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Abstract. In this paper, some bias correction methods are considered for pa-
rameter estimation of the complex Bingham distribution. The first method
relies on the bias correction formula proposed by Cordeiro and Klein [Statis-
tics & Probability Letters 19 (1994) 169–176]. The second method uses the
formulas proposed by Kume and Wood [Statistics & Probability Letters 77
(2007) 832–837] for calculating the derivatives of the log likelihood func-
tion. The third method is based on the saddlepoint approximation proposed
by Kume and Wood [Biometrika 92 (2005) 465–476]. Bootstrap bias correc-
tion methods due to Efron [The Annals of Statistics 7 (1979) 1–26] are also
considered. Simulation experiments are used to compare the bias correction
methods. In all cases, the analytical and bootstrap bias correction methods
have smaller mean square errors. Since the dominant eigenvalue is used to
obtain the mean shape, which has practical relevance, it is a key issue for
comparing the estimators. The numerical results indicate that the bootstrap
methods have a slightly better performance for the dominant eigenvalue.

1 Introduction

The Bingham distribution was introduced by Bingham (1974) as a generalization
of the Dimroth–Watson distribution (Watson, 1965). Let x be a point on the unit
sphere and f (x) its probability density function. The Bingham distribution has
antipodal symmetry, which means that f (x) = f (−x) for all unit vectors x. It
makes the Bingham distribution suitable for modelling axes on the sphere where
the vectors x and −x represent the same axis. The Bingham distribution can also
be equivalently defined as follows: if x is a random vector from a multivariate
normal distribution with zero mean and conditioned to have unit length, one can
say that the distribution of x is the Bingham distribution (Mardia and Jupp, 2000).

A complex version of the Bingham distribution was presented by Kent, Con-
stable and Er (2004) for use in statistical shape analysis for objects in 2 dimen-
sions. In this work, Kent, Constable and Er (2004) derived several properties of the
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complex Bingham distribution, including invariance under scalar rotation, mean-
ing that f (eiθ z) = f (z), where f is the density function of the complex Bingham
distribution. They also developed likelihood estimation and provided other rele-
vant results. Simulation of the complex Bingham distribution is covered by Kent,
Constable and Er (2004).

Some specific details should be considered for the complex Bingham distribu-
tion. Kume and Wood (2005) obtained a mathematical expression for the constant
of the complex Bingham distribution. Kume and Wood (2007) obtained the deriva-
tives of the normalizing constant of the Bingham distribution. These results are
used to obtain bias corrected estimators.

Amaral, Florez and Cysneiros (2013) introduced an influence measure in sta-
tistical shape analysis related to the complex Bingham distribution. This influence
measure is based on the Cook’s distance and the complex Bingham model is as-
sumed for the sample. Some results from that work are used in this paper.

There is motivation for bias correction in statistical shape analysis. In this con-
text, small sample sizes happens frequently (Dryden and Mardia, 1998). When the
sample size is small, it is relevant to study the behaviour of maximum likelihood
estimators (MLEs). Bias correction is one of the most important topics in those
studies. Cox and Snell (1968) have derived a general formula for analytical bias
correction. Cordeiro and Klein (1994) have proposed one simplified version of that
formula. The Cordeiro and Klein (1994) formula is used to bias correct the MLEs
of the complex Bingham distribution.

The rest of the paper is organized as follows. Some relevant details about
the complex Bingham distribution are reviewed in Section 2. In Section 3, the
Cordeiro and Klein (1994) formula is applied to the complex Bingham distribu-
tion. The Kume and Wood (2007) formula is used in Section 4. The saddlepoint
approximation is considered in Section 5. Bootstrap bias correction is defined in
Section 6. Some numerical results are presented in Section 7 and some conclusions
are given in Section 8.

2 Some properties of the complex Bingham distribution

It is relevant to motivate how the complex Bingham distribution arises in practical
situations. A brief discussion is given in this section, and further details can be
found in Dryden and Mardia (1998), Small (1996) and Kent (1994).

Let

Y =
⎛
⎜⎝

y1,1 y1,2
...

...

yk,1 yk,2

⎞
⎟⎠ (2.1)

be the representation of k landmarks of an object in two dimensions.
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In shape analysis, it is necessary to remove the effects of translation, scale and
rotation.

The translation and scale effects are often removed. However, the rotation effect
is removed only when graphical representation is necessary.

To simplify the mathematical operations, the first step that one should perform
is to transform the matrix (2.1) in a complex vector. It is given by

w0 =
⎛
⎜⎝

y1,1 + iy1,2
...

yk,1 + iyk,2

⎞
⎟⎠ . (2.2)

The effect of translation is removed by multiplying the vector (2.2) by the
Helmert sub matrix H which is defined as follows. The matrix H is a (k − 1) × k

matrix which the j row is given by

(hj , . . . , hj ,−jhj ,0, . . . ,0), hj = −{
j (j + 1)

}−1/2
,

with j = 1, . . . , k − 1, where the number of zeros elements in the row j is equal to
k − j − 1.

So the translation and scale effects are removed by the operation

z = Hw0

|Hw0| .
The vector z is called a pre-shape, and the complex Bingham distribution is

often used as a model for a random sample of pre-shapes z1, . . . , zn.
The probability density function (p.d.f.) of a complex Bingham distribution is

given by

f (z) = c(A)−1 exp
(
z�Az

)
, z ∈CSk−1, (2.3)

where z is a complex unit vector, z� = z̄T is the complex conjugate of the trans-
pose of z, A is a (k − 1) × (k − 1) Hermitian matrix and c(A) is a normalizing
constant. The matrix A is a parameter matrix and diag(λ1, . . . , λk−1) will denote
its eigenvalues.

Let z1, . . . , zn be a random sample from the density (2.3). After some algebraic
simplifications (Dryden and Mardia, 1998), the likelihood of the p.d.f. (2.3) is
given by

l(λ) =
k−1∑
r=1

lrλr − n log c(�), (2.4)

where � = diag(λ1, . . . , λk−1), l1, . . . , lk−1 are the eigenvalues of Ŝ = ∑n
i=1 ziz

�
i ,

c(�) = 2πk−1 ∑k−1
r=1 are

λr and a−1
r = ∏

j �=r (λr − λj ).
One important property of the complex Bingham distribution is that the matri-

ces A and A + kI define the same distribution.
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Kent, Constable and Er (2004) explains how to generate random vectors from
the density (2.3). We use the first algorithm proposed by Kent, Constable and Er
(2004), which is described as follows:

(1) Generate (k − 1) uniform (0,1) random numbers: U1, . . . ,Uk−1.
(2) Compute Si = −(1/λj ) log(1 − Uj(1 − e−λj )), S′ = (S1, . . . , Sk−1), noting

that the Si are independent truncated exponential.
(3) If

∑k−1
j=1 Sj < 1, set S = S′. Otherwise, reject S′ and go to 1.

(4) Generate independent angles θj ∼ U [0,2π), j = 1, . . . , k − 1.

(5) Calculate zj = s
1/2
j exp(iθj ), j = 1, . . . , (k − 1).

The final vector (z1, . . . , zk−1) comes from the density (2.3).

3 Analytical bias correction

Bias correction is a well explored topic. Cordeiro and Cribari-Neto (2014) present
an account about this theme. The motivation for this paper and other relevant in-
formation come from that work.

One important issue is that maximum likelihood estimates (MLE) are often bi-
ased. This error is systematic (Cordeiro and Cribari-Neto, 2014). Since the bias
order of the MLE is n−1, it is a problem when the sample size is small. A bias
correction formula for O(n−1) bias has been introduced by Bartlett (1953) for
one-parameter models. Cox and Snell (1968) proposed a bias correction formula
for multi-parameter models.

Since most of the data set considered by Dryden and Mardia (1998) have small
sample sizes, there is a motivation for bias correction in complex Bingham models.

Let z1, . . . , zn a random sample from the density (2.3), where λT =
(λ1, . . . , λk−1) is the parameter vector which is defined in (2.4).

According to Cordeiro and Klein (1994), the second-order bias correction of the
parameter vector λ is given by

B(λ̂r) = ∑
s,t,u

κruκst

(
κ(t)
rs − 1

2
κrst

)
,

where:

(1) λ̂r is the maximum likelihood estimate (MLE) estimate for the r th component
of λ;

(2) −κru is the element (r, u) of the inverse of the expected Fisher information
matrix;

(3) κ
(t)
rs = ∂κrs

∂λt
, where −κrs is the (r, s) element of the Fisher information matrix;

(4) κrst = E( ∂3l
∂λr ∂λs ∂λt

).
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The second partial derivative of (2.4) does not depend on the sample. Therefore,

κrs = ∂2l

∂λr ∂λs

and

κrst = ∂3l

∂λr ∂λs ∂λt

= ∂

∂λt

(
∂2l

∂λr ∂λs

)
= ∂κrs

∂λt

= κ(t)
rs .

Thus, in this case , the second-order bias correction is given by

B(λ̂r) = 1

2

∑
s,t,u

κruκstκrst . (3.1)

To obtain the terms of (3.1) it is necessary to use some quantities from Amaral,
Florez and Cysneiros (2013). So κrs is given by

κrs = n

c2(�)

[
cr(�)cs(�) − crs(�)

]
,

where cr(�) = ∂c
∂λr

and crs(�) = ∂2c
∂λr ∂λs

. Set crst (�) = ∂3c
∂λr ∂λs ∂λt

, we have

κrst = n

c2(�)

{[
crt (�)cs(�) + cst (�)cr(�) − crst (�)

]

− 2
ct (�)

c(�)

[
cr(�)cs(�) − crs(�)

]}
.

The terms of equation (3.1) are computed in the Appendix.

4 Formulas proposed by Kume and Wood (2007) for the derivatives

To obtain the derivatives of the complex Bingham normalizing constant is not an
easy task. Kume and Wood (2007) have shown that the derivative of that constant
is proportional to the normalizing constant of a real Bingham distribution. So they
use sanddlepoint approximations to compute the derivatives of the complex Bing-
ham normalizing constant.

The results of Kume and Wood (2007) can be used to obtain the derivatives of
the likelihood as follows. The formula of the derivatives is given by

∂n

∂λ
m1
1 , . . . , ∂

mp

λp

(
c(�)

) = (−1)n2πp
p∑

i=1

(−1)mi exp(−λi)S(mi),

where

S(mi) = ∑
J0(i)≥0,|J0(i)|=mi

mi !
j0!, . . . , ji−1!, . . . , jp!(−1)j0

∏
r �=i

(mr + jr)!
(λr − λi)1+mr+jr

,
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where j0(i) = (j0, j1, . . . , ji−1, ji+1, . . . , jp) with jk > 0,∀k, and |J0(i)| denoting
the sum of the components of J0(i).

For each i, i = 1, . . . , p, it must be considered all the combinations of the values
j0, . . . , jp such that |J0(i)| = mi , where mi is the number of times that c(�) is

differentiated by λi . For example, for the computation of ∂2c(�)

∂λ2
t

, we have mt = 2,

mi = 0 ∀i �= t and n = 2. Hence, for each i �= t , there is only one combination J0(i)

(all components are equal to zero) and the value of S(mi) is the following:

S(mi) = S(0) = −2ai

(λt − λi)2 . (4.1)

If i = t , we may enumerate four types of combinations:

(1) j0 = 2;
(2) j0 = 0 and jk = 2, for some k > 0;
(3) j0 = 1 and jk = 1 for some k > 0;
(4) jk1 = jk2 = 1 for some k1, k2 > 0 with k1 �= k2.

(1) There is only one combination: J0(t) = (2,0, . . . ,0). Thus,

mt !
j0!, . . . , ji−1!, . . . , jp!(−1)j0

∏
r �=t

(mr + jr)!
(λr − λt )1+mr+jr

= −at . (4.2)

(2) There are p − 1 combinations: (0,2,0, . . . ,0), (0,0,2, . . . ,0), . . . ,

(0,0,0, . . . ,2). For this case,

mt !
j0!, . . . , ji−1!, . . . , jp!(−1)j0

∏
r �=t

(mr + jr)!
(λr − λt )1+mr+jr

= −2at

(λk − λt )2 . (4.3)

The sum of the p − 1 combinations is
∑

k �=t
2at

(λk−λt )2 = −2gtat .
(3) There are p − 1 combinations: (1,1,0, . . . ,0), (1,0,1, . . . ,0), . . . ,

(1,0,0, . . . ,1). Therefore,

mt !
j0!, . . . , ji−1!, . . . , jp!(−1)j0

∏
r �=t

(mr + jr)!
(λr − λi)1+mr+jr

= 2at

λk − λt

. (4.4)

The sum of the p − 1 combinations is
∑

k �=t
2at

λk−λt
= −2btat .

(4) There are (p−1)(p−2)
2 combinations (0,1,1,0, . . . ,0,0), (0,1,0,1, . . . ,

0,0), . . . , (0,0,0,0, . . . ,1,1). So,

mt !
j0!, . . . , ji−1!, . . . , jp!(−1)j0

∏
r �=t

(mr + jr)!
(λr − λi)1+mr+jr

(4.5)

= −2at

1

λt − λk1

1

λt − λk2

.
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The sum of this value over all these combinations is

− ∑
k1 �=t

∑
k2>k1

2at

1

λt − λk1

1

λt − λk2

. (4.6)

Note that

b2
t = ∑

k1 �=t

1

λk1 − λt

∑
k2 �=t

1

λk2 − λt

= ∑
k1 �=t

1

(λk1 − λt )2 − ∑
k1 �=t

∑
k2 �=k1

1

λk1 − λt

1

λk2 − λt

= gt − 2
∑
k1 �=t

∑
k2>k1

1

λk1 − λt

1

λk2 − λt

.

So,

2
∑
k1 �=t

∑
k2>k1

1

λt − λk1

1

λt − λk2

= gt − b2
t . (4.7)

Hence, (4.6) can be written as (gt − b2
t )at .

Thus, S(mt) is given by

S(mt) = S(2) = −at − 2atbt − atb
2
t − atgt . (4.8)

Therefore,

∂2

∂λ2
t

(
c(�)

) = (−1)n2πp
p∑

i=1

(−1)mi exp(−λi)S(mi)

(4.9)

= 2πp

{
−∑

i �=t

2aie
λi

(λt − λi)2 + ate
λt

[
1 + gt − 2bt + b2

t

]}
.

Since equation (4.9) can be found in Amaral, Florez and Cysneiros (2013),
it illustrates the equivalence between the results of Kume and Wood (2007) and
Amaral, Florez and Cysneiros (2013).

5 Saddlepoint approximation for the Bingham normalizing constants

One can use a saddlepoint approximation to the Bingham normalizing constant
(Kume and Wood, 2005). The normalizing constant can be written as

ĉ3(λ) = 21/2π(p−1){K(2)
λ (t̂)

}−1/2 exp
{
T (t̂) − t̂

} p∏
i=1

(λi − t̂ )−1/2, (5.1)
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where Kλ(t) = −1
2

∑p
i=1 log(1− t/λi),K

(j)
λ = ∂jKλ(t)

∂tj
= ∑p

i=1
(j−1)!

2(λi−t)j
, j ≥ 1, the

term t̂ is the unique solution in (−∞,mini λi) to the equation K
(1)
λ = 1 and T (t) =

1
8ρ4(t) − 5

24ρ3(t)
2, where ρj (t) = K

(j)
λ

{K(2)
λ (t)}j/2

.

6 Bootstrap bias correction

The bootstrap method was initially proposed by Efron (1979). The method’s idea
is simple. Since the sampling distribution of a statistics is often unknown, samples
with replacement from the original sample can be used to estimate that.

The bootstrap method can be parametric or nonparametric. The parametric boot-
strap assumes a distribution for the data. On the other hand, the nonparametric
bootstrap does not assume any distribution.

The nonparametric bootstrap method for bias correction has been extensively
used in the literature (Efron, 1979). This method is briefly explained in this section.

Let z1, . . . , zn be a random sample from the density (2.3). The bootstrap bias
correction method has the following steps:

1. Obtain the maximum likelihood estimate (MLE) λ̂ of λ by maximizing (2.4).
2. Choose B random samples with replacement from z1, . . . , zn.
3. Compute the MLE of each bootstrap sample, which will deliver

λ̂1, . . . , λ̂B.

4. Calculate the mean of the bootstrap samples λ̄ = B−1 ∑B
i=1 λi .

5. The bootstrap bias corrected estimator is given by

λ̃ = 2λ̂ − λ̄. (6.1)

The parametric bootstrap method for bias correction is similar to the previous
one. However, since a probabilistic model is assumed, the samples with replace-
ment are draw from the model (2.3). The parameters are replaced by the MLE λ̂

of λ.
The parametric bootstrap method can be described as follows:

• Consider z1, . . . , zn a random sample from (2.3);
• Using the model (2.3), estimate by maximum likelihood the parameter vector λ

and the parameter matrix A;
• Draw B samples with replacement from f (z) = c(Â)−1 exp(z�Âz), z ∈ CSk−1,

where Â is the MLE of A. Let each bootstrap sample be denoted by
z
(b)
1 , . . . , z

(b)
n ;

• For each bootstrap sample, compute λ̂b, which is the MLE of λ for the sample
z
(b)
1 , . . . , z

(b)
n ;
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• The bias corrected estimator is computed such as the previous method. So

λ̃ = 2λ̂ − λ̄, (6.2)

where λ̄ = ∑b
i=1 λ̂b and λ̂ is the MLE of λ.

7 Numerical evaluation

The methods were defined according to the list below:

• MLE: maximum likelihood estimation
It is obtained by maximizing (2.4).

• MLE-SA: maximum likelihood estimation with saddlepoint approximation
The normalizing constant (5.1) is used.

• BC-MLE: bias correction of the maximum likelihood estimates
The formula (3.1) is applied.

• BC-MLE-SA: bias correction of the maximum likelihood estimates with sadlle-
point approximation

The formulas (5.1) and (3.1) are implemented.
• Boot-NPAR: bias correction with nonparametric bootstrap

The estimator (6.1) is calculated.
• Boot-PAR: bias correction with parametric bootstrap

The statistics (6.2) is used.
• Boot-SA-NPAR: bias correction with saddlepoint approximation and nonpara-

metric bootstrap
The normalizing constant (5.1) and the estimator (6.1) are computed.

• Boot-SA-PAR: bias correction with saddlepoint approximation and parametric
bootstrap

The normalizing constant (5.1) and the estimator (6.2) are calculated.

The results of simulation experiments with 10,000 Monte Carlo samples and
1000 random bootstrap samples are shown in the next tables. The parameter vec-
tors of the complex Bingham distribution are defined according to following exper-
iment: λ = σ × (4,3,2,1,0), where σ = 10 and the sample sizes were 20 and 60.
Thus, the concentration is proportional to the value of σ . The experiments were
implemented in R.

The results of Table 1 can be summarized as follows. The analytical bias correc-
tion improves the MSE in all considered cases of λ. On the other hand, the boot-
strap methods reduces the MSE only for the two bigger values of λ. The methods
reduce the bias only for the first three values of λ, and the bias correction methods
do not reduce the bias when λ4 = 10. The results also indicate that the saddlepoint
approximation did not change the previous conclusions. It is relevant compare the
nonparametric bootstrap method to the parametric bootstrap method. The paramet-
ric bootstrap method has smaller bias and MSE when λ1 = 40. However, for other
values of λ, they have a similar performance.
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Table 1 Simulation results for σ equals to 10 and the sample size equals to 20

λ1 = 40 λ2 = 30 λ3 = 20 λ4 = 10

Estimator Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

MLE −26.32 263.08 955.91 −6.45 47.55 89.17 −0.98 15.00 15.96 0.02 4.38 4.38
MLE-SA −26.31 263.17 955.21 −6.43 47.61 88.94 −0.94 15.07 15.96 0.10 4.44 4.45
BC-MLE −23.01 237.42 766.80 −4.63 42.91 64.37 0.06 13.52 13.53 0.50 3.91 4.17
BC-MLE-SA −22.93 237.09 762.87 −4.57 42.90 63.82 0.12 13.58 13.59 0.59 3.97 4.32
Boot-NPAR 11.09 156.25 279.16 2.52 57.71 64.05 0.79 21.29 21.92 0.07 5.77 5.77
Boot-PAR 7.08 149.36 199.45 2.76 55.50 63.14 0.92 21.18 22.03 0.07 5.81 5.82
Boot-SA-NPAR 11.11 156.34 279.66 2.54 57.79 64.26 0.83 21.39 22.09 0.15 5.85 5.88
Boot-SA-PAR 7.10 149.45 199.80 2.79 55.58 63.37 0.96 21.28 22.21 0.15 5.90 5.92
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Figure 1 Boxplots for eight bias correction methods (σ = 10 and sample size of 20).

The boxplots of Figure 1 are useful to evaluate the dispersion of the results.
The methods with smallest dispersion are the BC-MLE-SA and Boot-SA-PAR. It
indicates that the saddlepoint approximation is key to reduce dispersion.

In Table 2, the simulation results for the sample size of 60 and σ = 10 are
shown. Since the sample size is larger, all the biases and MSE are smaller that
those of Table 1. It is useful to suggest that the analytical and bootstrap methods
should converge for similar biases and MSE. Since the dominant eigenvalue is used
to obtain the mean shape, which is a relevant statistics in shape analysis, we focus
on this quantity. So the results indicate that the bootstrap methods have smaller bias
and MSE. The parametric and nonparametric bootstrap methods deliver almost the
same results.

The boxplots of all methods are shown in Figure 2. As in the previous graph, the
methods with smallest dispersion are the BC-MLE-SA and Boot-SA-PAR. Again,
the dispersion reduction of the saddlepoint methods is noticeable.
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Table 2 Simulation results for σ equals to 10 and the sample size equals to 60

λ1 = 40 λ2 = 30 λ3 = 20 λ4 = 10

Estimator Bias Var MSE Bias Var MSE Bias Var MSE Bias Var MSE

MLE −6.99 35.90 84.73 −1.79 13.43 16.62 −0.27 5.76 5.83 −0.03 1.66 1.66
MLE-SA −6.97 35.93 84.50 −1.76 13.45 16.55 −0.23 5.79 5.84 0.05 1.69 1.69
BC-MLE −6.21 34.71 73.23 −1.26 12.98 14.56 0.07 5.57 5.57 0.13 1.60 1.62
BC-MLE-SA −6.17 34.72 72.82 −1.22 13.00 14.49 0.11 5.60 5.61 0.21 1.63 1.67
Boot-NPAR 0.48 35.46 35.69 0.30 17.75 17.84 0.07 7.51 7.51 −0.03 1.88 1.88
Boot-PAR 0.45 35.38 35.58 0.34 17.76 17.88 0.08 7.53 7.53 −0.03 1.88 1.88
Boot-SA-NPAR 0.50 35.49 35.74 0.32 17.79 17.89 0.11 7.55 7.56 0.05 1.91 1.91
Boot-SA-PAR 0.47 35.41 35.63 0.36 17.79 17.93 0.12 7.56 7.58 0.05 1.91 1.91
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Figure 2 Boxplots for eight bias correction methods (σ = 10 and sample size of 60).

8 Conclusions

Some bias correction methods for the complex Bingham distribution has been de-
rived. The analytical and bootstrap methods have reduced the mean square error
of the maximum likelihood estimator. For the dominant eigenvalue, the bootstrap
bias corrected estimator has slightly smaller mean square error than the analytical
bias corrected estimator. When the sample size increases, the biases of all meth-
ods goes to zero. Moreover, the saddlepoint approximation is useful to reduce the
dispersion of the results.

Appendix: Terms of the second-order bias correction

After some algebraic operations, we have the following results:

crr (�) = (2π)k−1
[
2

∑
j �=r

ujr

λj − λr

+ are
λr

(
1 − 2br + b2

r + gr

)]
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and

crs(�) = (2π)k−1
[
2

∑
j �=r

j �=s

ujs

λj − λr

+ urs

(
1 − 1

λr − λs

− br

)

+ usr

(
1 − 1

λs − λr

− bs

)]
,

where urs = are
λs

λr−λs
, br = ∑

j �=r
1

(λr−λj )
and gr = ∑

j �=r
1

(λr−λj )2 . See Amaral, Flo-

rez and Cysneiros (2013).
We also have

crrr (�) = 2πk−1
{

6
∑
j �=r

ujr

(λj − λr)2

+ are
λr

[
(1 − br)

(
1 − 2br + b2

r + gr

) + 2gr

(
1 − br − hr

gr

)]}
,

where hr = ∑
j �=r

1
(λr−λj )3 ;

crrt (�) = 2πk−1
{

2
∑
j �=r

j �=t

ujr

(λj − λr)(λj − λt )
+ 2utr

λt − λr

(
1 − bt − 2

λt − λr

)

+ urt

[
1 − 2br + b2

r + gr + 2

λr − λt

(
1

λr − λt

+ br − 1
)]}

,

crsr (�) = 2πk−1
{

2
∑
j �=r

j �=s

ujr

(λj − λr)(λj − λs)

+ urs

[(
1 − 1

λr − λs

− br

)2

+ 1

(λr − λs)2 + gr

]

+ 2usr

λs − λr

(
1 − 2

λs − λr

− bs

)}
,

crss(�) = 2πk−1
{

2
∑
j �=r

j �=s

ujs

(λj − λr)(λj − λs)

+ usr

[(
1 − 1

λs − λr

− bs

)2

+ 1

(λs − λr)2 + gs

]

+ 2urs

λr − λs

(
1 − 2

λr − λs

− br

)}
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and

crst (�) = 2πk−1
{∑

j �=r

j �=s

j �=t

ujr

(λj − λs)(λj − λt )

+ utr

λt − λs

[
1 − 1

λt − λr

− 1

λt − λs

− bt

]

+ urs

λr − λt

(
1 − 1

λr − λs

− 1

λr − λt

− br

)

+ usr

λs − λt

(
1 − 1

λs − λr

− 1

λs − λt

− bs

)}
.
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