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GEOMETRIC INFERENCE FOR GENERAL HIGH-DIMENSIONAL
LINEAR INVERSE PROBLEMS

BY T. TONY CAI1, TENGYUAN LIANG AND ALEXANDER RAKHLIN2

University of Pennsylvania

This paper presents a unified geometric framework for the statistical
analysis of a general ill-posed linear inverse model which includes as spe-
cial cases noisy compressed sensing, sign vector recovery, trace regression,
orthogonal matrix estimation and noisy matrix completion. We propose com-
putationally feasible convex programs for statistical inference including esti-
mation, confidence intervals and hypothesis testing. A theoretical framework
is developed to characterize the local estimation rate of convergence and to
provide statistical inference guarantees. Our results are built based on the
local conic geometry and duality. The difficulty of statistical inference is cap-
tured by the geometric characterization of the local tangent cone through the
Gaussian width and Sudakov estimate.

1. Introduction. Driven by a wide range of applications, high-dimensional
linear inverse problems such as noisy compressed sensing, sign vector recovery,
trace regression, orthogonal matrix estimation and noisy matrix completion have
drawn significant recent interest in several fields, including statistics, applied math-
ematics, computer science and electrical engineering. These problems are often
studied in a case-by-case fashion, with the main focus on estimation. Although
similarities in the technical analyses have been suggested heuristically, a general
unified theory for statistical inference including estimation, confidence intervals
and hypothesis testing is still yet to be developed.

In this paper, we consider a general linear inverse model

Y =X (M) + Z,(1.1)

where M ∈ R
p is the vectorized version of the parameter of interest, X :Rp →R

n

is a linear operator (matrix in R
n×p), and Z ∈ R

n is a noise vector. We observe
(X , Y ) and wish to recover the unknown parameter M . A particular focus is on
the high-dimensional setting where the ambient dimension p of the parameter M

is much larger than the sample size n, that is, the dimension of Y . In such a set-
ting, the parameter of interest M is commonly assumed to have, with respect to
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a given atom set A, a certain low complexity structure which captures the true
dimension of the statistical estimation problem. A number of high-dimensional
inference problems actively studied in the recent literature can be seen as special
cases of this general linear inverse model.

High dimension linear regression/noisy compressed sensing. In high-
dimensional linear regression, one observes (X,Y ) with

Y = XM + Z,(1.2)

where Y ∈ R
n, X ∈ R

n×p with p � n, M ∈R
p is a sparse signal, and Z ∈R

n is a
noise vector. The goal is to recover the unknown sparse signal of interest M ∈ R

p

based on the observation (X,Y ) through an efficient algorithm. Many estimation
methods including �1-regularized procedures such as the Lasso and Dantzig Selec-
tor have been developed and analyzed. See, for example, [2, 4, 10, 41] and the ref-
erences therein. Confidence intervals and hypothesis testing for high-dimensional
linear regression have also been actively studied in the last few years. A common
approach is to first construct a de-biased Lasso or de-biased scaled-Lasso estima-
tor and then make inference based on the asymptotic normality of low-dimensional
functionals of the de-biased estimator. See, for example, [3, 23, 44, 48].

Trace regression. Accurate recovery of a low-rank matrix based on a small num-
ber of linear measurements has a wide range of applications and has drawn much
recent attention in several fields. See, for example, [14, 26, 27, 37, 38]. In trace
regression, one observes (Xi, Yi), i = 1, . . . , n with

Yi = Tr
(
XT

i M
) + Zi,(1.3)

where Yi ∈ R, Xi ∈ R
p1×p2 are measurement matrices, and Zi are noise. The goal

is to recover the unknown matrix M ∈R
p1×p2 which is assumed to be of low rank.

Here the dimension of the parameter M is p ≡ p1p2 � n. A number of constrained
and penalized nuclear minimization methods have been introduced and studied in
both the noiseless and noisy settings. See the aforementioned references for further
details.

Sign vector recovery. The setting of sign vector recovery is similar to the one
for the high-dimensional regression except the signal of interest is a sign vector.
More specifically, one observes (X,Y ) with

Y = XM + Z,(1.4)

where Y ∈ R
n,X ∈ R

n×p , M ∈ {+1,−1}p is a sign vector, and Z ∈ R
n is a noise

vector. The goal is to recover the unknown sign signal M . Exhaustive search
over the parameter set is computationally prohibitive. The noiseless case of (1.4),
known as the generalized multi-knapsack problem [25, 31], can be solved through
an integer program which is known to be computationally difficult even for check-
ing the uniqueness of the solution; see [36, 43].

Orthogonal matrix recovery. In some applications, the matrix of interest in trace
regression is known to be an orthogonal/rotation matrix [21, 40]. More specifically,
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in orthogonal matrix recovery, we observe (Xi, Yi), i = 1, . . . , n as in the trace re-
gression model (1.3) where Xi ∈ R

m×m are measurement matrices and M ∈ R
m×m

is an orthogonal matrix. The goal is to recover the unknown M using an efficient
algorithm. Computational difficulties come in because of the nonconvex constraint.

Other high-dimensional inference problems that are closely connected to the
structured linear inverse model (1.1) include Matrix Completion [9, 13, 17], sparse
and low rank decomposition in robust principal component analysis [12], and
sparse noise and sparse parameter in demixing problem [1], to name a few. We
will discuss the connections in Section 3.5.5.

There are several fundamental questions for this general class of high-
dimensional linear inverse problems:

Statistical questions: How well can the parameter M be estimated? What is the
intrinsic difficulty of the estimation problem? How to provide inference guaran-
tees for M , that is, confidence intervals and hypothesis testing, in general?
Computational questions: Are there computationally efficient (polynomial time
complexity) algorithms that are also sharp in terms of statistical estimation and
inference?

1.1. High-dimensional linear inverse problems. Linear inverse problems have
been well studied in the classical setting where the parameter of interest lies in a
convex set. See, for example, [33, 42] and [24]. In particular, for estimation of a
linear functional over a convex parameter space, [18] developed an elegant geomet-
ric characterization of the minimax theory in terms of the modulus of continuity.
However, the theory relies critically on the convexity assumption of the parameter
space. As shown in [7, 8], the behavior of the functional estimation and confi-
dence interval problems is significantly different even when the parameter space
is the union of two convex sets. For the high-dimensional linear inverse problems
considered in the present paper, the parameter space is highly nonconvex and the
theory and techniques developed in the classical setting are not readily applicable.

For high-dimensional linear inverse problems such as those mentioned earlier,
the parameter space has low-complexity and exhaustive search often leads to the
optimal solution in terms of statistical accuracy. However, it is computationally
prohibitive and requires the prior knowledge of the true low complexity. In re-
cent years, relaxing the problem to a convex program such as �1 or nuclear norm
minimization and then solving it with optimization techniques has proven to be a
powerful approach in individual cases.

Unified approaches to signal recovery recently appeared both in the applied
mathematics literature [1, 16, 34] and in the statistics literature [32]. Oymak et
al. [34] studied the generalized LASSO problem through conic geometry with a
simple bound in terms of the �2 norm of the noise vector (which may not vanish
to 0 as sample size n increases). Chandrasekaran et al. [16] introduced the notion
of atomic norm to define a low complexity structure and showed that Gaussian
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width captures the minimum sample size required to ensure recovery. Amelunxen
et al. [1] studied the phase transition for the convex algorithms for a wide range
of problems. These suggest that the geometry of the local tangent cone determines
the minimum number of samples to ensure successful recovery in the noiseless or
deterministic noise settings. Negahban [32] studied the regularized M-estimation
with a decomposable norm penalty in the additive Gaussian noise setting.

Another line of research is focused on a detailed analysis of the Empirical Risk
Minimization (ERM) [28]. The analysis is based on the empirical processes theory,
with a proper localized rather than global analysis. In addition to convexity, the
ERM requires the prior knowledge on the size of the bounded parameter set of
interest. This knowledge is not needed for the algorithm we propose in the present
paper.

Compared to estimation, there is a paucity of methods and theoretical results for
confidence intervals and hypothesis testing for these linear inverse models. Specif-
ically for high-dimensional linear regression, [3] studied a bias correction method
based on ridge estimation, while [48] proposed bias correction via score vector us-
ing scaled Lasso as the initial estimator. [23, 44] focused on de-sparsifying Lasso
by constructing a near inverse of the Gram matrix [6]; the first paper uses nodewise
Lasso, while the other uses �∞ constrained quadratic programing, with similar the-
oretical guarantees. To the best of our knowledge, a unified treatment of inference
procedures for general high-dimensional linear inverse models is yet to be devel-
oped.

1.2. Geometric characterization of linear inverse problems. We take a geo-
metric perspective in studying the model (1.1). The parameter M inherits certain
low complexity structure with respect to a given atom set in a high-dimensional
space, thus introducing computationally difficult nonconvex constraints. However,
proper convex relaxation based on the atom structure provides a computationally
feasible solution. For point estimation, we are interested in how the local convex
geometry around the true parameter affects the estimation procedure and the intrin-
sic estimation difficulty. For inference, we develop general procedures induced by
the convex geometry, addressing inferential questions such as confidence intervals
and hypothesis testing. We are also interested in the sample size condition induced
by the local convex geometry for valid inference guarantees. This local geometry
plays a key role in our analysis.

Complexity measures such as Gaussian width and Rademacher complexity are
well studied in the empirical processes theory [29, 39], and are known to capture
the difficulty of the estimation problem. Covering/Packing entropy and volume
ratio [30, 45, 46] are also widely used in geometric functional analysis to mea-
sure the complexity. In this paper, we will show how these geometric quantities
affect the computationally efficient estimation/inference procedure, as well as the
intrinsic difficulties.
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1.3. Our contributions. The main result can be summarized as follows:

Unified convex algorithms. We propose a general computationally feasible con-
vex program that provides near optimal rate of convergence simultaneously for a
collection of high-dimensional linear inverse problems. We also study a general
efficient convex program that leads to statistical inference for linear contrasts
of M , such as confidence intervals and hypothesis testing. The point estima-
tion and statistical inference are adaptive in the sense that the difficulty (rate of
convergence, conditions on sample size, etc.) automatically adapts to the low
complexity structure of the true parameter.
Local geometric theory. A unified theoretical framework is provided for analyz-
ing high-dimensional linear inverse problems based on the local conic geometry
and duality. Local geometric complexities govern the difficulty of statistical in-
ference for the linear inverse problems.

Specifically, on the local tangent cone TA(M) [defined in (2.4)], geometric quanti-
ties such as the Gaussian width w(B

p
2 ∩TA(M)) and Sudakov minoration estimate

e(B
p
2 ∩TA(M)) (both defined in Section 2.2; B

p
2 denotes unit Euclidean ball in R

p)
capture the rate of convergence. In terms of the upper bound, with overwhelming
probability, if n � w2(B

p
2 ∩ TA(M)), the estimation error under �2 norm for our

algorithm is

σ
γA(M)w(XA)√

n
,

where γA(M) is the local asphericity ratio defined in (2.11). A minimax lower
bound for estimation over the local tangent cone TA(M) is

σ
e(B

p
2 ∩ TA(M))√

n
.

For statistical inference, we establish valid asymptotic normality for any linear
functional 〈v,M〉 (with ‖v‖�1 bounded) of the parameter M under the condition

lim
n,p(n)→∞

γ 2
A(M)w2(XA)√

n
= 0,

which can be compared to the condition for point estimation consistency

lim
n,p(n)→∞

γA(M)w(XA)√
n

= 0.

There is a critical difference on the sufficient conditions between valid infer-
ence and estimation consistency—more stringent condition on sample size n is
required for inference beyond estimation. Intuitively, statistical inference is purely
geometrized by Gaussian width and Sudakov minoration estimate.



GEOMETRIC INFERENCE LINEAR INVERSE PROBLEMS 1541

1.4. Organization of the paper. The rest of the paper is structured as follows.
In Section 2, after notation, definitions and basic convex geometry are reviewed,
we formally present convex programs for recovering the parameter M , and for pro-
viding inference guarantees for M . The properties of the proposed procedures are
then studied in Section 3 under the Gaussian setting, where a geometric theory is
developed, along with the minimax lower bound, as well as the confidence inter-
vals and hypothesis testing. Applications to particular high-dimensional estimation
problems are calculated in Section 3.5. Section 4 extends the geometric theory be-
yond the Gaussian case. Further discussions appear in Section 5, and the proofs of
the main results are given in Section 6 and the supplementary material [5].

2. Preliminaries and algorithms. Let us first review notation and definitions
that will be used in the rest of the paper. We use ‖ · ‖�q to denote the �q norm of a
vector or induced norm of a matrix, and use B

p
2 to denote the unit Euclidean ball

in R
p . For a matrix M , denote by ‖M‖F , ‖M‖∗, and ‖M‖ the Frobenius norm,

nuclear norm and spectral norm of M , respectively. When there is no confusion,
we also denote ‖M‖F = ‖M‖�2 for a matrix M . For a vector V ∈ R

p , denote its
transpose by V ∗. The inner product on vectors is defined as usual 〈V1,V2〉 = V ∗

1 V2.
For matrices 〈M1,M2〉 = Tr(M∗

1 M2) = Vec(M1)
∗ Vec(M2), where Vec(M) ∈ R

pq

denotes the vectorized version of matrix M ∈ R
p×q . X :Rp →R

n denotes a linear
operator from R

p to R
n. Following the notation above, M∗ ∈ R

q×p is the adjoint
(transpose) matrix of M and X ∗ : Rn → R

p is the adjoint operator of X such that
〈X (V1),V2〉 = 〈V1,X ∗(V2)〉.

For a convex compact set K in a metric space with the metric d , the ε-entropy
for a convex compact set K with respect to the metric d is denoted in the follow-
ing way: ε-packing entropy logM(K, ε, d) is the logarithm of the cardinality of
the largest ε-packing set. Similarly, ε-covering entropy logN (K, ε, d) is the log-
cardinality of the smallest ε-covering set with respect to metric d . A well-known
result is M(K,2ε, d) ≤ N (K, ε, d) ≤M(K, ε, d). When the metric d is the usual
Euclidean distance, we will omit d in M(K, ε, d) and N (K, ε, d) and simply write
M(K, ε) and N (K, ε).

For two sequences of positive numbers {an} and {bn}, we denote an � bn and
an � bn if there exist constants c0,C0 such that an

bn
≥ c0 and an

bn
≤ C0, respectively,

for all n. We write an � bn if an � bn and an � bn. Throughout the paper, c,C

denote constants that may vary from place to place.

2.1. Basic convex geometry. The notion of low complexity is based on a col-
lection of basic atoms. We denote the collection of these basic atoms as an atom
set A, either countable or uncountable. A parameter M is of complexity k in terms
of the atoms in A if M can be expressed as a linear combination of at most k atoms
in A, that is, there exists a decomposition

M = ∑
a∈A

ca(M) · a, where
∑
a∈A

1{ca(M) �=0} ≤ k.
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In convex geometry [35], the Minkowski functional (gauge) of a symmetric
convex body K is defined as

‖x‖K = inf{t > 0 : x ∈ tK}.
Let A be a collection of atoms that is a compact subset of R

p . Without loss of
generality, assume A is contained inside �∞ ball. We assume that the elements of
A are extreme points of the convex hull conv(A) [in the sense that for any x ∈ R

p ,
sup{〈x, a〉 : a ∈ A} = sup{〈x, a〉 : a ∈ conv(A)}]. The atomic norm ‖x‖A for any
x ∈ R

p is defined as the gauge of conv(A):

‖x‖A = inf
{
t > 0 : x ∈ t conv(A)

}
.

As noted in [16], the atomic norm can also be written as

‖x‖A = inf
{∑

a∈A
ca : x = ∑

a∈A
ca · a, ca ≥ 0

}
.(2.1)

The dual norm of this atomic norm is defined in the following way [since the atoms
in A are the extreme points of conv(A)]:

‖x‖∗
A = sup

{〈x, a〉 : a ∈ A
} = sup

{〈x, a〉 : ‖a‖A ≤ 1
}
.(2.2)

We have the following (“Cauchy–Schwarz”) symmetric relation for the norm and
its dual:

〈x, y〉 ≤ ‖x‖∗
A‖y‖A.(2.3)

It is clear that the unit ball with respect to the atomic norm ‖ · ‖A is the convex
hull of the set of atoms A. The tangent cone at x with respect to the scaled unit
ball ‖x‖A conv(A) is defined to be

TA(x) = cone
{
h : ‖x + h‖A ≤ ‖x‖A}

.(2.4)

Also known as a recession cone, TA(x) is the collection of directions where the
atomic norm becomes smaller. The “size” of the tangent cone at the true parameter
M will affect the difficulty of the recovery problem. We focus on the cone inter-
sected with the unit ball B

p
2 ∩TA(M) in analyzing the complexity of the cone. See

Figure 1 for an intuitive illustration.
It is helpful to look at the atom set, atomic norm and tangent cone geometry in a

few examples to better illustrate the general model and notion of low complexity.

EXAMPLE 1. For sparse signal recovery in high-dimensional linear regres-
sion, the atom set consists of the unit basis vectors {±ei}, the atomic norm is the
vector �1 norm, and its dual norm is the vector �∞ norm. The convex hull conv(A)

is called the cross-polytope. Figure 2 illustrates this tangent cone for 3D �1 norm
ball for 3 different cases TA(Mi),1 ≤ i ≤ 3. The “angle” or “complexity” of the lo-
cal tangent cone determines the difficulty of recovery. Previous work showed that
the algebraic characterization (sparsity) of the parameter space drives the global
rate, and we are arguing that the geometric characterization through the local tan-
gent cone provides an intuitive and refined local approach.
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FIG. 1. Tangent cone: general illustration in 2D. The red shaped area is the scaled convex hull
of atom set. The blue dashed line forms the tangent cone at M . Black arrow denotes the possible
directions inside the cone.

EXAMPLE 2. In trace regression and matrix completion, the goal is to recover
low rank matrices. In such settings, the atom set consists of the rank one matrices
(matrix manifold) A = {uv∗ : ‖u‖�2 = 1,‖v‖�2 = 1} and the atomic norm is the
nuclear norm and the dual norm is the spectral norm. The convex hull conv(A) is
called the nuclear norm ball of matrices. The position of the true parameter on the
scaled nuclear norm ball determines the geometry of the local tangent cone, thus
affecting the estimation difficulty.

EXAMPLE 3. In integer programming, one would like to recover the sign vec-
tors whose entries take on values ±1. The atom set is all sign vectors (cardinality

FIG. 2. Tangent cone illustration in 3D for sparse regression. For three possible locations
Mi,1 ≤ i ≤ 3, the tangent cone are different, with cones becoming more complex as i increases.
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2p) and the convex hull conv(A) is the hypercube. Tangent cones for each param-
eter have the same structure in this case.

EXAMPLE 4. In orthogonal matrix recovery, the matrix of interest is con-
strained to be orthogonal. In this case, the atom set is all orthogonal matrices and
the convex hull conv(A) is the spectral norm ball. Similar to sign vector recov-
ery, the local tangent cones for each orthogonal matrix share similar geometric
property.

2.2. Gaussian width, Sudakov estimate and other geometric quantities. We
first introduce two complexity measures: the Gaussian width and Sudakov esti-
mate.

DEFINITION 1 (Gaussian width). For a compact set K ∈ R
p , the Gaussian

width is defined as

w(K) := Eg

[
sup
v∈K

〈g, v〉
]
,(2.5)

where g ∼ N(0, Ip) is the standard multivariate Gaussian vector.

Gaussian width quantifies the probability that a randomly oriented subspace
misses a convex subset. It was used in Gordon’s analysis [20], and was shown
recently to play a crucial rule in linear inverse problems in various noiseless or de-
terministic noise settings; see, for example, [1, 16]. Explicit upper bounds on the
Gaussian width for different convex sets have been given in [1, 16]. For example,
if M ∈ R

p is a s-sparse vector, w(B
p
2 ∩ TA(M)) � √

s logp/s. When M ∈ R
p×q

is a rank-r matrix, w(B
p
2 ∩ TA(M)) �

√
r(p + q − r). For sign vector in R

p ,
w(B

p
2 ∩TA(M)) � √

p, while for orthogonal matrix in R
m×m, w(B

p
2 ∩TA(M)) �√

m(m − 1). See Section 3.4, Propositions 3.10–3.14 in [16] for detailed calcula-
tions. The Gaussian width as a complexity measure of the local tangent cone will
be used in the upper bound analysis in Sections 3 and 4.

DEFINITION 2 (Sudakov minoration estimate). The Sudakov estimate of a
compact set K ∈ R

p is defined as

e(K) := sup
ε

ε
√

logN (K, ε),(2.6)

where N (K, ε) denotes the ε-covering number of set K with respect to the Eu-
clidean norm.

Sudakov estimate has been used in the literature as a measure of complexity for
a general functional class that nearly matches (from below) the expected supre-
mum of a gaussian process. By balancing the cardinality of the covering set at
scale ε and the covering radius ε, the estimate maximizes

ε

√
logN

(
B

p
2 ∩ TA(M), ε

)
,
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thus determining the complexity of the cone TA(M). Sudakov estimate as a com-
plexity measure of the local tangent cone is useful for the minimax lower bound
analysis.

The following well-known result [19, 29] establishes a relation between the
Gaussian width w(·) and Sudakov estimate e(·):

LEMMA 1 (Sudakov minoration and dudley entropy integral). For any com-
pact subset K ⊆ R

p , there exist a universal constant c > 0 such that

c · e(K) ≤ w(K) ≤ 24
∫ ∞

0

√
logN (K, ε) dε.(2.7)

In the literature, another complexity measure—volume ratio—has also been
used to characterize the minimax lower bounds [30]. Volume ratio has been stud-
ied in [35] and [45]. For a convex set K ∈ R

p , volume ratio used in the present
paper is defined as follows.

DEFINITION 3 (Volume ratio). The volume ratio is defined as

v(K) := √
p

(
vol(K)

vol(B
p
2 )

)1/p

.(2.8)

The recovery difficulty of the linear inverse problem also depends on other ge-
ometric quantities defined on the local tangent cone TA(M): the local isometry
constants φA(M,X ) and ψA(M,X ) and the local asphericity ratio γA(M). The
local isometry constants are defined for the local tangent cone at the true parame-
ter M as

φA(M,X ) := inf
{‖X (h)‖�2

‖h‖�2

: h ∈ TA(M),h �= 0
}
,(2.9)

ψA(M,X ) := sup
{‖X (h)‖�2

‖h‖�2

: h ∈ TA(M),h �= 0
}
.(2.10)

The local isometry constants measure how well the linear operator preserves the �2
norm within the local tangent cone. Intuitively, the larger the ψ or the smaller the
φ is, the harder the recovery is. We will see later that the local isometry constants
are determined by the Gaussian width under the Gaussian ensemble design.

The local asphericity ratio is defined as

γA(M) := sup
{ ‖h‖A
‖h‖�2

: h ∈ TA(M),h �= 0
}

(2.11)

and measures how extreme the atomic norm is relative to the �2 norm within the
local tangent cone.
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2.3. Point estimation via convex relaxation. We now return to the linear in-
verse model (1.1) in the high-dimensional setting. Suppose we observe (X , Y ) as
in (1.1) where the parameter of interest M is assumed to have low complexity with
respect to a given atom set A. The low complexity of M introduces a noncon-
vex constraint, which leads to serious computational difficulties if solved directly.
Convex relaxation is an effective and natural approach in such a setting. In most
interesting cases, the atom set is not too rich in the sense that conv(A) ⊂ B

p
2 .

For such cases, we propose a generic convex constrained minimization procedure
induced by the atomic norm and the corresponding dual norm to estimate M :

M̂ = arg min
M

{‖M‖A : ∥∥X ∗(
Y −X (M)

)∥∥∗
A ≤ λ

}
,(2.12)

where λ is a localization radius (tuning parameter) that depends on the sample size,
noise level and geometry of the atom set A. An explicit formula for λ is given in
(3.1) in the case of Gaussian noise. The atomic norm minimization (2.12) is a
convex relaxation of the low complexity structure, and λ specifies the localization
scale based on the noise. This generic convex program utilizes the duality and
recovers the low complexity structure adaptively. The Dantzig selector for high-
dimensional sparse regression [10] and the constrained nuclear norm minimization
[14] for trace regression are particular examples of (2.12). The properties of the
estimator M̂ will be investigated in Sections 3 and 4.

In cases where the atomic norm ball is rich, that is, conv(A) �⊂ B
p
2 , a slightly

stronger program

M̂ = arg min
M

{‖M‖A : ∥∥X ∗(
Y −X (M)

)∥∥∗
A ≤ λ,

(2.13) ∥∥X ∗(
Y −X (M)

)∥∥
�2

≤ μ
}

with λ,μ as tuning parameters will yield optimal guarantees. The analysis of
(2.13) is essentially the same as (2.12). For conciseness, we will present the main
result for the interesting case (2.12). We remark that the atomic dual norm con-
straint is crucial for attaining optimal behavior unless conv(A) ⊃ B

p
2 . For instance,

the convex program in [16] with only the �2 constraint will lead to a suboptimal
estimator.

2.4. Statistical inference via feasibility of convex program. In the high-
dimensional setting, p-values as well as confidence intervals are important in-
ferential questions beyond point estimation. In this section, we will show how to
perform statistical inference for the linear inverse model (1.1). Let M ∈ R

p be the
vectorized parameter of interest, and {ei,1 ≤ i ≤ p} are the corresponding basis
vectors. Consider the following convex feasibility problem for matrix 	 ∈ R

p×p ,
where each row 	i· satisfies∥∥X ∗X	∗

i· − ei

∥∥∗
A ≤ η ∀1 ≤ i ≤ p.(2.14)
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Here, η is some tuning parameter that depends on the sample size and geometry of
the atom set A. One can also solve a stronger version of the above convex program
for η ∈ R,	 ∈ R

p×p simultaneously:

(	,ηn) = arg min
	,η

{
η : ∥∥X ∗X	∗

i· − ei

∥∥∗
A ≤ η ∀1 ≤ i ≤ p

}
.(2.15)

Built upon the constrained minimization estimator M̂ in (2.12) and feasible
matrix 	 in (2.15), the de-biased estimator for inference on parameter M is defined
as

M̃ := M̂ + 	X ∗(
Y −X (M̂)

)
.(2.16)

We will establish the asymptotic normality for linear contrast 〈v,M〉, where
v ∈ R

p,‖v‖�1 ≤ ρ, ρ does not grow with n,p(n), and construct confidence in-
tervals and hypothesis tests based on the asymptotic normality result. In the case
of high-dimensional linear regression, de-biased estimators has been investigated
in [3, 23, 44, 48]. The convex feasibility program we proposed here can be viewed
as a unified treatment for general linear inverse models. We will show that under
some conditions on the sample size and the local tangent cone, asymptotic con-
fidence intervals and hypothesis tests are valid for linear contrast 〈v,M〉 which
include as a special case the individual coordinates of M .

3. Local geometric theory: Gaussian setting. We establish in this section a
general theory of geometric inference in the Gaussian setting where the noise vec-
tor Z is Gaussian and the linear operator X is the Gaussian ensemble design (Def-
inition 4). In analyzing model (1.1), without loss of generality, we can scale X ,Z

simultaneously such that column �2 norm does not grow with n. In the stochas-
tic noise setting, the noise Zi,1 ≤ i ≤ n is scaled correspondingly to noise level
σ/

√
n.

DEFINITION 4 (Gaussian ensemble design). Let X ∈ R
n×p be the matrix form

of the linear operator X :Rp →R
n. X is Gaussian ensemble if each element is an

i.i.d Gaussian random variable with mean 0 and variance 1
n

.

Our analysis is quite different from the case by case global analysis of the
Dantzig selector, Lasso and nuclear norm minimization. We show a stronger result
which adapts to the local tangent cone geometry. All the analyses in our theory
are nonasymptotic, and the constants are explicit. Another advantage is that the
local analysis yields robustness for a given parameter (with near but not exact low
complexity), as the convergence rate is captured by the geometry of the associated
local tangent cone at a given M . Later in Section 4 we will show how to extend the
theory to a more general setting.
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3.1. Local geometric upper bound. For the upper bound analysis, we need to
choose a suitable localization radius λ [in the convex program (2.12)] to guarantee
that the true parameter M is in the feasible set with high probability. In the case of
Gaussian noise the tuning parameter is chosen as

λA(X , σ, n) = σ√
n

{
w(XA) + δ · sup

v∈A
‖Xv‖�2

}
� σ√

n
w(XA),(3.1)

where XT is the image of the set T under the linear operator X , and δ > 0 can be
chosen arbitrarily according to the probability of success we would like to attain
(δ is commonly chosen at order

√
logp). λA(X , σ, n) is a global parameter that

depends on the linear operator X and the atom set A, but importantly, not on the
complexity of M . The following theorem geometrizes the local rate of convergence
in the Gaussian case.

THEOREM 1 (Gaussian ensemble: Convergence rate). Suppose we observe

(X , Y ) as in (1.1) with the Gaussian ensemble design and Z ∼ N(0, σ 2

n
In). Let

M̂ be the solution of (2.12) with λ chosen as in (3.1). Let 0 < c < 1 be a constant.
For any δ > 0, if

n ≥ 4[w(B
p
2 ∩ TA(M)) + δ]2

c2 ∨ 1

c
,

then with probability at least 1 − 3 exp(−δ2/2),

‖M̂ − M‖A ≤ γA(M) · ‖M̂ − M‖�2 and further we have

‖M̂ − M‖�2 ≤ 1

1 − c

∥∥X (M̂ − M)
∥∥
�2

≤ 2σ

(1 − c)2 · γA(M)w(XA)√
n

.

Theorem 1 gives bounds for the estimation error under both the �2 norm loss
and the atomic norm loss, as well as for the in sample prediction error. The upper
bounds are determined by the geometric quantities w(XA), γA(M) and w(B

p
2 ∩

TA(M)). Take, for example, the estimation error under the �2 loss. Given any ε >

0, the smallest sample size n to ensure the recovery error ‖M̂ − M‖�2 ≤ ε with
probability at least 1 − 3 exp(−δ2/2) is

n ≥ max
{

4σ 2

(1 − c)4 · γ 2
A(M)w2(XA)

ε2 ,
4w2(B

p
2 ∩ TA(M))

c2

}
.

That is, the minimum sample size for guaranteed statistical accuracy is driven by
two geometric terms w(XA)γA(M) and w(B

p
2 ∩ TA(M)). We will see in Sec-

tion 3.5 that these two rates match in a range of specific high-dimensional estima-
tion problems.

The proof of Theorem 1 (and Theorem 4 in Section 4) relies on the following
two key lemmas.
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LEMMA 2 (Choice of tuning parameter). Consider the linear inverse model

(1.1) with Z ∼ N(0, σ 2

n
In). For any δ > 0, with probability at least 1−exp(−δ2/2)

on the σ -field of Z (conditional on X ),∥∥X ∗(Z)
∥∥∗
A ≤ σ√

n

{
w(XA) + δ · sup

v∈A
‖Xv‖�2

}
.(3.2)

This lemma is proved in Section 6. The particular value of λA(X , σ, n) for a
range of examples will be calculated in Section 3.5.

The next lemma addresses the local behavior of the linear operator X around the
true parameter M under the Gaussian ensemble design. We call a linear operator
locally near-isometric if the local isometry constants are uniformly bounded. The
following lemma tells us that in the most widely used Gaussian ensemble case,
the local isometry constants are guaranteed to be bounded, given the sample size
n is at least of order [w(B

p
2 ∩ TA(M))]2. Hence, the difficulty of the problem is

captured by the Gaussian width.

LEMMA 3 (Local isometry bound for gaussian ensemble). Assume the linear
operator X is the Gaussian ensemble design. Let 0 < c < 1 be a constant. For any
δ > 0, if

n ≥ 4[w(B
p
2 ∩ TA(M)) + δ]2

c2 ∨ 1

c
,

then with probability at least 1 − 2 exp(−δ2/2), the local isometry constants are
around 1 with

φA(M,X ) ≥ 1 − c and ψA(M,X ) ≤ 1 + c.

3.2. Local geometric inference: Confidence intervals and hypothesis testing.
For statistical inference on the general linear inverse model, we would like to
choose the smallest η in (2.14) to ensure that, under the Gaussian ensemble de-
sign, the feasibility set for (2.14) is nonempty with high probability. The following
theorem establishes geometric inference for model (1.1).

THEOREM 2 (Geometric inference). Suppose we observe (X , Y ) as in (1.1)
with the Gaussian ensemble design and Z ∼ N(0, σ 2

n
In). Let M̂ ∈ R

p,	 ∈ R
p×p

be the solution of (2.12) and (2.14), and let M̃ ∈ R
p be the de-biased estimator

as in (2.16). Assume p ≥ n � w2(B
p
2 ∩ TA(M)). If the tuning parameters λ,η are

chosen with

λ � σ√
n
w(XA), η � 1√

n
w(XA),

convex programs (2.12) and (2.14) have nonempty feasibility set for 	 with high
probability.
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The following decomposition

M̃ − M = 
 + σ√
n
	X ∗W(3.3)

holds, where W ∼ N(0, In) is the standard Gaussian vector with

	X ∗W ∼ N
(
0,	X ∗X	∗)

and 
 ∈ R
p satisfies ‖
‖�∞ � γ 2

A(M) · λη � σ
γ 2
A(M)w2(XA)

n
. Suppose (n,p(n))

as a sequence satisfies

lim sup
n,p(n)→∞

γ 2
A(M)w2(XA)√

n
= 0,

then for any v ∈ R
p,‖v‖�1 ≤ ρ with ρ finite, we have the asymptotic normality for

the functional 〈v, M̃〉,
√

n

σ

(〈v, M̃〉 − 〈v,M〉) =
√

v∗[
	X ∗X	∗]

v · Z0 + op(1),(3.4)

where Z0 ∼ N(0,1) and limn,p(n)→∞ op(1) = 0 means convergence in probabil-
ity.

It follows from Theorem 2 that a valid asymptotic (1 − α)-level confidence
intervals for Mi,1 ≤ i ≤ p (when v is taken as ei in Theorem 2) is

[
M̃i + �−1

(
α

2

)
σ

√
[	X ∗X	∗]ii

n
,

(3.5)

M̃i + �−1
(

1 − α

2

)
σ

√
[	X ∗X	∗]ii

n

]
.

If we are interested in a linear contrast 〈v,M〉 = v0, ‖v‖�1 ≤ ρ with ρ fixed,
consider the hypothesis testing problem

H0 :
p∑

i=1

viMi = v0 v.s. Hα :
p∑

i=1

viMi �= v0.

The test statistic is
√

n(〈v,M̃〉−v0)

σ (v∗[	X ∗X	∗]v)1/2 and under the null, it follows an asymptotic
standard normal distribution as n → ∞. Similarly, the p-value is of the form 2 −
2�−1(|

√
n(〈v,M̃〉−v0)

σ (v∗[	X ∗X	∗]v)1/2 |) as n → ∞.
Note the asymptotic normality holds for any finite linear contrast, and the

asymptotic variance nearly achieves the Fisher information lower bound, as 	 is an
estimate of the inverse of X ∗X . For fixed dimension inference, Fisher information
lower bound is asymptotically optimal.
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REMARK 1. Note that the condition required for asymptotic normality and
valid confidence intervals,

lim
n,p(n)→∞

γ 2
A(M)w2(XA)√

n
= 0,

is stronger than the one for estimation consistency of the parameter M under the
�2 norm,

lim
n,p(n)→∞

γA(M)w(XA)√
n

= 0.

For inference, we do require stronger condition in order to learn the order of the
bias of the estimate. In the case when n > p and the Gaussian ensemble design,
X ∗X is non-singular with high probability. With the choice of 	 = (X ∗X )−1 and
η = 0, for any i ∈ [p], the following holds nonasymptotically:

√
n(M̃i − Mi) ∼ N

(
0, σ 2[(

X ∗X
)−1]

ii

)
.

3.3. Extension: Correlated design. The results in Sections 3.1 and 3.2 can be
extended beyond Gaussian ensemble (where E[X ∗X ] = I ) to Gaussian design
with known covariance matrix � (where E[X ∗X ] = �). Consider the following
slightly modified point estimation and inference procedure (with tuning parameter
λ,η):

Point Estimation via M̂ M̂ = arg min
M

{‖M‖A : ∥∥X ∗(
Y −X (M)

)∥∥∗
A ≤ λ

}
,

Inference via M̃ 	 : ∥∥X ∗X	∗
i· − �1/2ei

∥∥∗
A ≤ η ∀1 ≤ i ≤ p,(3.6)

M̃ := M̂ + �−1/2	X ∗(
Y −X (M̂)

)
,

where 	 ∈ R
p×p is an solution to the convex feasibility problem (3.6). Then the

following corollary holds.

COROLLARY 1. Suppose we observe (X , Y ) as in (1.1), where the Gaussian

design X has covariance � and Z ∼ N(0, σ 2

n
In). Consider the convex programs

for estimation M̂ and inference M̃ with the tuning parameters chosen as

λ � σ√
n
w(XA), η � 1√

n
w(XA).

Under the condition n � w(B
p
2 ∩ �1/2 ◦ TA(M)), M̂ satisfies

‖M̂ − M‖�2 � σ
γA(M)w(XA)√

n
, ‖M̂ − M‖A � σ

γ 2
A(M)w(XA)√

n
.
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Suppose (n,p(n)) as a sequence satisfies

lim sup
n,p(n)→∞

γ 2
A(M)w2(XA)√

n
= 0,

then for any v ∈ R
p,‖v‖�1 ≤ ρ with ρ finite, we have the asymptotic normality for

the functional 〈�1/2v, M̃〉,
√

n

σ

(〈
�1/2v, M̃

〉 − 〈
�1/2v,M

〉) =
√

v∗[
	X ∗X	∗]

v · Z0 + op(1),

where Z0 ∼ N(0,1) and limn,p(n)→∞ op(1) = 0 means convergence in probabil-
ity.

3.4. Minimax lower bound for local tangent cone. As seen in Sections 3.1 and
3.2, the local tangent cone plays an important role in the upper bound analysis. In
this section, we are interested in restricting the parameter space to the local tangent
cone and seeing how the geometry of the cone affects the minimax lower bound.

THEOREM 3 (Lower bound based on local tangent cone). Suppose we observe

(X , Y ) as in (1.1) with the Gaussian ensemble design and Z ∼ N(0, σ 2

n
In). Let M

be the true parameter of interest. Let 0 < c < 1 be a constant. For any δ > 0, if

n ≥ 4[w(B
p
2 ∩TA(M))+δ]2

c2 ∨ 1
c
. Then with probability at least 1 − 2 exp(−δ2/2),

inf
M̂

sup
M ′∈TA(M)

E·|X
∥∥M̂ − M ′∥∥2

�2
≥ c0σ

2

(1 + c)2 ·
(

e(B
p
2 ∩ TA(M))√

n

)2

for some universal constant c0 > 0. Here, E·|X stands for the conditional expecta-
tion given the design matrix X , and the probability statement is with respect to the
distribution of X under the Gaussian ensemble design.

Recall Theorem 1, the local upper bound is basically determined by
γ 2
A(M)w2(XA), which in many examples in Section 3.5 is of the rate w2(B

p
2 ∩

TA(M)). The general relationship between these two quantities is given in
Lemma 4 below, which is proved in the supplementary material [5], Section A.

LEMMA 4. For any atom set A, we have the following relation:

γA(M)w(A) ≥ w
(
B

p
2 ∩ TA(M)

)
,

where w(·) is the Gaussian width and γA(M) is defined in (2.11).

From Theorem 3, the minimax lower bound for estimation over the local tan-
gent cone is determined by the Sudakov estimate e2(B

p
2 ∩ TA(M)). It follows

directly from Lemma 1 that there exists a universal constant c > 0 such that
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c ·e(Bp
2 ∩TA(M)) ≤ w(B

p
2 ∩TA(M)) ≤ 24

∫ ∞
0

√
logN (B

p
2 ∩ TA(M), ε) dε. Thus

under the Gaussian setting, both in terms of the upper bound and lower bound,
geometric complexity measures govern the difficulty of the estimation problem,
through closely related quantities: Gaussian width and Sudakov estimate.

3.5. Application of the geometric approach. In this section, we apply the
general theory under the Gaussian setting to some of the actively studied high-
dimensional problems mentioned in Section 1 to illustrate the wide applicability
of the theory. The detailed proofs are deferred to the supplementary material [5],
Section B.

3.5.1. High-dimensional linear regression. We begin by considering the high-
dimensional linear regression model (1.2) under the assumption that the true pa-
rameter M ∈ R

p is sparse, say ‖M‖l0 = s. Our general theory applying to the �1
minimization recovers the optimality results as in Dantzig selector and Lasso. In
this case, it can be shown that γA(M)w(A) and w(B

p
2 ∩ TA(M)) are of the same

rate
√

s logp. See the supplementary material [5], Section B for the detailed cal-
culations. The asphericity ratio γA(M) ≤ 2

√
s reflects the sparsity of M through

the local tangent cone and the Gaussian width w(XA) � √
logp. The following

corollary follows from the geometric analysis of the high-dimensional regression
model.

COROLLARY 2. Consider the linear regression model (1.2). Assume that X ∈
R

n×p is the Gaussian ensemble design and the parameter of interest M ∈ R
p is

of sparsity s. Let M̂ be the solution to the constrained �1 minimization (2.12) with

λ = C1σ

√
logp

n
. If n ≥ C2s logp, then

‖M̂ − M‖�2 � σ

√
s logp

n
, ‖M̂ − M‖�1 � σs

√
logp

n
,

∥∥X (M̂ − M)
∥∥
�2

� σ

√
s logp

n

with high probability, where C1,C2 > 0 are some universal constants.

For �2 norm consistency of the estimation for M , we require
limn,p(n)→∞ s logp

n
= 0. However, for valid inferential guarantee, the de-biased

Dantzig selector type estimator M̃ satisfies asymptotic normality under the condi-
tion limn,p(n)→∞ s logp√

n
= 0 through Theorem 2. Under this condition, the confi-

dence interval given in (3.5) has asymptotic coverage probability of (1−α) and its
expected length is at the parametric rate 1√

n
. Furthermore, the confidence intervals

do not depend on the specific value of s. Results in Section 3.2 and 3.3 recover the
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best known result on confidence intervals as in [23, 44, 48]. Our result is a generic
procedure that compensates for the bias introduced by the point estimation convex
program. All these procedures are driven by local geometry.

3.5.2. Low rank matrix recovery. We now consider the recovery of low-rank
matrices under the trace regression model (1.3). The geometric theory leads to
the optimal recovery results for nuclear norm minimization and penalized trace
regression in the existing literature.

Assume the true parameter M ∈ R
p×q has rank r . Let us examine the be-

havior of φA(M,X ), γA(M), and λA(X , σ, n). Detailed calculations given in
the supplementary material [5], Section B show that in this case γA(M)w(A)

and w(B
p
2 ∩ TA(M)) are of the same order

√
r(p + q). The asphericity ratio

γA(M) ≤ 2
√

2r characterizes the low rank structure and the Gaussian width
w(XA) � √

p + q . We have the following corollary for low rank matrix recov-
ery.

COROLLARY 3. Consider the trace regression model (1.3). Assume that X ∈
R

n×pq is the Gaussian ensemble design and the true parameter M ∈ R
p×q is

of rank r . Let M̂ be the solution to the constrained nuclear norm minimization

(2.12) with λ = C1σ
√

p+q
n

. If n ≥ C2r(p + q), then for some universal constants
C1,C2 > 0, with high probability,

‖M̂ − M‖F � σ

√
r(p + q)

n
, ‖M̂ − M‖∗ � σr

√
p + q

n
,

∥∥X (M̂ − M)
∥∥
�2

� σ

√
r(p + q)

n
.

For point estimation consistency under the Frobenius norm loss, the condi-

tion is limn,p(n),q(n)→∞
√

r(p+q)√
n

= 0. For statistical inference, Theorem 2 requires

limn,p(n),q(n)→∞ r(p+q)√
n

= 0, which is essentially n � pq (sample size is larger
than the dimension) for r = 1. This phenomenon happens when the Gaussian width
complexity of the rank-1 matrices is large, that is, the atom set is too rich. We re-
mark that in practice, convex program (2.15) can still be used for constructing
confidence intervals and performing hypothesis testing. However, it is harder to
provide sharp upper bound theoretically for the approximation error η in (2.15),
for any given r,p, q .

3.5.3. Sign vector recovery. We turn to the sign vector recovery model (1.4)
where the parameter of interest M ∈ {+1,−1}p is a sign vector. The convex hull
of the atom set is then the �∞ norm ball. Applying the general theory to the con-
strained �∞ norm minimization (2.13) leads to the optimal rates of convergence
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for the sign vector recovery. The calculations given in the supplementary mate-
rial [5], Section B show that the asphericity ratio γA(M) ≤ 1 and the Gaussian
width w(XB

p
2 ) � √

p. Geometric theory when applied to sign vector recovery
shows the following corollary.

COROLLARY 4. Consider the model (1.4) where the true parameter M ∈
{+1,−1}p is a sign vector. Assume that X ∈ R

n×p is the Gaussian ensemble de-
sign. Let M̂ be the solution to the convex program (2.13) with λ = C1σ

p√
n

and

μ = C1σ
√

p
n

. If n ≥ C2p, then for some universal constant C > 0, with high prob-
ability,

‖M̂ − M‖�2, ‖M̂ − M‖�∞,
∥∥X (M̂ − M)

∥∥
�2

≤ C · σ
√

p

n
.

3.5.4. Orthogonal matrix recovery. We now treat orthogonal matrix recovery
using the spectral norm minimization. Please see Example 4 in Section 2.1 for de-
tails. Consider the same model as in trace regression, but the parameter of interest
M ∈R

m×m is an orthogonal matrix. One can show that w(B
p
2 ∩TA(M)) is of order√

m2 and γA(M) ≤ 1. Applying the geometric analysis to the constrained spectral
norm minimization (2.13) yields the following.

COROLLARY 5. Consider the orthogonal matrix recovery model (1.3). As-
sume that X ∈ R

n×m2
is the Gaussian ensemble matrix and the true parameter

M ∈ R
m×m is an orthogonal matrix. Let M̂ be the solution to the program (2.13)

with λ = C1σ

√
m3

n
and μ = C1σ

√
m2

n
. If n ≥ C2m

2, then with high probability,

‖M̂ − M‖F , ‖M̂ − M‖, ∥∥X (M̂ − M)
∥∥
�2

≤ C · σ
√

m2

n
,

where C > 0 is some universal constant.

3.5.5. Other examples. Other examples that can be formalized under the
framework of the linear inverse model include permutation matrix recovery [22],
sparse plus low rank matrix recovery [12] and matrix completion [15]. The con-
vex relaxation of permutation matrix is double stochastic matrix; the atomic norm
corresponding to sparse plus low rank atom set is the infimal convolution of the �1
norm and nuclear norm; for matrix completion, the design matrix can be viewed
as a diagonal matrix with diagonal elements being independent Bernoulli random
variables. See Section 5 for a discussion on further examples.

4. Local geometric theory: General setting. We have developed in the last
section a local geometric theory for the linear inverse model in the Gaussian set-
ting. The Gaussian assumption on the design and noise enables us to carry out con-
crete and more specific calculations as seen in the examples given in Section 3.5,



1556 T. T. CAI, T. LIANG AND A. RAKHLIN

but the distributional assumption is not essential. In this section, we extend this
theory to the general setting.

4.1. General local upper bound. We shall consider a fixed design matrix X
(in the case of random design, results we will establish are conditional on the
design) and condition on the event that the noise is controlled ‖X ∗(Z)‖∗

A ≤ λn.
We have seen in Lemma 2 of Section 3.1 how to choose λn to make this happen
with overwhelming probability under Gaussian noise.

THEOREM 4 (Geometrizing local convergence). Suppose we observe (X , Y )

as in (1.1). Condition on the event that the noise vector Z satisfies, for some given
choice of localization radius λn, ‖X ∗(Z)‖∗

A ≤ λn. Let M̂ be the solution to the
convex program (2.12) with λn being the tuning parameter. Then the geometric
quantities defined on the local tangent cone capture the local convergence rate
for M̂ :

‖M̂ − M‖A ≤ γA(M)‖M̂ − M‖�2 and further

‖M̂ − M‖�2 ≤ 1

φA(M,X )

∥∥X (M̂ − M)
∥∥
�2

≤ 2γA(M)λn

φ2
A(M,X )

with the local asphericity ratio γA(M) defined in (2.11) and the local lower isom-
etry constant φA(M,X ) defined in (2.9).

Theorem 4 does not require distributional assumptions on the noise, nor does it
impose conditions on the design matrix. Theorem 1 can be viewed as a special case
where the local isometry constant φA(M,X ) and the local radius λn are calculated
explicitly under the Gaussian assumption. Theorem 4 is proved in Section 6 in a
general form, which analyzes convex programs (2.12) and (2.13) simultaneously.

4.2. General geometric inference. Geometric inference can also be extended
to other fixed designs when Z is Gaussian. We can modify the convex feasibility
program (2.14) into the following stronger form:

(	,ηn) = arg min
	,η

{
η : ∥∥X ∗X	∗

i· − ei

∥∥∗
A ≤ η,∀1 ≤ i ≤ p

}
.(4.1)

Then the following theorem holds (proof is analogous to Theorem 2).

THEOREM 5 (Geometric inference). Suppose we observe (X , Y ) as in (1.1)
with Z ∼ N(0, σ 2

n
In). Let M̂ be the solution to the convex program (2.12). Denote

	 and ηn as the optimal solution to the convex program (4.1), and M̃ as the de-
biased estimator. The following decomposition

M̃ − M = 
 + σ√
n
	X ∗W(4.2)
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holds, where W ∼ N(0, In) is the standard Gaussian vector and

	X ∗W ∼ N
(
0,	X ∗X	∗)

.

Here, the bias part 
 ∈ R
p satisfies, with high probability,

‖
‖�∞ ≤ 2 · γ 2
A(M)

φA(M,X )
· λnηn,

provided we choose λn as in Lemma 2.

4.3. General local minimax lower bound. The lower bound given in the Gaus-
sian case can also be extended to the general setting where the class of noise dis-
tributions contains the Gaussian distributions. We aim to geometrize the intrinsic
difficulty of the estimation problem in a unified manner. We first present a gen-
eral result for a convex cone T in the parameter space, which illustrates how the
Sudakov estimate, volume ratio and the design matrix affect the minimax lower
bound.

THEOREM 6. Let T ∈ R
p be a compact convex cone. The minimax lower

bound for the linear inverse model (1.1), if restricted to the cone T , is

inf
M̂

sup
M∈T

E·|X ‖M̂ − M‖2
�2

≥ c0σ
2

ψ2 ·
(

e(B
p
2 ∩ T )√

n
∨ v(B

p
2 ∩ T )√

n

)2

,

where M̂ is any measurable estimator, ψ = supv∈B
p
2 ∩T ‖X (v)‖�2 and c0 is a uni-

versal constant. Here, E·|X is conditioned on the design matrix. e(·) and v(·) de-
note the Sudakov estimate (2.6) and volume ratio (2.8). Then

inf
M̂

sup
M ′∈TA(M)

E·|X
∥∥M̂ − M ′∥∥2

�2

≥ c0σ
2

ψ2
A(M,X )

·
(

e(B
p
2 ∩ TA(M))√

n
∨ v(B

p
2 ∩ TA(M))√

n

)2

.

Theorem 6 gives minimax lower bounds in terms of the Sudakov estimate and
volume ratio. In the Gaussian setting, Lemma 3 shows that the local upper isometry
constant satisfies ψA(M,X ) ≤ 1 + c with probability at least 1 − 2 exp(−δ2/2),
as long as

n ≥ 4[w(B
p
2 ∩ TA(M)) + δ]2

c2 ∨ 1

c
.

We remark that ψA(M,X ) can be bounded under more general design matrix X .
However, under the Gaussian design (even correlated design), the minimum sam-
ple size n to ensure that ψA(M,X ) is upper bounded, is directly determined by
Gaussian width of the tangent cone.
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The geometric complexity of the lower bound provided by Theorem 6 matches
w(B

p
2 ∩TA(M)) if Sudakov minoration of Lemma 1 can be reversed on the tangent

cone, in the sense that w(B
p
2 ∩ TA(M)) ≤ C · e(Bp

2 ∩ TA(M)). Further, recalling
Urysohn’s inequality we have v(B

p
2 ∩ TA(M)) ≤ w(B

p
2 ∩ TA(M)). Hence, if the

reverse Urysohn’s inequality w(B
p
2 ∩ TA(M)) ≤ C · v(B

p
2 ∩ TA(M)) holds for the

local tangent cone, the obtained rate is, again, of the order w(B
p
2 ∩ TA(M)).

5. Discussion. This paper presents a unified geometric characterization of
the local estimation rates of convergence as well as statistical inference for high-
dimensional linear inverse problems. Exploring other interesting applications that
can be subsumed under the general framework is an interesting future research
direction.

For statistical inference, both independent Gaussian design and correlated Gaus-
sian design with known covariance � are considered. The case of unknown � is
an interesting problem for future work.

The lower bound constructed in the current paper can be contrasted with the
lower bounds in [11, 47]. Both the above two papers consider specifically the min-
imax lower bound for high-dimensional linear regression. We focus on a more
generic perspective—lower bounds in Theorem 6 hold in general for arbitrary star-
shaped body T , which includes �p,0 ≤ p ≤ ∞, balls and cones as special cases.

6. Proofs. The proofs of the main results are divided into several parts. For
the upper bound of point estimation, we will first prove Theorem 4 and then two
lemmas, Lemmas 3 and 2 (these two lemmas are included in the supplementary
material [5], Section A). Theorem 1 is then easy to prove. As for the statistical
inference, Theorem 2 is proved based on Theorem 1. For the lower bound of point
estimation, Theorem 3 is a direct result combining Lemma 3 and Theorem 6, which
is proved in the supplementary material [5], Section A. Proofs of corollaries are
deferred to the supplementary material [5], Section B.

PROOF OF THEOREM 4. We will prove a stronger version of the theorem,
analyzing both (2.12) and (2.13). The proof is clean and in a general fashion, fol-
lowing directly from the assumptions of the theorem and the definitions:∥∥X ∗(Y −XM)

∥∥∗
A ≤ λ,∥∥X ∗(Y −XM)

∥∥
�2

≤ μ assumption of the theorem,∥∥X ∗(Y −X M̂)
∥∥∗
A ≤ λ,∥∥X ∗(Y −X M̂)

∥∥
�2

≤ μ constraint in program,

‖M̂‖A ≤ ‖M‖A definition of minimizer.
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Thus, we have∥∥X ∗X (M̂ − M)
∥∥∗
A ≤ 2λ,

∥∥X ∗X (M̂ − M)
∥∥
�2

≤ 2μ and
(6.1)

M̂ − M ∈ TA(M).

The first equation is due to triangle inequality and second one due to Tangent cone
definition. Define H = M̂ − M ∈ TA(M). According to the “Cauchy–Schwarz”
(2.3) relation between atomic norm and its dual,∥∥X (H)

∥∥2
�2

= 〈
X (H),X (H)

〉 = 〈
X ∗X (H),H

〉 ≤ ∥∥X ∗X (H)
∥∥∗
A‖H‖A.

Using the earlier result ‖X ∗X (H)‖∗
A ≤ 2λ, as well as the following two equations

for any H ∈ TA(M)

φA(M,X )‖H‖�2 ≤ ∥∥X (H)
∥∥
�2

local isometry constant,

‖H‖A ≤ γA(M)‖H‖�2 local asphericity ratio

we get the following self-bounding relationship:

φ2
A(M,X )‖H‖2

�2
≤ ∥∥X (H)

∥∥2
�2

≤ 2λ‖H‖A ≤ 2λγA(M)‖H‖�2,

φ2
A(M,X )‖H‖2

�2
≤ ∥∥X (H)

∥∥2
�2

≤ 2μ‖H‖�2 .

Thus, ‖H‖�2 ≤ 2
φ2
A(M,X )

min{γA(M)λ,μ}. The proof is then completed by simple

algebra. Note here under the Gaussian setting, we can plug in λ � w(XA)/
√

n

and μ � w(XB
p
2 )/

√
n using Lemma 2. �

PROOF OF THEOREM 1. Theorem 1 is a special case of Theorem 4 under
Gaussian setting, combining with Lemmas 3 and 2. All we need to show is a good
control of λn and φA(M,X ) with probability at least 1 − 3 exp(−δ2/2) under
Gaussian ensemble and Gaussian noise. We bound λn with probability at least
1 − exp(−δ2/2) via Lemma 2. For φA(M,X ), we can lower bound by 1 − c with
probability at least 1 − 2 exp(−δ2/2). Let us define good event to be when

λn ≤ σ√
n

{
Eg

[
sup
v∈A

〈g,Xv〉
]
+ δ · sup

v∈A
‖Xv‖�2

}

and 1 − c ≤ φA(M,X ) ≤ ψA(M,X ) ≤ 1 + c both hold. It is easy to see this
good event holds with probability 1 − 3 exp(−δ2/2). Thus, all we need to prove is
maxz∈A ‖X z‖ ≤ 1 + c under the good event.

According to Lemma 3, equation (A.3)’s calculation, maxz∈A ‖X z‖/‖z‖ ≤
1 + c is satisfied under the condition n ≥ 1

c2 [w(B
p
2 ∩ A) + δ]2. As we know for

any M , the unit atomic norm ball conv(A) is contained in 2B
p
2 and TA(M), which

means B
p
2 ∩ A ⊂ 2B

p
2 ∩ TA(M), thus w(B

p
2 ∩ A) ≤ 2w(B

p
2 ∩ TA(M)) (mono-

tonic property of Gaussian width). So we have for any M , if n ≥ 4
c2 [w(B

p
2 ∩
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TA(M)) + δ]2 ∨ 1
c
. we have the following two bounds with probability at least

1 − 2 exp(−δ2/2):

max
z∈A ‖X z‖ ≤ 1 + c,

(6.2)
1 − c ≤ φA(M,X ) ≤ ψA(M,X ) ≤ 1 + c.

Now plugging (6.2) into the expression of Lemma 2, together with Lemma 3,
Theorem 4 reduces to Theorem 1. �

PROOF OF THEOREM 2. We first prove that, with high probability, the convex
program (2.14) is indeed feasible with 	 = In. Equivalently, we establish that, with
high probability, for any 1 ≤ i ≤ p, ‖X ∗X ei − ei‖∗

A ≤ η for some proper choice

of η. Here, X ∈ R
n×p , and the entries Xij

i.i.d.∼ N(0,1/n). Denote g = √
nX·i as a

scaling version of the ith column of X , g ∼ N(0, In) and g′ ∼ N(0, In) being an
independent copy. Below Op(·) denotes the asymptotic order in probability. We
have, for all 1 ≤ i ≤ p uniformly,∥∥X ∗X ei − ei

∥∥∗
A

= sup
v∈A

〈
X ∗X ei − ei, v

〉 = sup
v∈A

〈
X ∗g − ei, v

〉
/
√

n

≤ sup
v∈A

〈
X ∗

(−i)g, v
〉
/
√

n + sup
v∈A

(
1

n

n∑
j=1

g2
j − 1

)
vi

w.h.p.

� w(X(−i)A)√
n

+ Op(
√

logp/n) invoking Lemma 2(6.3)

≤ w(XA)√
n

+ Eg′ supv∈A
∑n

k=1 g′
kXki(−vi)√

n
+ Op(

√
logp/n)

≤ w(XA)√
n

+
√
Eg′(

∑n
k=1 g′

kXki)2 · supv∈A v2
i√

n
+ Op(

√
logp/n)

≤ w(XA)√
n

+
√

1 + Op(
√

logp/n)

n
+ Op(

√
logp/n),

where X(−i) is the linear operator setting ith column to be all zeros. We applied
Lemma 2 in establishing the above bounds.

For the de-biased estimate M̃ , we have M̃ = M̂ + 	X ∗(Y − X (M̂)) and M̃ −
M = (	X ∗X −Ip)(M −M̂)+	X ∗Z := 
+ σ√

n
	X ∗W . Then for any 1 ≤ i ≤ p,

from the Cauchy–Schwarz relationship (2.3),

|
i | = ∣∣〈X ∗X	∗
i· − ei,M − M̂

〉∣∣ ≤ ∥∥X ∗X	∗
i· − ei

∥∥∗
A‖M − M̂‖A

(6.4)

≤ σ
γ 2
A(M)w2(XA)

n
.
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The last line invokes the consistency result in Theorem 1, ‖M̂ − M‖A �
σ

γ 2
A(M)w(XA)√

n
. Thus we have ‖
‖�∞ � σ

γ 2
A(M)w2(XA)

n
. For any linear contrast

‖v‖�1 ≤ ρ, we have
√

n
σ

v∗(M̃ − M) = v∗	X ∗W +
√

n
σ

v∗
,

lim sup
n,p(n)→∞

√
n

σ
v∗
 ≤ lim sup

n,p(n)→∞

√
n

σ
‖v‖�1‖
‖�∞

≤ ρ · lim sup
n,p(n)→∞

γ 2
A(M)w2(XA)√

n
= 0,

and v∗	X ∗W ∼ N(0, v∗[	X ∗X	∗]v). �

PROOF OF THEOREM 3. Theorem 3 is a special case of Theorem 6, com-
bining with Lemma 3 (both in the supplementary material [5], Section A). Plug
in the general convex cone T by local tangent cone TA(M), then upper bound
ψA(M,X ) ≤ 1 + c with high probability via Lemma 3. �
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SUPPLEMENTARY MATERIAL

“Geometric inference for general high-dimensional linear inverse prob-
lems” (DOI: 10.1214/15-AOS1426SUPP; .pdf). Due to space constraints, we have
relegated remaining proofs to the Supplement [5], where details of proof for Lem-
mas 2–4, Theorem 6 and Corollary 1–5 are included.
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