3.II) considering bounded Borel
measurable subsets of Rd we know that the Poisson point process satisfies (Daley
and Vere-Jones, 2008, 12.3.I(iii)). In particular, according to (Rudolph, 1990, Def-
inition 4.1) any transformation τx , x �= 0, is weakly mixing under P. Therefore,
with help of Lemma 5 the statement follows.

We need some additional notation: With E1 we denote the expectation operator
with respect to P1. We write 	P1 , 	P,e and 	P,p for the variational functional in
order to indicate the underlying dynamical system. π1 : �1 × �2 → �1 denotes
the projection onto �1. For y ∈ R

d1 we set

ŷ := (y1, . . . , yd1,0, . . . ,0) ∈ R
d1+d2 .

The following result studies the effect of external input.

Theorem 6. Let V be a potential on �. For any joining P ∈ Je(X,Y ), for any
y ∈R

d1 ,

	
P,e
V (ŷ) ≤ 	

P1
E[V |π1=·](y).
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If d1 = d2, the analogous inequality is valid for any joining P ∈ Jp(X,Y ).

Note that in fact, 	P1 does not depend on the realisation of E[V |π1 = ·].
Proof of Theorem 6. We prove the statement for τ e. The same argument works
for τp . Introduce F1 as the set F for the dynamical system X as defined on page
436. By Fe, we denote the set F on �. Introduce �1

y as the set �y for X and �e
ŷ

as the set �ŷ on �, see page 436. We define

F
X := {

f ∈ Fe : ∀ω ∈ �1 ∃cω > 0 s.t. f (ω, ·) ≡ cω

}
,

�X
ŷ := {

φ ∈ �e
ŷ : ∀ω ∈ �1 ∃yω ∈ R

d1 s.t.
(
φi(ω, ·))i=1,...d1

≡ yω,

∀d1 < i ≤ d2 : φi ≡ 0
}
.

Considering only the first component any f ∈ F
X can be identified uniquely with

f̃ ∈ F1 such that f = f̃ ◦π1. Then |∇τef |2 = |∇τ (1)
f̃ |2 ◦π1 with obvious notation.

Analogously any φ ∈ �X
ŷ

can be identified uniquely with φ̃ ∈ �1
y after a projection

of φ onto its first d1 components such that (φi)i=1,...,d1 = (φ̃ ◦ π1)i=1,...,d1 . Then
|φ|2 = |φ̃ ◦ π1|2 and we get

(
	
P,e
V

)2
(ŷ) ≤ 4 inf

f ∈FX
inf

φ∈�X
ŷ

E

[ |∇f |2
8f

+ Vf

]
E

[ |φ|2
2f

]

= 4 inf
f̃ ∈F1

inf
φ̃∈�1

y

E1

[ |∇f̃ |2
8f̃

+E[V |π1 = ·]f̃
]
E1

[ |φ̃|2
2f̃

]

= (
	
P1
E[V |π1=·]

)2
(y).

This shows the statement. �

We use this result to study sums and products of independent potentials.

Corollary 7. Let P = P1 ⊗ P2. Assume V1,V2 ∈ L1(P) with V1 constant in the
second component and V2 constant in the first component. Then for y ∈ R

d1 ,

	
P,e
V1+V2

(ŷ) ≤ 	
P1
V1+EV2

(y), 	
P,e
V1V2

(ŷ) ≤ 	
P1
V1EV2

(y),

where for the first inequality V1 + V2 and for the second V1V2 is required to be a
potential. Analogous results hold for the action τp .

4 Continuity

In this section, we study continuity properties of the Lyapunov exponent. We con-
sider continuity with respect to the underlying probability measure, continuity with
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respect to the potential and we are also interested in the exact rate of convergence
of the Lyapunov exponent for scaled potentials. In Section 5, we give examples
which show that the continuity results we obtain here are essentially all one can
expect in general. Additional assumptions however should allow to derive stronger
results. Possible enforcements of the prerequisites are, for example, mixing prop-
erties of the underlying probability measure, finite range dependence properties of
the potential, or compactness of the space �. We show in Section 4.4 that com-
pactness allows to deduce exact results. Both, compactness assumptions as well as
additional mixing or independence properties are studied in literature in compara-
ble situations:

For example, for the time constant in i.i.d. first-passage percolation continuity
has been investigated in (Cox and Kesten, 1981, Theorem 3), see also (Smythe
and Wierman, 1978, Chapter X.4). Recently, continuity of the Lyapunov exponent
of random walk in i.i.d. random potential with respect to convergence in distribu-
tion of the underlying potential has been shown by Le (2013). Models with long
range dependencies are considered, for example, by Scholler (2014). We also want
to refer to (Mourrat, 2012, Section 11) where similar questions are addressed. In
(Rassoul-Agha and Seppäläinen, 2014, Lemma 3.1) continuity of the quenched
free energy of random walk in i.i.d. potential with respect to Lp convergence,
p > d , of the potential is established. Continuity of quantities similar to the Lya-
punov exponent is studied, for example, by Bourgain and Jitomirskaya (2002),
Bourgain (2005), Jitomirskaya and Marx (2011), Duarte and Klein (2014) and
You and Zhang (2014). There, compactness is a central feature in order to obtain
continuity properties.

It is immediate to show continuity of the Lyapunov exponent with respect to
uniform convergence of the potential:

Proposition 8. Let V and V ′ be potentials. Assume V ≥ vmin > 0 and ‖V ′ −
V ‖∞ < vmin. Then for y ∈ R

d ,∣∣	2
V (y) − 	2

V ′(y)
∣∣ ≤ ∥∥V ′ − V

∥∥∞	2
V (y)/vmin.

Proof. Let ε := ‖V ′ − V ‖∞. Then V ′ ≤ V + ε ≤ V (1 + ε/vmin). Now use (2.7)
and (2.2) in order to get the lower bound. The upper bound follows analogously
from V ′ ≥ V − ε ≥ V (1 − ε/vmin), (2.7) and the corresponding inequality after
(2.2). �

Consideration of continuity with respect to weak convergence of the potential
as well as continuity with respect to the underlying measure turn out to be more
delicate. While we are able to show upper semi-continuity, see Section 4.2, lower
semi-continuity does not hold in general as indicated by examples given in Sec-
tion 5. This resembles the situation in the articles of Cox and Kesten (1981) and
Le (2013) where the proof of the lower bound was more involved than the proof
of the upper bound.
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4.1 Denseness

In Section 4.2, we study continuity of 	V with respect to weak convergence of
the underlying probability measure P on �, and we therefore need to introduce
function spaces of continuous functions. Assume � is a topological space and F
is the Borel σ -algebra. We set

D
c := {

f ∈ D : ∀n ∈ N0 Dnf is continuous w.r.t. the topology on �
}
,

F
c := F∩D

c,

�c
y := �y ∩ (

D
c)d .

We need the following condition on (�,F,P, τ ):

(T) � is a completely regular, first countable Hausdorff space s.t. F is the Borel
σ -algebra, P is a Radon measure, the mapping ω �→ τxω is continuous for
all x.

In (Rueß, 2014, Proposition 2.2) it is shown that if V ∈ L2 we may replace the
function spaces in the definition of 	V (y) by any of the sets in F and Py without
changing 	V (y).

Proposition 9. Assume that (�,F,P, τ ) satisfies (T). Then D
c is dense in L2.

Moreover, Dc ∈ D, Fc ∈ F and for any y ∈ R
d one has �c

y ∈ Py .

Proof. This proof uses the concept of convolution on X, see, for example, (Jikov,
Kozlov and Oleinik, 1994, p. 232) or (Rueß, 2014, Lemma 4.4). We need a
“smoothing kernel” κ ∈ C∞

c which is assumed to be an even function, κ ≥ 0, and∫
Rd κ(x) dx = 1. We rescale κε(x) := ε−dκ(x/ε) for ε > 0.

We start by proving F
c ∈ F: Let f ∈ Fw . Without restriction, assume f ≤ ‖f ‖∞

and inf� f > 0. Choose δ s.t. inf� f > δ > 0. With (Rueß, 2014, (4.12), (4.14))
choose ε > 0 s.t.

‖f ∗ κε − f ‖∇ ≤ δ/3. (4.1)

Define dε := supi

∫ |∂iκε|dL and set δε := δ/(1 ∨ dε) ≤ δ. By Lusin’s theorem,
there exists a sequence of compact sets Kn ⊂ �, n ∈ N, s.t. f is continuous on
Kn for n ∈ N and P[Kn] ↗ 1 for n → ∞, see, for example, (Bogachev, 2007,
Theorem 7.1.13). The function f |Kn can be extended from the compact set Kn

to a continuous function gn on whole � s.t. gn|Kn = f |Kn and inf� f ≤ gn ≤
‖f ‖∞ as it is stated for completely regular Hausdorff spaces in (Bogachev, 2007,
Exercise 6.10.22). Choose n0 ∈ N s.t. for n ≥ n0,

P
[
Kc

n

] ≤ δε

(
3‖f ‖∞

)−1
,

where Kc
n := � \ Kn. Let an := 1 −Egn = E[f − gn]. For n ≥ n0,

|an| ≤ E
[|f − gn|,Kc

n

] ≤ ‖f ‖∞P
[
Kc

n

] ≤ δε/3.
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We set

fn := gn + an.

Then E[fn] = 1. Moreover, since δ < inf� f one has infn≥n0 fn ≥ inf� f + an ≥
δ/2 > 0. And also fn ∗ κε ∈ F, use, for example, (Rueß, 2014, Lemma 4.4).

Moreover, ω �→ fn,ω(x)κε(x) is continuous and bounded by ‖fn‖∞‖κε‖∞ for
any x. Since � is first countable, continuity is equivalent to sequential conti-
nuity, see (Willard, 1970, Corollary 10.5). Hence Lebesgue’s dominated conver-
gence theorem may be applied in order to show that fn ∗ κε is continuous in ω.
(“continuity of integrals with respect to a parameter”, see, for example, (Bauer,
2001, Lemma 16.1)). A similar argument together with equality ∂i(fn ∗ κε) =
−fn ∗ (∂iκε) shows that Dmfn,ε is continuous and bounded for any m ∈ N0. In
particular, fn ∗ κε ∈ F

c.
fn ∗ κε approximates f : Indeed, for n ≥ n0,

‖f − fn‖2 = ‖f − gn − an‖2 ≤ ‖f − gn‖2 + |an|
(4.2)

≤ ‖f ‖∞P
[
Kc

n

] + δε/3 ≤ 2δε/3.

Further, Young’s inequality, see, for example, (Rueß, 2014, (4.11)), gives

‖f ∗ κε − fn ∗ κε‖2 ≤ ‖f − fn‖2. (4.3)

By (4.1), (4.2), (4.3) we get

‖f − fn ∗ κε‖2 ≤ ‖f − f ∗ κε‖2 + ‖f ∗ κε − fn ∗ κε‖2 ≤ δ.

We consider derivatives in an analogous manner: Again with Young’s inequality,∥∥∂i(f ∗ κε) − ∂i(fn ∗ κε)
∥∥

2 = ∥∥f ∗ ∂i(κε) − fn ∗ ∂i(κε)
∥∥

2
(4.4)

≤ dε‖f − fn‖2.

Hence, (4.1), (4.2), (4.4) imply∥∥∂if − ∂i(fn ∗ κε)
∥∥

2 = ∥∥∂if − ∂i(f ∗ κε)
∥∥

2 + ∥∥∂i(f ∗ κε) − ∂i(fn ∗ κε)
∥∥

2

≤ δ/3 + dε2δε/3 ≤ δ.

This proves Fc ∈ F.
In order to show D

c ∈ D note first, that it is sufficient to show D
c dense in

D since D ⊂ Dw in the desired way by Rueß (2014, Lemma 2.1). Let w ∈ D,
w �= 0 and consider ψ := (w − Ew)/(2‖w − Ew‖∞) + 1. ψ ∈ F and we can
apply the previous and get a sequence ψn → ψ in ‖ · ‖∇ , (ψn)n ⊂ F

c. Then wn :=
(ψn − 1)2‖w − Ew‖∞ + Ew → w in the desired way and (wn)n ⊂ D

c. Thus,
D

c ∈D.
In order to examine �c

y , since D
c is dense in L2 s.t. ∂iD

c ⊂ D
c and τxD

c ⊂
D

c, we may apply (Rueß, 2014, Lemma 4.7). Using the fact that the space of
weak divergence-free vector fields with expectation y equals �w

y , use (Rueß, 2014,
(4.18)), we get (Dc)d ∩ �w

y is dense in �w
y with respect to ‖ · ‖2. Any φ ∈ (Dc)d ∩

�w
y equals up to an exceptional set some φ̃ ∈ (Dc)d ∩�y . This shows �c

y ∈ Py . �
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4.2 Semi-continuity

Our first continuity result considers also weak L1 convergence.

Proposition 10. Let V , Vn, n ∈ N, be potentials on �. Assume that for all f ∈ F

one has lim supn→∞E[Vnf ] ≤ E[Vf ], then for any y ∈ R
d ,

lim sup
n→∞

	Vn(y) ≤ 	V (y). (4.5)

Note that as soon as Vn, n ∈ N, and V are potentials in L2, in order to obtain
(4.5) it suffices to know that there exists a set F̃ ∈ F such that for all f ∈ F̃ the con-
dition lim supn→∞E[Vnf ] ≤ E[Vf ] is satisfied, use, for example, (Rueß, 2014,
Proposition 2.2).

Proof of Proposition 10. By definition,

lim sup
n→∞

	Vn(y) = inf
n≥0

sup
m≥n

	Vm(y).

After an interchange of infn≥0 supm≥n and inff ∈F infφ∈�y in the variational ex-
pression, the statement follows. �

In order to study continuity with respect to weak convergence of the underlying
probability measure, assume � is a topological space: Recall the condition (T)
introduced on page 447.

Theorem 11. Assume (�,F,P, τ ) satisfies (T) and V is a potential, which is
bounded and continuous with respect to the topology on �. Let (Pn)n be a se-
quence of Radon probability measures on (�,F) such that (�,F,Pn, τ ) is a met-
ric dynamical system for all n ∈ N. If Pn → P weakly, then for any y ∈ R

d , with
obvious notation,

lim sup
n→∞

	
Pn

V (y) ≤ 	P
V (y).

Proof. Let Fc
n and �c

y,n denote the function spaces with respect to Pn. We de-
note with En the expectation operator with respect to Pn. Then one has bijective
mappings

F
c → F

c
n : f �→ f̃ := f/En[f ], and �c

y → �c
y,n : φ �→ φ̃ := φ −Enφ + y.

Therefore,

lim sup
n→∞

	
Pn

V (y)

≤ 2 lim sup
n→∞

inf
f ∈Fc

n

inf
φ∈�c

n,y

(
En

[ |∇f |2
8f

+ Vf

]
En

[ |φ|2
2f

])1/2

= 2 lim sup
n→∞

inf
f ∈Fc

inf
φ∈�c

y

(
En

[ |∇f |2
8f

+ Vf

]
En

[ |φ −Enφ + y|2
2f

])1/2

.
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As in the proof of Proposition 10, the latter is less or equal to

2 inf
f ∈Fc

inf
φ∈�c

y

(
inf
n≥0

sup
m≥n

Em

[ |∇f |2
8f

+ Vf

]
Em

[ |φ −Emφ + y|2
2f

])1/2

. (4.6)

∇f is continuous and bounded for f ∈ F
c. So is Vf by assumptions on V . Thus,

weak convergence of Pn to P implies for f ∈ F
c,

En

[ |∇f |2
8f

+ Vf

]
→ E

[ |∇f |2
8f

+ Vf

]
as n → ∞. (4.7)

Again weak convergence shows for φ ∈ �c
y that Enφ → Eφ for n → ∞. There-

fore, En[|y − Enφ|2/(2f )] ≤ (2 min� f )−1|y − Enφ|2 → 0, and we get for
n → ∞,

En

[ |φ −Enφ + y|2
2f

]

= En

[ |φ|2
2f

+ |y −Enφ|2
2f

+ 2φ · (y −Enφ)

2f

]
→ E

[ |φ|2
2f

]
. (4.8)

By Lemma 9 and (Rueß, 2014, Proposition 2.2), we can substitute the spaces F
c

and �c
y with the spaces F, �y in the definition of 	V , and we get with (4.6), (4.7),

(4.8),

lim sup
n→∞

	
Pn

V (y) ≤ 2 inf
f ∈Fc

inf
φ∈�c

y

(
E

[ |∇f |2
8f

+ Vf

]
E

[ |φ|2
2f

])1/2

= 	P
V (y),

which was to be shown. �

4.3 Scaling

The variational formula also enables to determine convergence rates if scaled po-
tentials are considered.

Proposition 12. Let c ≥ 0 and V be a potential. Let Vn := V/n. Then for all
y ∈R

d ,

	2
V (y) ≤ n

(
	2

c+Vn
(y) − 	2

c (y)
) ≤ 2E[V ]|y|2. (4.9)

The rate of convergence as in Proposition 12 for scaled potentials has been
investigated previously in the discrete space setting of random walk in i.i.d. inte-
grable potential by Wang (2002) and Kosygina, Mountford and Zerner (2011). If
V is not necessarily integrable the asymptotic behaviour has been recently estab-
lished in the discrete setting by Mountford and Mourrat (2013, 2015). For Brow-
nian motion in Poissonian potential speed of convergence is established by Rueß
(2012). In the works of Kosygina, Mountford and Zerner (2011), Mountford and
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Mourrat (2013) and Rueß (2012) c is assumed to equal zero. Kosygina, Mount-
ford and Zerner (2011) and Rueß (2012) determined the speed of convergence to
zero of αVn to equal n−1/2√2E[V ]|y|. This coincides with the convergence speed
n−1/2 obtained from (4.9) for c = 0.

Additional assumptions allow to improve these results. For periodic potentials
in Theorem 14, we get exact rates of convergence for more general scalings of
the potential. Proposition 12 is essentially all one might expect in general. This is
illustrated by an example given in Section 5.4.

Proof of Proposition 12. One has n−1	2
nVn

(y) ≤ 	2
c+Vn

(y) − 	2
c (y) ≤ 2E[Vn] ×

|y|2, where the upper bound follows from (3.1) and (2.3), the lower bound from
(2.5) and (2.2). Since nVn = V this shows the statement. �

4.4 Continuity on the torus

The results obtained in Section 4.2 can be improved considerably if the underlying
space � is assumed to be compact: In the case that X = XT,1 where � is the one
dimensional torus, see page 438, we get the following. We abbreviate for f ∈ Fw ,

B(f ) := inf
φ∈�y

∫ |φ|2
2f

dP.

Theorem 13. Let X = XT,1. Let Vn, n ∈N, and V be potentials such that Vn → V

in L1 and V ≥ vmin > 0. Then there is a constant C > 0, depending only on E[V ]
and vmin, and there is n0 ∈ N such that for n ≥ n0, for y ∈ R

d ,∣∣	2
Vn

(y) − 	2
V (y)

∣∣ ≤ C‖Vn − V ‖1|y|2.
Proof. Without restriction, we may assume |y| = 1, see (2.1). Let εn := ‖Vn−V ‖1
and choose n0 such that for n ≥ n0,

εn ≤ (vmin/2)
(√

32E[V ] + 1
)−1

.

Note that in particular, εn ≤ E[V ].
One has by (3.1) and (2.3) for n ≥ n0,

	2
Vn

(y) ≤ 4E[V ] =: C0. (4.10)

We choose a “minimising” sequence (fn)n ⊂ F such that for n ∈ N,

	2
Vn

(y) ≥ 4E
[ |f ′

n|2
8fn

+ Vnfn

]
B(fn) − εn. (4.11)

An application of the “inverse” Hölder inequality (2.9) with r = 2 shows

E

[ |f ′
n|2
fn

]
≥ E

[∣∣f ′
n

∣∣]2
, (4.12)
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since E[fn] = 1. For n ≥ n0, by (4.10), (4.11), (4.12), (2.10), since E[Vnfn] ≥ 0,

C1 := (8C0)
1/2 ≥ E

[∣∣f ′
n

∣∣]. (4.13)

An application of the fundamental theorem of calculus shows for n ≥ n0, for all
x < y ∈ T

1,

∣∣fn(y) − fn(x)
∣∣ =

∣∣∣∣
∫ y

x
f ′

n(t) dt

∣∣∣∣ ≤
∫ y

x

∣∣f ′
n(t)

∣∣dt ≤ C1. (4.14)

E[fn] = 1, thus, each fn attains the value 1. We get for n large, fn(x) ≤ C1 + 1 =:
C2 for all x ∈ T

1. Therefore, for n ≥ n0,∣∣E[Vnfn] −E[Vfn]
∣∣ ≤ C2‖Vn − V ‖1. (4.15)

We need an upper bound on B(fn): By (4.10), (4.11) and (4.15), for n ≥ n0,

2C0 ≥ C0 + εn ≥ 4E[Vnfn]B(fn) ≥ 4
(
E[Vfn] − C2εn

)
B(fn) ≥ 2vminB(fn).

This shows that for n ≥ n0,

B(fn) ≤ C0/vmin =: C3. (4.16)

Finally, by (4.11), (4.15), (4.16), for n ≥ n0

	2
Vn

(y) ≥ 4E
[ |f ′

n|2
8fn

+ Vfn

]
B(fn) − 4C2C3εn − εn

≥ 	2
V (y) − (1 + 4C2C3)εn.

The proof of the upper bound is similar: Choose a minimising sequence (gn)n ⊂
F such that for n ∈ N,

	2
V (y) ≥ 4E

[ |g′
n|2

8gn

+ Vgn

]
B(gn) − εn. (4.17)

As in (4.13) by (3.1) and (2.3), “inverse” Hölder inequality, for n ≥ n0,

E
[∣∣g′

n

∣∣] ≤ C1.

Thus, as in (4.14) for n ≥ n0, for x ∈ T
1 one has gn(x) ≤ C2. This shows∣∣E[Vngn] −E[Vgn]

∣∣ ≤ C2‖Vn − V ‖1. (4.18)

We have similar to (4.16) 2C0 ≥ 4vminB(gn), in particular,

B(gn) ≤ C3. (4.19)

Therefore, by (4.18), (4.19) and (4.17), for n ≥ n0,

	2
Vn

(y) ≤ 4E
[ |g′

n|2
8gn

+ Vngn

]
B(gn) ≤ 4E

[ |g′
n|2

8gn

+ Vgn

]
B(gn) + 4C2C3εn

≤ 	2
V (y) + (1 + 4C2C3)εn.



Continuity results and estimates for the Lyapunov exponent 453

This shows the statement. �

As we have an L1-Poincaré inequality on the d-dimensional torus, we can cal-
culate the convergence rate on the torus exactly:

Theorem 14. Let X = XT,d and Vn, n ∈ N, V be potentials. Assume nVn → V

for n → ∞ in L1 and V is bounded. Let c ≥ 0, then for y ∈ R
d ,

n
(
	2

Vn+c(y) − 	2
c (y)

) → 2E[V ]|y|2 as n → ∞.

Proof. Let y �= 0. The upper bound follows from (3.1), (2.3). For the lower, let
n0 ∈N such that for n ≥ n0 one has E[nVn] ≤ 2E[V ]. By (3.1), (2.3) for n ≥ n0,

ψn := n	2
Vn

(y) ≤ 2E[nVn]|y|2 ≤ 4E[V ]|y|2 =: C0. (4.20)

Choose (fn)n ⊂ F such that

ψn = 4n inf
f ∈FE

[ |∇f |2
8f

+ Vf

]
B(f )

≥ 4nE

[ |∇fn|2
8fn

+ Vfn

]
B(fn) − 1/n. (4.21)

Therefore, with (4.20) and (2.10), for n ≥ n0, (C0 +1/n)/n ≥ ψn/n ≥ 2E[|∇fn|2/
(8fn)]|y|2, which shows

E

[ |∇fn|2
8fn

]
→ 0 as n → ∞. (4.22)

Using “inverse” Hölder inequality (2.9) and Poincaré inequality, see (Gilbarg and
Trudinger, 1983, (7.45)), we get for n ∈ N,

E

[ |∇fn|2
8fn

]
≥ E

[|∇fn|]2
/8 ≥ cpE

[|fn − 1|]2
/8,

where the constant cp comes from the Poincaré inequality. Thus, by (4.22)

‖fn − 1‖1 → 0 as n → ∞. (4.23)

In particular, the set {fn : n ∈ N} is uniformly integrable, see (Durrett, 1996, The-
orem 4.5.2), and we get for Mn := ‖nVn − V ‖−1/2

1 that

ε1,n := E[fn,fn ≥ Mn] → 0 as n → ∞. (4.24)

We may estimate for n ∈ N,

E[nVnfn] ≥ E
[
V (fn ∧ Mn)

] − ‖nVn − V ‖1Mn

≥ E[Vfn] − ‖V ‖∞E
[|fn − fn ∧ Mn|] − ‖nVn − V ‖1/2

1 (4.25)

= E[Vfn] − ‖V ‖∞ε1,n − ‖nVn − V ‖1/2
1 ≥ E[V ] − ε2,n,
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with ε2,n := ‖V ‖∞(‖fn − 1‖1 + ε1,n)+‖nVn −V ‖1/2
1 . Note that by (4.23), (4.24)

and by assumptions on V one has ε2,n → 0 as n → ∞. We need control of B(fn):
Let n1 ≥ n0 such that for n ≥ n1 one has 1/n ≤ C0 and ε2,n ≤ E[V ]/2. Then with
(4.20), (4.21), (4.25) for n ≥ n1

2C0 ≥ C0 + 1/n ≥ 4E[nVnfn]B(fn) ≥ 4
(
E[V ] − ε2,n

)
B(fn) ≥ 2E[V ]B(fn).

This shows for n ≥ n1,

B(fn) ≤ C0/E[V ] =: C1. (4.26)

Therefore, by (2.5), (4.21), (4.25), (4.26) and (2.10), for n ≥ n1,

n
(
	2

c+Vn
(y) − 	2

c (y)
) ≥ n	2

Vn
(y)

≥ 4nE

[ |∇fn|2
8fn

+ Vnfn

]
B(fn) − 1/n

≥ 4
(
E[V ] − ε2,n

)
B(fn) − 1/n

≥ 4E[V ]B(fn) − 4C1ε2,n − 1/n

≥ 2E[V ]|y|2 − 4C1ε2,n − 1/n.

This finishes the argument. �

5 Examples

The Lyapunov exponent is semi-continuous in many cases as outlined in Section 4.
We provide examples which show that continuity of the Lyapunov exponent with
respect to weak convergence of the underlying measure, continuity with respect
to Lp convergence of the potential, 1 ≤ p < ∞, and also a speed of convergence
as the one established in Proposition 12 are not valid in general. This should be
compared to similar models such as random walks in random potential, and we
refer to the discussion in Section 4.

The example we present is built on homogeneous Poisson line processes. In par-
ticular, the underlying probability measure is isotropic, whereas it does not satisfy
a “finite range dependence property”. We start by recalling Poisson line processes
and refer to (Daley and Vere-Jones, 2008, Section 15.3), (Stoyan, Kendall and
Mecke, 1987, Chapter 8) for more detailed descriptions.

5.1 The Poisson line process

Let e1 and e2 denote the unit vectors in R
2. Any (undirected) line � in R

2 can
be represented by its angle θ with a reference line and its (signed) distance r to
a reference point. We choose as reference line the x1-axis and as reference point
the origin. The angle is measured starting from the x1-axis counterclockwise. The
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distance r is chosen to be nonnegative if � intersects {te2 : t ≥ 0} or if � is parallel
to e2 intersecting {te1 : t > 0}. Else, r is chosen negative. This leads to a bijective
correspondence ρ : L → C between the set L of lines in R

2 and the “representation
space” C := R× (0, π]. If � = ρ−1(r, θ) we also simply write � = (r, θ). Let B(C)

denote the Borel σ -algebra on C.
Let � be the set of locally finite measures on (C,B(C)) equipped with the

topology of vague convergence and let F be the Borel σ -algebra on �. We intro-
duce an action of R2 on � in the following way: (R2,+) is acting on L via τL

x :
� �→ � + x, where x ∈ R

2, � ⊂ L. This induces an action of (R2,+) on C given
by τC

x : (r, θ) �→ ρ(τL
x (ρ−1(r, θ))), where (r, θ) ∈ C, x ∈R

2. Finally we introduce
the action of (R2,+) on � as τx : � → �, τxω[A] := ω[τC

x A], where A ∈ B(C),
ω ∈ � and x ∈ R

2. Note that the action τC is no simple shift on the cylinder, but
a shear, see (Stoyan, Kendall and Mecke, 1987, (8.2.1)) or (Daley and Vere-Jones,
2008, (15.3.1)) where formulae for directed lines are given. The continuity prop-
erties of τC· · obtained from such formulae ensure that τ is product measurable
analogous to (Daley and Vere-Jones, 2008, Exercise 12.1.1(a)).

The (homogeneous) Poisson line process is given by the representation ρ and
the distribution Pκ of a Poisson point process on (C,B(C)) having intensity mea-
sure ν = κ · L ⊗ μ with μ the uniform distribution on (0, π] and κ > 0. The
tuple (�,F,Pκ, τ ) is an ergodic dynamical system, as outlined, for example, in
(Cowan, 1980, p. 99) and (Miles, 1964, Theorem 1). Moreover, it is isotropic, see,
for example, (Miles, 1964, p. 902).

5.2 Discontinuity with respect to the underlying measure

Some additional notation is needed: Let R > 0, x ∈ R
2, and let � be a line in R

2.
We denote by BR(x) the closed ball with centre x and radius R, and we introduce
stripes QR(�) given by

QR(�) := {
y ∈ R

2 : d(y, �) < R
}
.

By HR(x), we denote the entrance time of Z into BR(x), that is HR(x) := inf{t ≥
0 : Zt ∈ BR(x)}. We introduce the exit time of Z from QR(�) by τR(�) := inf{t ≥
0 : Zt /∈ QR(�)}. Then HR(x) and τR(�) are stopping times with respect to the
canonical filtration of (Zt )t , see, for example, (Karatzas and Shreve, 1991, Prob-
lem 1.2.7).

The potential we consider is defined as follows: For ω ∈ �, let [ω] be the support
of ω. If F is a subset of R2 and ω ∈ �, we introduce the intersection of F with the
lines of ω by [ω] ∩ F := ⋃

z∈[ω](F ∩ ρ−1(z)). Let c,M ≥ 0 and R > 0. We define
the potential V : � → [0,∞),

V (ω) := Vc,R,M(ω) := c + M · 1{ω̃∈�:[ω̃]∩BR(0)=∅}(ω), (5.1)

which equals M + c outside of stripes of radius R along the lines of ω, and which
equals c inside these stripes.

We show the following: Let λ2 be the principal Dirichlet eigenvalue of −(1/2)�

in the unit ball in R
2.
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Theorem 15. For any D > 0 there is R0 > 0 such that for κ > 0 one has Pκ -a.s.
for all c ≥ 0 and for all y ∈ S1,

sup
R≥R0

sup
M≥0

lim sup
u→∞

−1

u
lnE0

[
exp

{
−

∫ H1(uy)

0
(Vc,R,M)ω(Zs) ds

}]

(5.2)
≤ √

2c + D.

We may choose R0 = 4
√

λ2/D + 1.

Recall, that by (2.3) the right side of (5.2) equals αc(y) + D.
This result contradicts continuity of the Lyapunov exponent with respect to

weak convergence of the underlying probability measure: The convolution with
an even and smooth function g : R2 → [0,∞) of support suppg ⊂ BR/2(0) and∫
R2 g(x) dx = 1, see, for example, (Rueß, 2014, Lemma 4.4), leads to a regular

potential W := V1,2R,1 ∗ g ≤ V1,R,1 for which the Lyapunov exponent exists and
can be expressed as follows: Pκ -a.s. the limit in the following exists and equals

lim
u→∞−1

u
lnE0

[
exp

{
−

∫ H1(ue1)

0
Wω(Zs) ds

}]
= α

Pκ

W (e1),

see (Rueß, 2014, (1.9)). With Theorem 15 for D = (α2(e1) − α1(e1))/2, there is
R > 0 such that

sup
κ>0

α
Pκ

W (e1) ≤ sup
κ>0

α
Pκ

V1,R,1
(e1) ≤ α1(e1) + D < α2(e1) = α

δ0
W(e1), (5.3)

where 0 is the zero measure on C. On the other hand note that Pκ → δ0 weakly as
κ → 0. Such convergence follows, for example, with help of Laplace transforms of
Point processes, see (Daley and Vere-Jones, 2008, (9.4.17), Theorem 11.1.VIII).
This together with (5.3) shows discontinuity as stated.

We start with an estimate on the travel costs along stripes which is analogous to
(Sznitman, 1998, (5.2.32)). Let �0 denote the x1-axis.

Lemma 16. Let R > 0, c ≥ 0 and u > R. Then

E0
[
exp

{−cHR(ue1)
}
, τR(�0) > HR(ue1)

] ≥ C exp
{−u

√
2
(
c + λ2/R2

)}
,

where C > 0 is a constant.

Proof. For any t > 0, with Girsanov’s formula, see (Karatzas and Shreve, 1991,
Theorem 3.5.1, Corollary 3.5.13),

E0
[
exp

{−cHR(ue1)
}
, τR(�0) > HR(ue1)

]

≥ exp{−ct}P0

[
sup

0≤s≤t

∣∣∣∣Zs − s

t
ue1

∣∣∣∣ < R

]

= exp{−ct}E0

[
exp

{
−u

t
e1 · Zt − u2

2t

}
, sup

0≤s≤t

|Zs | < R

]
. (5.4)
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We abbreviate B := {sup0≤s≤t |Zs | < R}. Note that E0[Zt |B] = 0, since −Z
d= Z

and Z ∈ B if and only if −Z ∈ B. An application of Jensen inequality shows, that
(5.4) is greater or equal

exp{−ct} exp
{
−u

t
e1 · E0[Zt |B] − u2

2t

}
P0[B]

= exp
{
−ct − u2

2t

}
P0[B] ≥ C exp

{
−ct − u2

2t
− λ2t/R

2
}
,

where for the last estimate we used (Sznitman, 1998, (3.1.53)). The choice t :=
u/

√
2(c + λ2/R2) shows the statement. �

In order to prove Theorem 15, we need to construct a path such that travelling
along this path is relatively cheap for the Brownian motion. Therefore, a great part
of this path should lie in regions of low potential. This forces the path to follow
closely the lines of the Poisson line process. On the other hand, the path should
not be too long. A path following mainly the lines and “exceeding” the Euclidean
distance only logarithmically can be found in the articles of Aldous and Kendall
(2008) and Kendall (2011). For our purposes, it suffices to find a path with linear
“exceedance”.

Proof of Theorem 15. For any direction y ∈ S1 we need to have a “suitable”
line leading into this direction: Let ι denote the complex number (0,1) ∈ C. For
y ∈ S1, for ψ ∈ (0, π/2) we introduce the event A(y,ψ) ∈ F consisting of those
ω ∈ � for which there is a line � = (r, θ) ∈ [ω] such that the angle between � and
y, measured from y counterclockwise, is in [π − ψ,π), and � ∩ {etι, t > 0} �= ∅.
Set �1 := ⋂

0<ψ<π/2
⋂

y∈S1 A(y,ψ).
For all κ > 0 one has Pκ [�1] = 1. In fact, for any y ∈ S1 and ψ ∈ (0, π/2)

one has Pκ [A(y,ψ)] = 1. This can be verified by considering the distribu-
tion of the intersection points and angles of the lines � ∈ ρ−1[ω] with a fixed
line, see, for example, (Miles, 1964, Theorem 2). Recognise, that for ψ ∈
(0, π/2) and for 0 ≤ t ≤ ψ/4 one has A(yetι,ψ) ⊃ A(y,ψ/4). Thus, if we
divide the interval [0,2π) into a finite number of intervals Ik = [xk, xk+1),
k = 1, . . . , k̄ of same length xk+1 − xk ≤ ψ/4, x1 = 0, xk̄+1 = 2π , we get
Pκ [⋂y∈S1 A(y,ψ)] ≥ Pκ [⋂k=1,...,k̄ A(exkι,ψ/4)] = 1. For all y ∈ S1 the events⋂

y∈S1 A(y,ψ) are monotone increasing as ψ increases. Therefore, looking only
at a countable number of angles (ψn)n, ψn → 0 as n → ∞, we even have
Pκ [�1] = Pκ [⋂n∈N

⋂
y∈S1 A(y,ψn)] = 1.

Let ω ∈ �1. Let D > 0 and define

R0 := 4
√

λ2/D + 1.
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Figure 1 We see a small sector of R2. The only line of ω passing this sector is �γ . The emphasised
line segments illustrate the path γ from 0 to ue1 through p1 and p2. Z is observed until hitting
B1(p1), then until reaching BR(p2) “forced” to stay in the region QR(�γ ) of low potential, and
thereafter until hitting B1(ue1).

Let R ≥ R0 and c,M ≥ 0, and let the potential V = Vc,R,M be given as in (5.1).

Define ζ1 :=
√

2c + 2λ2/(R0 − 1)2, ζ2 := αc(e1) + D/2, and

ϕ := min
{
arctan

(
D/

(
16αc+M(e1)

))
, arccos(ζ1/ζ2)

}
.

Note that by (2.3) 0 < ζ1/ζ2 < 1, and therefore ϕ ∈ (0, π/2).
We restrict ourselves in the following to the case y = e1. By rotation invariance

of the law of Brownian motion, the same argument shows the statement for any
y ∈ S1.

Let u ≥ R +1. We construct a path γ starting in 0 and leading to ue1 as follows,
see Figure 1. We start the path in 0 in direction of e2 until hitting a line �γ =
(r, θγ ) ∈ [ω] of angle θγ ∈ [π − ϕ,π). Such a line exists by choice of ω ∈ �1 ⊂
A(e1, ϕ). We denote the intersection point by p1. The path now follows the line
�γ until the intersection of �γ with the line {ue1 + se2 : s ∈ R}. We denote this
intersection point by p2. Then the path follows this vertical line until hitting ue1.

We divide the journey of the Brownian motion into three different parts, see also
Figure 1: Define stopping times

H(2) := HR(p2) ◦ �H1(p1) + H1(p1), H (3) := H1(ue1) ◦ �H(2) + H(2),

where � denotes the shift on the pathspace �, that is �t((ws)s≥0) = (ws+t )s≥0
for w ∈ �, t ≥ 0. Let A := {τR(�γ ) ◦ �H1(p1) > HR(p2) ◦ �H1(p1)}. We estimate
and split the integral:

E0

[
exp

{
−

∫ H1(ue1)

0
Vω(Zs) ds

}]

≥ E0

[
exp

{
−

∫ H(3)

0
Vω(Zs) ds

}
,A

]

(5.5)
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= E0

[
exp

{
−

∫ H1(p1)

0
Vω(Zs) ds −

∫ H(2)

H1(p1)
Vω(Zs) ds

−
∫ H(3)

H (2)
Vω(Zs) ds

}
,A

]
.

The potential V is bounded by c + M , and on A for H1(p1) ≤ t ≤ H(2) we have
Vω(Zt) = c. All considered stopping times are P0-a.s. finite. Thus, an application
of the strong Markov property, see (Karatzas and Shreve, 1991, Theorem 2.6.15),
shows that we can bound (5.5) from below by

E0
[
exp

{−(c + M)H1(p1)
}]

inf
x∈B1(p1)

Ex

[
exp

{−cHR(p2)
}
, τR(�γ ) > HR(p2)

]
(5.6)

× inf
x∈BR(p2)

Ex

[
exp

{−(c + M)H1(ue1)
}]

.

We start estimating the middle term of (5.6): Since u ≥ R + 1 we have |p2 −
p1| = u/ cos(π − θγ ) ≥ R + 1. For x ∈ B1(p1), we set x̄ := x − p1. Since R > 1
we have BR(p2) ⊃ BR−1(p2 + x̄) and QR(�γ ) ⊃ QR−1(�γ + x̄). Therefore, for
x ∈ B1(p1),

Ex

[
exp

{−cHR(p2)
}
, τR(�γ ) > HR(p2)

]
≥ Ex

[
exp

{−cHR−1(p2 + x̄)
}
, τR−1(�γ + x̄) > HR−1(p2 + x̄)

]
.

�γ + x̄ leads through x and through x + p2 − p1. The law of Brownian motion
is invariant under translations and rotations. Thus, Lemma 16 applied with radius
R − 1 shows for R ≥ R0 that the middle term in (5.6) can be bounded from below
by

C exp
{−|p2 − p1|

√
2c + 2λ2/(R0 − 1)2

}
. (5.7)

In order to get a bound on the last term of (5.6), let au := u tan(π − θγ ) −
|p1|. Note that 0 < tan(π − θγ ) ≤ tanϕ, and au ∼ u tan(π − θγ ) as u → ∞. Note
also that au = |p2 − ue1| if au ≥ 0. Let u0 ≥ R + 1 such that for u ≥ u0 one has
d(BR(p2), ue1) ≤ 2au and

−1

u
lnE0

[
exp

{−(c + M)H1(2aue1)
}] ≤ 4au

u
αc+M(e1) ≤ 8(tanϕ)αc+M(e1),

where the first inequality is a consequence of the existence of the Lyapunov expo-
nent for constant potential. Then for u ≥ u0 the last term of (5.6) can be bounded
from below by

E0
[
exp

{−(c + M)H1(2aue1)
}] ≥ exp

{−8u(tanϕ)αc+M(e1)
}
. (5.8)

Since the first term in (5.6) only depends on ω, since |p2 − p1| = u/ cos(π −
θγ ) ≤ u/ cosϕ, we get with (5.6), (5.7) and (5.8) for R ≥ R0 and for u ≥ u0,

lim sup
u→∞

−1

u
lnE0

[
exp

{
−

∫ H1(ue1)

0
Vω(Zs) ds

}]

≤
√

2
(
c + λ2/(R0 − 1)2

)
/ cosϕ + 8(tanϕ)αc+M(e1)
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which is lower or equal αc(e1) + D by the choice of ϕ. �

5.3 Discontinuity with respect to the potential

A slight modification of the previous setting also shows, that the Lyapunov ex-
ponent cannot be continuous in general with respect to Lp-convergence of the
potential, 1 ≤ p < ∞. Extend C to Ĉ := C ×[0,∞). Let �̂ be the space of locally
finite discrete measures on Ĉ provided with the topology of vague convergence
and let F̂ be the Borel σ -algebra. Let P̂ be the law of a homogeneous Poisson
point process on �̂ with intensity measure L ⊗ μ ⊗ L . Then R

2 is acting on Ĉ
via τ̂ Ĉ

x : (r, θ, s) �→ (τC
x (r, θ), s), where x ∈ R

2. This again leads to an action τ̂ of
R

2 on �̂ as before, under which P̂ is invariant and ergodic.
For 0 < κ let �κ be the mapping from �̂ to � defined as follows: We may

represent discrete ω ∈ �̂ as sums of Dirac measures: ω = ∑
i∈N δ(ri ,θi ,si ), see, for

example, (Daley and Vere-Jones, 2008, Proposition 9.1.III). We define for discrete
ω ∈ �̂ the mapping

�κ : ω = ∑
i∈N

δ(ri ,θi ,si ) �→ ∑
i∈N:si<κ

δ(ri ,θi ).

Then �κ(P̂) = Pκ .
We introduce for ω ∈ �̂ and for κ,R > 0 the potential

V̂κ,R(ω) := V1,R,1 ◦ �κ(ω).

For all 1 ≤ p < ∞ and R > 0, we have V̂κ,R → 2 in Lp(P̂) as κ → 0. Indeed,

Ê
[|2 − V̂κ,R|p] = P̂

[{
ω ∈ �̂ : [

�κ(ω)
] ∩ BR(0) �= ∅

}]
= Pκ

[{
ω ∈ � : [ω] ∩ BR(0) �= ∅

}]
(5.9)

= Pκ

[{
ω ∈ � : ω[[−R,R] × (0, π]] �= 0

}]
= 1 − e−2κR → 0 as κ → 0,

since for discrete ω ∈ � one has [ω] ∩ BR(0) �= ∅ if and only if ω[[−R,R] ×
(0, π]] �= 0. On the other hand as after Theorem 15 let Ŵκ := (V1,2R,1 ◦ �κ) ∗ g,
then Ŵκ is a regular potential such that Ŵκ ≤ V̂κ,R . In order to clarify dependence
on ω we introduce

a(u,U,ω) := − lnE0

[
exp

{
−

∫ H(ue1)

0
Uω(Zs) ds

}]
,

where u > 0, where U is some potential on � or �̂, and where ω ∈ � or ω ∈ �̂,
respectively. Then with (Rueß, 2014, (1.9)) and by Theorem 15 applied to D :=
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(α2(e1) − α1(e1))/2, there is R > 0 such that we have for κ > 0 P̂-a.s.,

α
Ŵκ

(e1) = lim
u→∞

1

u
a(u, Ŵκ,ω) ≤ lim sup

u→∞
1

u
a(u, V̂κ,R,ω)

= lim sup
u→∞

1

u
a
(
u,V1,R,1,�κ(ω)

) ≤ α1(e1) + D < α2(e1).

This, continuity of the convolution, see, for example, (Rueß, 2014, (4.11)), and
(5.9) show discontinuity.

5.4 Untypical scaling

The previous example can also be used to show that in general convergence of a
sequence of potentials (Vn)n to zero such that there is a potential V with nVn → V

in Lp for some 1 ≤ p < ∞ does not guarantee
√

nαVn(e1) → √
2EV .

We consider (�̂, F̂, P̂, τ̂ ) and define for b,n ∈ N the potential

Ṽn,b := 1

n
V̂1/n2,bn = V1/n,bn,1/n ◦ �1/n2 .

Then for 1 ≤ p < ∞, for b ∈ N, one has nṼn,b → 2 in Lp as n → ∞. Indeed, as
in (5.9), Ê[|nṼn,b − 2|p] = P1/n2[{ω ∈ � : ω[[−bn, bn] × (0, π]] �= 0}], thus,

Ê
[|nṼn,b − 2|p] = 1 − e−2bn/n2 → 0 (5.10)

as n → ∞. On the other hand, set W̃n := Ṽn,2 ∗ g where g is given as after The-
orem 15. Then W̃n is a regular potential and W̃n ≤ Ṽn,1. Theorem 15 applied to
Dn := 4

√
λ2/(n − 1) shows for R = n, P̂-a.s.,

√
nα

W̃n
(e1) ≤ √

n lim sup
u→∞

1

u
a(u, Ṽn,1,ω)

= √
n lim sup

u→∞
1

u
a
(
u,V1/n,n,1/n,�1/n2(ω)

) ≤ √
2 + √

nDn < α2(e1)

for n large enough. This, continuity of the convolution, and (5.10) show untypical
scaling.
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