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A New Family of Non-Local Priors for Chain
Event Graph Model Selection

Rodrigo A. Collazo∗ and Jim Q. Smith†

Abstract. Chain Event Graphs (CEGs) are a rich and provenly useful class of
graphical models. The class contains discrete Bayesian Networks as a special case
and is able to depict directly the asymmetric context-specific statements in the
model. But bespoke efficient algorithms now need to be developed to search the
enormous CEG model space. In different contexts Bayes Factor scored search
algorithm using non-local priors (NLPs) has recently proved very successful for
searching other huge model spaces. Here we define and explore three different
types of NLP that we customise to search CEG spaces. We demonstrate how one
of these candidate NLPs provides a framework for search which is both robust and
computationally efficient. It also avoids selecting an overfitting model as the stan-
dard conjugate methods sometimes do. We illustrate the efficacy of our methods
with two examples. First we analyse a previously well-studied 5-year longitudinal
study of childhood hospitalisation. The second much larger example selects be-
tween competing models of prisoners’ radicalisation in British prisons: because of
its size an application beyond the scope of earlier Bayes Factor search algorithms.

Keywords: chain event graph, Bayesian model selection, non-local prior, moment
prior, discrete Bayesian networks,, asymmetric discrete models, Bayes factor
search.

1 Introduction

Graphical models provide a visual framework depicting structural relations in a way eas-
ily appreciated by domain experts. Bayesian networks (BNs) (Neapolitan (2004); Cowell
et al. (2007); Smith (2010); Korb and Nicholson (2011)) have been a particularly suc-
cessful example of this class. However, despite its power and flexibility to model a wide
range of problems, a BN also has some well-known limitations. Conditional indepen-
dence statements coded by a BN are necessarily symmetric and must hold for all levels of
the conditioning variables. In many domains it has been discovered that in practice this
is not a plausible class of hypotheses: different levels of variables can give rise to different
types of dependences, even different collections of relevant variables. To build classes of
models that can accommodate such assumptions, various non-graphical methods have
now been suggested and appended to the BN framework, including context-specific
BNs (Boutilier et al. (1996); Poole and Zhang (2003); McAllester et al. (2008)) and
object-oriented BNs (Koller and Pfeffer (1997); Bangsø and Wuillemin (2000)).
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However, an alternative way to address this issue is to use a different graphical
framework from the BN to capture such asymmetric dependences. One such class is
the class of Chain Event Graphs (CEGs) (Smith and Anderson (2008); Thwaites et al.
(2008)). This contains all discrete context-specific BNs as a special case. CEGs are
closely related to probabilistic decision graphs (Bozga and Maler (1999); Jaeger (2004);
Jaeger et al. (2006)). The topology of a CEG is based on an event tree and can directly
depict level specific asymmetric statements of conditional independences.

Being built from a tree, a CEG typically has a huge number of free parameters.
This profusion of models makes the class of CEGs extremely expressive but also very
large. Standard model selection methods have nevertheless been successfully employed
for models with small number of variables (Freeman and Smith (2011); Barclay et al.
(2013); Cowell and Smith (2014)). However, in order to search this massive space when
the model hypotheses concern more than just a few variables, it is necessary to a priori
specify those models that are most likely to be useful. One property that is widely evoked
is to bias the selection towards parsimony. So methods that a priori prefer smaller models
during the automated model selection have been found particularly useful. For instance,
in the context of BNs various authors, e.g. Pearl (2009), have pointed out that well-
fitting sparse graphs tend to identify more stable underlying causal mechanisms. In a
recent study of prior and posterior distributions over BN model spaces, Scutari (2013)
argued that in practice there is often only weak evidence of any dependence associated
with certain levels of the conditioning variable.

The focus of this paper will be the search over the space of CEGs which can also be
expressed as context-specific BNs. This enables us to choose priors on hyperparameters
of the different component models so that the higher scoring models tend to be the
simpler ones. Most applied Bayes Factor (BF) selection techniques – often based on
conjugate priors – use local priors; that is, priors that keep the null model’s parameter
space nested in the alternative model’s parameter space. However, recent analyses of BF
model selection in other contexts have suggested that the use of such standard methods
and prior settings tends to choose models that are not sufficiently parsimonious. In
particular, Dawid (1999, 2011) and Johnson and Rossell (2010) have shown that local
priors are prone to cause an imbalance in the training rate since the evidential support
grows exponentially under a true alternative model but only polynomially under a true
null model.

To circumvent this phenomenon, BN selection methods based on non-local priors
(NLPs) – albeit for graphs of Gaussian variables – have been successfully developed, see
Consonni et al. (2013); Consonni and La Rocca (2011); Altomare et al. (2013). These
priors vanish when the parameter space associated with a candidate larger model are
nested into the parameter space of a simpler one. This enables the fast identification
of the simpler model when it really does drive the data generation process. An NLP
embodies beliefs that the data generation process is driven by a parsimonious model
within a formal BF methodology. Robustifying the inference in this way has proven
especially efficacious for retrieving high-dimensional sparse dependence structures.

In this paper, both to ensure parsimony and stability of selection to the setting of hy-
perparameters we define three new families of NLPs designed to be applied specifically
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to discrete processes defined through trees: the full product NLPs (fp-NLPs), the pair-
wise product NLPs (pp-NLPs) and the pairwise moment NLPs (pm-NLPs). Although
here these methods are developed for CEG models, they can also be directly extended
for example to Bayesian cluster analyses.

We will find that a great advantage of a pm-NLP is that it retains the learning
rate associated with more standard priors if the data generating process is the complex
model whilst scaling up the learning rate when the simple model is true. This enforces
parsimony over the model selection in a direct and simple way, keeping computational
time and memory costs under control. The empirical results presented here also indicate
that a CEG model search using pm-NLPs is more robust than one using a local prior
in the sense that model selection is similar for wide intervals of values of nuisance
hyperparameters.

The necessity for heuristic algorithms for CEG model selection has already been
stressed in Silander and Leong (2013) and Cowell and Smith (2014). When used in
conjunction with greedy search algorithms – often necessary when addressing these
massive model spaces – we also show here that a pm-NLP (see Section 3) helps to
reduce the incidence of some undesirable properties exhibited by standard Dirichlet
local priors or product NLPs (fp-NLPs and pp-NLPs).

The present text begins in Section 2 with a brief description of the class of CEGs.
In Section 3, we then examine what happens when we apply the standard local priors
and product NLPs to the selection of CEGs and present some arguments in favour of
pm-NLPs. We also develop a formal framework that enables us to employ pm-NLPs
for CEG model search within our modified heuristic approach. To show the efficacy
of our method, Section 4 presents some summaries of extensive computational exper-
iments for model selection. The first of these examples uses survey data concerning
childhood hospitalisation. The second example models the radicalisation process of a
prison population. We conclude the paper with a discussion.

2 Chain Event Graph

2.1 Christchurch Health and Development Study Data Set

To illustrate how the CEG can be used to describe a discrete process, we will first revisit
the data set used in Barclay et al. (2013) and Cowell and Smith (2014). Later we will
use this survey to explore various features of CEG model selection in this problem. The
data we use is a small part of the Christchurch Health and Development Study (CHDS)
conducted at the University of Otago, New Zealand; see Fergusson et al. (1986) and
Barclay et al. (2013) for more details. This was a 5-year longitudinal study of rates of
childhood hospitalization here modelled as a function of three explanatory variables:

• Family social background, a categorical variable differentiating between high and
low levels according to educational, socio-economic, ethnic measures and informa-
tion about the children’s birth.
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• Family economic status, a categorical variable distinguishing between high and
low status with regard to standard of living.

• Family life events, a categorical variable signalising the existence of low (0 to 5
events), moderate (6 to 9 events) or high (10 or more events) number of stressful
events faced by a family over the 5 years.

One of the many aims of this study was to assess how these three variables might impact
the likelihood of childhood hospitalization (a binary variable). We next describe the
semantics for a CEG illustrating this using the CEG model discovered in Barclay et al.
(2013). In that study, the hospitalisation of a child – the response (and last) variable –
is expressed in terms of the following measured sequence of explanatory variables: social
status, economic situation, and life events.

2.2 CEG Modelling

The modelling of a process using a CEG requires three steps: the construction of the
event tree T that supports the process; its transformation into the staged tree; and
finally the construction of CEG itself (Smith and Anderson (2008); Thwaites et al.
(2008); Smith (2010); Freeman and Smith (2011)). User-friendly introductions to this
modelling procedure can also be found in Barclay et al. (2013) and in Cowell and Smith
(2014).

Recall that an event tree provides a visual representation of the multiple ways that
a process can unfold for each unit. The vertices of the tree symbolise specific situations
s encountered by a unit during the process. The outgoing edges represents events that
may occur immediately after arriving at each given situation s. Note that a situation s
is an intermediate state of a possible final result of the process under analysis. In this
sense, the situation s is determined by the successive events along its root-to-s path.
The floret F (s) is a star T -subgraph that is rooted at a situation s and includes all
emanating edges of s to the possible situations a unit arriving at s might traverse next
(Freeman and Smith (2011)). To better understand the parametrisation of a CEG, take
a sample y = {y0, . . . ,yR}, where yi = (yi1, . . . , yiLi), and where yij represents the
number of units that arrive at situation si and then proceed to its emanating edge j in
a event tree.

Figure 1 depicts the process associated with the CHDS data set using an event tree.
For example, a child in the initial situation s0 can unfold into the situation s1 where
her family enjoy good social status. She might then experience a comfortable economic
background, situation s3, or a deprived one, situation s4. The floret associated with
the situation s1 is presented in bold. The situation s3 represents the state of a child
whose family enjoy both a high social status and prosperous economic conditions. For
the purpose of CEG learning and model selection, the data set should then report the
number of children that passed along each edge (yij) in this event tree.

By associating a conditional probability to each edge emanating from a situation s
given that a unit is at s, we embellish the event tree into a probability tree. Another
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Figure 1: Event Tree associated with the CHDS data set.

construction is a useful basis for depicting a possible evolution. Thus the event tree
becomes a staged tree when its situations are coloured. Two situations with the same
colour are hypothesised to have the same edge probabilities in the floret they root. To
make their association explicit floret edges whose root situations will be assigned the
same probabilities are also coloured the same; see Freeman and Smith (2011).

All situations within a given coloured subset (called stage) in the staged tree are
said to be in the same position w if they unfold under the same probability law. For a
unit arriving at any situation in a particular position the process behind its subsequent
evolution will then be identical to those arriving at the other situations in this position.
These positions form the vertices of a new graph called a CEG.

The CEG is constructed directly from the staged tree. It simplifies the graph and so
expatiates better explanations to domain experts about the hypotheses embodied within
the chosen model. Within this construction all leaf nodes are diverted into a single sink
node. All situations in the same position are then identified with one another by a single
node labelling that position. For the sake of clarity and economy, a position coincident
with its stage will be showed in black in the CEG; otherwise, it will keep the colour of
its stage in the staged tree.

To introduce the parametrisation, consider a CEG C which has M +1 stages where
each stage ui has Li emanating edges. Suppose we have a sample x = {x0, . . . ,xM},
where xi = (xi1, . . . , xiLi), and where xij represents the number of units that arrive at
stage ui and then proceed to its emanating edge j. Then, associated to each stage ui
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is a probability vector πi = (πi1, . . . , πiLi), where πij is the conditional probability of
a unit in stage ui proceeds to take the emanating edge j. Note that xi =

∑
sj∈ui

ysj
and that the topology of a CEG is completely determined by its stage tree. In fact, the
positions are determined once a stage structure is defined as in Figure 2.

Figure 2 shows a possible CEG for the CHDS data set. The positions w3 = {s3, s4}
and w4 = {s5} are represented in blue (and in bold) because their corresponding po-
sitions s3, s4 and s5 are in the same stage, however their subsequent unfolding is not
identical. So, the conditional probabilities associated with variable Life Events are equal
given that the variables Social Status and Economic Situation of a family do not simul-
taneously assume the value “Low”. On the other hand, situations in the set {s3, s4}
and the situation s5 are assigned to different positions because the children of families
with low number of stressful Life Events unfold for position w6 if they are at position
w5 = {s3, s4} or to position w7 if they are at position w4 = {s5}. The rest of the
positions are also a single stage and are therefore depicted in black. Observe that in
contrast to BNs it is very easy and direct to depict asymmetric statements of conditional
independence using CEGs.

Figure 2: The CEG is associated with the CHDS data set. This figure should be seen
in colour for a better understanding.

A triad C = (T , U,P) formally characterises a CEG, where T is an event tree, U
is the set of stages, and P is the adopted probabilistic measure. The pair G = (T , U)
defines the graphical structure of a CEG C. For the purpose of this paper it is useful to
introduce the following property.

Definition 1 (m-Nested Chain Event Graphs). A CEG C
+ = (T , U+,P) is m-nested

in any CEG C = (T , U,P) if and only if U is a finer partition of U+ and |U |−|U+| = m.
Conventionally Δ is the set of stages of U that are merged in U+.
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2.3 CEG Learning Process

Assume that the πi vectors are mutually independent a priori (floret and path inde-
pendence condition) and two identical stages in different CEGs in the same probability
space have the same prior distribution (staged consistency condition). Then under these
two conditions and a complete random sample x, Freeman and Smith (2011) proved
that each stage in a CEG model space must have Dirichlet distributions a priori and a
posteriori. The marginal likelihood under this prior is then given by

p(x|G) =

M∏
i=1

Γ(
∑Li

j=1 αij)

Γ(
∑Li

j=1 α
∗
ij)

Li∏
j=1

Γ(α∗
ij)

Γ(αij)
, (1)

where Γ(·) is the gamma function, α∗
ij = αij + xij and αij is the hyperparameter of the

Dirichlet prior distribution with regard to emanating edge j from stage ui.

The hyperparameter α in this prior family plays the role of a phantom sample initial-
ising the CEG learning. Of course, when addressing model selection, it would be impos-
sible to reflect on the massive number of values of possible explanatory hyperparameter
vectors and specify them individually. So in practise one common way to sidestep this
issue – and one we adopt here – is to fix a hyperparameter ᾱ and assume a conserving
and uniform propagation of this hyperparameter over the event tree. The conserving
condition ensures that the total phantom units that emanate from a stage ui is equal to
the total phantom units that arrive at it. Formally, ᾱi =

∑
r∈pa(ui)

αirj� =
∑Li

j=1 αij ,

where pa(ui) is the set of stages that are parent of ui and j� is the edge that unfolds from
a parent stage uir ∈ pa(ui) to ui. The uniform assumption implies that the numbers of
phantom units that proceed to any two each emanating edges of a stage ui are identical.
This then makes α0j =

ᾱ
L0

, j = 1, . . . , L0, and αij =
ᾱi

Li
, i = 1, . . . ,M , j = 1, . . . , Li. For

instance, take the CEG in Figure 2 and fix ᾱ = 6. So, α0 = (3, 3), ᾱ1 = ᾱ2 = 3 and
α1 = α2 = (1.5, 1.5), where u0 = {w0}, u1 = {w1} and u2 = {w2}. Note that there are
three edges arriving in stage u3 = {w3, w4}. Thus, ᾱ3 = 4.5 and α3 = (1.5, 1.5, 1.5). The
other hyperparameters can be set in a similar way. Henceforth, for any n-dimensional
vector γi = (γi1, . . . , γin) let γ̄i =

∑n
j=1 γij .

2.4 Standard CEG Model Selection Using Bayes Factor

Freeman and Smith (2011) developed a framework for implementing a Bayesian agglom-
erative hierarchical clustering (AHC) algorithm (see, e.g. Heard et al. (2006)) to search
over the CEG model space C for any specific variable order. The AHC algorithm is a
greedy search strategy used in conjunction with the log posterior BF. At each iteration,
it looks for the MAP model among those 1-nested candidates that result from merging
two different stages u1, u2 ∈ C that have the same number of emanating edges into
one stage u1⊕2 ∈ C

+ leaving all other stages untouched. By choosing a uniform prior
over the model space C given a variable order, p(C) = 1

|C| , ∀C ∈ C, it was shown that

the log-posterior BF (lpBF) between the initial model C and the candidate model C+

satisfies:
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lpBF (C,C+) = a(α1)− a(α∗
1)− b(α1) + b(α∗

1) + a(α2)− a(α∗
2)− b(α2) + b(α∗

2)

−a(α1 +α2) + a(α∗
1 +α∗

2) + b(α1 +α2)− b(α∗
1 +α∗

2), (2)

where a(αp) = ln Γ(ᾱp) and b(αp) =
∑kp

i=1 ln Γ(αpi). Note that because the explored
model space C is defined with respect to a particular variable order no two CEGs can
be Markov equivalent. So in this sense the setting of the prior is less contentious than
it might otherwise be; for such a discussion with respect to BN’s see, e.g. Heckerman
(1999); Korb and Nicholson (2011).

Barclay et al. (2013) used a BN model search to look for the best variable order in
that restricted class. Then to embellish the MAP BN, they employed the AHC algorithm
to search for further asymmetric context-specific conditional statements that might be
present in the data, using that variable order. One of the highest scoring CEGs is
given in Figure 2. Cowell and Smith (2014) then refined this methodology, developing
a dynamic programming (DP) algorithm that was able to search a special CEG class
called stratified CEG (SCEG) without a pre-defined variable order; see also Silander
and Leong (2013).

Sadly this full search method quickly becomes infeasible as the number of explana-
tory variable increases to an even moderate size. The authors (Silander and Leong
(2013); Cowell and Smith (2014)) both recognised that heuristic search strategies would
usually be needed when the size of the model space was scaled up. Exploring fast ap-
proximations to this approach, Silander and Leong (2013) demonstrated that the AHC
algorithm – the method we choose here in our examples – performed better than, for
example, methods based on K-mean clustering.

3 Using Non-Local Priors for CEG Model Selection

For CEG model selection, we need to determine when it is better to hold situations apart
or merge these into a single stage. The standard BF score can induce rather strange
optimal combinations of stages, when the compared stages have very different visit rate
(φ̄i). Theorem 1 below provides us the asymptotic form of lpBF using Dirichlet local
priors and makes explicit why difficulties can arise in this context.

Let φi = (φi1, . . . , φiLi) denote a vector whose element φij corresponds to the prob-
ability of an individual arriving at a stage ui and taking the emanating edge j of ui.
Then clearly φij = φ̄i ∗ πij . So each stage ui can be associated with a random variable
Φi ∼ Bernoulli(φ̄i) that represents whether an individual visits that stage. Analo-
gously each emanating edge j of a stage ui can be linked to the level of a random
variable Φij ∼ Bernoulli(φij) representing that an individual takes that edge.

Theorem 1. Take two CEGs C and C+ such as C+ is 1-nested in C. Assume that
stages u1, u2 ∈ C are merged into the stage u1⊕2 ∈ C

+. Consider also the true positive
conditional probabilities π†

1 and π†
2 as well as the true positive probabilities φ†

1 and

φ†
2 associated with stages u1 and u2, respectively. If both CEGs have the same prior

distribution over the model space C (see Section 2.4), then as n → ∞

lpBF [C,C+]
a.s.−−→ nB(π†

1,π
†
2,φ

†
1,φ

†
2)−

L− 1

2
log(n) +A(φ†

1,φ
†
2,α1,α2), (3)
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where A and B are constants that depend on their arguments as given above, and n is
the sample size.

Proof. See Appendix A.

Note that the evidence in favour of any model depends on the sign of the constant
B that is analysed in the next two corollaries. As expected, Corollary 1 tells us that
there is an imbalance between the learning rates of simple and complex models since the
evidence grows logarithmically if the true model is the simple one and linearly otherwise.

Corollary 1. Take two CEGs C and C
+ as defined in Theorem 1. If π†

1 = π†
2, then

B = 0.

Proof. This follows directly from equation (29) in the Appendix A.

Corollary 2 tell us that in any agglomerative search those stages that are more likely
to be visited tend to attract stages that are only visited rarely. This is regardless of
the generating processes that characterises the conditional probability distributions of
these stages.

Corollary 2. Take two CEGs C and C
+ as defined in Theorem 1. Consider φ†

2 = κφ†
1

where κ is a positive real constant and π†
1 �= π†

2. Then, for sufficiently small κ, B < 0

regardless of the true conditional probabilities π†
1 and π†

2.

Proof. See Appendix B.

Define the distance between any two stages as given by the distance between their
associated expected floret edge probabilistic vectors. According to Corollary 3, massive
(or often visited) stages tend to attract to them very light (or less visited) ones no
matter how far away these other light stages are in the probabilistic space. Obviously,
this is not ideal for highly separated stages to be combined together: they clearly make
very different predictions about what will happen to a unit arriving there. Corollary 3
also shows that in contrast, even if other massive stages are very close to each other
and so natural to combine, these stages will be less prone to be amalgamated together
than in the previous case. Although this is a familiar problem in classical hypothesis
testing where statistically different hypotheses might not be significantly different from
an interpretative viewpoint, this is nevertheless not a desirable property for Bayesian
search algorithms.

Corollary 3. Take three CEGs C, C+
1 and C

+
2 where C

+
1 and C

+
2 are 1-nested in C.

Assume also that the CEG C
† is the true model and that this is m-nested in the CEG

C
+
1 but is not nested in the CEG C

+
2 . If the two stages we combine in CEG C to form

a CEG C
+
2 fulfil the conditions of Corollary 2, then as n → ∞

lpBF [C,C+
2 ]− lpBF [C,C+

1 ]
a.s.−−→ nB2 +A2 −A1 (4)

where A1 is a constant as defined in (3) for SCEGs C and C
+
1 , A2 and B2 are the

corresponding constants given in (3) for CEGs C and C
+
2 and where B2 < 0.

Proof. The result follows directly from Corollaries 1 and 2.
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So in this sense the standard BF score can lead to poor model choice when a pairwise
selection process like the AHC algorithm is used with Dirichlet local priors. The AHC
algorithm, which is based on such a sequence of pairwise selection steps, can therefore
be sometimes led away from selecting an appropriate model. In fact, this phenomenon
is actually exacerbated because of the sequential nature of the AHC algorithm. Once a
stage with high true visit rate attracts erroneously other less visited stages, it becomes
more massive and therefore more prone to gather incorrectly other smaller stages as the
AHC algorithm sequentially agglomerates situations.

The NLP becomes a good option to circumvent this issue. It does this by introduc-
ing a formal measure of separation between partitions of the model. This ensures the
selection of models not only depends on the probability mass of their partitions but also
on the relative distances between their associated probability measures. NLPs therefore
provide a promising generic method to more appropriately score CEGs for two main
reasons. These priors reduce the imbalance in the learning rate and enforce parsimony
in the model selection. They also discourage a greedy model search algorithm from
merging two stages spuriously simply because of the probability mass effects discussed
above.

To illustrate how we might construct NLPs for CEGs, consider only two variables of
the CHDS data set, Social Status and Admission. The corresponding event tree of this
process is presented in Figure 3a. Here it is only possible to obtain one of two graphs:

Figure 3: An Event Tree and two possible CEGs that can be modelled using the CHDS
data set with only two variables, Social Status and Admission.

graph G with two different stages u1 = {w1} = {s1} and u2 = {w2} = {s2} as presented
in Figure 3b; or graph G

+ with only one stage ua = {wa} = {s1, s2} as presented in
Figure 3c, where the stages u1 and u2 of G are merged into a single stage ua. During
the model selection, we need to test whether the stages u1 and u2 should be merged or
not: H0 : π1 = π2 vs H1 : π1 �= π2. To do this we construct NLPs that combine the
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distance between these two stages d(π1,π2) and their probability densities yielded by
standard Dirichlet local priors qLP (π1) and qLP (π2). An NLP for the stage ua of G+

is equal to its Dirichlet local prior since this stage can not be combined with any other
stage: qNLP (πa|G+) = qLP (πa) (Figure 4). The NLP density for stages u1 and u2 of G
is given by:

qNLP (π1,π2|G) =
1

K
d(π1,π2)

2ρqLP (π1)qLP (π2), (5)

where the proportionality constant K = Eπ1,π2 [d(π1,π2)
2ρ] can be calculated simply

using the Dirichlet local priors π1 and π2 (Figure 5).

Figure 4: NLP coincident with Dirichlet Local Prior for the only stage associated with
the variable Admission in the graph G

+ depicted in Figure 3c where πa ∼ Beta(3, 3)
and ᾱ = 6. Deeper colour represents higher probability densities.

Note that the NLP for graph G (see (5)) vanishes when the cell probability vectors
associated with the stages u1 and u2 are close to one another (Figures 5b, 5c, 5d). Here
the probability mass is concentrated a priori in the probability space where the condi-
tional probabilities π1 and π2 are different. This inhibits the NLP in (5) for the complex
model G from representing the same stage structure (π1 = π2) which is embedded into
the simple model G+. So, NLPs only allow the parameters corresponding to stages u1

and u2 to be identified with each other under the null hypothesis H0. This contrasts
with standard Dirichlet local priors that concentrate the probability mass associated
with stages u1 and u2 of G around the probability space where these parameters are
equal (Figure 5a). In this sense, local priors do not establish a full partition of the pa-
rameter space: the null hypothesis H0 is nested into the graph G that should represent
only the hypothesis H1. When using NLPs, these two stages will remain separated or
not, based not only on their consistency with the data but also on how far apart these
models are, as measured by the distances defined above. Thus as the basis of moderate
amount of data, situations tend to be placed in the same stage (graph G

+) unless their
edge probabilities are sufficiently different (graph G). We will see at the end of this
paper that this enables us to discover models admitting parsimonious explanations as
well as good fits to the data.
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Figure 5: Dirichlet Local Prior and NLPs using different distances for stages associated
with the variable Admission in the graph G depicted in Figure 3b where π1,π2 ∼
Beta(1.5, 1.5) and ᾱ = 6. Deeper colour represents higher contours. Note that the
functional forms of different distances are defined in Appendix G.

Remember that we need to elicit a prior joint distribution p(π,G) to embed a proba-
bilist map into CEG models. Using Dirichlet local priors and the usual conventions (see,
e.g. Heckerman (1999)), the parameter π and the graph G are mutually independent a
priori, p(π,G) = p(π)p(G). This does not happen with NLPs since the prior distribution
over the parameter space is conditional on the graph G, p(π,G) = p(π|G)p(G). Ob-
serve in Figure 5 that given a prior distribution p(G) NLPs reduce the density p(π,G)
in comparison to local priors only when the distances between the parameters in the
corresponding CEGs are close. In contrast, when these distances are substantially dif-



R. A. Collazo and J. Q. Smith 1177

ferent from zero the density indeed increases. In this way, NLPs bias the CEG model
selection towards simpler models but only when the data supports them.

Of course, although for simplicity we do not consider this possibility here, we could
choose to impose a prior over the model space that further favoured parsimonious mod-
els. We note however that although non-uniform priors over the CEGmodel space reduce
the density p(π,G) of complex models they do this regardless of the data generation
processes. In these cases, the biases in favour of simpler models need to be based on
some prior “objective” hypotheses or important prior subjective beliefs over the model
space. Despite often being very important in applied studies, these prior distributions
are also usually very domain specific. So they are not the focus of this paper.

To extend the previous method of construction of an NLP to the case when there
are more than 2 stages (for example, the third level of the CEG in Figure 2), a natural
option is to take the product distance between the conditional probability distributions
for every pair of stages that can be merged. This family of NLPs is consistent in a sense
that their constructions only depend on the characteristics of the particular model
associated with that prior. Johnson and Rossell (2012) successfully adopted such a
product moment NLP (pMOM-NLP) for Bayesian selection in the context of linear
regression. We formally define the fp-NLPs for CEGs below.

In this section, we let PDLP and PNLP denote probability measures yielded, re-
spectively, by Dirichlet local priors and NLPs. We also assume that the expectations
Eπ[f(π)] and Eπ∗[f(π)] are calculated, respectively, using the Dirichlet local prior and
its corresponding posterior (see Section 2.3) on π. Finally, in a CEG whose graphical
structure is given by G = (T , U) we let Ψ(U) denote the collection of pairs of stages
(ui, uj) in U that can be merged to derive nested CEGs.

To better understand Ψ(U), it is useful to rewrite this as a collection of sets {Ψk(U)}k,
where Ψk(U) = {uri}i denotes the largest set of stages in U such that the following
transitive property holds: for any three stages ur1 , ur2 , ur3 ∈ Ψk(U), if both (ur1 , ur2) ∈
Ψ(U) and (ur2 , ur3) ∈ Ψ(U), then (ur1 , ur3) ∈ Ψ(U). Observe that {Ψk(U)}k does not
need to be a partition of U , although this property is usually desirable in real-world
applications because it simplifies the implementation of model search algorithms. Now
we can write

∏
{(ui,uj)}∈Ψ(U)

d(πi,πj)
2ρ =

M∏
k=1

Mk−1∏
i=1

Mk∏
j=2

d(πri ,πrj )
2ρ, (6)

where M = |Ψ(U)| and Mk = |Ψk(U)|. To illustrate this construction recall the CEG
depicted in Figure 2. In this case, the collection Ψ(U) uses the variables that characterise
that process. So, in the notation above, we then have that Ψ(u) = {Ψ0 = {u0},Ψ1 =
{u1, u2},Ψ2 = {u3, u4},Ψ3 = {u5, u6, u7}}. Here all stages that are associated with the
same variable are gathered into the same set Ψk(U). For instance, the set Ψ2 is made
up of those stages associated with the variable Life Events. Note that the positions w3

and w4 are in the same stage u3.
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Definition 2 (Full Product Non-local Priors for CEGs). The fp-NLPs for a CEG
D = (T , U,PNLP ) where G = (T , U) and Ψ(U) �= ∅ are given by

qNLP (π|G) =
1

K

[ ∏
(ui,uj)∈Ψ(U)

d(πi,πj)
2ρ

]
qDLP (π|G), (7)

where ρ ∈ N
+ and K = Eπ[

∏
(ui,uj)∈Ψ(U) d(πi,πj)

2ρ] is the normalisation constant. If

Ψ(U) is empty then qNLP (π|G) = qDLP (π|G).

Assuming random sampling and a non-empty Ψ(U), we can now write the joint
distribution of the CEG D = (T , U,PNLP ) using fp-NLPs as function of the CEG
C = (T , U,PDLP ). Thus,

pNLP (x,π|G) = p(x|π,G)qNLP (π|G)

= p(x|π,G)

[
1

K

∏
(ui,uj)∈Ψ(U)

d(πi,πj)
2ρ

]
qDLP (π|G)

=

[
1

K

∏
(ui,uj)∈Ψ(U)

d(πi,πj)
2ρ

]
pDLP (x,π|G). (8)

So, we have that

pNLP (π|x,G) =

[
1

K∗

∏
(ui,uj)∈Ψ(U)

d(πi,πj)
2ρ

]
pDLP (π|x,G), (9)

where K∗ = Eπ∗ [
∏

(ui,uj)∈Ψ(U) d(πi,πj)
2ρ] is the normalisation constant. After a little

algebra this can be rearranged as

pNLP (x|G) =
K∗

K
pDLP (x|G). (10)

In this case, the lpBF between two CEGs D1 and D2 that have the same prior probability
over the model space is given by

lpBF (D1,D2) = lpBF (C1,C2) + lnK∗
1 − lnK∗

2 − lnK1 + lnK2, (11)

where C1 and C2 are the CEGs using Dirichlet local priors that correspond to CEGs
D1 and D2 using fp-NLPs, respectively. Note that K = K∗ = 1 if Ψ(U) is empty.

In view of the large size of the CEG space that grows in terms of the Bell number
(see Cowell and Smith (2014)), to develop efficient search algorithms it is important
to keep calculations as simple as possible, and preferably in closed form. One of the
easiest way to do this is to use the Euclidean distance in the formulae above and to
set ρ = 1. We can also impose a further simplifying condition that Ψ(U) is a partition
of the stage set U . But even then in this simple case, for each set Ψk(U) ∈ Ψ(U) of
a candidate CEG model we need to calculate a mean of the homogeneous symmetric
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polynomial
∏Mk−1

i=1

∏Mk

j=2 d(πri ,πrj )
2 using the prior and the posterior distributions

of the parameters πi’s. Note that Mk are often very large since its maximum value
depends not only on the number of variables but also on the number of categories that
each variable has. The computations can therefore quickly become unmanageable as we
scale up the number of variables incorporated into an CEG.

There are also other pitfalls when the fp-NLP is used in conjunction with a greedy
search algorithm like the AHC. Using a fp-NLP, Theorem 2 below shows us that the nor-
malisation constant of the posterior distribution of π converges to zero with probability
1 if there are at least two stages with the same generating processes. This will happen
regardless of whether these stages are under assessment by the model search algorithm.
In these cases, Theorem 3 tells us that the marginal posterior probability of such CEG
also tends to zero with probability 1. Because of this phenomenon, the fp-NLP is often
not a good choice when used in conjunction with a sequential greedy model search even
though the method encourages a choice of model with a parsimonious graph.

Let Z(n) = (Z1, . . . ,Zn), where the random variable Zs registers the events that
happen to the sth unit in a process supported by an event tree T . Observe that the
event tree T maps Z(n) = z(n) = (z1, . . . , zn) into a sample x(n) of size n. So, as n

increases Z(n) yields a sequence of posterior distributions p(π|Xn,G) for the parameter

π. For notational convenience, define a random variable π∗(Z(n)) ∼ p(π|Xn,G) and

let π†
i = (π†

i1, . . . , π
†
iLi

) be the true conditional probability associated with the stage ui.

For clarity, we sometimes write K∗(Z(n)) to emphasise that the normalisation constant

of a posterior distribution is determined by a sequence {Z(n), n ≥ 1}.
Lemma 1. Take the probabilistic parameter πij associated with the emanating edge j of

stage ui with a positive visiting probability in a CEG C = (G,PDLP ) and consider π†
ij

its corresponding true parameter. Then, for almost all sequences (Z1,Z2, . . .) we have
that for all ε > 0

lim
n→∞

P (|π∗
ij(Z

(n))− π†
ij | > ε) = 0. (12)

Proof. See Appendix C.

Theorem 2. Take a continuous and bounded metric d. In a CEG C = (G,PDLP )
whose conditional probabilities associated with each edge are strictly positive, for almost
all sequences (Z1,Z2, . . .) we then have that as n → ∞

Eπ∗
ij(Z

(n))

[ ∏
(ui,uj)
∈Ψ(U)

d(πi,πj)
2ρ

]
→

∏
(ui,uj)
∈Ψ(U)

d(π†
i ,π

†
j)

2ρ. (13)

Proof. This follows directly from Lemma 1 and from the continuous mapping theorem
(Billingsley (1999)).

Theorem 3. Let a CEG C = (G,PDLP ) have conditional probabilities associated with
each edge which are strictly positive. Consider the case when at least two stages in C have
the same true conditional probability according to a continuous and bounded metric d.
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For a CEG D = (G,PNLP ) whose probability measure PDLP is generated by a fp-NLP,
for almost all sequences (Z1,Z2, . . .) we then have that as n → ∞

p(D|Xn,G) → 0. (14)

Proof. See Appendix D.

Corollary 4 tells us that when the fp-NLP is used the AHC algorithm can misdirect
the search since the normalisation constant of the posterior distribution of π may vanish
even if the separation between stages does not go to zero in the search neighbourhood.
This happens because of the interaction between the definition of fp-NLPs and the data
generating process: fp-NLPs are constructed using the product distance between every
pair of parameters associated with stages that can be merged (Ψ(U)). In contrast, the
search neighbourhood defined for the AHC algorithm is only a single pair of stages
in Ψ(U). Note that the normalisation constant of the prior distribution of π remains
unaffected in this case since it is only determined by the phantom sample.

Due to its sequential local strategy, the AHC algorithm can then merge stages that
yield the best local score even when this merging is not supported by the data generation
process. This situation is further exacerbated because of the combinatorial possibilities
that can give rise to circumstances similar to those of Corollary 4. We emphasise that this
problem occurs because an fp-NLP is used in conjunction with a local search algorithm
that for practical reasons we may be forced to adopt: see the comments above. So this
is not an issue intrinsically associated with the form of an fp-NLP.

Corollary 4. Take three CEGs D, D+
1 and D

+
2 whose probability measures are generated

by fp-NLPs using a continuous and bounded metric. Consider that D+
1 merges the stages

u1 and u2 of D, D+
2 merges the stages u1 and u3 of D into a new stage ua whose distance

to any stage of D+
2 is non-null, and the stages u3 and u4 of D have the same generation

process. Assume also that the CEG D
† is the true model that is 1-nested in CEG D

+
1

but is not nested in CEG D
+
2 . Then, for almost all sequences (Z1,Z2, . . .) we have that

as n → ∞
K∗

1 (Z
(n))

K∗
2 (Z

(n))
→ 0, (15)

where K∗
1 and K∗

2 are the normalisation constants with regard to CEGs D
+
1 and D

+
2 ,

respectively.

Proof. See Appendix E.

To sidestep this difficulty, we propose defining NLPs based on pairwise model se-
lection. We note that Consonni and La Rocca (2011) and Altomare et al. (2013) have
both used this approach for BN model search. In this framework, the parameters in the
contained model have local prior distributions whilst the parameters in the containing
model have product NLP distributions. So the choice of prior used in the containing
model depends on the contained model. This inconsistency therefore requires a prior
specification on the variable order, although in the setting of this paper this order does
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not appear to have a significant impact on later inference. The associated ambigui-
ties are extremely small and in practice the method still seems to work well outside
this context. Other than this technical nicety, a search method based on these product
NLPs enforces parsimony over our model selection whilst allowing us to explore the
local properties of our model space. For the CEG family, we call this NLP the pairwise
product NLP (pp-NLP).

Given two CEGs whose stage structures U and U+ are nested (U+ ⊂ U), recall
that the symbol Δ represents the set of stages of U that are merged to obtain U+

(Definition 1, Section 2.2). Here Ψ(Δ) denotes the collection of pair of stages (ui, uj) in
Δ that are gathered in U+. Analogous to Ψ(U), we can rewrite Ψ(Δ) as a collection of
sets {Ψk(Δ)}k. Observe that (16) depends on which pair of CEGs are under analysis
whilst (7) is defined in terms of a particular CEG. To illustrate the nature of Ψ(Δ),
take again the stage structure U of the CEG in Figure 2. Consider another CEG whose
stage structure U+ is 3-nested in U in such way that the stages u1 and u2 are merged
into a stage ua, and the stages u5, u6 and u7 are combined into a single stage ub. Then
we have that Ψ(Δ) = {Ψ1 = {u1, u2},Ψ2 = {u5, u6, u7}} for the pair of stage structures
U and U+.

Definition 3 (Pairwise Product Non-local Priors for CEGs). To compare the graphical
structure G = (T , U) with its m-nested graphical structure G

+ = (T , U+), the pp-
NLPs for the CEG D = (T , U,PNLP ) are given by

qNLP (π|G) =
1

K

[ ∏
(ui,uj)∈Ψ(Δ)

d(πi,πj)
2ρ

]
qDLP (π|G), (16)

where K=Eπ[
∏

(ui,uj)∈Ψ(Δ) d(πi,πj)
2ρ] is the normalisation constant and ρ = 1, 2, . . .

It is easy to see that the complexity of pp-NLPs increases with the number m of
nested stages. It can also suffer the same problems as fp-NLPs if the heuristic strategy
explores model space neighbourhoods that are smaller than m stages. However, since
our goal is only to develop search methodologies when a NLP is used in conjunction
with the AHC algorithm, we need to consider only 1-nested CEGs. In this context the
pairwise moment NLP (pm-NLP) works well for CEG model search. Comparing (16)
and (17), we can see that a pm-NLP is a special case of pp-NLPs when |Δ| = 1.

Definition 4 (Pairwise Moment Non-local Priors for CEGs). To compare the graphical
structure G = (T , U) and its 1-nested graphical structure G

+ = (T , U+) such as
Δ = {u1, u2}, the pm-NLPs for the CEG D = (T , U,PNLP ) are given by

qNLP (π|G) =
1

K
d(π1,π2)

2ρqDLP (π|G), (17)

where K = Eπ1,π2 [d(π1,π2)
2ρ] is the normalisation constant and ρ = 1, 2, . . .

The next corollary shows that a pm-NLP will not exhibit the potential misleading
behaviour of the AHC algorithm suffered by product NLPs. The problem is avoided
because its normalisation constant only goes to zero with probability 1 if and only if both
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merged stages in the contained model have the same generating process. This is because
the normalisation constant is defined using exactly the same search neighbourhood as
the AHC algorithm - that is, it is a function of densities associated with a single pair
of stages. In Corollary 5, K∗ = Eπ∗

1 ,π
∗
2
[d(π1,π2)

2ρ] is the normalisation constant of the
joint posterior distribution of stages u1 and u2 when a pm-NLP (Definition 4) is used.

Corollary 5. Take the CEG D presented in Definition 4such that the metric d is
continuous and bounded. Then, for almost all sequences (Z1,Z2, . . .) we have that

lim
n→∞

K∗(Z(n)) = 0 ⇔ d(π†
1,π

†
2) = 0. (18)

Proof. See Appendix F.

Now consider a CEG C=(T , U,PDLP ) and its 1-nested CEG C+ =(T , U+,PDLP )
which aggregates any two stages ul1 and ul2. Take the CEG D = (T , U,PNLP ) whose
probability measure is yielded by pm-NLPs. Assuming a uniform prior over the staged
structure space, it is straightforward to show that

lpBF (D,C+) = ln
K∗

K

pDLP (x|G)

pDLP (x|G+)

q(G)

q(G+)
= lnK∗ − lnK + lpBF (C,C+). (19)

Pairwise moment NLPs for CEGs can therefore be interpreted as a penalisation over
the alternative staged structure U with respect to the distance between the conditional
probability distributions of both stages u1 and u2. The AHC algorithm can easily be
adjusted to incorporate pm-NLPs since we only need to add a term (lnK∗ − lnK) to
the regular lpBF score. So regardless of their minor global inconsistency, the use of a
pm-NLP in conjunction with the AHC algorithm is highly computational efficient and
also has good local properties.

Define the map G such as Gy(x) = 1, if y = 0, and Gy(x) = x, if y > 0, and then
the function

f(x, y) =
Γ(x+ y)

Γ(x)
= Gy((x+ y − 1) · (x+ y − 2) · · ·x) (20)

where x and y are real and natural numbers, respectively. Also let B(α) =
∏n

j=1 Γ(αj)

Γ(ᾱ)

denote the normalisation constant for the Dirichlet distribution parametrised by the
vector α. The following theorem gives K and K∗ of (19) in closed form with regard to
the Minkowski distance (see Appendix G). For the corresponding terms with respect
to the extension of Hellinger distance to 2ρ-norm spaces, see supplementary material
(Collazo and Smith (2015)).

Lemma 2. Take two random variables π1 and π2 which have Dirichlet distributions
with parameters α1 ∈ R

L
+ and α2 ∈ R

L
+, respectively. Define a function c(π1,π2) =∑L

j=1(π
1/a
1j − π

1/a
2j )2ρ where a > 0 and ρ = 1, 2, . . . Then

E[c(π1,π2)] =
1

B(α1)B(α2)

L∑
j=1

2ρ∑
h=0

[(
2ρ

h

)
(−1)hB(α̂j,h

1 )B(α̂j,h
2 )

]
, (21)
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where

α̂j,h
1k =

{
α1k + 2ρ−h

a if k = j,
α1k if k �= j.

α̂j,h
2k =

{
α2k + h

a if k = j,
α2k if k �= j.

Proof. See Appendix H.

Theorem 4. Take the Minkowski distance in a 2τ -norm space (τ = 1, 2, . . .) to define
the pm-NLPs. For the CEG D presented in Definition 4 whose stages u1 and u2 have L
emanating edges and ρ = τ , then

K =

L∑
j=1

2τ∑
h=0

[(
2τ

h

)
(−1)h

f(α1j , 2τ − h)f(α2j , h)

f(ᾱ1, 2τ − h)f(ᾱ2, h)

]
(22)

and

K∗ =

L∑
j=1

2τ∑
h=0

[(
2τ

h

)
(−1)h

f(α∗
1j , 2τ − h)f(α∗

2j , h)

f(ᾱ∗
1, 2τ − h)f(ᾱ∗

2, h)

]
. (23)

Proof. After some algebra rearrangement this follows directly from Appendix I and
Lemma 2 when we set the parameter a = 1 and ρ = τ .

Corollary 6. Take the Euclidean distance to define the pm-NLPs. For the CEG D

presented in Definition 4 whose stages u1 and u2 have L emanating edges and ρ = 1,
then K = g(α1,α2) and K∗ = g(α∗

1,α
∗
2) where

g(γ1,γ2) =
L∑

j=1

[
γ1j(γ1j + 1)

γ̄1(γ̄1 + 1)
− 2

γ1jγ2j
γ̄1γ̄2

+
γ2j(γ2j + 1)

γ̄2(γ̄2 + 1)

]
. (24)

Proof. This follows directly from Theorem 4 when we set the parameter τ = 1.

Thus we have shown that standard Dirichlet local priors work suboptimally when
used in conjunction with the AHC algorithm. This occurs because their corresponding
BF scores only take into consideration the probability masses of the stages regardless of
their relative location in the probability space. Although it is important not to overstate
this problem – conjugate model search is not bad – by introducing a priori a separation
measure between stages NLPs tend to perform much better. Their associated BF scores
corresponds to the standard local prior BF scores plus a penalisation term as function of
the expected distances between stages. However, the use of product NLPs (fp-NLPs and
pp-NLPs) is extremely computationally slow. Their penalisation term can also mislead
the AHC algorithm since the set of stages used to define them are often bigger than
the search neighbourhood of the AHC algorithm (only a pair of stages). In contrast
the AHC algorithm using pm-NLPs help us efficiently identify robustly parsimonious
models which conjugate or product NLPs cannot. We now illustrate this new selection
method.
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4 Two Examples for Our Search Method in Action

In this section we compare BF model selection with different non-local and local priors
as a function of the hyperparameter ᾱ using computational simulations based on CHDS
data set. These experiments enable us to study how these CEG model selection meth-
ods can explain the impact of the explanatory variables appear to have on childhood
hospitalisations. We then proceed to analyse the real CHDS data set.

Our second example searches over a much larger space of models. Its hypotheses
concern the nature of the radicalisation processes in a prison population. For reasons of
confidentiality the data set we used was created through a simulation calibrated to be
consistent with publicly available statistics associated with the UK prison population.

Here we use only the simplest possible non-local priors, the quadratic pm-NLPS
(ρ = 1) associated with Euclidean distance. Although the choice of this metric might
superficially look important, at least for the examples we study below the inferences
appear robust to this choice. So here we only present and discuss the results using
Euclidean distance. A supplementary document (Collazo and Smith (2015)) reports the
results using one of the other alternatives – the Hellinger distance. The results using
this alternative metric are shown to be remarkably similar to those presented here.

4.1 A CHDS Simulation Study

We based our simulation studies on the CHDS data set assuming, as discussed in Sec-
tion 2.1, the variable order social status, economic situation, life events and hospital
admission. Figure 6 depicts the CEG model we used to generate our simulation experi-
ments. The graphical structure corresponds to a slightly modified version of the MAP
CEG found by the DP algorithm under the restriction of that variable order (Cowell
and Smith (2014)). Its underlying event tree is presented in Figure 1. The conditional
probabilities were assigned based on the real data set. For example, in the CHDS data
set 507 individuals enjoy high social status: 53% are in the high economic situation
and 47% are in the low economic situation. So, for any unit reaching position w2 we
simulated its next development using a Bernoulli(0.47) random variable.

Figure 6: Generating CEG Model for simulation studies with the CHDS data set.
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We simulated 100 samples for each sample size (SS) whose range goes from 100 to
5000 by increment of 100. For each sample, the best CEG model was selected by the
AHC algorithm for ᾱ-values changing from 1 to 100 by increment of 1 and also for
ᾱ-values of 0.1, 0.25, 0.5 and 0.75. We then explored the CEG model space using both
Dirichlet local priors and pm-NLPs.

Each CEG chosen was assessed using two criteria: the total number of stages, and
the total situational error. The former focus on the topological aspects of the graphical
structure. For example, the generating model in Figure 6 has 7 stages. Its objective is
to yield a summary of the graphical complexity.

The second criterion checks the overall adequacy of the conditional probabilities
associated with each situation of the chosen CEG. This provides us with a diagnostic
monitor to assess if the situations in the event tree are merged into stages that in-
deed represent the data generating model. First, define the empirical mean conditional
distributional corresponding to a situation sj , μ(sj), as the mean of the posterior prob-
ability distribution of the parameter πi associated with the stage ui such that sj ⊂ ui.
Formally,

μ(sj) = E[πi|x,G]; sj ⊂ ui. (25)

The situational error ξ(sj) is the Euclidean distance between the empirical mean con-
ditional distribution and the generating conditional distribution of a situation sj . Thus

ξ(sj) = ‖μ(sj)− π†
i‖2; sj ⊂ ui, (26)

where π†
i is the conditional probability of the stage ui in the generating model such

that sj ⊂ ui. Finally, the total situational error is obtained by the sum of situational
errors over the set of situations in the event tree. We therefore have that

ξ(T ) =
∑
j∈T

ξ(sj). (27)

To analyse the results, average values of each criterion over the 100 data sets for
each pair (SS,ESS) were computed. We noted that the corresponding variance is small
and does not impact the interpretation of the results presented in Figures 7 and 8. For
simplicity, we have depicted below only the outcomes associated with three candidate
sample sizes of 300, 900 and 3000. The original study was of 890 children.

Figure 7 shows that pm-NLPs tend to select more parsimonious CEGs than the
Dirichlet local priors. Under the assumption that the CEG above is actually the true
one we see that the number of stages corresponding to the CEGs chosen by NLPs gets
close to the true number (7) of stages over the entire range of ᾱ-values as the sample
size increases. In contrast, the CEGs found by local priors are not greatly improved
even when the sample size increases from 300 to 3000.

We see in Figure 8 that by selecting simpler graphs NLPs the total of situational
errors has reduced. This improves the CEG predictive capabilities. These errors tend to
increase for larger values of the parameter ᾱ, particularly for small sample size. The pm-
NLPs dominates the local priors consistently for a small sample size and when ᾱ-values
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Figure 7: Average of the Number of Stages over the 100 CEGs selected by the AHC
algorithm according to the ᾱ-values.

Figure 8: The average of the Total Situational Errors over the 100 CEGs selected by
the AHC algorithm according to ᾱ-values.

are not large, and in medium and large sample sizes independently of the ᾱ-values. The
best results appear to be concentrated around ᾱ-values from 1 to 20 regardless of the
sample size.

The pm-NLPs appear more robust with regard to the hyperparameter ᾱ. They tend
to pick more plausible models for values from 1 to 20 of this hyperparameter regardless
of the sample size. Observe that in this range the number of stages tend to be quite
stable around the true number (7) and the total situational errors are minimised. On
the other hand, local priors appear to give rise to substantially different inferences for
different values in this parameter range. In this case although it is true that larger
values of this hyperparameter give more consistency in terms of the number of stages,
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these values imply larger total situational errors. They also represent very strong prior
information about the various margins of individual variables: a hypothesis which would
usually be a strange one to impose in many practical scenarios.

Lastly, we analyse the influence of very small ᾱ-values (less than 1) on the results.
For a sample size of 300, although LPs tend to choose better CEGs than NLPs with
regard to the number of stages, these CEGs do not optimise the total situational errors
that are indeed slightly greater than those corresponding to CEGs selected by NLPs.
Using the medium-size samples (900), LPs lead to more complex CEGs than the true
one with respect to the number of stages whilst NLPs tend to select simpler ones, but
the number of stages in both cases are the same distance from the true number (7). Here
the LPs have barely smaller total situational errors than NLPs. NLPs clearly dominate
the local priors in both criteria when the sample size is equal to 3000.

Overall very small ᾱ-values are not recommended since they yield very unstable
results using local and non-local priors. They are also inclined to find CEGs with larger
total situational errors. In the case of pm-NLPs, these small ᾱ-values tend to select
sparser CEG than the true one, having a strong regularization effect over the graphical
structure. However, the good modelling practise of calibrating a priori the predictive
consequences of such prior settings would usually not encourage the choice of such
values.

As expected on the basis of our theoretical results, for this example NLPs tend to be
more stable and to select sparser – simpler to explain – graphs especially when compared
with conventional methods. The results also indicate that NLPs are more prone to find
CEGs that have a slightly better predictive capabilities for all reasonable settings of the
hyperparameter ᾱ.

4.2 A New Analysis of the CHDS Data Set

We now compare the performance of our methods using pm-NLPs and Dirichlet local
priors in a real analysis of the CHDS data set when the data generating process is
assumed unknown. Figure 9 shows how the staged structures change as the parameter
ᾱ increases when we look over the CEG model space using the AHC algorithm under
the constraint of the variable order used previously.

Figure 9 enables us to compare the sensitivity of CEG model selection using local and
using non-local priors as function of the hyperparameter setting. Note that increasing
the stability of the model selection for wider range of ᾱ-values makes the result less
dependent on this hyperparameter. The interpretation of the conditional independence
statements embedded into the selected CEG then become more reliable since the choice
of the CEG is unlikely to change dramaticaly with small perturbation in the ᾱ-values. In
fact, it can be seen from Figure 9 that local priors induce more robust results for ᾱ ≥ 8,
while Euclidean pm-NLPs are quite stable for ᾱ ≤ 23. Note that the NLPs provide even
more consistent outcomes of the search with regard to small and medium ᾱ-values, i.e.
they are more robust to the setting of this hyperparameter than the local priors. Recall
from Section 4.1 that better results tend to be obtained by setting 1 ≤ ᾱ ≤ 20.
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Figure 9: CEG Model Selection for CHDS data set using the AHC algorithm.

Next observe that NLPs tend to select sparser graphs. The CEG A (Figure 10a) has
7 stages, the CEG B (Figure 2) has 8 stages, and the CEG C (Figure 10b) has 9 stages.
The AHC algorithm using local priors points to the CEG C whilst the use of pm-NLPs
indicates the CEG A. The CEG C is 1-nested and 2-nested in the CEGs B and A,
respectively. In fact the qualitative interpretations and the probability measures do not
differ very much, although the more parsimonious graphs (e.g. CEG A) give somewhat
more transparent and intuitive explanations of the process.

Figure 10: CEGs A and C selected by the AHC algorithm.

Thus observe that the CEG B is identical to the CEG C except that the variable life
events has two stages (u3, u4) and three positions (w3, w4, w5) in the CEG B, and three
stages (u3, u4, u5) and four positions (w3, w4, w5, w6) in the CEG C. As highlighted in
red (Table 1), only the conditional probabilities associated with these positions have
changed, and then only very slightly. Furthermore, although these CEGs differ, their
causal hypotheses associated with childhood hospitalisation are in fact identical: the
hospital admissions are partitioned into the same three groups of patients in both.

Highlighting only the substantial differences implied by the data set, the CEG A
brings new and much simplified hypotheses about how hospital admissions relate to
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Stage Conditional Probability Vector SCEG A SCEG B SCEG C
(ᾱ = 3) (ᾱ = 6) (ᾱ = 12)

u0 (p(S = h), p(S = l)) (0.57,0.43) (0.57,0.43) (0.57,0.43)
u1 (p(E = h), p(E = l)) (0.47,0.53) (0.47,0.53) (0.47,0.53)
u2 (p(E = h), p(E = l)) (0.12,0.88) (0.12,0.88) (0.13,0.87)
u3 (p(L = l), p(L = m), p(L = h)) (0.46,0.34,0.20) (0.46,0.34,0.20) (0.43,0.33,0.24)
u4 (p(L = l), p(L = m), p(L = h)) (0.22,0.31,0.47) (0.22,0.31,0.47) (0.5,0.36,0.14)

−/u5 (p(L = l), p(L = m), p(L = h)) – – (0.22,0.31,0.47)
u5/u6 (p(A = n), p(A = y)) (0.91,0.09) (0.91,0.09) (0.91,0.09)
u6/u7 (p(A = n), p(A = y)) (0.77,0.23) (0.82,0.18) (0.82,0.18)
u7/u8 (p(A = n), p(A = y)) – (0.73,0.27) (0.73,0.27)

Legend: S, Social background; E, Economic situation; L, Life events; A, hospital Admission
l, Low; m, Moderate; h, High; n, No; y, Yes
· / · – SCEGsA&B / SCEGC

Table 1: Conditional probability table for SCEGs found by the AHC algorithm.

the covariates. It proposes the existence of only two distinct risk groups of hospital
admission. The CEGs B and C segment the higher risk individuals in the CEG A
(position w7) into two groups (positions w7 and w8). Note that the differences in the
probability of hospital admission between these two groups (Table 1, in blue) are small.
In other words, both groups continue to identify a higher risk population in comparison
with individuals who experience a low number of life events and have higher social
status.

4.3 The Radicalisation of a Prison Population

Introduction

Our second CEG search was conducted over a much larger class of hypotheses this time
about the nature of the process of radicalisation within prisons. The results we give here
are a small part of an ongoing study to be reported more fully in a later paper. Our
main focus here is to develop methods to identify groups of individuals who are most
likely to engage in specific criminal organisation in British prisons. As we will show,
this example is very challenging because the classes of each variable are remarkably
unbalanced and the percentage of radical prisoners – those units of special interest – is
tiny. Furthermore, if expressed in terms of a BN (see Figure 11) any plausible generating
model would need to be a highly context-specific: generic BN model selection methods
could therefore not be expected to work well. A more flexible family such as the CEG
class really does need to be used.

For the purposes of this illustration we have restricted our analyses to consider only
six explanatory variables. These have been chosen because they are often hypothesised
as playing a key role in the process of radicalisation. These are:

• Gender, a binary variable distinguishing between male (M) and female (F);
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• Religion, a nominal variable with three categories: Rel, religious prisoner; NRel,
non-religious prisoner; and NRec, not recorded;

• Age, an ordinal variable with three categories: A1, age < 30; A2, 30 ≤ age < 40;
and A3, age ≥ 40;

• Offence, a nominal variable with five categories: VAP, violence against person;
RBT, robbery, burglary or theft; D, drug; SO, sexual offence; and O, others;

• Nationality, a binary variable differentiating between British citizens (B) and for-
eigners (F);

• Network, an ordinal variable differentiating groups of prisoners according to their
social interactions with well-known members of the target criminal organisation.
It has three categories: I, intense; F, frequent; and S, sporadic.

Because of the sensitive nature of data in this field, we have based this example
on a data set some of whose variables have been simulated. However, we have chosen
simulations that are calibrated to real figures and real hypotheses in the public domain
concerning the British prison population (Ministry of Justice (2013)). So the simulations
plausibly parallel the likely current scenario. The generating model used was based on
an initially elicited BN depicted in Figure 11. The real data set enables us to naively
estimate the joint distributions for the first five explanatory variables. These are pre-
sented in black in this figure. Note that several variables have sparse cell counts: for
example, Gender (F, 5%), Religion (NRec, 2%) and Nationality (F, 10%).

Figure 11: Generating Model for Radicalisation Example.

No data was publicly available for the explanatory variable Network and the response
variable Radicalisation. So in this study we instead construct a probability model over
certain developments based on expert judgements (Cuthbertson (2004); Jordan and
Horsburgh (2006); Hannah et al. (2008); Neumann (2010); Silke (2011); Rowe (2014)).
To perform the necessary data simulation, we needed to specify the conditional distri-
bution of variable Network given the first five explanatory variables. Here we assumed
that there are only four different social interaction mechanisms. The response variable –
introduced last – distinguishes between individuals at high or low risk of radicalisation.
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Being the last variable to be sampled for each prisoner, this has 540 conditioning parti-
tions. In this environment risk assessments are generally coarse. So based on the expert
judgements cited above, these partitions are clustered into only three different radical-
isation classes of risk where the highest risk prisoners come from only six partitions.
Note that from a technical viewpoint these plausible hypotheses introduce several prior
context-specific conditional assessments into our model.

The radicalisation risk of the whole prison population is hypothesised to be small in
line with the expert judgement and academic literature (Cuthbertson (2004); Jordan and
Horsburgh (2006); Hannah et al. (2008); Neumann (2010); Silke (2011)). Here this is set
at around 0.7% of the total population. Based on the premises discussed above, we then
simulated 100 complete data sets. Each of these has 85000 individuals, approximating
the recent yearly totals of the British prison population. Assuming our fixed generating
model is true we will now investigate the efficacy of various CEG search methods to
identify those prisoners most likely to be radicalised in each of these data sets.

CEG Model Searches

Assume that our optimal model is consistent with a variable sequence Gender, Religion,
Age, Offence, Nationality, Network and Radicalisation. This simplifies the search space
and matches the goals of this work. The CEG model search was performed using a
setting of the hyperparameter ᾱ = 5 since this corresponds to the maximum number
of categories taken by a variable in the problem. Note that this choice also implies a
plausibly large variance over the prior marginal distribution of each variables. Observe
that our previous results (Section 4.1) suggests that the selection of a hyperparameter
in this region will provide robust results: this was confirmed numerically in additional
exploratory studies within this example.

The scale of this problem requires us to use a heuristic algorithm like AHC since the
SCEG space contains more than 101105 SCEG models even given the chosen variable
order. Here full model search strategies such as ones using Dynamic Programming will
obviously be infeasible.

As expected the results in Table 2 indicate that the AHC algorithm in conjunction
with Euclidean pm-NLPs was prone to select more parsimonious and user-friendly mod-
els than those obtained using standard local priors especially for stages near the leaves
of the corresponding event tree. NLPs also ensured that the AHC algorithm selected
models with a number of stages associated with the variables Network and Radical-
isation closer to the generating model than those achieved using the Dirichlet local
priors.

The use of pm-NLPs enabled the AHC algorithm to find CEG models that clearly
better represented the simulated generating process of radicalisation. For example, Eu-
clidean pm-NLPs classified the highest risk population spuriously in only 29 data sets
whilst local priors had problems with 39 data sets. So local priors misclassified some
of the highest risk individuals in more than 34% of the data sets than Euclidean pm-
NLPs. These misclassifications using local priors and pm-NLPs were associated with the
highest risk groups whose sample sizes were less than 25 and whose sample proportions



1192 Pairwise NLPs for CEG Model Selection

Variable Number of Stages using Number of Maximum
Level DLP pm-NLP Generating Stages Number of Stages
Gender 1 1 1 1
Religion 2 2 ≤ 2 2
Age 4.8 4.1 ≤ 6 6

Offence 6 5.9 ≤ 6 18
Nationality 7.4 5.4 ≤ 10 90
Network 10.2 7.2 4 180

Radicalisation 7.6 5.6 3 540

Table 2: Average of the Numbers of Stages in Radicalisation CEGs selected by the AHC
algorithm using Dirichelet Local Priors and Euclidean pm-NLPs.

of radical prisoners were concentrated around 12%. Furthermore inference using local
priors struggled to identify the risk level for a high risk group of 209 individuals where
the sample proportion of radical prisoners was 24%.

There were only three levels of risk of radicalisation in the generating model. So for
the sake of simplicity the stages that were found by the AHC algorithm were amalga-
mated in Table 3 according to their corresponding radicalisation risk in five categories.
We matched the risks greater than 25%, between 1% and 7% and less than 1% as
corresponding to the risk of 30%, 3% and 0.1% in the generating model, respectively.

Dirichlet Local Prior – Errors Euclidean pm-NLP – Errors Number of

CEG Risk(%) ≥ 25 (15, 25] (7, 15] (1, 7] ≤ 1 ≥ 25 (15, 25] (7, 15] (1, 7] ≤ 1 Prisoners

G
en
er
a
ti
n
g

M
o
d
el

R
is
k 30 –8.9 2.5 3.1 3.0 0.3 –5.5 0 1.6 3.6 0.3 699

3 16.4 0.2 111 –887 759 19.4 0 57 –844 768 119×102

0.1 0.9 0 3.5 359 –363 1.1 0 1.4 373 –375 724×102

Table 3: Average Number of misclassified prisoners over the 100 CEGs selected by the
AHC algorithm according to their risk of radicalisation in the Generating Model.

Although local and non-local priors yield broadly equivalent estimates for the lower
two levels of radicalisation risk, Dirichlet local priors lost track of 9 of the highly haz-
ardous individuals on average whilst pm-NLPs only lost about 6. This means an im-
provement of 33% in favour of pm-NLPs. Note also that local priors unlike the pm-NLPs
tend to introduce a stage at risk level between 15% and 25%. If we merged the three
higher levels of radicalisation risk into one category, we would lose 3 high risk individuals
on average regardless of the type of prior used. However, in this case local priors would
include 50 more medium risk individuals (3%) in the high category. This would corre-
spond to almost 70% more prisoners that as a result of the analysis would be spuriously
identified as a danger to the public.

Although the model used here is rather naive and our results are not perfect, this
larger example does nevertheless demonstrate the promise of pm-NLPs used in conjunc-



R. A. Collazo and J. Q. Smith 1193

tion with a greedy search of CEG models when applied to much larger scale asymmetric
populations like the one above.

5 Conclusions

The massive CEG model space usually require a heuristic strategy to perform CEG
model selections efficiently. We argued here that the product NLPs can inappropriately
bias the AHC algorithm since they are defined using a larger set of stages than one used
to establish the search neighbourhood (a pair of stages) of the AHC algorithm. However,
the product NLP might still be feasible and effective if used in conjunction with a dif-
ferent family of greedy search algorithm. One such example is the weighted MAX-SAT
algorithm (Cussens (2008)) where the search neighbourhood can be defined in ways
which are neither pairwise nor sequential. These families of algorithms are therefore
more compatible with such priors. Preliminary investigation into these methods looks
promising and will be reported later. The theorems in Section 3 suggest that exploring
stochastic algorithms for use with NLPs looks like another interesting research prob-
lem – both for CEGs and other models. Certainly for CEGs this has so far not been
attempted to our knowledge. But note that these algorithms tend to use local moves
which will suffer from similar problems to those described above unless their construc-
tion is carefully designed. A further generalisation of our model selection framework
using greedy search algorithms in conjunction with NLPs to more general model classes
also looks promising.

Another extension that has not been addressed in this study is to combine the
dynamic programming approach with some heuristic strategies for the full product
NLPs. The elicitation of product NLPs in closed form is more difficult and their com-
putational implementation is challenging. These drawbacks are accentuated in discrete
high-dimensional graphs. Whilst this paper establishes the theoretical background for
this purpose, it is necessary to advance algorithmic structures that make good use of
computational time and memory in order to scale up to medium size problems. Such
algorithms would be a useful diagnostic for assessing the results provided by the AHC
algorithm. They could also be used to examine in more detail the robustness of Bayesian
CEG model selection to the ᾱ-values.

Most recently dynamic versions of DCEGs have been developed (Barclay et al.
(2015)). The corresponding model spaces are then order of magnitude greater than
those discussed here. However some initial studies have shown that methods of NLP
adopted to this different environment also appear to work well. Results on the search
of such spaces will again be reported in a later paper.

Appendix A: Proof of Theorem 1

Using the fact that ln Γ(z) = (z − 0.5) ∗ ln(z) − z + 0.5 ∗ ln(2π) + O(1) as z → ∞
(Abramowitz and Stegun (1972)), we can rewrite (2) as follows:
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Using the Strong Law of Large Numbers and the continuous mapping theorem
(Billingsley (1999)), we obtain that as n → ∞
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Appendix B: Proof of Corollary 2

Assume DKL(θ1,θ2, ) as the Kullback–Leibler divergence between the discrete proba-
bility distributions θ1 and θ2. Using φ̄†

2 = κφ̄†
1 and ln(1 + z) = z +O(z2) as z → 0, we

can rewrite B as follows:
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Note that the inequality holds because κ is strictly positive. The result follows since
the Kullback–Leibler divergence is always non-negative and is equal to 0 if and only if
π†

1 = π†
2.

Appendix C: Proof of Lemma 1

Using the Strong Law of Large Numbers, it is easy to see that as n → ∞
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It follows that

Eπ∗
ij(Z

(n))[(πij − π†
ij)

2] = V ar[π∗
ij(Z

(n))] + (E[π∗
ij(Z

(n))]− π†
ij)

2 a.s.−−→ 0. (33)

Since π∗
ij(Z

(n)) converges in quadratic means to the true value of the parameter πij for
almost all sequences (Z1,Z2, . . .), it also converges in probability to the true value of the
parameter πij for almost all sequences (Z1,Z2, . . .). Note that this result also follows
directly from Doob’s Theorem (see, e.g. Schervish (1996), Section 7.4.1, or DasGupta
(2008), Section 20.7).

Appendix D: Proof of Theorem 3

From (10), we have that

p(D|x(n),G) =
K∗

K
p(C|x(n),G). (34)

As 0 ≤ p(C|x(n),G) ≤ 1 and K is a constant that depends on the hyperparameter ᾱ,
we can conclude that

lim
n→∞

K∗(z(n)) = 0 ⇒ lim
n→∞

p(D|x(n),G) = 0. (35)

Note now that there are at least two stages ua and ub in C that have the same true
conditional probability. So, d(π†

a, π
†
b) = 0 for some pair of stages ua and ub in C. Recall

that

K∗(z(n)) = Eπ∗
ij(z

(n))

[ ∏
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d(πi,πj)
2ρ

]
(36)

Theorem 2 then implies that (35) is always satisfied for almost all sequences (Z1,Z2, . . .).

Appendix E: Proof of Corollary 4

Since D† is 1-nested into D+
1 , Theorem 2 implies that for almost all sequences (Z1,Z2, . . .)

we have that

lim
n→∞

K∗
1 (Z

(n)) = 0. (37)

On the other hand, D+
2 does not have stages with equal true conditional probability

distribution by construction. Therefore, Theorem 2 also implies that for almost all
sequences (Z1,Z2, . . .) we have that

lim
n→∞

K∗
2 (Z

(n)) = c �= 0. (38)

The result then follows directly from (37) and (38).
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Appendix F: Proof of Corollary 5

From Lemma 1 and from the continuous mapping theorem (Billingsley (1999)), for
almost all sequences (Z1,Z2, . . .) we have that as n → ∞

Eπ∗
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]
. (40)

If the necessary condition (18) is true, for almost all sequences (Z1,Z2, . . .) we have
that as n → ∞

K∗(Z(n)) → 0. (41)

Equations (39) and (40) then imply that d(π1,π2)
2ρ = 0.

Assuming d(π†
1,π

†
2) = 0, the sufficiency follows again directly from (39) and (40).

Appendix G: Minkowski and Hellinger Distances

The Minkowski distance corresponds to a generalisation of the Euclidean distance to the
τ -norm space (τ = 1, 2, . . .). For two points S = (s1, . . . , sn) ∈ R

n and T = (t1, . . . , tn) ∈
R

n, it is given by

d(S, T ) = ‖S − T‖τ =

( n∑
i=1

|si − ti|τ
) 1

τ

, (42)

where ‖ � ‖τ is the τ -norm; see Kruskal (1964) for more details. Note that we have the
Euclidean distance when τ = 2.

For two discrete probability distributions S=(s1, . . . , sn) ∈ R
n and T =(t1, . . . , tn)∈

R
n, the Hellinger distance (Rao (1995)) is defined by
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This can be extend to the 2τ -norm space (τ = 1, 2, . . .) using the formula
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Appendix H: Proof of Lemma 2

Expanding the function c(π1,π2) by means of the binomial theorem, we then have that

E[c(π1,π2)] =
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Appendix I: Normalisation Constant B(α)

If ν ∈ R+ and z ∈ N+, than Γ(ν + z) = Γ(ν)
∏z−1

i=0 (ν + i) (Abramowitz and Stegun

(1972)). Now take α̂ = α + a, where α ∈ R
n
+ and a ∈ N

n. After using the previous

factorisation property of gamma function and organising the products in a convenient

way, we obtain that
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Supplementary Material

Pairwise Non-Local Priors for CEG Model Selection: Supplementary Material (DOI:

10.1214/15-BA981SUPP; .pdf). The supplementary document includes the normalisa-

tion constants of pm-NLPs using Hellinger distance and its extension to ρ-norm space

(ρ ∈ N+), the computational results for all simulations presented here (Section 4) using

the Hellinger pm-NLPs, and all CEG models found in Section 4.2 by the AHC algorithm

using local and non-local priors.

http://dx.doi.org/10.1214/15-BA981SUPP
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