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HIGH-DIMENSIONAL GENERALIZATIONS OF ASYMMETRIC
LEAST SQUARES REGRESSION AND THEIR APPLICATIONS

BY YUWEN GU AND HUI ZOU1

University of Minnesota

Asymmetric least squares regression is an important method that has
wide applications in statistics, econometrics and finance. The existing work
on asymmetric least squares only considers the traditional low dimension and
large sample setting. In this paper, we systematically study the Sparse Asym-
metric LEast Squares (SALES) regression under high dimensions where the
penalty functions include the Lasso and nonconvex penalties. We develop
a unified efficient algorithm for fitting SALES and establish its theoreti-
cal properties. As an important application, SALES is used to detect het-
eroscedasticity in high-dimensional data. Another method for detecting het-
eroscedasticity is the sparse quantile regression. However, both SALES and
the sparse quantile regression may fail to tell which variables are important
for the conditional mean and which variables are important for the conditional
scale/variance, especially when there are variables that are important for both
the mean and the scale. To that end, we further propose a COupled Sparse
Asymmetric LEast Squares (COSALES) regression which can be efficiently
solved by an algorithm similar to that for solving SALES. We establish the-
oretical properties of COSALES. In particular, COSALES using the SCAD
penalty or MCP is shown to consistently identify the two important subsets
for the mean and scale simultaneously, even when the two subsets overlap. We
demonstrate the empirical performance of SALES and COSALES by simu-
lated and real data.

1. Introduction. High-dimensional data have received tremendous attention
in the last decade due to the advance of data collection technology. Sparse estima-
tion, which uses penalization or regularization techniques to perform variable se-
lection and estimation simultaneously, has become a mainstream approach for ana-
lyzing high-dimensional data. Popular penalized estimators include the L1-type se-
lectors such as the Lasso [Tibshirani (1996)] and Dantzig [Candes and Tao (2007)]
selectors and the nonconvex penalized estimators such as the SCAD [Fan and Li
(2001)] and MCP [Zhang (2010)] estimators. Some embrace the L1-regularization
for its computational efficiency, while others prefer to use the nonconvex penaliza-
tion due to its oracle [Fan and Li (2001)] property.

The current literature on sparse estimation often assumes homoscedasticity. For
example, the existing theory for the sparse linear regression model is based on the
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classical linear model assumption in which the mean function is linear and the er-
rors are i.i.d. with zero mean and constant variance. The heteroscedasticity issue
is often overlooked for theoretical convenience. However, heteroscedasticity of-
ten exists due to heterogeneity in measurement units or accumulation of outlying
observations from numerous sources of inputs. This is particularly relevant with
high-dimensional data. For example, in genomics experiments, tens of thousands
of genes are often analyzed simultaneously by microarrays and occasional outlying
measurements appearing in numerous experimental and data-preprocessing steps
can accumulate to form heteroscedasticity in the data obtained therein. These data
sets are often of high dimension since only a small number of subjects are available
for the study. Several studies on expression quantitative trait loci (eQTLs) [Daye,
Chen and Li (2012), Wang, Wu and Li (2012)] confirmed the presence of het-
eroscedasticity in these high-dimensional data and it was shown that genetic vari-
ants have effects on both the mean and the scale (i.e., standard deviation) of gene
expression levels. In such scenarios, it is important to incorporate heteroscedastic-
ity to make inference from the limited amount of data. To our knowledge, most
existing work on high-dimensional data analysis fails to address the heteroscedas-
ticity issue.

The sparse quantile regression was proposed in Wang, Wu and Li (2012) to de-
tect heteroscedasticity in high-dimensional data. Quantile regression [Koenker and
Bassett (1978)] is appropriate under heteroscedasticity, because it uses an asym-
metric absolute value loss. The key word is “asymmetric,” not the absolute value
loss. The absolute value loss is computationally more challenging than the squared
error loss. Computational efficiency is always one of the primary considerations
in high-dimensional data analysis. This motivates us to study the asymmetric least
squares (ALS) regression under high dimensionality. The ALS regression has been
studied in Efron (1991). It is also known as the expectile regression in economet-
rics and finance. See Kuan, Yeh and Hsu (2009), Newey and Powell (1987), Taylor
(2008), Xie, Zhou and Wan (2014). The key idea in ALS is to assign different
squared error loss to the positive and negative residuals, respectively. By doing
so, one can infer a more complete description of the conditional distribution than
ordinary least squares (OLS). Thus, ALS and quantile regression share a common
virtue although they differ technically. The most notable advantage of ALS over
quantile regression is that the former employs a smooth differentiable loss, which
considerably alleviates the computational effort involved and also makes the the-
oretical analysis more amenable. These two are desirable properties under high
dimensionality.

In this paper, we develop the methodology and theory for the Sparse Asym-
metric LEast Squares (SALES) regression and show its applications in detecting
heteroscedasticity in a general class of sparse models in which the set of relevant
covariates may vary from segment to segment on the conditional distribution. For
the nonconvex penalized SALES regression, we prove its strong oracle property.
We then discuss an important issue overlooked by existing methods dealing with
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heteroscedasticity in high dimensional data, that is, how to exactly differentiate
the sets of relevant covariates for the mean and scale when they have overlaps. To
resolve this issue, we propose a novel COupled Sparse Asymmetric LEast Squares
(COSALES) regression method to select important variables for the mean and
scale of the conditional distribution simultaneously. The strong oracle property is
also shown for the nonconvex penalized COSALES estimator. We develop novel
efficient algorithms for computing both SALES and COSALES.

The remainder of the article is organized as follows. We study SALES in Sec-
tion 2 and demonstrate its application in detecting heteroscedasticity in Section 3.
In Section 4, we introduce and study COSALES. The performance of COSALES
is illustrated by two simulation examples. In Section 5, we apply SALES and COS-
ALES to analyze a real microarray dataset. The proofs of all main theoretical re-
sults are relegated to Section 6.

2. High-dimensional SALES regression.

2.1. Background and setup. We start by defining the τ -mean of a random vari-
able Z ∈ R,

E τ (Z) ≡ arg min
a∈R

E
{
�τ(Z − a)

}
, τ ∈ (0,1),(2.1)

where �τ(u) = |τ − I (u < 0)|u2 is the asymmetric squared error loss [see, e.g.,
Efron (1991), Newey and Powell (1987)] and I (·) represents the indicator func-
tion. Similar definition can be found in Efron (1991). As a matter of fact, our
τ -mean corresponds to Efron’s w-mean, where w = τ/(1 − τ). Hereafter, we call
E τ the asymmetric expectation operator (with asymmetry coefficient τ ). Note that
E 0.5 coincides with the usual expectation operator E. The τ -mean is also called the
τ -expectile in the econometrics literature [Newey and Powell (1987)]. By vary-
ing τ , the τ -mean quantifies different “locations” of a distribution, and thus it can
be viewed as a generalization of the mean and an alternative measure of “location”
of a distribution.

The asymmetric squared error loss �τ(·) gives rise to the ALS regression, in
which the squared error loss is given different weights depending on whether
the residual is positive or negative. Let X = (X1, . . . ,Xp) be the n × p de-
sign matrix with Xj = (x1j , . . . , xnj )

T, j = 1, . . . , p, and y = (y1, . . . , yn)
T be

the n-dimensional response vector. The design matrix may also be written as
X = (x1, . . . ,xn)

T, where xi = (xi1 . . . , xip)T, i = 1, . . . , n. The ALS regression
is done via

β̂
ALS
τ = arg min

β∈Rp

n∑
i=1

�τ

(
yi − xT

i β
)
.

When τ = 0.5, the ALS regression reduces to the OLS regression. When τ �= 0.5,
due to the asymmetric nature and relative smoothness of �τ(·), the ALS regres-
sion provides a convenient and computationally efficient way of summarizing the
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conditional distribution of a response variable given the covariates [Efron (1991),
Newey and Powell (1987)]. Applications of the ALS regression include estima-
tion of the value at risk and expected shortfall [Kuan, Yeh and Hsu (2009), Taylor
(2008)], medical baseline correction [Eilers and Boelens (2005)], and small area
estimation [Chambers and Tzavidis (2006), Salvati et al. (2012)] among others.

In the literature, the underlying model considered for studying the theoretical
property of the ALS regression is

y = Xβτ + ετ ,(2.2)

where βτ is a p-dimensional vector of unknown parameters and ετ is the vec-
tor of n independent errors, which satisfy E τ (ετ

i |xi ) = 0, i = 1, . . . , n for some
τ ∈ (0,1). It follows that E τ (yi |xi ) = xT

i βτ , which means that the conditional τ -
mean of yi is a linear combination of xi , i = 1, . . . , n. A model similar to (2.2)
was considered in Wang, Wu and Li (2012) for quantile regression where the con-
ditional quantile of the response variable was modeled as a linear combination of
the covariates. In model (2.2), it is important to realize that the coefficient vector
βτ is allowed to change with τ , which makes modeling for different “locations” of
the conditional distribution possible, and as a result heteroscedasticity in the data,
when it exists, can be inspected by this model. For convenience, we will drop the
superscript for βτ and ετ when no confusion arises.

To accommodate high-dimensional data in model (2.2), we allow the number
of covariates p to increase with the sample size n, and moreover, we are primarily
interested in cases where p exceeds n (p > n). We adopt the sparsity assump-
tion that only a small number of covariates contribute to the response. Suppose
β∗ = (β∗

1 , . . . , β∗
p)T is the parameter vector of the true underlying model that gen-

erates the data and assume β∗ is s-sparse, where s = |A| with A ≡ supp(β∗) = {j :
β∗

j �= 0}.
2.2. Methodology. To select important variables and estimate β in model (2.2)

when the dimension is high, let us consider the following penalized SALES regres-
sion:

min
β∈Rp

n−1
n∑

i=1

�τ

(
yi − xT

i β
) +

p∑
j=1

pλ(βj ),(2.3)

where �τ(·) is the asymmetric squared error loss and pλ(·) is a nonnegative
penalty function with regularization parameter λ ∈ (0,∞). In the remainder of
this article, we mainly focus on the Lasso and nonconvex penalties.

2.2.1. L1-Penalized SALES regression. For ease of notation, let Ln(β) =
n−1 ∑n

i=1 �τ(yi − xT
i β). The L1-penalized SALES estimator or SALES Lasso

estimator β̂
lasso

is defined as the solution to the minimization problem

min
β∈Rp

Ln(β) + λlasso

p∑
j=1

|βj |, λlasso ∈ (0,∞).(2.4)
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This is to take pλ(u) = λ|u| in (2.3). The Lasso is computationally attractive and
can be solved by efficient algorithms such as the LARS [Efron et al. (2004)], the
coordinate descent method [Friedman, Hastie and Tibshirani (2010)] and the gen-
eralized coordinate descent algorithm [Yang and Zou (2013)].

For efficient computation of β̂
lasso

in (2.4), we propose an algorithm called
SALES which combines the cyclic coordinate descent [Tseng (2001)] and proxi-
mal gradient algorithms [Parikh and Boyd (2013)]. Our algorithm solves the fol-
lowing more general “weighted” L1-minimization problem:

min
β∈Rp

Ln(β) +
p∑

j=1

wj |βj |(2.5)

with constants wj ≥ 0 for all j . Our consideration of formulation (2.5) is twofold.
First, it not only can be directly applied to the SALES Lasso problem (2.4) by
setting wj = λlasso for all j , but also can be used to solve the convex approxima-
tions to the nonconvex penalized SALES estimation [see step (a) of Algorithm 2].
Second, leaving some coefficients unpenalized is simply a matter of setting their
corresponding weights to zero. Doing so gives us the flexibility to decide which
covariates should always be kept in the model. The algorithm is described as fol-
lows.

For v = (v1, . . . , vd)T ∈ R
d , denote v−k = (v1, . . . , vk−1, vk+1, . . . , vd)T the

subvector of v with its kth component removed. Recover v from v−k by writ-
ing v = [vk,v−k]. Let βr = (βr

1, . . . , βr
p)T be the update of β after the r th (r ≥ 0)

cycle of the coordinate descent algorithm. For ease of notation, denote

br+1
−k = (

βr+1
1 , . . . , βr+1

k−1, βr
k+1, . . . , β

r
p

)T
, 1 ≤ k ≤ p, r ≥ 0.

Applying the coordinate descent method, to update βk in the (r + 1)th cycle, we
solve the following minimization problem:

min
βk∈R

�n

(
βk;br+1

−k

) + wk|βk|,(2.6)

where �n(βk;br+1
−k ) = Ln([βk,br+1

−k ]) = n−1 ∑n
i=1 �τ(yi − xT

i,−kbr+1
−k − xikβk).

One can show that �′
n(βk;br+1

−k ) is Lipschitz continuous with constant Lk =
2c̄n−1‖Xk‖2

2, where ‖ · ‖2 is the Euclidean norm. Thus, the proximal gradient
method can be employed to solve problem (2.6):

β
r,0
k := βr

k , β
r,s+1
k := S

L−1
k wk

(
β

r,s
k − L−1

k �′
n

(
β

r,s
k ;br+1

−k

))
, s ≥ 0,(2.7)

where Sv(u) = sgn(u)(|u| − v)+ denotes the soft thresholding operator with u+ =
uI (u > 0). We let (2.7) run for sr

k iterations and set βr+1
k := β

r,sr
k

k . Our algorithm
is summarized in Algorithm 1. We prove in Gu and Zou (2015) that Algorithm 1
converges at least linearly.
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Algorithm 1: SALES—The cyclic coordinate descent plus proximal gradient
algorithm for solving the weighted L1-minimization problem (2.5)

1. Initialize the algorithm with β0 = (β0
1 , . . . , β0

p)T.
2. For r = 0,1,2, . . . ,m − 1,

(2.1) For k = 1, . . . , p,
(2.1.1) Initialize β

r,0
k := βr

k .
(2.1.2) For s = 0,1,2, . . . , sr

k − 1,

(2.1.2.1) Calculate β
r,s+1
k := S

L−1
k wk

(βk − L−1
k �′

n(β
r,s
k ;br+1

−k )).

(2.1.3) Set βr+1
k := β

r,sr
k

k .
(2.2) Set βr+1 := (βr+1

1 , . . . , βr+1
p )T.

3. Output β̂ := βm.

2.2.2. Nonconvex penalized SALES regression. Nonconvex penalties have
been used in a broad type of sparse regression models [Fan and Lv (2011), Fan,
Xue and Zou (2014), Wang, Kim and Li (2013)]. The most popular nonconvex
penalties include the smoothly clipped absolute deviation (SCAD) penalty [Fan
and Li (2001)] and the minimax concave penalty [MCP, Zhang (2010)]. For some
constant γ > 2, the SCAD penalty is given by

pλ(u) = λ|u|I (|u| ≤ λ
) +

{
λ|u| − (λ − |u|)2

2(γ − 1)

}
I
(
λ < |u| ≤ γ λ

)
(2.8)

+ (γ + 1)λ2

2
I
(|u| > γλ

)
.

The use of γ = 3.7 for the SCAD penalty is recommended in Fan and Li (2001)
from a Bayesian perspective. The MCP is characterized by

pλ(u) = λ

(
|u| − u2

2γ λ

)
I
(|u| ≤ γ λ

) + γ λ2

2
I
(|u| > γλ

)
(2.9)

for some γ > 1. The use of γ = 2 is suggested in Zhang (2010). In this article, we
consider both SCAD and MCP penalized SALES regression.

The main motivation for using the nonconvex penalties is to achieve the oracle
property. For the SALES regression, the oracle estimator is

β̂
oracle = arg min

β∈Rp :βAc=0
Ln(β).(2.10)

In practice, the oracle estimator is infeasible, but it sets a benchmark for evalua-
tion of other estimators. Many papers have shown that the nonconvex penalized
least squares can find the oracle estimator with high probability [Fan, Xue and
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Algorithm 2: The local linear approximation (LLA) algorithm for solving the
nonconvex penalized SALES estimation problem (2.3)

1. Initialize β̂
0 := β̂

initial
. Compute weights ŵ0

j = p′
λ(|β̂0

j |), j = 1, . . . , p.
2. For m = 1,2, . . . , repeat the LLA iteration in (a) and (b) until convergence

(a) Solve the following convex optimization problem for β̂
m

β̂
m := arg min

β∈Rp

Ln(β) +
p∑

j=1

ŵm−1
j |βj |.

(b) Update the weights ŵm
j = p′

λ(|β̂m
j |), j = 1, . . . , p.

Zou (2014), Wang, Kim and Li (2013)]. In particular, Fan, Xue and Zou (2014)
showed that the local linear approximation (LLA) algorithm [Zou and Li (2008)]
converges to the oracle estimator under regularity conditions. The LLA algorithm
fits a sequence of weighted L1-regularization problems. Since we already have Al-
gorithm 1 for computing any weighted L1-penalized SALES regression, we adopt
the LLA algorithm for solving the nonconvex penalized SALES estimation prob-
lem (2.3). The details of the LLA algorithm are shown in Algorithm 2. Note that
step (a) can be readily solved by Algorithm 1.

In our numerical examples, we tried using both the SALES Lasso estimator and
zero as the initial values of the LLA algorithm for computing the nonconvex penal-
ized SALES estimator. Our practice is based on theoretical results in Section 2.3.

2.3. Theory. In this section, we theoretically analyze the SALES regression.
We consider the case where the covariates are from a fixed design.

The following notation will be used. For any vector v = (v1, . . . , vp)T ∈ R
p

and an arbitrary index set I ⊂ {1, . . . , p}, we write vI = (vj , j ∈ I )T and denote
by XI = (xj , j ∈ I ) the submatrix consisting of the columns of X with indices
in I . The complement of I is denoted by I c = {1, . . . , p} \ I . For q ∈ [1,∞], the
Lq -norm of v is denoted by ‖v‖q . Sub-Gaussian norm [Rudelson and Vershynin
(2013)] of a random variable Z is denoted by ‖Z‖SG = supk≥1 k−1/2(E|Z|k)1/k .
Let a ∨ b = max(a, b) and a ∧ b = min(a, b) for real numbers a and b. For a
differentiable function f : Rp → R, we write ∇f (v) = ∂f (v)/∂v and ∇I f (v) =
(∂f (v)/∂vj , j ∈ I )T. We use λmin(·) and λmax(·) to represent respectively the
smallest and largest eigenvalues of a symmetric matrix. We also let c = τ ∧ (1− τ)

and c̄ = τ ∨ (1 − τ).

2.3.1. L1-Penalized SALES regression. The estimation accuracy of the Lasso
has been extensively studied in the literature; see, for example, Negahban et al.
(2012) and Ye and Zhang (2010). Let C = {δ ∈ R

p:‖δAc‖1 ≤ 3‖δA‖1 �= 0} be a
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cone in R
p . Denote ρmin = λmin(n

−1XT
AXA) and ρmax = λmax(n

−1XT
AXA). We as-

sume ρmin > 0 so that the important variables are not linearly dependent. To study
the estimation accuracy of the SALES Lasso, we impose the following conditions
on the design matrix X and the random errors ε.

(C1) The columns of X are normalizable, that is, M0 = max1≤j≤p
‖Xj‖2√

n
∈

(0,∞).
(C2) The random errors εi are i.i.d. sub-Gaussian random variables satisfying

E τ (εi) = 0, i = 1, . . . , n.

(C3) κ = infδ∈C
‖Xδ‖2

2
n‖δ‖2

2
∈ (0,∞).

(C4) � = infδ∈C
‖Xδ‖2

2
n‖δA‖1‖δ‖∞ ∈ (0,∞).

Condition (C3) is called the restricted eigenvalue condition and has been
frequently assumed in the literature to study the Lasso and Dantzig selectors.
See Bickel, Ritov and Tsybakov (2009), Meier, van de Geer and Bühlmann (2009),
and Negahban et al. (2012). Condition (C4), the generalized invertability fac-
tor (GIF) condition, is closely related to condition (C3) and has also been often
adopted to study the Lasso and Dantzig selectors. See discussion of these condi-
tions in Ye and Zhang (2010) and Huang and Zhang (2012). Both conditions (C3)
and (C4) are crucial assumptions to establish estimation consistency of the Lasso
for high-dimensional data.

THEOREM 1. Suppose in model (2.2) the true coefficients β∗ are s-sparse and

assume conditions (C1)–(C2) hold. Let β̂
lasso

be any optimal solution to the SALES

Lasso problem (2.4). Then with probability at least 1 − pALS
1 , ‖β̂ lasso − β∗‖2 ≤

3s1/2λlasso(4κc)−1 if condition (C3) holds, and ‖β̂ lasso − β∗‖∞ ≤ 3λlasso(4�c)−1

if condition (C4) holds, where

pALS
1 = 2p exp

(
−Cnλ2

lasso

4K2
0M2

0

)
,

K0 = ‖� ′
τ (εi)‖SG with � ′

τ (·) being the derivative of �τ(·) and C > 0 is an abso-
lute constant.

REMARK 1. In some applications, it is natural to leave a given subset of the
parameters unpenalized in the penalized framework (2.3). Let R denote the index
set of such parameters. For example, when X1 is a vector consisting of all ones,
R = {1} reflects the common practice of leaving the intercept term not penalized.
In this case, it is natural to modify the penalized SALES estimation problem (2.3)
to be

min
β∈Rp

Ln(β) + ∑
j∈Rc

pλ(βj ).



SALES AND COSALES 2669

With Lasso penalty, the SALES algorithm can be readily used to solve the above
case. Moreover, similar theoretical analysis can be carried out with slight mod-
ifications. For instance, in the SALES Lasso problem (2.4) we can define A′ ≡
supp(β∗

Rc) and C ′ = {δ ∈ R
p:‖δ(A′∪R)c‖1 ≤ 3‖δA′∪R‖1 �= 0}. Conditions (C3)

and (C4) can be then modified respectively as

κ ′ = inf
δ∈C ′

‖Xδ‖2
2

n‖δ‖2
2

∈ (0,∞) and �′ = inf
δ∈C ′

‖Xδ‖2
2

n‖δA′∪R‖1‖δ‖∞
∈ (0,∞).

To establish the selection consistency of the Lasso, it is almost necessary to
impose the irrepresentable condition; see Zou (2006) and Zhao and Yu (2006).
When the focus is on identifying the underlying sparsity pattern, the nonconvex
penalized regression is a competitive alternative as it requires weaker conditions
to achieve selection consistency.

2.3.2. Nonconvex penalized SALES regression. To offer a unified treatment of
the SCAD and MCP penalized SALES regression, our theoretical analysis handles
the following class of nonconvex penalties:

(P1) pλ(u) = pλ(−u);
(P2) pλ(u) is nondecreasing and concave in u ∈ [0,∞) and pλ(0) = 0;
(P3) pλ(u) is differentiable in u ∈ (0,∞);
(P4) p′

λ(u) ≥ a1λ for u ∈ (0, a2λ] and p′
λ(0) := p′

λ(0+) ≥ a1λ;
(P5) p′

λ(u) = 0 for u ∈ [aλ,∞) with some prespecified constant a > a2,

where a1 and a2 are fixed constants characteristic of the penalty functions. It is
easy to verify that both the SCAD penalty and MCP are in the above class.

We show that the sparse solutions obtained by the LLA algorithm in Sec-
tion 2.2.2 possess the oracle property. Assume sufficient signal strength in the
nonzero components of β∗

(A1) minj∈A |β∗
j | > (a + 1)λ.

THEOREM 2. Suppose in model (2.2) the true coefficients β∗ are s-sparse and

satisfy assumption (A1). Assume conditions (C1)–(C2) hold and take β̂
lasso

as the
initial value. Let a0 = 1 ∧ a2. Take λ ≥ 3s1/2λlasso(4a0κc)−1 when (C3) holds, or
take λ ≥ 3λlasso(4a0�c)−1 when (C4) holds, or take λ ≥ [3s1/2λlasso(4a0κc)−1] ∧
[3λlasso(4a0�c)−1] when both (C3) and (C4) hold. The LLA algorithm (Algo-

rithm 2) converges to β̂
oracle

after two iterations with probability at least 1 −
pALS

1 − pALS
2 − pALS

3 , where pALS
1 is given in Theorem 1,

pALS
2 = 2(p − s) exp

(
−Ca2

1nλ2

4K2
0M2

0

)
+ 
(Q1λ;n, s,K0,M0, ρmax, ν0)
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and

pALS
3 = 
(2cρminR;n, s,K0,M0, ρmax, ν0),

where Q1 = a1cρmin(2c̄ρ
1/2
maxM0)

−1, ν0 = var(� ′
τ (εi)), R = minj∈A |β∗

j |− aλ, K0
is defined in Theorem 1 and 
(·) is a function defined by


(x;n, s,K,M,ρ, ν) = 2s exp
(
− Cnx2

K2M2s

)

∧ 2 exp
(
−Cν2[(n1/2x − νρ1/2s1/2)+]2

K4ρ

)
,

and C > 0 is an absolute constant.

It is interesting to note that with the SCAD penalty or MCP, a three-step LLA
algorithm starting from the zero vector may also work. Indeed, for these two penal-
ties we have p′

λ(0) = λ, so if we can take λ = λlasso, this would give us the SALES
Lasso estimator in the second step.

COROLLARY 1. Assume the same framework of Theorem 2 and suppose the
SCAD penalty (2.8) or MCP (2.9) is used. If condition (C3) holds and 4a0κc ≥
3s1/2, or if condition (C4) holds and 4a0�c ≥ 3, or if both (C3) and (C4) hold
and [3s1/2(κ)−1] ∧ [3(�)−1] ≤ 4a0c, the LLA algorithm (Algorithm 2) initialized
by zero converges to the oracle estimator after three iterations with probability at
least 1 − 2p exp{−Cnλ2(4K2

0M2
0 )−1} − pALS

2 − pALS
3 , where pALS

2 and pALS
2 are

given in Theorem 2.

3. Application of SALES: Detecting heteroscedasticity. Due to asymmetry
of the squared error loss, the SALES regression (2.3) can be employed to detect
heteroscedasticity in high-dimensional data. In the following, we use a simulation
example to illustrate this application. For the nonconvex penalty functions used
in the simulation, we fix γ = 3.7 for the SCAD penalty (2.8) and γ = 2 for the
MCP (2.9).

EXAMPLE 1. We adopt a model from Wang, Wu and Li (2012). In the model,
the covariates are generated in two steps. First, we generate copies of (z1, . . . , zp)T

from the multivariate normal distribution N(0,�) with � = (0.5|i−j |)p×p . In the
second step, for each copy of (z1, . . . , zp)T, we set x1 = �(z1) and xj = zj for
j = 2,3, . . . , p, where �(·) is the standard normal CDF. The response is then
simulated from the following normal linear heteroscedastic model:

y = x6 + x12 + x15 + x20 + (0.7x1)ε,(3.1)

where ε ∼ N(0,1) is independent of the covariates. This model was considered
in Wang, Wu and Li (2012) for the sparse quantile regression, where a sam-
ple size n = 300 and covariate dimensions p = 400 and 600 were considered.
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We apply the SALES regression (2.3) instead to select active variables and esti-
mate the coefficients for this model. For the purpose of demonstration, we choose
n = 300 and p = 600. A validation set of size n = 300 is generated indepen-
dently to tune the regularization parameter by minimizing the validation error∑

i∈validation �τ(yi − xT
i β̂) for the computed estimate β̂ , where τ = 0.5 and 0.85

are considered.
For comparison purpose, we included in this simulation the SALES Lasso (2.4)

and two variations of the LLA algorithm for each nonconvex penalized SALES re-
gression: the two-step LLA algorithm initialized by the Lasso estimator (SCAD∗,
MCP∗), and the three-step LLA algorithm initialized by zero (SCAD0, MCP0).

Let β̂ be the coefficient estimates from a given method. Based on 100 replicates,
the following measurements are calculated to evaluate the sparsity recovery and
estimation performance of that method:

|Â|: the average size of the active set Â = {j : β̂j �= 0} of β̂ .
pa : proportion of the event A ⊂ Â, where A is the active set of β∗. When

τ = 0.5, A = {6,12,15,20} and when τ �= 0.5, A = {1,6,12,15,20}.
p1: proportion of the event that {1} ⊂ Â.
R1: the average L1 risk ‖β̂ − β∗‖1.
R2: the average L2 risk ‖β̂ − β∗‖2.

The simulation results are shown in Table 1. The following conclusions can be
made:

TABLE 1
Numerical summary of simulation results from the Lasso, SCAD and MCP penalized SALES

regression for model (3.1): y = x6 + x12 + x15 + x20 + (0.7x1)ε. The sparsity recovery
performance is measured by the selected active set size |Â|, the proportion pa of covering the true
active set and the proportion p1 of selecting the signature variable X1. The estimation accuracy is

measured by the L1 risk R1 and the L2 risk R2. The results are shown as averages over 100
replicates with standard errors listed in the parentheses when available

Method |Â| pa p1 R1 R2

τ = 0.5 SALES-Lasso 25.82 (1.15) 100% 0% 0.399 (0.015) 0.120 (0.003)
SALES-SCAD∗ 7.75 (0.68) 100% 0% 0.103 (0.006) 0.049 (0.002)
SALES-SCAD0 6.65 (0.68) 100% 0% 0.100 (0.006) 0.050 (0.002)
SALES-MCP∗ 6.39 (0.48) 100% 0% 0.099 (0.005) 0.049 (0.002)
SALES-MCP0 5.75 (0.29) 100% 0% 0.093 (0.004) 0.049 (0.002)

τ = 0.85 SALES-Lasso 34.17 (1.26) 100% 100% 0.714 (0.016) 0.249 (0.005)
SALES-SCAD∗ 7.52 (0.51) 100% 100% 0.160 (0.009) 0.083 (0.005)
SALES-SCAD0 8.19 (0.59) 100% 100% 0.166 (0.007) 0.084 (0.003)
SALES-MCP∗ 6.30 (0.25) 100% 100% 0.148 (0.005) 0.079 (0.003)
SALES-MCP0 6.35 (0.23) 100% 100% 0.147 (0.005) 0.078 (0.003)
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(1) The variable x1 in the scale function is often not recovered by penalized
least-squares (τ = 0.5). However, when several τ -means (e.g., τ = 0.85) are in-
spected together, it is possible to detect this variable with high probability. This
shows that indeed the SALES regression can be used to detect heteroscedasticity.

(2) Compared to the SALES Lasso, the nonconvex penalized SALES regres-
sion selects much fewer irrelevant covariates and has better estimation accuracy.

(3) The three-step LLA algorithm starting from zero produces similar results to
the two-step LLA algorithm starting from the Lasso solution.

4. High-dimensional COSALES regression. In Section 3, we showed that
the SALES regression provides a means of detecting heteroscedasticity in high-
dimensional data. Indeed, in the linear heteroscedastic model (3.1), the signature
variable x1, which appears in the scale function, was detected through comparison
of different τ -means. However, in high-dimensional heteroscedastic models, often
of more interest are the sparsity patterns in both the mean and the scale functions
of the conditional distribution. The SALES regression and methods proposed by
other authors, for example, Wang, Wu and Li (2012), are not sufficient to fulfill
this task. To see it, consider a linear heteroscedastic model in which the active set
for the mean is {1,2} and the active set for the scale is {1,3}. Suppose the SALES
regression can exactly recover the active variables. Then the method picks x1 and
x2 when τ = 0.5 and hopefully x1, x2, and x3 when τ �= 0.5. A natural question is
whether the scale function depends on x1. With the SALES regression, we cannot
answer this question. This motivates us to consider the COSALES regression for
a general class of models and gain some insight into analyzing heteroscedasticity
in high-dimensional data.

4.1. Formulation and computation. Consider the following model of system-
atic heteroscedasticity:

yi = xT
i γ + (

xT
i ω

)
εi, i = 1, . . . , n,(4.1)

where εi are i.i.d. random errors that are independent of the covariates and that
have distribution F0 with E(εi) = ∫

R
x dF0(x) = 0; γ and ω are unknown p-

dimensional parameter vectors controlling the conditional mean and scale; and
ω is assumed to satisfy xT

i ω > 0 for all i. The intercept can be included by letting
xi1 = 1. The linear scale model of heteroscedasticity (4.1) is an important model
considered by many authors [Efron (1991), Koenker and Bassett (1982), Koenker
and Zhao (1994)] for analyzing heteroscedasticity.

Let A1 ≡ supp(γ ∗) = {j :γ ∗
j �= 0} and A2 ≡ supp(ω∗) = {j :ω∗

j �= 0} be the
active sets of γ ∗ and of ω∗, respectively. Suppose |A1| = s1 and |A2| = s2. Let
eτ = E τ (ε1) be the τ -mean of the random error for τ ∈ (0,1). It follows that the
τ -mean of yi given xi is E τ (yi |xi ) = xT

i (γ +ωeτ ). To select significant variables in
both the mean and the scale functions, we now propose the COSALES regression.
Write ϕ = ωeτ . Note that we omit the dependency of ϕ on τ to ease exposition.
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In the COSALES regression, we will deal with ϕ instead of ω. However, when
eτ �= 0, it should be noted that since supp(ϕ) = supp(ω), the selection result on ϕ

applies to ω. Moreover, ω can be estimated up to a scale from the estimate of ϕ.
Ideally, if the distribution F0 of εi is known, exact estimation of ω is possible.

For some τ ∈ (0,1) and τ �= 0.5, let

Sn(γ ,ϕ) = n−1
n∑

i=1

{
�0.5

(
yi − xT

i γ
) + �τ

(
yi − xT

i γ − xT
i ϕ

)}
.

The COSALES regression tries to minimize

Qn(γ ,ϕ) = Sn(γ ,ϕ) +
p∑

j=1

pλ1(γj ) +
p∑

j=1

pλ2(ϕj ),(4.2)

over γ ,ϕ ∈ R
p , where pλ1(·) and pλ2(·) are penalty functions with regulariza-

tion parameters λ1, λ2 ∈ (0,∞), respectively. Let γ̂ oracle and ϕ̂oracle be the oracle
estimators of γ and ϕ = ωeτ , respectively, in model (4.1),(

γ̂ oracle
, ϕ̂oracle) = arg min

γ ,ϕ∈Rp :γ Ac
1
=0,ϕAc

2
=0

Sn(γ ,ϕ).(4.3)

In what follows, let us focus on the Lasso and nonconvex penalties.

4.1.1. L1-penalized COSALES regression. For λlasso
1 , λlasso

2 ∈ (0,∞), the L1-
penalized COSALES estimators or the COSALES Lasso estimators of γ and ϕ

can be achieved simultaneously by(
γ̂ lasso

, ϕ̂lasso) = arg min
γ ,ϕ∈Rp

Sn(γ ,ϕ) + λlasso
1 ‖γ ‖1 + λlasso

2 ‖ϕ‖1.(4.4)

We note that problem (4.4) is a special case of the minimization problem in step (a)
of Algorithm 4 (Section 4.1.2) and efficient computation of the solutions can be
carried out by an algorithm similar to Algorithm 1. The algorithm applies the cyclic
coordinate descent and proximal gradient descent methods to γ and ϕ alternately.
We call this algorithm COSALES and display it in Algorithm 3. Note that COS-
ALES solves the general coupled weighted L1-minimization problem

min
γ ,ϕ∈Rp

Sn(γ ,ϕ) +
p∑

j=1

wj |γj | +
p∑

j=1

vj |ϕj |.(4.5)

To facilitate the presentation, in Algorithm 3, we let γ r and ϕr be the updates of
γ and ϕ respectively after the r th cycle of the coordinate descent algorithm and
denote

gr+1
−k = (

γ r+1
1 , . . . , γ r+1

k−1 , γ r
k+1, . . . , γ

r
p

)
, 1 ≤ k ≤ p, r ≥ 0,
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and

pr+1
−k = (

ϕr+1
1 , . . . , ϕr+1

k−1, ϕ
r
k+1, . . . , ϕ

r
p

)
, 1 ≤ k ≤ p, r ≥ 0.

Theoretical justification of the estimation accuracy of the COSALES Lasso will
be deferred to the next section.

4.1.2. Nonconvex penalized COSALES regression. In (4.2), let pλ1(·) and
pλ2(·) be nonconvex penalties having properties (P1)–(P5). This nonconvex penal-
ized COSALES estimation problem can be solved by the LLA algorithm shown in
Algorithm 4. Note that the minimization problem in step (a) was solved in Algo-
rithm 3. Oracle properties of the sparse solutions will be established in the follow-
ing section.

4.2. Theory. In this section, we show the selection and estimation accuracy of
the COSALES regression for both Lasso and nonconvex penalties.

Algorithm 3: COSALES—The coordinate descent plus proximal gradient al-
gorithm for solving the coupled weighted L1-minimization problem (4.5)

1. Initialize the algorithm with γ 0 = (γ 0
1 , . . . , γ 0

p)T and ϕ0 = (ϕ0
1, . . . , ϕ0

p)T.
2. For r = 1, . . . ,m − 1,

(2.1) For k = 1, . . . , p,
(2.1.1) Initialize γ

r,0
k := γ r

k .
(2.1.2) For s = 0,1, . . . , sr

1k − 1,

(2.1.2.1) Compute γ
r,s+1
k := S

L−1
1k wk

(γ
r,s
k − L−1

1k h′
n(γ

r,s
k ;gr+1

−k ,ϕr )),

where L1k = (2c̄ + 1)n−1‖Xk‖2
2; hn(γk;gr+1

−k ,ϕr ) =
Sn([γk,gr+1

−k ],ϕr ).

(2.1.3) Set γ r+1
k := γ

r,sr
1k

k .
(2.2) Set γ r+1 := (γ r+1

1 , . . . , γ r+1
p )T.

(2.3) For k = 1, . . . , p,
(2.3.1) Initialize ϕ

r,0
k := ϕr

k .
(2.3.2) For s = 0,1, . . . , sr

2k − 1,

(2.3.2.1) Compute ϕ
r,s+1
k := S

L−1
2k vk

(ϕ
r,s
k − L−1

2k �
′
n(ϕ

r,s
k ;γ r+1,

pr+1
−k )), where L2k = 2c̄n−1‖Xk‖2

2; �n(ϕk;γ r+1,pr+1
−k ) =

Sn(γ
r+1, [ϕk,pr+1

−k ]).
(2.3.3) Set ϕr+1

k := ϕ
r,sr

2k

k .
(2.4) Set ϕr+1 := (ϕr+1

1 , . . . , ϕr+1
p )T.

3. Output γ̂ := γ m and ϕ̂ := ϕm.



SALES AND COSALES 2675

Algorithm 4: The local linear approximation (LLA) algorithm for solving the
nonconvex penalized COSALES estimation problem (4.2)

1. Initialize γ̂ 0 = γ̂ initial and ϕ̂0 = ϕ̂initial. Compute weights

ŵ0
j = p′

λ1

(∣∣γ̂ 0
j

∣∣), w̄0
j = p′

λ2

(∣∣ϕ̂0
j

∣∣), j = 1, . . . , p.

2. For m = 1,2, . . . , repeat the LLA iteration in (a) and (b) until convergence.
(a) Solve the following convex optimization problem for γ̂ m and ϕ̂m

min
γ ,ϕ∈Rp

Sn(γ ,ϕ) +
p∑

j=1

ŵm−1
j |γj | +

p∑
j=1

w̄m−1
j |ϕj |.

(b) Update the weights

ŵm
j = p′

λ1

(∣∣γ̂ m
j

∣∣), w̄m
j = p′

λ2

(∣∣ϕ̂m
j

∣∣), j = 1, . . . , p.

4.2.1. L1-penalized COSALES regression. For the Lasso problem (4.4), let
M̌ = (λlasso

1 /λlasso
2 ) ∨ (λlasso

2 /λlasso
1 ) and define set A0 = (A1,A

′
2), where A′

2 =
{j + p:ω∗

j �= 0}. For M ≥ 1, define CM = {δ ∈ R
2p:‖δAc

0
‖1 ≤ M‖δA0‖1 �= 0}. For

k = 1,2, let ρk•min = λmin(n
−1XT

Ak
XAk

) and ρk•max = λmax(n
−1XT

Ak
XAk

). Denote
φmin = ρ1•min ∧ ρ2•min and φmax = ρ1•max ∨ ρ2•max. Assume φmin > 0. Let I2 be a
2×2 identity matrix and let ⊗ denote the Kronecker product. To establish an error
bound on the COSALES Lasso estimators, the following conditions on the design
matrix X and the random errors ε are imposed:

(C1′) The columns of X is normalizable, that is, M0 = max1≤j≤p
‖Xj‖2√

n
∈

(0,∞).
(C2′) M1 = ‖XTω∗‖∞ ∈ (0,∞).
(C3′) The random errors εi are i.i.d. mean zero sub-Gaussian random variables.
(C4′) κ̄ = κ(3M̌) ∈ (0,∞), where κ(M) = infδ∈CM

δT[I2⊗(n−1XTX)]δ/‖δ‖2
2.

(C5′) �̄ = �(3M̌) ∈ (0,∞), where �(M) = infδ∈CM

δT[I2⊗(n−1XTX)]δ
‖δA0‖1‖δ‖∞ .

THEOREM 3. In model (4.1), suppose the true parameter vectors γ ∗ and ω∗
are respectively s1-sparse and s2-sparse and assume conditions (C1′)–(C3′) hold.
Let γ̂ lasso and ϕ̂lasso be any optimal solutions to the L1-penalized COSALES esti-
mation problem (4.4). Then with probability at least 1 − πALS

1 ,

∥∥∥∥
(

γ̂ lasso

ϕ̂lasso

)
−

(
γ ∗

ϕ∗
)∥∥∥∥

2
≤ 3(s1 + s2)

1/2(
λlasso

1 ∨ λlasso
2

)
(2κ̄c0)

−1
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if condition (C4′) holds and∥∥∥∥
(

γ̂ lasso

ϕ̂lasso

)
−

(
γ ∗

ϕ∗
)∥∥∥∥∞

≤ 3
(
λlasso

1 ∨ λlasso
2

)
(2�̄c0)

−1

if condition (C5′) holds, where

πALS
1 = 2p exp

(
− Cn(λlasso

1 )2

4M2
0M2

1 (K1 + K2)2

)
+ 2p exp

(
−Cn(λlasso

2 )2

4M2
0M2

1K2
2

)
,

c0 = 2−1[(1 + 4c) − (1 + 16c2)1/2], K1 = ‖εi‖SG, K2 = ‖� ′
τ (εi − eτ )‖SG and

C > 0 is an absolute constant.

4.2.2. Nonconvex penalized COSALES regression. We show that the oracle
estimators γ̂ oracle and ϕ̂oracle can be achieved with overwhelming probability by
Algorithm 4 under rather general conditions. Indeed, suppose the minimal signal
strength of γ ∗ and ω∗ satisfies

(A0′) minj∈A1 |γ ∗
j | > (a + 1)λ1 and minj∈A2 |ω∗

j | > (a + 1)|eτ |−1λ2.

THEOREM 4. Suppose in model (4.1) γ ∗ and ω∗ are respectively s1-sparse
and s2-sparse and satisfy assumption (A0′). Take γ̂ lasso and ϕ̂lasso as the ini-
tial values and assume conditions (C1′)–(C3′) hold. Take λ ≥ 3s1/2(λlasso

1 ∨
λlasso

2 )(2a0c0κ̄)−1 when (C4′) holds, or take λ ≥ 3(λlasso
1 ∨ λlasso

2 )(2a0c0�̄)−1

when (C5′) holds, or take λ ≥ 3(λlasso
1 ∨ λlasso

2 )(2a0c0)
−1[(s1/2κ̄−1) ∧ �̄−1] when

both (C4′) and (C5′) hold. The LLA algorithm (Algorithm 4) converges to the
oracle estimators γ̂ oracle and ϕ̂oracle in two iterations with probability at least
1 − πALS

1 − πALS
2 − πALS

3 , where πALS
1 is given in Theorem 3,

πALS
2 = 


(
2−1Q2λ;n, s1,K1 + K2,M0M1,M

2
1ρ1•max, ν1

)
+ 


(
2−1Q2λ;n, s2,K2,M0M1,M

2
1ρ2•max, ν2

)
+ 2(p − s1) exp

(
− Ca2

1nλ2

4M2
0M2

1 (K1 + K2)2

)

+ 2(p − s2) exp
(
− Ca2

1nλ2

4M2
0M2

1K2
2

)
,

and

piALS
3 = 


(
2−1c0φminR̄;n, s1,K1 + K2,M0M1,M

2
1ρ1•max, ν1

)
+ 


(
2−1c0φminR̄;n, s2,K2,M0M1,M

2
1ρ2•max, ν2

)
,

where s = s1 + s2, λ = λ1 ∧ λ2, Q2 = a1c0φmin[2(1 + 2c̄)M0φ
1/2
max]−1, ν1 =

var(εi + � ′
τ (εi − eτ )), ν2 = var(� ′

τ (εi − eτ )), R̄ = (minj∈A1 |γ ∗
j | − aλ1) ∧

(minj∈A2 |ϕ∗
j | − aλ2), C > 0 is an absolute constant, c0,K1,K2 are given in The-

orem 3, and 
(·) is given in Theorem 2.



SALES AND COSALES 2677

For SCAD and MCP penalized COSALES regressions, the LLA algorithm (Al-
gorithm 4) starting from the zero vector can also be used as long as we can take
λk = λlasso

k , k = 1,2.

COROLLARY 2. Assume the same framework of Theorem 4 and suppose the
SCAD penalty (2.8) or MCP (2.9) is used. If condition (C4′) holds and 2a0c0κ̄ ≥
3M̌s1/2, or if condition (C5′) holds and 2a0c0�̄ ≥ 3M̌ , or if both (C4′) and (C5′)
hold and 3M̌[(s1/2κ̄−1) ∧ �̄−1] ≤ 2a0c0, then the LLA algorithm (Algorithm 4)
initialized by zero converges to the oracle estimators γ̂ oracle and ϕ̂oracle after three
iterations with probability at least 1 − π̆ALS

1 − πALS
2 − πALS

3 , where

π̆ALS
1 = 2p exp

(
− Cnλ2

1

4M2
0M2

1 (K1 + K2)2

)
+ 2p exp

(
− Cnλ2

2

4M2
0M2

1K2
2

)
,

πALS
2 and πALS

3 are given in Theorem 4, and s = s1 + s2.

REMARK 2. We can easily modify (4.2) to allow certain subsets of coefficients
not to be penalized. Let R1 and R2 be the index sets of unpenalized components
of γ and ϕ, respectively. Then (4.2) can be modified as

min
γ ,ϕ∈Rp

Sn(γ ,ϕ) + ∑
j∈Rc

1

pλ1(γj ) + ∑
j∈Rc

2

pλ2(ϕj ).

The COSALES algorithm can be readily used to solve the above problem. More-
over, similar theoretical results can be established with slight modifications.

4.3. Simulation examples. We demonstrate the selection and estimation accu-
racy of the COSALES regression through two numerical simulations. For the non-
convex penalties used in both simulations, we fix γ = 3.7 for the SCAD penalty
and γ = 2 for the MCP.

EXAMPLE 2. We consider the same model (3.1) that was used in Example 1,
but different from the approach used there, we estimate the coefficients through the
nonconvex penalized COSALES regression (4.2). Again we choose p = 600 and
independently simulate a training set of size n = 300 for fitting and a validation
set of size n = 300 for tuning. The tuning parameter is selected by minimizing
the validation error

∑
i∈validation{�0.5(yi − xT

i γ̂ ) + �τ(yi − xT
i γ̂ − xT

i ϕ̂)} for the
computed estimates γ̂ and ϕ̂. We pick a fairly extreme τ -value (τ = 0.95) for easy
separation of the conditional mean and scale functions. Both the COSALES Lasso
and two variations of the LLA algorithm for each of the SCAD and MCP penalized
COSALES regressions are implemented.

Based on 100 independent runs, the following measurements are calculated to
evaluate the sparsity recovery and estimation performance of the COSALES esti-
mators:
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TABLE 2
Numerical summary of simulation results from the Lasso, SCAD and MCP penalized COSALES

regression for model (3.1) y = x6 + x12 + x15 + x20 + (0.7x1)ε. The selection accuracy is

measured by the number of selected variables |Â1| and |Â2|, and the proportions pa1 and pa2 of
covering the true active sets. The estimation accuracy is measured by the L1 risks R

γ
1 and R

ϕ
1 , and

the L2 risks R
γ
2 and R

ϕ
2 . The results are shown as averages over 100 replicates with standard

errors listed in the parentheses. A fairly extreme τ -value (τ = 0.95) is used in the simulation for
easy separation of the mean and scale

Method |Â1| |Â2| pa1 pa2 R
γ
1 R

ϕ
1 R

γ
2 R

ϕ
2

COSALES-Lasso 26.88 13.36 100% 100% 0.407 0.378 0.124 0.294
(1.04) (0.45) (0) (0) (0.012) (0.008) (0.002) (0.006)

COSALES-SCAD∗ 7.24 1.01 100% 100% 0.095 0.072 0.048 0.072
(0.10) (0.01) (0) (0) (0.004) (0.005) (0.002) (0.005)

COSALES-SCAD0 8.85 1.01 100% 100% 0.107 0.065 0.049 0.065
(0.57) (0.01) (0) (0) (0.005) (0.005) (0.002) (0.005)

COSALES-MCP∗ 6.46 1.01 100% 100% 0.089 0.070 0.045 0.070
(0.38) (0.01) (0) (0) (0.004) (0.005) (0.002) (0.005)

COSALES-MCP0 7.08 1.01 100% 100% 0.102 0.067 0.052 0.067
(0.44) (0.01) (0) (0) (0.006) (0.005) (0.003) (0.005)

|Â1|, |Â2|: the average size of the active sets for γ̂ and ϕ̂, respectively, Â1 =
{j : γ̂j �= 0} and Â2 = {j : ϕ̂j �= 0}.

pa1,pa2 : proportions of the events A1 ⊂ Â1 and A2 ⊂ Â2, respectively, where
A1 = {6,12,15,20} denotes the active set of γ ∗ and A2 = {1} denotes the active
set of ϕ∗.

R
γ
1 ,R

ϕ
1 : the average L1 risks, R

γ
1 = ‖γ̂ − γ ∗‖1 and R

ϕ
1 = ‖ϕ̂ − ϕ∗‖1.

R
γ
2 ,R

ϕ
2 : the average L2 risks, R

γ
2 = ‖γ̂ − γ ∗‖2 and R

ϕ
2 = ‖ϕ̂ − ϕ∗‖2.

The results are summarized in Table 2, from which we can draw the following
conclusions:

(1) The COSALES regression (with Lasso or nonconvex penalties) can recover
the sparse patterns in both the mean and scale functions with overwhelming prob-
abilities.

(2) The COSALES Lasso tends to select a lot more irrelevant covariates and has
much larger estimation errors than the nonconvex penalized COSALES regression
(with the SCAD penalty or MCP).

(3) The three-step LLA algorithm starting from zero produces similar results to
the two-step LLA algorithm starting from the Lasso solution.
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EXAMPLE 3. In this example, we simulate data from the following normal
linear heteroscedastic model:

y = x6 + x12 + x15 + x20 + (0.7x1 + 0.7x12)ε,(4.6)

where the covariates are simulated by setting x1 = �(z1), x12 = �(z12), and
xj = zj , j �= 1,12, where (z1, . . . , zp)T ∼ N(0,�) with � = (0.5|i−j |)p×p , and
�(·) is the CDF of the standard normal distribution. The random error ε ∼ N(0,1).
Note that in model (3.1), the active sets of the true parameter vectors do not over-
lap, so the SALES regression can detect active variables in the scale. However,
in model (4.6) the active set for the mean, A1 = {6,12,15,20}, overlaps with
the active set for the scale, A2 = {1,12}. Thus, the SALES regression cannot re-
cover the variable x12 in the scale function. We show by this Monte Carlo sim-
ulation that the COSALES regression can recover the sparse patterns in both the
mean and scale functions. We fix p = 600 and independently simulate a train-
ing set of size n = 500 for fitting and a validation set of the same size for tun-
ing. We select the regularization parameter by minimizing the validation error∑

i∈validation{�0.5(yi − xT
i γ̂ ) + �τ(yi − xT

i γ̂ − xT
i ϕ̂)} for the computed estimate

γ̂ and ϕ̂. In order to separate the mean and scale easily, we again pick τ = 0.95.
We implement the COSALES Lasso and two variations of the LLA algorithm as
were done in Examples 2 for each of the SCAD and MCP penalized COSALES
regressions.

Based on 100 independent runs, the same measurements of performance as in
Example 2 are calculated to evaluate the sparsity recovery and estimation accuracy
of the COSALES estimation. The results are summarized in Table 3. The same
conclusions in Example 2 can be drawn here.

5. Real data example. We apply the SALES and COSALES regressions to a
real data set reported in Scheetz et al. (2006). The data set consists of gene expres-
sion levels of more than 31,000 probes obtained from 120 rats. The expressions are
analyzed on a logarithmic scale (base 2). As was done in Scheetz et al. (2006), we
exclude the probes that were not expressed in the eye or that lacked sufficient varia-
tion. Among those 18,976 probes left, we study how the expressions of other genes
are associated with the gene TRIM32 (probe 1389163_at). This gene was found to
be associated with Bardet–Biedl syndrome, which is a disorder that affects many
parts of the body including the retina. For all the other genes, we first standardize
them and select the 3000 probes with the largest variances. These 3000 probes are
then ranked according to the magnitude of the correlations between their expres-
sions and that of probe 1389163_at. We choose the top 300 probes with the largest
correlations in magnitude for the analysis.

The third column of Table 4 lists the number of active variables selected by
the SALES regressions with Lasso, SCAD and MCP penalties, fitted on the whole
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TABLE 3
Numerical summary of simulation results from the Lasso, SCAD and MCP penalized COSALES

regression for model (4.6): y = x6 + x12 + x15 + x20 + (0.7x1 + 0.7x12)ε. The selection accuracy
is measured by the number of selected variables |Â1| and |Â2|, and the proportions pa1 and pa2 of
covering the true active sets. The estimation accuracy is measured by the L1 risks R

γ
1 and R

ϕ
1 , and

the L2 risks R
γ
2 and R

ϕ
2 . The results are shown as averages over 100 replicates with standard

errors listed in the parentheses. A fairly extreme τ -value (τ = 0.95) is used in the simulation for
easy separation of the mean and scale

Method |Â1| |Â2| pa1 pa2 R
γ
1 R

ϕ
1 R

γ
2 R

ϕ
2

COSALES-Lasso 27.92 12.67 100% 100% 0.719 0.450 0.249 0.282
(0.98) (0.49) (0) (0) (0.018) (0.011) (0.006) (0.008)

COSALES-SCAD∗ 6.80 2.06 100% 100% 0.167 0.210 0.089 0.161
(0.52) (0.04) (0) (0) (0.008) (0.014) (0.004) (0.010)

COSALES-SCAD0 5.70 2.02 100% 100% 0.157 0.199 0.090 0.148
(0.25) (0.01) (0) (0) (0.006) (0.013) (0.003) (0.009)

COSALES-MCP∗ 5.95 2.06 100% 100% 0.153 0.221 0.086 0.165
(0.35) (0.03) (0) (0) (0.006) (0.015) (0.003) (0.010)

COSALES-MCP0 6.00 2.04 100% 100% 0.180 0.205 0.098 0.154
(0.36) (0.02) (0) (0) (0.009) (0.014) (0.004) (0.010)

data set of 120 subjects. For both SCAD and MCP penalized SALES regressions,
the two variations of the LLA algorithm were used. The tuning parameter for each
method is selected by five-fold cross-validation. The last two columns of Table 4
summarize the results from 50 random partitions. Each partition randomly splits
the data into a training set with 80 observations and a validation set with 40 ob-
servations. We fit the model with the training set using five-fold cross-validation
for tuning and calculate the predicted loss (1/40)

∑
i∈validation �τ(yi − β̂0 − xT

i β̂)

based on the validation set. The average number of active variables selected and the
average predicted loss are calculated from the 50 partitions with their respective
standard errors listed in the parentheses. Table 4 reveals two interesting findings.
First, the nonconvex penalized SALES regression selects less variables than the
SALES Lasso, but there is no obvious improvement of the nonconvex penalized
SALES regression over the SALES Lasso in terms of predicted loss. Second, for
all SALES regressions, the number of variables selected is different at different
values of τ (0.3, 0.5 and 0.7). This is an indication of heteroscedasticity in the
data.

To further explore the heterogeneous scale, we also apply the COSALES re-
gression to the data. The results are summarized in Table 5. Columns 2 and 3
display the number of variables selected for the mean (|Â1|) and scale (|Â2|), and
the number of variables that overlap (|Â1 ∩ Â2|) for each method. For all penal-
ties, τ is set to be 0.7 in the COSALES regression. Random partitions are done
in the same way as the SALES regression and the predicted loss is calculated via
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TABLE 4
Analysis of microarray data using SALES regressions with Lasso, SCAD and MCP penalties. Three

different values of τ (0.3, 0.5 and 0.7) are used for each method. The number of active variables
selected using the whole data set is given in column 3. The average number of active variables

selected and average predicted loss (1/40)
∑

i∈validation �τ (yi − β̂0 − xT
i β̂) listed in columns 4

and 5 are calculated from 50 random partitions of the original data with standard errors listed
in parentheses

Random partition

Method τ

All data

|Â| |Â| Predicted loss

SALES-Lasso 0.3 22 22.00 (1.51) 0.007 (0.00055)
0.5 25 25.38 (1.94) 0.005 (0.00036)
0.7 20 21.90 (1.66) 0.005 (0.00022)

SALES-SCAD∗ 0.3 19 16.02 (2.09) 0.006 (0.00048)
0.5 13 15.52 (1.80) 0.006 (0.00043)
0.7 11 13.54 (1.98) 0.005 (0.00037)

SALES-SCAD0 0.3 16 16.60 (2.03) 0.006 (0.00054)
0.5 17 17.22 (2.36) 0.007 (0.00048)
0.7 14 14.82 (2.18) 0.005 (0.00030)

SALES-MCP∗ 0.3 14 15.82 (2.56) 0.006 (0.00053)
0.5 12 12.66 (2.58) 0.008 (0.00054)
0.7 10 9.66 (1.78) 0.006 (0.00035)

SALES-MCP0 0.3 11 11.74 (1.47) 0.006 (0.00057)
0.5 13 13.24 (2.75) 0.007 (0.00058)
0.7 13 14.18 (3.36) 0.006 (0.00034)

(1/40)
∑

i∈validation �0.5(yi − γ̂0 − xT
i γ̂ ) + �τ(yi − γ̂0 − xT

i γ̂ − ϕ̂0 − xT
i ϕ̂). The

results for the random partitions are shown in columns 4 to 6. It can be seen that
the COSALES regression reveals more information about the heterogeneous scale
which cannot be otherwise detected in the SALES regression or the sparse quantile
regression [Wang, Wu and Li (2012)] due to overlaps.

6. Proofs. In this section, we give the proofs of the main theoretical results
stated in previous sections. First of all, let us state two lemmas on the properties
of the asymmetric squared error loss �τ(·) given in (2.1). These properties play an
important role in the proofs of many results to be presented below. Let wτ (u) =
|τ − I (u < 0)| and recall that c = τ ∧ (1 − τ) and c̄ = τ ∨ (1 − τ).

LEMMA 1. The asymmetric squared error loss �τ(·) is continuously differ-
entiable, but is not twice differentiable at zero when τ �= 0.5. Moreover, for any
u,u0 ∈ R and τ ∈ (0,1), we have

c(u − u0)
2 ≤ �τ(u) − �τ(u0) − � ′

τ (u0)(u − u0) ≤ c̄(u − u0)
2.

It follows that �τ(·) is strongly convex.
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TABLE 5
Analysis of microarray data using COSALES regressions with Lasso, SCAD and MCP penalties. In
this analysis, τ = 0.7 is used. The number of active variables selected for the mean and scale using
the whole data set is given in columns 2 and 3. The average number of active variables selected for
the mean and scale and average predicted loss (1/40)

∑
i∈validation �0.5(yi − γ̂0 − xT

i γ̂ )+�τ (yi −
γ̂0 − xT

i γ̂ − ϕ̂0 − xT
i ϕ̂) listed in columns 4 to 6 are calculated from 50 random partitions of the
original data with standard errors listed in parentheses

All data Random partition

Method |Â1| |Â2| |Â1 ∩ Â2| |Â1| |Â2| |Â1 ∩ Â2| Predicted loss

COSALES-Lasso 22 10 9 22.62 9.80 7.86 0.010
(1.21) (1.10) (0.93) (0.00056)

COSALES-SCAD∗ 19 7 6 18.92 5.58 3.90 0.011
(0.79) (0.50) (0.31) (0.00067)

COSALES-SCAD0 20 5 4 20.22 5.82 3.92 0.011
(0.98) (0.64) (0.44) (0.00072)

COSALES-MCP∗ 10 3 1 10.96 3.08 1.38 0.014
(2.32) (1.40) (0.74) (0.00096)

COSALES-MCP0 10 4 3 12.94 4.56 1.46 0.012
(1.83) (1.04) (0.42) (0.00083)

LEMMA 2. For any u,u0 ∈ R and τ ∈ (0,1), we have

2c|u − u0| ≤
∣∣� ′

τ (u) − � ′
τ (u0)

∣∣ ≤ 2c̄|u − u0|.
It follows immediately that � ′

τ (·) is Lipschitz continuous.

PROOF OF LEMMA 1. It is easy to see that c ≤ wτ (u) ≤ c̄ for any u ∈ R.
Note that � ′

τ (u) = 2wτ (u)u, which is continuous and which is not differentiable
at u = 0 when τ �= 0.5. To show the inequalities, consider the following situations.
If wτ (u) ≥ wτ (u0), it follows that

�τ(u) − �τ(u0) − � ′
τ (u0)(u − u0)

= wτ (u)u2 − wτ (u0)u
2
0 − 2wτ (u0)u0(u − u0)

= wτ (u0)(u − u0)
2 + {

wτ (u) − wτ (u0)
}
u2

≥ wτ (u0)(u − u0)
2 ≥ c(u − u0)

2.

Otherwise, if wτ (u) < wτ (u0), then we know that c = wτ (u), c̄ = wτ (u0) and
u0u ≤ 0. It follows that

�τ(u) − �τ(u0) − � ′
τ (u0)(u − u0)

= cu2 − c̄u2
0 − 2c̄u0(u − u0)

≥ cu2 − 2cu0u + cu2
0 = c(u − u0)

2.
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Therefore, the first inequality holds. Similarly, we can show the second inequality.
�

PROOF OF LEMMA 2. If u = 0 or u0 = 0, then the inequalities hold trivially.
If uu0 > 0, we know that wτ (u) = wτ (u0). It follows that

2c|u − u0| ≤
∣∣� ′

τ (u) − � ′
τ (u0)

∣∣ = 2wτ (u)|u − u0| ≤ 2c̄|u − u0|.
If instead, uu0 < 0, there are two cases: u > 0, u0 < 0 or u < 0, u0 > 0. For the
first case, we have

2c|u − u0| ≤
∣∣� ′

τ (u) − � ′
τ (u0)

∣∣ = 2τu − 2(1 − τ)u0 ≤ 2c̄|u − u0|.
For the second case, we have

2c|u − u0| ≤
∣∣� ′

τ (u) − � ′
τ (u0)

∣∣ = −2(1 − τ)u + 2τu0 ≤ 2c̄|u − u0|.
This completes the proof. �

The following lemma deals with sub-Gaussian random variables.

LEMMA 3. Suppose that Z,Z1, . . . ,Zn ∈ R are i.i.d. sub-Gaussian random
variables. Let Z = (Z1, . . . ,Zn)

T, K = ‖Z‖SG, Z+ = max(Z,0) and Z− =
max(−Z,0).

(1) If E(Z) = 0, then there exists an absolute constant C > 0 such that for any
a = (a1, . . . , an)

T ∈ R
n and any t ≥ 0,

P
(∣∣aTZ

∣∣ ≥ t
) ≤ 2 exp

(
− Ct2

K2‖a‖2
2

)
.

(2) Let A be a fixed m×n matrix. If E(Z) = 0 and var(Z) = 1, then there exists
an absolute constant C > 0 such that for any t ≥ 0,

P
(∣∣‖AZ‖2 − ‖A‖F

∣∣ ≥ t
) ≤ 2 exp

(
− Ct2

K4‖A‖2
2

)
,

where ‖A‖F and ‖A‖2 represent the Frobenius and L2 norms of matrix A respec-
tively.

(3) Let A be a fixed m × n matrix. Let ej ∈ R
m be the unit vector with its j th

component one, j = 1, . . . ,m. Suppose M ≡ max1≤j≤m n−1/2‖ATej‖2 ∈ (0,∞)

and ρ ≡ λmax(n
−1AAT) ∈ (0,∞). If E(Z) = 0 and ν = var(Z) ∈ (0,∞), then

there exists an absolute constant C > 0 such that for any t ≥ 0,

P
(∥∥n−1AZ

∥∥
2 ≥ t

)
≤ 
(t;n,m,K,M,ρ, ν)

= 2m exp
(
− Cnt2

K2M2m

)
∧ 2 exp

(
−Cν2[(n1/2t − νm1/2ρ1/2)+]2

K4ρ

)
.
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(4) The random variables Z+ and Z− are also sub-Gaussian. Moreover, for
any c1, c2 ∈ R, c1Z

+ + c2Z
− is sub-Gaussian.

PROOF. (1) This part follows directly from Proposition 5.10 of Vershynin
(2010).

(2) This part follows from Theorem 2.1 of Rudelson and Vershynin (2013).
(3) On one hand, we have by part (1) that

P
(∥∥∥∥A

n
Z

∥∥∥∥
2
≥ t

)
≤ P

(∥∥∥∥ A√
n

Z
∥∥∥∥∞

≥ t
√

n√
m

)
≤ 2m exp

(
− Cnt2

K2M2m

)
.

One the other hand, note that ‖n−1/2A‖F =
√

Tr(AAT/n) ≤ √
mρ and ‖n−1/2 ×

A‖2
2 = λmax(ATA/n) = λmax(AAT/n) = ρ. We have by part (2) that

P
(∥∥∥∥A

n
Z

∥∥∥∥
2
≥ t

)
≤ P

(∥∥∥∥ A√
n

Z
ν

∥∥∥∥
2
−

∥∥∥∥ A√
n

∥∥∥∥
F

≥ t
√

n

ν
− √

mρ

)

≤ P
(∣∣∣∣

∥∥∥∥ A√
n

Z
ν

∥∥∥∥
2
−

∥∥∥∥ A√
n

∥∥∥∥
F

∣∣∣∣ ≥
(

t
√

n

ν
− √

mρ

)+)

≤ 2 exp
(
−Cν2[(n1/2t − νm1/2ρ1/2)+]2

K4ρ

)
.

(4) Note that by definition, we have K ∈ (0,∞) and (E|Z|p)1/p ≤ K
√

p,
∀p ≥ 1. It follows immediately that (E|Z+|p)1/p ≤ (E|Z|p)1/p ≤ K

√
p and

(E|Z−|p)1/p ≤ (E|Z|p)1/p ≤ K
√

p, ∀p ≥ 1. Now by Lemma 5.5 of Vershynin
(2010), we conclude that Z+ and Z− are both sub-Gaussian. For any c1, c2 ∈ R,
by Minkowski inequality,

(
E

∣∣c1Z
+ + c2Z

−∣∣p)1/p ≤ |c1|(E∣∣Z+∣∣p)1/p + |c2|(E∣∣Z−∣∣p)1/p

≤ (|c1| + |c2|)K√
p, ∀p ≥ 1.

By Lemma 5.5 of Vershynin (2010) again, we can see that c1Z
+ + c2Z

− is also
sub-Gaussian. This completes the proof. �

Now we are ready to prove Theorems 1 and 2. Lemmas 4 and 5 are presented
to facilitate the proofs.

LEMMA 4. Let ζ = (ζi,1 ≤ i ≤ n)T with ζi = � ′
τ (εi) = 2|τ − I (εi < 0)|εi .

(1) For any β, δ ∈ R
p , 〈∇Ln(β + δ) − ∇Ln(β), δ〉 ≥ 2c‖Xδ‖2

2/n.

(2) For any d > 0, P(‖β̂oracle − β∗‖2 ≥ d) ≤ P(‖n−1XT
Aζ‖2 ≥ 2cρmind).
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PROOF. The first part follows from the strong convexity of �τ(·). Specifically,
by Lemma 1, we have

Ln(β + δ) −Ln(β) − 〈∇Ln(β), δ
〉 ≥ c‖Xδ‖2

2/n,

Ln(β) −Ln(β + δ) − 〈∇Ln(β + δ),−δ
〉 ≥ c‖Xδ‖2

2/n.

Summing up the above two inequalities yields the desired result in part (1).

For the second part, let δ̂ = β̂
oracle −β∗. By definition of β̂

oracle
, we have δ̂Ac =

0 and ∇ALn(β̂
oracle

) = 0. Now by part (1) we have

2cρmin‖δ̂‖2
2 = 2cρmin‖δ̂A‖2

2 ≤ 2cδ̂
T
A

(
XT

AXA/n
)
δ̂A = 2c‖Xδ̂‖2

2/n

≤ 〈∇Ln

(
β̂

oracle) − ∇Ln

(
β∗)

, δ̂
〉 = 〈−∇ALn

(
β∗)

, δ̂A

〉
≤ ∥∥∇ALn

(
β∗)∥∥

2‖δ̂A‖2 = ∥∥n−1XT
Aζ

∥∥
2‖δ̂‖2,

which implies that 2cρmin‖β̂oracle − β∗‖2 ≤ ‖n−1XT
Aζ‖2. The result of part (2)

then follows. �

PROOF OF THEOREM 1. Let δ̂ = β̂
lasso − β∗ and z∗∞ = ‖∇Ln(β

∗)‖∞. Note

that β̂
lasso

satisfies the Karush–Kuhn–Tucker (KKT) condition

∇Ln

(
β̂

lasso) + g = 0,

where gj = λlassosgn(β̂ lasso
j ) if β̂ lasso

j �= 0 and gj ∈ [−λlasso, λlasso] if β̂ lasso
j = 0. It

follows that β̂ lasso
j gj = λlasso|β̂ lasso

j |,∀j . Since β∗
Ac = 0, we have δ̂Ac = β̂

lasso
Ac . By

Lemma 4 and Hölder’s inequality, we get

0 ≤ 2c‖Xδ̂‖2
2/n ≤ 〈∇Ln

(
β̂

lasso) − ∇Ln

(
β∗)

, δ̂
〉 = 〈−g − ∇Ln

(
β∗)

, δ̂
〉

= 〈
δ̂A,−gA − ∇ALn

(
β∗)〉 + 〈

β̂
lasso
Ac ,−gAc − ∇AcLn

(
β∗)〉

(6.1)

≤ (
z∗∞ + λlasso

)‖δ̂A‖1 + (
z∗∞ − λlasso

)‖δ̂Ac‖1.

Under the event E = {z∗∞ ≤ 2−1λlasso}, from (6.1) we get

‖δ̂Ac‖1 ≤ z∗∞ + λlasso

z∗∞ − λlasso
‖δ̂A‖1 ≤ 3‖δ̂A‖1,

which implies that δ̂ ∈ C . Now under E , by condition (C3), it follows from (6.1)
that

2cκ‖δ̂‖2
2 ≤ (3/2)λlasso‖δ̂A‖1 ≤ (3/2)λlassos

1/2‖δ̂A‖2 ≤ (3/2)λlassos
1/2‖δ̂‖2,

and similarly by condition (C4) and (6.1) we get

2c�‖δ̂‖∞ ≤ 2c‖Xδ̂‖2
2/

(
n‖δ̂A‖1

) ≤ (3/2)λlasso.
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Thus, we have

P
(‖δ̂‖2 ≤ 3s1/2λlasso(4κc)−1 ∩ ‖δ̂‖∞ ≤ 3λlasso(4�c)−1)

≥ P
(
z∗∞ ≤ 2−1λlasso

) ≥ 1 − P
(∥∥n−1XTζ

∥∥∞ ≥ 2−1λlasso
)
.

Note that ζi = � ′
τ (εi) = 2τε+

i − 2(1 − τ)ε−
i . It follows from Lemma 3 and

E τ (εi) = 0 that ζi are i.i.d. mean zero sub-Gaussian random variables. Now by
the union bound argument and Lemma 3 again

P
(∥∥n−1XTζ

∥∥∞ ≥ 2−1λlasso
) ≤ 2p exp

(
−Cnλ2

lasso

4K2
0M2

0

)
= 1 − pALS

1 .

This completes the proof. �

LEMMA 5. Under the assumptions of Theorem 2, the probability that the LLA

algorithm (Algorithm 2) initialized by β̂
lasso

converges to β̂
oracle

after two itera-
tions is at least 1 − p1 − p2 − p3, where

p1 = P
(∥∥β̂ lasso − β∗∥∥∞ > a0λ

)
,

p2 = P
(∥∥∇AcLn

(
β̂

oracle)∥∥∞ ≥ a1λ
)
,

p3 = P
(
min
j∈A

∣∣β̂oracle
j

∣∣ < aλ
)
.

PROOF. The convexity of Ln(β) follows from Lemma 1. Let S = {β ∈ R
p:

βAc = 0}. Note that β̂
oracle ∈ S . For any β ∈ S , let L̄n(βA) ≡ n−1 ∑n

i=1 �τ(yi −
xT
iAβA) = Ln(β). Then ∇L̄n(βA) = −n−1 ∑n

i=1 xiA� ′
τ (yi −xT

iAβA). Now for any
β and β ′ ∈ S , by Lemma 1 again, we get

L̄n(βA) ≥ L̄n

(
β ′

A

) + 〈∇L̄n

(
β ′

A

)
,βA − β ′

A

〉 + c
(
βA − β ′

A

)T XT
AXA

n

(
βA − β ′

A

)
.

Since XA is of full column rank by assumption, we can see that L̄n(βA) is strongly

convex with respect to βA and, therefore, β̂
oracle

is the unique solution of prob-

lem (2.10) with ∇L̄n(β̂
oracle
A ) = 0. The lemma then follows from Theorems 1 and 2

in Fan, Xue and Zou (2014). �

PROOF OF THEOREM 2. Let δ̂ = β̂
lasso − β∗. Assume both (C3) and (C4)

hold. The other cases where either (C3) or (C4) holds are similar. From Lemma 5
and Theorem 1, we immediately get

p1 ≤ P
(‖δ̂‖∞ >

[
3s1/2λlasso(4κc)−1] ∧ [

3λlasso(4�c)−1])
≤ P

(‖δ̂‖2 > 3s1/2λlasso(4κc)−1) ∨ P
(‖δ̂‖∞ > 3λlasso(4�c)−1) ≤ pALS

1 .
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To derive the bound for p2, by the triangular inequality, it suffices to show bounds

for P(‖∇AcLn(β
∗)‖∞ ≥ 2−1a1λ) and P(‖∇AcLn(β̂

oracle
) − ∇AcLn(β

∗)‖∞ ≥
2−1a1λ). By the union bound argument and Lemma 3,

P
(∥∥∇AcLn

(
β∗)∥∥∞ ≥ 2−1a1λ

) = P
(∥∥−n−1XT

Acζ
∥∥∞ ≥ 2−1a1λ

)
≤ 2(p − s) exp

(
−Ca2

1nλ2

4M2
0K2

0

)
.

Let d = (di, i = 1, . . . , n)T with di = � ′
τ (yi − xT

i β̂
oracle

) − � ′
τ (yi − xT

i β∗). By
Cauchy–Schwarz inequality and Lemma 2, we get

∥∥∇AcLn

(
β̂

oracle) − ∇AcLn

(
β∗)∥∥∞

= n−1max
j∈Ac

∣∣∣∣∣
n∑

i=1

dixij

∣∣∣∣∣ ≤ n−1max
j∈Ac

(‖d‖2‖Xj‖2
)

≤ (2c̄M0)
[(

β̂
oracle
A − β∗

A

)T(
n−1XT

AXA

)(
β̂

oracle
A − β∗

A

)]1/2

≤ (
2c̄ρ1/2

maxM0
)∥∥β̂oracle − β∗∥∥

2.

It follows from Lemma 4 and Lemma 3 that

P
(∥∥∇AcLn

(
β̂

oracle) − ∇AcLn

(
β∗)∥∥∞ ≥ 2−1a1λ

)
≤ P

(∥∥β̂oracle − β∗∥∥
2 ≥ a1λ

4c̄ρ
1/2
maxM0

)
≤ P

(∥∥n−1XT
Aζ

∥∥
2 ≥ Q1λ

)
≤ 
(Q1λ;n, s,K0,M0, ρmax, ν0).

This establishes the desired upper bound for p2. To show the upper bound for p3,
let R = minj∈A |β∗

j | − aλ and observe that

p3 = P
(
min
j∈A

∣∣β̂oracle
j

∣∣ < aλ
)

≤ P
(∥∥β̂oracle − β∗∥∥∞ > R

)

≤ P
(∥∥β̂oracle − β∗∥∥

2 > R
) ≤ P

(∥∥n−1XT
Aζ

∥∥
2 ≥ 2cρminR

)
.

Similarly, by Lemma 3 we obtain

P
(∥∥n−1XT

Aζ
∥∥

2 ≥ 2cρminR
) ≤ 
(2cρminR;n, s,K0,M0, ρmax, ν0),

which completes the proof. �

Let us now prove the results for the COSALES estimation. To simplify notation,
let � = (γ T,ϕT)T. It follows that supp(� ∗) = A0. Let λlasso = λlasso

1 ∧ λlasso
2 and

�lasso = λlasso
1 ∨ λlasso

2 . We first present a lemma to facilitate the proofs.
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LEMMA 6. Let ε = (εi,1 ≤ i ≤ n)T and η = (ηi,1 ≤ i ≤ n)T, where ηi =
� ′

τ (εi − eτ ). Also, let W = diag{xT
i ω∗,1 ≤ i ≤ n}.

(1) For � , δ ∈ R
2p , 〈∇Sn(� + δ) − ∇Sn(� ), δ〉 ≥ n−1c0‖(I2 ⊗ X)δ‖2

2, where
I2 is a 2 × 2 identity matrix and c0 = 2−1[(1 + 4c) − (1 + 16c2)1/2] > 0.

(2) For d > 0, P(‖�̂ oracle − � ∗‖2 > d) ≤ P(‖∇A0Sn(�
∗)‖2 ≥ c0φmind),

where

∇A0Sn

(
� ∗) = −n−1

(
XT

A1
W(ε + η)

XT
A2

Wη

)
.

PROOF. The first part follows directly from the strong convexity of the (asym-
metric) squared error loss. Specifically, note that since c0 is the smaller eigenvalue
of the 2 × 2 matrix

(1+2c
2c

2c
2c

)
, we have

Sn(� + δ) − Sn(� ) − 〈∇Sn(� ), δ
〉 ≥ 1

2n
δT

[(
1 + 2c 2c

2c 2c

)
⊗ (

XTX
)]

δ

≥ (2n)−1c0
∥∥(I2 ⊗ X)δ

∥∥2
2.

Similarly, Sn(� ) − Sn(� + δ) − 〈∇Sn(� + δ),−δ〉 ≥ (2n)−1c0‖(I2 ⊗ X)δ‖2
2.

Result (1) then follows by summing up the above two inequalities.
Let δ̂ = �̂ oracle − � ∗. Note that δ̂Ac

0
= 0 and ∇A0Sn(�̂

oracle
) = 0. From re-

sult (1), we have

c0φmin‖δ̂‖2
2 = c0φmin‖δ̂A0‖2

2 ≤ n−1c0
∥∥(I2 ⊗ X)δ̂

∥∥2
2

≤ 〈∇Sn

(
�̂ oracle) − ∇Sn

(
� ∗)

, δ̂
〉 = 〈−∇A0Sn

(
� ∗)

, δ̂A0

〉
≤ ∥∥∇A0Sn

(
� ∗)∥∥2

2‖δ̂‖2
2.

Result (2) follows immediately. �

PROOF OF THEOREM 3. Let δ̂1 = γ̂ lasso −γ ∗, δ̂2 = ϕ̂lasso −ϕ∗, δ̂ = (δ̂
T
1 , δ̂

T
2 )T,

z∗
1∞ = ‖∂Sn(�

∗)/∂γ ‖∞, and z∗
2∞ = ‖∂Sn(�

∗)/∂ϕ‖∞. By Lemma 6 and similar
arguments in the proof of Theorem 1, it can be shown that

0 ≤ n−1c0
∥∥(I2 ⊗ X)δ̂

∥∥2
2 ≤ 〈∇Sn

(
�̂ lasso) − ∇Sn

(
� ∗)

, δ̂
〉

≤ (
z∗

1∞ + λlasso
1

)‖δ̂1A1‖1 + (
z∗

1∞ − λlasso
1

)‖δ̂1Ac
1
‖1(6.2)

+ (
z∗

2∞ + λlasso
2

)‖δ̂2A2‖1 + (
z∗

2∞ − λlasso
2

)‖δ̂2Ac
2
‖1.

Under events E1 = {z∗
1∞ ≤ 2−1λlasso

1 } and E2 = {z∗
2∞ ≤ 2−1λlasso

2 }, it follows
from (6.2) that

2−1λlasso‖δ̂Ac
0
‖1 ≤ 2−1λlasso

1 ‖δ̂1Ac
1
‖1 + 2−1λlasso

2 ‖δ̂2Ac
2
‖1

≤ (3/2)λlasso
1 ‖δ̂1A1‖1 + (3/2)λlasso

2 ‖δ̂2A2‖1 ≤ (3/2)�lasso‖δ̂A0‖1,
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which implies that δ̂ ∈ C3M̌
. Now under conditions (C4′)–(C5′) we have from (6.2)

that

c0κ̄‖δ̂‖2
2 ≤ n−1c0

∥∥(I2 ⊗ X)δ̂
∥∥2

2 ≤ (3/2)�lasso‖δ̂A0‖1

≤ (3/2)�lasso(s1 + s2)
1/2‖δ̂‖2

and that

c0�̄‖δ̂‖∞‖δ̂A0‖1 ≤ n−1c0
∥∥(I2 ⊗ X)δ̂

∥∥2
2 ≤ (3/2)�lasso‖δ̂A0‖1.

It follows that under events E1 and E2, we have ‖δ̂‖2 ≤ 3(s1 +s2)
1/2�lasso(2κ̄c0)

−1

and ‖δ̂‖∞ ≤ 3�lasso(2�̄c0)
−1. Recall that in Lemma 6 εi and ηi = � ′

τ (εi − eτ )

are both mean zero sub-Gaussian random variables with K1 = ‖εi‖SG and K2 =
‖ηi‖SG. It follows that εi + ηi is also sub-Gaussian, and moreover, ‖εi + ηi‖SG ≤
K1 + K2. Since M1 = ‖Xω∗‖∞, we have

P
(‖δ̂‖2 ≤ 3(s1 + s2)

1/2�lasso(2κ̄c0)
−1 ∩ ‖δ̂‖∞ ≤ 3�lasso(2�̄c0)

−1)
≥ P(E1 ∩ E2) ≥ 1 − P

(
Ec

1
) − P

(
Ec

2
)

= 1 − P
(∥∥n−1XTW(ε + η)

∥∥∞ > 2−1λlasso
1

)
− P

(∥∥n−1XTWη
∥∥∞ > 2−1λlasso

2
)

≥ 1 − 2p exp
(
− Cn(λlasso

1 )2

4M2
0M2

1 (K1 + K2)2

)
− 2p exp

(
−Cn(λlasso

2 )2

4M2
0M2

1K2
2

)
.

Theorem 3 then follows. �

The proof of Theorem 4 relies on the following lemma.

LEMMA 7. Under assumptions of Theorem 4, the LLA algorithm (Algo-
rithm 4) initialized by γ̂ lasso and ϕ̂lasso converges to the oracle estimators γ̂ oracle

and ϕ̂oracle in two iterations with probability at least 1 − π1 − π2 − π3, where

π1 = P
(∥∥γ̂ lasso − γ ∗∥∥∞ > a0λ1,

∥∥ϕ̂lasso − ϕ∗∥∥∞ > a0λ2
)
,

π2 = P
(∥∥∂Sn

(
�̂ oracle)

/∂γ Ac
1

∥∥∞ ≥ a1λ1,
∥∥∂Sn

(
�̂ oracle)

/∂ϕAc
2

∥∥∞ ≥ a1λ2
)
,

π3 = P
(

min
j∈A1

∣∣γ̂ oracle
j

∣∣ < aλ1, min
j∈A2

∣∣ϕ̂oracle
j

∣∣ < aλ2

)
.

PROOF. The convexity of Sn(γ ,ϕ) follows immediately from Lemma 1,

Sn(γ ,ϕ) ≥ Sn

(
γ ′,ϕ′) + 〈∇γ Sn

(
γ ′,ϕ′),γ − γ ′〉 + 〈∇ϕSn

(
γ ′,ϕ′),ϕ − ϕ′〉

+ 2−1
(

γ − γ ′

ϕ − ϕ′
)T [(

1 + 2c 2c

2c 2c

)
⊗ (

n−1XTX
)](

γ − γ ′

ϕ − ϕ′
)

.
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Restrict Sn(γ ,ϕ) to the set S = {γ ,ϕ ∈ R
p:γ Ac

1
= 0,ϕAc

2
= 0} and define for any

(γ ,ϕ) ∈ S

S̆n(γ A1
,ϕA2

) = n−1
n∑

i=1

{
�0.5

(
yi − xT

iA1
γ A1

) + �τ

(
yi − xT

iA1
γ A1

− xT
iA2

ϕA2

)}
.

It follows immediately that for any (γ ,ϕ), (γ ′,ϕ′) ∈ S ,

S̆n(γ A1
,ϕA2

) ≥ S̆n

(
γ ′

A1
,ϕ′

A2

) + 〈∇γ A1
S̆n

(
γ ′

A1
,ϕ′

A2

)
,γ A1

− γ ′
A1

〉
+ 〈∇ϕA2

S̆n

(
γ ′

A1
,ϕ′

A2

)
,ϕA2

− ϕ′
A2

〉
+ 2−1c0

(
γ A1

− γ ′
A1

)T(
n−1XT

A1
XA1

)(
γ A1

− γ ′
A1

)
+ 2−1c0

(
ϕA2

− ϕ′
A2

)T(
n−1XT

A2
XA2

)(
ϕA2

− ϕ′
A2

)
,

where c0 = 2−1[(1 + 4c) − (1 + 16c2)1/2]. Since both XA1 and XA2 are of full
column ranks by assumption, we can see that S̆n(γ A1

,ϕA2
) is strongly convex

and thus the oracle estimators γ̂ oracle and ϕ̂oracle are the unique solution of prob-
lem (4.3).

Let E1 be the event that ‖γ̂ lasso − γ ∗‖∞ ≤ a0λ1 and ‖ϕ̂lasso − ϕ∗‖∞ ≤
a0λ2. Under E1 and Assumption (A0′), on one hand we have minj∈A1 |γ̂ lasso

j | ≥
minj∈A1 |γ ∗

j | − ‖γ̂ lasso − γ ∗‖∞ > aλ1, implying that p′
λ1

(|γ̂ lasso
j |) = 0 for j ∈ A1.

On the other hand, we have ‖γ̂ lasso
Ac ‖∞ ≤ ‖γ̂ lasso − γ ∗‖∞ ≤ a2λ1, indicating that

p′
λ1

(|γ̂ lasso
j |) ≥ a1λ1 for j ∈ Ac

1. Similarly, we can show that p′
λ2

(|ϕ̂lasso
j |) = 0 for

j ∈ A2 and p′
λ2

(|ϕ̂lasso
j |) ≥ a1λ2 for j ∈ Ac

2.

Let γ̂ 1 and ϕ̂1 be the update after the first iteration of the LLA algorithm. Then
under E1, γ̂ 1 and ϕ̂1 are minimizers of

Qn(γ ,ϕ) = Sn(γ ,ϕ) + ∑
j∈Ac

1

p′
λ1

(∣∣γ̂ lasso
j

∣∣)|γj | +
∑

j∈Ac
2

p′
λ2

(∣∣ϕ̂lasso
j

∣∣)|ϕj |.

By definition of the oracle estimators, ∂Sn(γ̂
oracle

, ϕ̂oracle
)/∂γj = 0 for j ∈ A1

and ∂Sn(γ̂
oracle

, ϕ̂oracle
)/∂ϕj = 0 for j ∈ Ac

2. Also, γ̂ oracle
Ac

1
= 0 and ϕ̂oracle

Ac
2

=
0. Now let E2 be the event that maxj∈Ac

1
|∂L(γ̂ oracle

, ϕ̂oracle
)/∂γj | < a1λ1 and

that maxj∈Ac
2
|∂L(γ̂ oracle

, ϕ̂oracle
)/∂ϕj | < a1λ2. It follows from the convexity of

Sn(γ ,ϕ) that

Qn(γ ,ϕ) −Qn

(
γ̂ oracle

, ϕ̂oracle)
≥ ∑

j∈Ac
1

∂

∂γj

Sn

(
γ̂ oracle

, ϕ̂oracle)
γj + ∑

j∈Ac
2

∂

∂ϕj

Sn

(
γ̂ oracle

, ϕ̂oracle)
ϕj

+ ∑
j∈Ac

1

p′
λ1

(∣∣γ̂ lasso
j

∣∣)|γj | +
∑

j∈Ac
2

p′
λ2

(∣∣ϕ̂lasso
j

∣∣)|ϕj |.
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Under E2, this implies that Qn(γ ,ϕ) ≥ Qn(γ̂
oracle

, ϕ̂oracle
) for any γ ∈ R

p and
ϕ ∈ R

p . The strict inequality holds unless γj = 0 for all j ∈ Ac
1 and ϕj = 0 for all

j ∈ Ac
2. By the uniqueness of the oracle estimators, we must have γ̂ 1 = γ̂ oracle and

ϕ̂1 = ϕ̂oracle.
Let E3 be the event that minj∈A1 |γ̂ oracle

j | ≥ aλ1 and minj∈A2 |ϕ̂oracle
j | ≥ aλ2.

Once the oracle estimators are obtained after the first iteration, under E3, we
can see that p′

λ1
(|γ̂ oracle

j |) = 0 for j ∈ A1, p′
λ1

(|γ̂ oracle
j |) ≥ a1λ1 for j ∈ Ac

1 and

p′
λ2

(|ϕ̂oracle
j |) = 0 for j ∈ A2, p′

λ2
(|ϕ̂oracle

j |) ≥ a1λ2 for j ∈ Ac
2. By similar argu-

ments, it can be shown that the second iteration of the LLA algorithm will still
yield the oracle estimators, which means the algorithm converges to the oracle
estimators hereafter. This completes the proof. �

PROOF OF THEOREM 4. Let δ̂ = �̂ lasso − � ∗. Assume both (C4′) and (C5′)
hold. The other cases where either (C4′) or (C5′) holds are similar. It follows from
Theorem 3 that

π1 ≤ P
(‖δ̂‖∞ > a0λ

) ≤ P
(‖δ̂‖∞ > 3�lasso(2c0)

−1[(
s1/2κ̄−1) ∧ �̄−1])

≤ P
(‖δ̂‖2 > 3s1/2�lasso(2c0κ̄)−1) ∨ P

(‖δ̂‖∞ > 3�lasso(2c0�̄)−1) ≤ πALS
1 .

Next, note that π2 ≤ P(‖∇Ac
0
Sn(�̂

oracle
)‖∞ ≥ a1λ). By the triangular inequality,

it suffices to show upper bounds for respectively P(‖∇Ac
0
Sn(�

∗)‖∞ ≥ 2−1a1λ)

and P(‖∇Ac
0
Sn(�̂

oracle
) − ∇Ac

0
Sn(�

∗)‖∞ ≥ 2−1a1λ). First, by the union bound
argument we have

P
(∥∥∇Ac

0
Sn

(
� ∗)∥∥∞ ≥ 2−1a1λ

)
≤ P

(∥∥n−1XT
Ac

1
W(ε + η)

∥∥∞ ≥ 2−1a1λ
) + P

(∥∥n−1XT
Ac

2
Wη

∥∥∞ ≥ 2−1a1λ
)

≤ 2(p − s1) exp
(
− Ca2

1nλ2

4M2
0M2

1 (K1 + K2)2

)
+ 2(p − s2) exp

(
− Ca2

1nλ2

4M2
0M2

1K2
2

)
.

Now let d̄i = � ′
τ (yi − xT

i γ̂ oracle − xT
i ϕ̂oracle

) − � ′
τ (yi − xT

i γ ∗ − xT
i ϕ∗) and set

d̄ = (d̄i ,1 ≤ i ≤ n)T. It follows that∥∥∇Ac
0
Sn

(
�̂ oracle) − ∇Ac

0
Sn

(
� ∗)∥∥∞

≤ M0
(∥∥X

(
γ̂ oracle − γ ∗)∥∥

2 + ‖d̄‖2
)
/
√

n

≤ M0
[
(1 + 2c̄)

∥∥XA1

(
γ̂ oracle

A1
− γ ∗

A1

)∥∥
2

+ (2c̄)
∥∥XA2

(
ϕ̂oracle

A2
− ϕ∗

A2

)∥∥
2

]
/
√

n

≤ (1 + 2c̄)M0φ
1/2
max

∥∥�̂ oracle − � ∗∥∥
2.
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By Lemma 6 and Lemma 3, we get

P
(∥∥∇Ac

0
Sn

(
�̂ oracle) − ∇Ac

0
Sn

(
� ∗)∥∥∞ ≥ 2−1a1λ

)
≤ P

(∥∥�̂ oracle − � ∗∥∥
2 ≥ a1λ

2(1 + 2c)M0φ
1/2
max

)

≤ P
(∥∥∥∥1

n

(
XT

A1
W(ε + η)

XT
A2

Wη

)∥∥∥∥
2
≥ Q2λ

)

≤ P
(∥∥n−1XT

A1
W(ε + η)

∥∥
2 ≥ 2−1Q2λ

) + P
(∥∥n−1XT

A2
Wη

∥∥
2 ≥ 2−1Q2λ

)
≤ 


(
2−1Q2λ;n, s1,K1 + K2,M0M1,M

2
1ρ1•max, ν1

)
+ 


(
2−1Q2λ;n, s2,K2,M0M1,M

2
1ρ2•max, ν2

)
.

This completes the upper bound for π2. To derive the upper bound for π3, note
that by Assumption (A0′) we have minj∈A1 |γ ∗

j | ≥ (a + 1)λ1 and minj∈A2 |ϕ∗
j | ≥

(a + 1)λ2. Observe that minj∈A1 |γ̂ oracle
j | ≥ minj∈A1 |γ ∗

j | − ‖γ̂ oracle − γ ∗‖∞ and

minj∈A2 |ϕ̂oracle
j | ≥ minj∈A1 |ϕ∗

j | − ‖ϕ̂oracle − ϕ∗‖∞, and it follows that

π3 ≤ P
(∥∥�̂ oracle − � ∗∥∥∞ > R̄

) ≤ P
(∥∥�̂ oracle − � ∗∥∥

2 > R̄
)

≤ P
(∥∥∥∥1

n

(
XT

A1
W(ε + η)

XT
A2

Wη

)∥∥∥∥
2
≥ c0φminR̄

)

≤ P
(∥∥n−1XT

A1
W(ε + η)

∥∥
2 ≥ 1

2
c0φminR̄

)
+ P

(∥∥n−1XT
A2

Wη
∥∥

2 ≥ 1

2
c0φminR̄

)

≤ 

(
2−1c0φminR̄;n, s1,K1 + K2,M0M1,M

2
1ρ1•max, ν1

)
+ 


(
2−1c0φminR̄;n, s2,K2,M0M1,M

2
1ρ2•max, ν2

)
. �
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