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Bayes Factors for Smoothing Spline ANOVA

Chin-I. Cheng∗ and Paul L. Speckman†

Abstract. This paper describes an approach for variable selection and hypoth-
esis testing in semiparametric additive models using Bayes factors in smoothing
spline analysis of variance (SSANOVA) models. Effects can be linear or nonpara-
metric (i.e., smooth or interactions between selected linear and smooth effects).
To evaluate the importance of each term in the model, we develop Bayes factors
for both linear and nonparametric terms. We compute approximate Bayes factors
by Monte Carlo and Laplace integration. These Bayes factors can be computed to
compare any two sub-models including one model nested in another. This permits
formal tests of any portion or simultaneous portions of an SSANOVA model. We
demonstrate this approach with an example.

Keywords: smoothing spline ANOVA, Bayes factor, laplace integration,
reproducing kernel, semiparametric model.

1 Introduction

The introduction of semiparametric additive models (e.g., Speckman, 1988; Hastie and
Tibshirani, 1990; Ruppert et al., 2003) has broadened the applications of regression to
allow users to better describe real situations. One such approach is the smoothing spline
ANOVA (SSANOVA) model, introduced by Wahba et al. (1995). In the basic context
of linear models, SSANOVA provides a decomposition of the model space as a tensor
sum of inner product spaces. This decomposition generalizes the usual linear model, in
particular, analysis of covariance models, by allowing for nonparametric (i.e., “smooth”)
components as well as discrete and continuous factors and interactions between all
types of factors. The result is a decomposition into main and interaction effects that
provides not only the flexibility to fit complex models but also makes it natural to
select a parsimonious model from a large class of semiparametric additive models. From
a Bayesian perspective, the SSANOVA decomposition of a model tends to create terms
whose posterior correlation is low, facilitating Bayesian computation. Almost all of
the literature on additive models has been devoted to estimation. The purpose of this
article is to describe Bayesian methodology for implementing Bayes factors, which can
be used to compare models or applied to nested models to formally test any portion
of the model. This paper complements Cheng and Speckman (2012), which introduced
a Bayesian framework for SSANOVA. We indicate how the priors may be modified for
implementing Bayes factors, and we present computational algorithms.

While the literature on estimation in additive models is extensive, much less atten-
tion has been given to testing. In the context of smoothing splines, the test of whether
a specific continuous effect can be parametric or needs a nonparametric model has re-
ceived the most research. Cox et al. (1988) proposed a locally most powerful test for
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generalized smoothing spline and partial spline models, and Wahba (1990) derived the
generalized maximum likelihood ratio (GML) test and the generalized cross-validation
(GCV) test to examine the smooth effect in a model. These tests have also been applied
in the context of smoothing splines or SSANOVA for linear and generalized linear mod-
els by Guo (2002), Liu and Wang (2004) and Liu et al. (2005) among others. There is
a considerable literature on lack-of-fit tests in the context of nonparametric regression;
see, for example, Eubank et al. (1995), Bowman and Azzalini (1997), and Hart (1997).
But the literature on general tests is sparse. Hastie and Tibshirani (1990) introduced
approximate F-tests, and Fan and Jiang (2005) extended generalized likelihood ratio
tests to certain classes of additive models using the backfitting estimator. Crainiceanu
and Ruppert (2004) consider semiparametric additive models in the context of mixed
linear models using P-splines. They developed test statistics for models with one vari-
ance component. In the context considered here, that corresponds to one nonparametric
term. Finally, Kim (2013) has proposed bootstrap tests based on likelihood ratio and
F -type statistics in a general context for SSANOVA models with a mixed model repre-
sentation. Our results give a Bayesian analogue for such methods and help fill a gap in
the literature of testing in SSANOVA models.

The methods presented here build on the Bayesian approach to SSANOVA models in
Cheng and Speckman (2012). The work is comparable to Reich et al. (2009), whose focus
in SSANOVA models was on prediction through Bayesian model averaging. The priors
proposed in Cheng and Speckman (2012), based on classical frequentist SSANOVA
models, are closely related to priors often recommended for Bayes factors in linear
models. While noninformative priors are not possible for terms under consideration in
Bayes factors, there is considerable interest in so-called “objective” priors suitable for
linear models, especially priors related to the g-priors of Zellner and Siow (1980). Liang
et al. (2008) discussed the theoretical properties of the mixture g-priors used in Bayes
factors. Moreover, Shi and Dunson (2011), Morey et al. (2011) and Lodewyckx et al.
(2011) provided alternatives to compute the Bayes factor efficiently.

Our work is also comparable to Basu and Chib (2003), Chib and Jeliazkov (2006)
and Chib and Greenberg (2007), who all use Bayes factors for model selection in semi-
parametric models. We note that SSANOVA is based on reproducing kernels, so our
approach does not depend on the number and location of knots as in Chib and Green-
berg (2010).

In Section 2, the fully Bayesian SSANOVA model in Cheng and Speckman (2012)
is briefly reviewed for completeness. Readers familiar with the model can skip to Sec-
tion 2.5, which describes some necessary changes between the priors used for estimation
and testing. Section 3 is devoted to the derivation and evaluation of Bayes factors. The
method is illustrated by a reanalysis of the potassium measurement on dogs data in
Section 4.

2 Bayesian smoothing spline ANOVA

In this section, we briefly review the smoothing spline ANOVA model, some useful
reproducing kernels, and the Bayesian smoothing spline ANOVA model introduced by
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Cheng and Speckman (2012). Readers interested in full details of the model should refer
to that paper. In this section, we focus on providing a rationale for priors suitable for
implementing Bayes factors and some subtle differences between testing and estimation.

2.1 Bayesian smoothing splines

Consider first the nonparametric regression model with one independent variable xi and
response variable yi,

yi = f(xi) + εi, i = 1, . . . , n,

where without loss of generality xi ∈ [0, 1]. Assume further that the εi are independent
N(0, δ) random variables and that f is an unknown smooth function. The smoothing

spline f̂ is the minimizer of the penalized least squares equation,

n∑
i=1

{yi − f(xi)}2 + λ

∫ 1

0

(f (m)(x))2dx, (1)

where f (m) = dmf/dxm, λ is a smoothing parameter, and minimization is taken over
the Sobolev space H = {f : f, . . . , f (m−1) are absolutely continuous, f (m) ∈ L2}. The
exact solution, which can be found, for example, in Wahba (1990), can be derived using

reproducing kernel Hilbert spaces. Briefly, it can be shown that f̂ ∈ H0⊕H1, where H0

and H1 are Hilbert spaces, H0 is the null space of functions {f ∈ H : f (m) ≡ 0}, and
H1 is the orthogonal complement of H0 in H. If H1 has reproducing kernel R1(x1, x2),
let

Σ = [R1(xi, xj)]n×n.

Suppose {φ1(x), . . . , φm(x)} span the null space H0, and define T = [φi(xj)]n×m. It can

be shown that f̂(x) =
∑m

i=1 diφi(x) +
∑n

i=1 ciR(xi, x) for constants di and ci. In fact,
with d = (d1, . . . , dm)′ c = (c1, . . . , cn)

′, and y = (y1, y2, . . . , yn)
′, (1) can be written as

‖y − Td−Σc‖2 + λc′Σc, so the minimizer of (1) is obtained by solving

min
c,d

‖y − Td−Σc‖2 + λc′Σc.

Following Cheng and Speckman (2012), let g = Σc, so the penalized sum of squares is

min
d,g

‖y − Td− g‖2 + λg′Σ−g (2)

for any generalized inverse Σ−. If (d̂, ĝ) solves (2), the minimizer of (1) satisfies

f̂ = T d̂+ ĝ, (3)

where f̂ = (f̂(x1), . . . , f̂(xn))
′. Although f̂ is overparameterized in this formulation, the

solution to (2) is unique. In this notation, smoothing splines have an obvious Bayesian
interpretation. With the normal errors model and partially improper priors
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y | d, g ∼ N(Td+ g, δI),

[d] ∝ 1, g ∼ N(0, (δ/λ)Σ), (4)

f̂ in (3) is exactly the posterior mode. We suggest an improper prior, the Jeffrey’s prior
on δ, [δ] ∝ 1/δ, δ > 0.

The parameter λ, known as the “smoothing parameter” in the spline literature,
controls the degree of smoothing in fitting the spline. It must be chosen judiciously
to get a good fit. In frequentist applications, automatic methods such as GCV (Golub
et al., 1979) are generally used. For a Bayesian, the solution is a suitable prior on λ.
The Jeffreys prior on δ implies that the prior on the λ must be proper (see Sun and
Speckman, 2008). Note also that λ is comparable to the parameter 1/g in the Zellner
g-prior (Zellner, 1986) for linear models. We propose either scaled χ2 priors following
Zellner and Siow (1980) or scaled Pareto priors following Liang et al. (2008),

[λ | b] =
λ−1/2e−λ/(2b)

Γ(1/2)(2b)1/2
, λ > 0, (5)

or

[λ | b] =
b

(b+ λ)2
, λ > 0. (6)

We believe this form of prior is suitable for both testing and estimation. In both cases,
the choice of scale parameter b is necessarily subjective, but we argue that in practical
problems the choice is not overly prescriptive, and it’s relatively easy to elicit a reason-
able prior. We follow White (2006) and Cheng and Speckman (2012) and recommend a
procedure based on the “equivalent degrees of freedom” (Hastie and Tibshirani, 1990)

of the smoother matrix associated with that term. It is well known that f̂ = Sλy for a
suitable matrix Sλ. In Cheng and Speckman (2012), it is shown that

Sλ = O1O
′
1 +O2(I(n−m)×(n−m) + λ(O′

2ΣO2)
−)−1O′

2,

where O = (O1,O2) is an orthonormal matrix such that O1 spans the column space
of T . In ordinary linear regression, degrees of freedom is equal to the trace of the hat
matrix. In analogy, Hastie and Tibshirani (1990) defined “equivalent degrees of fredom”
to be

d(λ) = tr(Sλ).

It can be shown that m < d(λ) < n, where m is the dimension of the null space (the
rank of T ). The interpretation is that a smoothing spline with d(λ) equivalent degrees
of freedom is roughly equivalent to linear regression using a parametric model with d(λ)
terms, e.g., a polynomial of degree d(λ)− 1.

We suggest choosing b so that the median of the distribution of d(λ) under the
prior on λ reflects the investigator’s prior belief on the smoothness of that component,
say d0 equivalent degrees of freedom. Since d(λ) is a monotonic function of λ, the
median of the distribution of d(λ) is d(m̃), where m̃ is the median of the prior on λ.
We solve d(m̃) = d0 for m̃ to obtain the median of the prior in (5) or (6). In practice,
we generally take m = 2, so the null space is the space of linear functions. In many
applications, having approximately five degrees of freedom represents reasonable prior
belief. This corresponds to fitting a fourth degree polynomial. However, the choice of
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prior equivalent degrees of freedom depends on the nature of the function being fitted.
In a setting with low noise and prior belief that the function is quite complex, one may
want to choose a much larger value of prior equivalent degrees of freedom. These ideas
extend to higher dimensions such as fitting spatial components, where again a higher
degree of prior complexity may be desired. As with any subjective prior, we recommend
using a range of priors to ensure that the analysis is not overly dependent on the choice
of a prior.

2.2 Additive models

Now extend the nonparametric regression model to have d independent variables,
x1, . . . , xd, which can be either continuous or discrete, and response variable y, so

yi = f(xi1, . . . , xid) + εi, i = 1, . . . , n,

where the εi are independent N(0, δ) random variables and f is an unknown function.

Following Wahba et al. (1995), the unknown mean function is decomposed as

E(y | x1, x2, . . . , xd) = f(x1, x2, . . . , xd)

= μ+

d∑
k=1

fk(xk) +
∑
i<j

fij(xi, xj) + · · · , (7)

where μ = μ(x1, . . . , xd) represents linear effects in the null space that are not penalized,
the fk represent main effects, which can be linear effects or smooth effects, and the fij
represent interaction effects, which can be between linear and linear effects, linear and
smooth effects, or smooth and smooth effects. The result is an ANOVA-type decompo-
sition and is called the smoothing spline ANOVA (SSANOVA) model. The SSANOVA
decomposition creates interpretable main and interaction effects and provides flexibility
for model fitting and variable selection. Assume p terms are retained in (7) and rewrite
(7) as f = μ + f1 + · · · + fp. Each subspace in the decomposition has a reproducing
kernel, say Rk, with corresponding matrix Σk = [Rk(xik, xjk)]. We construct an n×m
(m < n) matrix T whose columns span the smallest space containing the null spaces of
all the Σk. With gk = Σkck parameterizing the part of fk not in the null space of Σk,
there is a vector additive representation of the model as

f = Td+

p∑
k=1

gk.

The solution for the unknown function f in the SSANOVA model is obtained by solving

min
d,gk

∥∥∥∥∥y − Td−
p∑

k=1

gk

∥∥∥∥∥
2

+

p∑
k=1

λkg
′
kΣ

−
k gk. (8)

For more detail, please refer to Gu (2002) or Cheng and Speckman (2012). The solution
to (8) is again unique and has the form

f̂ = T d̂+

p∑
k=1

ĝk.
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The Bayesian interpretation (4) carries over. With the normal errors model and inde-
pendent priors,

y | d, gk, δ ∼ N

(
Td+

p∑
k=1

gk, δI

)
,

[d] ∝ 1,

gk | λk, δ ∼ N(0, (δ/λk)Σk), k = 1, . . . , p, (9)

the SSANOVA solution f̂ is exactly the posterior mode.

2.3 Some reproducing kernels for SSANOVA

We must specify a reproducing kernel matrix Σk for each component in the model. We
follow Gu (2002) for many useful ones. Throughout this section, we will denote discrete
variables by t1, t2, . . ., and continuous variables by x1, x2, . . ..

Discrete variable main effects. Suppose variable t1 is a discrete factor with � levels.
The SSANOVA reproducing kernel is

RD(t1, t2) = I{t1=t2} −
1

�
,

where I{·} is the indicator function. The corresponding reproducing kernel matrix for a
discrete variable t1 is defined as ΣD = [Σij ]n×n, where

Σij = RD(ti1, tj1) = I(ti1=tj1) −
1

�
. (10)

This is equivalent to the following one-way ANOVA model. Suppose yi ∼ N(μ0 +∑�
j=1 xijαj , δ), i = 1, . . . , n, where, for each i, exactly one xij is one and the remaining

are zero, j = 1, . . . , �. Take the prior α ∼ N(0, (δ/λ)(I� − 1/�1�1
′
�)). Then, with X =

[xij ]n×�, the prior on effect Xα is N(0, (δ/λ)ΣD).

Continuous variable main effects. One special case is important for testing and
model comparison. Consider an ordinary linear term of the form g = Xβ, where we
assume for simplicity that X is of full rank andX ′1 = 0. The reproducing kernel matrix
for this term is

ΣL = X(X ′X)−1X ′. (11)

If β ∼ N(0, (δ/λ)(X ′X)−1), then g = Xβ ∼ N(0, (δ/λ)ΣL). Thus this kernel for a
linear term in continuous variables corresponds to a Zellner g-prior with g replaced by
1/λ.

Nonparametric variable main effects. We will use thin-plate splines to model
smooth effects in one or two dimensions. For x, y ∈ R

d, d = 1, 2, . . ., and 2m > d, define
the thin-plate spline semi-kernel

RSTP (x, y) = E(||x− y||),
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where ||x− y|| is Euclidean distance,

E(μ) =

{
(−1)

d
2+1+m|μ|2m−d log |μ|, d even,

|μ|2m−d, d odd,

and m generalizes the order of the penalty term differential operator in (1) to higher
dimensions. For d = 1 and m = 2, the result is a cubic spline on the real line. Because
RSTP is not nonnegative definite, it is not a true kernel. However, it is nonnegative
definite on the complement of the null space. Let φ1, . . . , φm be a complete orthonormal
system in H0 (i.e., polynomials of total degree m−1), and let P0 be the projection oper-
ator onto Ḩ0 defined as (P0f)(x) =

∑m
ν=1(f, φν)0φν(x). Then the genuine reproducing

kernel is

RTP (x, y) = (I − P0(x))(I − P0(y))E(||x− y||),

where I is the identity operator and P0(x) and P0(y) are the projection operators applied
to the arguments x and y, respectively. In practice, we compute the matrix kernel used
in (8) as follows. Again let O = (O1,O2) be an orthogonal matrix such that O1 spans
the null space of T . The genuine reproducing kernel matrix for the thin-plate spline is

ΣTP = O2O
′
2KTPO2O

′
2,

where KTP = [RTP (xi, xj)]n×n. (See Gu (2002) or Wang (2011) for details.)

For m = 2 and d = 1 (the usual cubic smoothing spline on the line), one can take
φ1(x) = 1, φ2(x) = x, and the semi-kernel is RSTP (xi, xj) = |xi − xj |3. For m = 2,
d = 2 (the thin-plate spline on the plane) and x = (x1, x2), one can take φ1(x) = 1,
φ2(x) = x1, φ3(x) = x2, and RSTP (xi,xj) = ‖xi − xj‖2 log ‖xi − xj‖.
Interaction effects. In SSANOVA, an interaction effect belongs to a tensor product
reproducing kernel Hilbert space. The products of reproducing kernels on the marginal
domains form reproducing kernels on the product domain (see Gu, 2002). Thus the
reproducing kernel for an interaction effect is the direct product of the reproducing
kernels in the marginal spaces. For example, the reproducing kernel for the interaction
between a thin-plate spline over x ∈ R

d and a discrete factor indexed by t is

RTP,D((xi, ti), (xj , tj)) = RTP (xi,xj)RD(ti, tj).

For two discrete spaces corresponding to variables t1 and t2, the interaction kernel is

RD,D((t1i, t2i), (t1j , t2j)) = RD(ti1, tj1)RD(ti2, tj2)

=

(
I(ti1=tj1) −

1

�1

)
×

(
I(ti2=tj2) −

1

�2

)
,

where �1 and �2 are the number of levels of t1 and t2, respectively. In computing inter-
action terms, the elements of an interaction kernel matrix are simply the products of
the elements of the two main effects kernel matrices.

Many other reproducing kernels are possible. In general, the Bayesian SSANOVA
framework presented here can be used with other reproducing kernels; see, for example,
Wang (2011).
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2.4 Priors for Bayesian SSANOVA

We follow the model of Cheng and Speckman (2012). Starting with the basic Bayesian
additive model (9), we take the Jeffrey’s prior on δ,

[δ] ∝ 1

δ
, δ > 0. (12)

which implies that the priors on the λk must be proper (see Sun and Speckman, 2008).

Much of the previous literature on Bayes factors in linear models begins with a
Zellner–Siow kind of model for testing a single term (e.g., Zellner and Siow, 1980;
Liang et al., 2008). More recently, Rouder et al. (2012) and Min and Sun (2015) have
proposed more complicated ANOVA models with independent g-priors on many or all
of the effects. The models here are in the same spirit. SSANOVA suggests a Bayesian
framework with independent priors on the λk. We propose either scaled χ2 priors (5)
following Zellner and Siow (1980) or scaled Pareto priors (6) following Liang et al.
(2008). The main problem is the choice of scale parameter bk for the prior on λk.

For smooth terms, we use “effective degrees of freedom” as in Section 2.1. For effects
terms for a discrete explanatory variable and kernel (10), we generally take bk = 1. This
follows the models in Rouder et al. (2012) and Min and Sun (2015). For linear regression
terms, we use (11) with bk = 1/n following Zellner–Siow. In all cases, prior information
can inform alternative choices for the bk.

2.5 Testing vs. estimation

In mixed linear models, priors for testing and estimation may be different. It is cus-
tomary to take flat priors on fixed effects and hierarchical priors on random effects for
purposes of estimation (e.g., Gelman et al., 2014). However, when computing Bayes
factors, priors must be proper on each effect except possibly for effects common to all
models.

As seen in Cheng and Speckman (2012), the reproducing kernels from classical
SSANOVA correspond to hierarchical Bayesian models. In particular, we followed the
SSANOVA prescription as closely as possible, using a prior with covariance matrix (10)
for both fixed and random effects. The prior for a main effects term corresponding to
ΣD is not a conventional prior for either fixed or random effects in standard Bayesian
analysis since the coefficient vector α is constrained to satisfy 1′α = 0. This is exactly
the prior recommended by Rouder et al. (2012) for use in testing a fixed effects term.
Moreover, in conventional Zellner–Siow models, the factor to be tested must satisfy
1′X = 0. One solution for the main effects model is equivalent to the reproducing
kernel matrix ΣD. One could model a random effects term Xα with a standard con-
ditionally independent prior αk ∼ N(0, (δ/λk)I) in place of the restricted kernel ΣD.
This has implications, especially for interaction terms, that we do not explore here.

The treatment in Cheng and Speckman (2012) modeled all terms in the SSANOVA
model as random except for terms in the null space, which consists of a constant plus
the null spaces from kernels corresponding to smooth terms. For example, for smoothing
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in one dimension with a cubic spline using parameterization (3), the model has the form
f(xi) = d0+d1xi+g(xi), where g(x) is the nonparametric smooth part of the model and
d1x is the parametric part. For estimation, it is appropriate to put flat priors on d0 and
d1. If one wants to test for the presence of the nonparametric part g(x) of the model,
a flat prior on d0 and d1 can be used. However, if one wants to test for the presence of
an effect f including the linear term, then one must put a proper prior on d1 as well.
We use the Zellner–Siow prior with kernel (11) on the factor d1xi and prior (5) with
bk = 1/n for models where we implement Bayes factors. Note that this prior may give
poor performance for estimation. The shrinkage prior on the linear part of the model
can introduce substantial of bias.

In retrospect, we believe that using ΣD for a fixed ANOVA effect term in an esti-
mation model as we did in Cheng and Speckman (2012) may also introduce unwanted
bias. One could use a flat prior for a fixed effect as well. In practice, this means includ-
ing such a term in the null space. For example, if the fixed effect term has the form
Xkβk and the null space for the rest of the model is the span of T , then the fixed effect
could be included in the model by augmenting the null space to be T1 = (T ,Xk) with
d′
1 = (d′,β′

k)
′. Reparameterization may be necessary to insure that T1 has full rank.

3 Bayes factors

The significance of each term in the Bayes SSANOVA model will be evaluated by Bayes
factors (Kass and Raftery, 1995). A Bayes factor is the ratio of marginal likelihoods for
two competing models. With no closed form, we approximate the marginal likelihood by
Monte Carlo or Laplace integration. The details are described in the following sections.

3.1 Marginal likelihood

The marginal likelihood function of y under model Mk is

p(y | Mk) =

∫
ωk

fk(y | ωk)πk(ωk) dωk, k = 1, 2,

where fk(y | ωk) is the likelihood function of y given parameters ωk, and πk(ωk) is the
prior for ωk. The Bayes factor (Kass and Raftery, 1995) between M2 and M1 is defined
to be

BF21 =
p(y | M2)

p(y | M1)
. (13)

Care must be in using improper priors with Bayes factors. Even if the posterior is proper,
the normalizing constant for an improper prior is arbitrary, rendering (13) indetermi-
nate. However, it is permissible to use an improper prior on one or more common terms
in both models such as (9) and (12) here.

Consider now the Bayes SSANOVA model (9). Since Σk may be singular, we need
a full rank parameterization. Let Σk = QkDkQ

′
k be the spectral decomposition of Σk,
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where Qk is a n × rk suborthogonal matrix of eigenvectors corresponding to the rk
nonzero eigenvalues of Σk, and Dk is the diagonal matrix with the nonzero eigenvalues
in the diagonals. Setting gk = Qkvk,

vk | δ, λk ∼ Nrk

(
0,

δ

λk
Dk

)
, k = 1, . . . , p.

To write the likelihood function in matrix format, let r =
∑p

k=1 rk and define X =
[Q1,Q2, . . . ,Qp], λ = (λ1, λ2, . . . , λp) and β = [v′

1,v
′
2, . . . ,v

′
p]

′. Thus X is an n × r
matrix. The likelihood function for the Bayesian SSANOVA model is

h(d,β, δ,λ|y) =
exp(− 1

2δ ||y − Td−Xβ||2)
(2π)n/2δn/2

exp(− 1
2δβ

′D−1(λ)β)

(2π)r/2δr/2|D(λ)|1/2
1

δ
π(λ),

where

D(λ) =

⎛⎜⎜⎜⎝
λ−1
1 D1 0 . . . 0
0 λ−1

2 D2 . . . 0
...

...
. . .

...
0 0 . . . λ−1

p Dp

⎞⎟⎟⎟⎠ ,

and π(λ) is the prior for λ. To compute the Bayes factor in (13), we need the marginal
likelihood for y under M2 and M1. One advantage of the Zellner–Siow prior in linear
models is the computational efficiency due to the conditionally conjugate prior. Our
model is closely related to the linear model structure. With O2 defined as before as

projection onto the complement of the range of T , define ỹ = O′
2y, X̃ = O′

2X and

W (λ) = X̃ ′X̃+D−1(λ). With this notation, integrating out d, β and δ in h(d,β, δ,λ|y)
yields

h1(λ | y) =

∫
h(d,β, δ,λ | y) dd dβ dδ

= z(λ | y)π(λ),

where

z(λ | y) = |(T ′T )|−1/2|W (λ)|−1/2|D(λ)|−1/2

×
Γ(n−m

2 )

[π(ỹ′ỹ − ỹ′X̃W−1(λ)X̃ ′ỹ)](n−m)/2
. (14)

There is an alternate form which is useful if X̃ has many more columns than rows.
Using the identity |A+XBX ′| = |B||A||B−1 +X ′A−1X|, we have |W (λ)||D(λ)| =
|I + X̃D(λ)X̃ ′|. Similarly, the Sherman–Morrison–Woodbury formula implies I −
X̃(D(λ)−1 + X̃ ′X̃)−1X̃ ′ = (I + X̃D(λ)X̃ ′)−1, hence

ỹ′ỹ − ỹ′X̃W−1(λ)X̃ ′ỹ = ỹ′[I + X̃D(λ)X̃ ′]−1ỹ.

With M(λ) = (In−m + X̃D(λ)X̃ ′), we have

z(λ | y) =
Γ(n−m

2 )

|(T ′T )|1/2|M(λ)|1/2|[π(ỹ′M−1(λ)ỹ)](n−m)/2
. (15)
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3.2 Computing Bayes factors

Exact analytical evaluation of h2(y) =
∫
h1(λ | y) dλ is not possible. Evaluation by

quadrature is possible if λ has dimension 1 or 2. One could use an MCMC method such
as applying the Savage–Dickey density ratio (Dickey, 1971; Verdinelli and Wasserman,
1995) or bridge sampling (Meng and Wong, 1996). However, simpler methods appear to
give excellent results, and it’s much quicker to compute the Bayes factors directly than
to run complete MCMC simulations for each model under consideration. Moreover,
there are cases where the priors may differ between model selection and estimation,
so there is no point in running an MCMC simulation. We approximate h2(y) in the
example below by Monte Carlo or Laplace integration.

Following Kass and Raftery (1995), one method to approximate the marginal likeli-
hood h2(y) is Laplace approximation. To improve this approximation, take the transfor-
mation, λk = exp(φk), k = 1, . . . , p, with Jacobian eφ1+···+φp , and let φ = (φ1, φ2, . . . ,
φp). With the notation eφ = (eφ1 , . . . , eφp), define

s(φ) = log
[
z(eφ | y)π(eφ) exp(φ1 + · · ·+ φp)

]
.

Then the marginal likelihood is h2(y) =
∫
exp(s(φ)) dφ. Let φ̂ maximize s(φ), and let

H be the Hessian matrix of s(φ) evaluated at φ̂. Replacing s(φ) by the second order
Taylor expansion

s(φ)
.
= s(φ̂) +

1

2
(φ− φ̂)′H(φ− φ̂),

the Laplace approximation is

h2(y) =

∫
exp(s(φ))dφ

.
= exp(s(φ̂))(2π)p/2|H |−1/2.

This approximation works well with moderate to large samples when the posterior
distribution of λ has small variance.

Perhaps the simplest approximation is naive Monte Carlo (Kass and Raftery, 1995).
If we generate a random sample λ(1),λ(2), . . . ,λ(N) from the prior, π(λ), then the
marginal likelihood is approximated by

h2(y) =

∫
z(λ | y)π(λ) dλ .

=
1

N

N∑
j=1

z(λ(j) | y).

This approach is easy to compute. Either (14) or (15) can be used to evaluate z(λ | y).
The former is more efficient if X̃ has more rows than columns. If X̃ has substantially
more columns than rows, then (15) is preferable. However, if the posterior distribution
for λ is highly concentrated in one or more coordinates, this form of Monte Carlo
approximation is not very efficient.

The precision of Monte Carlo can often be improved by importance sampling (e.g.,
Gelman et al., 2014). We implement importance sampling in the following way. After
reparameterization, the Laplace approximation suggests that the posterior of φ is ap-
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proximately N(φ̂,−H−1). Let ψ ∼ N(φ̂,−H−1), and let n(ψ | φ̂,−H−1) denote the
corresponding multivariate normal density. Then

h2(y) =

∫
exp(s(φ)) dφ = Eψ

(
exp(s(ψ))

n(ψ | φ̂,−H−1)

)
.

(Here n(ψ | φ̂,−H−1) is the importance density.) Thus if ψ(1), . . . ,ψ(N) is a random
sample from ψ,

h2(y)
.
=

1

N

N∑
j=1

exp(s(ψ(j)))

n(ψ(j) | φ̂,H)
.

One advantage of Monte Carlo over Laplace approximation is that one can easily
obtain the standard error of the Monte Carlo approximation to the marginal likelihood.
Moreover, the delta method yields the approximate standard error for the Bayes factor.
These approximations and standard errors are illustrated in the next example.

4 Application: potassium measurement on dogs

This data set was originally given in Grizzle and Allen (1969) and has been estimated
with SSANOVA by Wang and Ke (2004) and Bayesian SSANOVA by Cheng and Speck-
man (2012). The data consists of measurements of coronary sinus potassium concentra-
tions for 36 dogs that were assigned to four groups: control, extrinsic cardiac denerva-
tion three weeks prior to coronary occlusion, extrinsic cardiac denervation immediately
prior to coronary occlusion, and bilateral thoratic sympathectomy and stellectomy three
weeks prior to coronary occlusion. Coronary sinus potassium concentrations were mea-
sured on each dog every two minutes from 1 to 13 minutes after occlusion. The variable
group is coded as 1 to 4 to represent the 4 groups, and dog is numbered 1 to 36. The
variable time is transformed into [0, 1]. The design has the dog factor nested within the
group factor. There are 9 dogs in each group. The goal is to examine the significance
of the two categorical variables, group and dog, the continuous variable, time, and the
interactions among those variables to the response variable, potassium, coronary sinus
potassium concentrations level. Here we extend the work of Cheng and Speckman (2012)
to model selection with Bayes factors.

Based on 95% credible sets, Cheng and Speckman (2012) informally concluded that
the following terms should be included in the model: the smooth effect s3(time), the level
effects l1(group) and l2(dog), and the interaction effects l13(group, time), l23(dog, time)
and ls23(dog, time) to potassium concentrations level. Here l13(group, time) denotes the
interaction between group and the linear time effect, l23(dog, time) denotes the inter-
action between dog and the linear time effect, and ls23(dog, time) denotes the inter-
action between dog and the smooth effect in time. In addition to those effects, Wang
and Ke (2004) included the interaction between group and the smooth effect in time,
ls13(group, time), in their final model based on AIC. As pointed out by Cheng and
Speckman (2012), Wang and Ke (2004) derived their best model using AIC without
any kind of testing procedure for individual terms. Note that AIC is generally believed
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to be too liberal and may include a large proportion of irrelevant variables (e.g., George,
2000).

We conducted a formal model selection procedure using Bayes factors. The following
nested sequence of models was considered:

Model 5 : f(group, dog, time) = μ+ β3time+ s3(time) + l1(group)

+l2(dog) + l23(dog, time) + l13(group, time)

+ls23(dog, time) + ls13(group, time),

Model 4 : Model 5− ls13(group, time),

Model 3 : Model 4− ls23(dog, time),

Model 2 : Model 4− l13(group, time),

Model 1 : Model 2− l1(group).

Following Section 2.4, Zellner–Siow priors corresponding to (11) and (5) with b = 1/n
were used for the interaction between level and linear effects, l13(group, time) and
l23(dog, time). We chose Gamma (1/2, 2) priors for the level effects and Gamma (1/2, 2bk)
priors for the smooth effects and the interaction effects involved curvature effects. As
described in Section 2.1, the scale parameters bk were selected to achieve desired median
a priori effective degrees of freedom. We chose to set median prior effective degrees of
freedom to approximately 3, 4 and 36 for s3(time), ls13(group, time) and ls23(dog, time),
respectively, as suggested by Cheng and Speckman (2012). The corresponding bk are
0.4241, 1.1944, and 0.2391.

The Bayes factors to evaluate the significance of each term in model 5 as approx-
imated by importance sampling Monte Carlo and Laplace approximation are listed in
Table 1. For this example, importance sampling was substantially much more efficient
than basic Monte Carlo; results shown are based on a sample of 5,000. The Laplace ap-
proximations are quite good except for BF51. However, this discrepancy did not affect
our conclusions. Following the guidelines of Kass and Raftery (1995), there is over-
whelming evidence for the dog–time nonparametric interaction effect ls23(dog, time).
The evidence for nonparametric group–time interaction effect ls13(group, time) is rather
weak, but there is some evidence for the linear interaction effect l13(group, time). Fol-
lowing customary practice in linear models, we did not examine main effects or lower
order interaction effects included by significant interaction effects. However, to illus-
trate the method, we did test for an overall group effect by computing the Bayes factor
comparing model 5 with model 1. The resulting BF ≈ 47.6 is very strong evidence
for a group effect. Note that the Bayes factor for the nonparametric group–time effect
ls13(group, time) only gives very weak support. However, this term was included in the
final model of Wang and Ke (2004).

To study the robustness of the analysis with respect to choice of prior, we reran
the analysis using three alternate sets of priors. Following the discussion in Section 2.5,
we put the Zellner–Siow prior rather than the flat prior on the linear term in time.
As seen in Table 2, the effect is completely negligible. Next, we experimented with
different equivalent degrees of freedom (edf) for the priors on the smooth terms s3(time),
ls13(group, time) and ls23(dog, time). Note that the data set has only 7 time points.
With cubic spline smoothing, there are only 5 degrees of freedom possible for the main
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Bayes Factors
Tested terms MC estimate (SE) Laplace approx.

BF54 ls13(group, time) 3.11(0.07) 2.59
BF43 ls23(dog, time) 1.1× 106(1.5× 104) 1.1× 106

BF42 l13(group, time) 10.05(0.11) 9.79
BF51 (ls13(group, time) 47.60(1.08) 37.67

+l13(group, time)+l1(group))

Table 1: The Bayes factors (BF ) for testing the terms ls13(group, time), ls23(dog, time),
l13(group, time) and ls13(group, time) + l13(group, time) + l1(group) for the potassium
measurement on dogs data set. The Monte Carlo estimates, computed by importance
sampling, include approximate standard errors (SE).

Bayes Factors
Z–S prior (1, 2, 18) edf (4, 12, 70) edf

BF54 3.11 1.98 2.03
BF43 1.1× 106 4.27× 105 2.35× 106

BF42 9.52 9.51 9.51
BF51 45.17 29.03 28.96

Table 2: Robustness study for Bayes factors in Table 1: Column 1, Zellner–Siow prior
on the linear term for time; Column 2, (1, 2, 18) edf priors; Column 3, (4, 12, 70) edf
priors.

effect smooth part. Assuming very smooth prior belief, we tried (1, 2, 18) prior edf,
respectively. Finally, to try a prior assuming complex relationships, we tried (4, 12, 70)
edf, respectively. The results are also presented in Table 2. The choice of prior does
affect certain Bayes factors, especially BF51 testing for a group effect. In our opinion,
these results demonstrate that the Bayes factor analysis is quite satisfactory, especially
if one believes that the extreme choices are not very realistic.

Another alternative for evaluating the significance of each term is the deviance in-
formation criteria (DIC) (Spiegelhalter et al., 2002). For comparison, Table 3 lists the
terms selected based on smaller DIC. The preferred model contains ls23(dog, time),
ls13(group, time) and all lower order terms such as s3(time), l1(group), l2(dog),
l23(dog, time) and l13(group, time). There is some discrepancy in the models determined
by the two methods. DIC supports ls13(group, time) but the Bayes factor is not con-
vincing. We believe that this data set is an example of a situation where analysis using
Bayes factors is more illuminating than DIC.

5 Conclusions

The proposed Bayes factors permit testing of all possible effects in SSANOVA models
including linear effects, smooth effects, interaction effects or combinations of arbitrary
terms in the model. This provides a flexible method for variable selection in semipara-
metric and nonparametric models comparable to hypothesis testing in ordinary linear
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Terms Model(DIC) Selected
ls13(group, time) M5(278.2) vs M4(282.0) M5
ls23(dog, time) M4(282.0) vs M3(443.2) M4
l13(group, time) M4(282.0) vs M2(295.6) M4
ls13(group, time)+l13(group, time)+ l1(group) M5(278.2) vs M1(284.1) M5

Table 3: Model selection based on the Deviance Information Criterion for the potassium
measurement on dogs data set.

and linear mixed models. Being Bayesian, our approach is different from the general-
ized likelihood statistics for nonparametric models proposed, for example, by Fan et al.
(2001).

These Bayes factors can be computed reasonably efficiently in our set up. The Bayes
factors give more precise conclusions than examining credible sets for variable selection
in additive models. In particular, credible sets can be hard to interpret for nonparametric
(smooth) effects, especially for interaction effects.

Frequentist variable selection for SSANOVA models is often performed by AIC.
This is generally believed to be liberal, may tend to favor more complicated models,
and does not give any guidance on the amount of statistical evidence for retaining or
omitting terms from a model. In contrast, Bayesian SSANOVA can provide inference
for individual terms of interest when desired. It would be interesting to compare the
results obtained by Bayes factors with the resampling approach for hypothesis testing
proposed in Kim (2013).

Finally, in our opinion, Bayes factors provide more precise guidance than DIC, which
is a somewhat informal guide to model selection with no control for sampling variabil-
ity.
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