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MINIMAX OPTIMAL RATES OF ESTIMATION IN HIGH
DIMENSIONAL ADDITIVE MODELS

BY MING YUAN1 AND DING-XUAN ZHOU2

University of Wisconsin-Madison and City University of Hong Kong

We establish minimax optimal rates of convergence for estimation in a
high dimensional additive model assuming that it is approximately sparse.
Our results reveal a behavior universal to this class of high dimensional prob-
lems. In the sparse regime when the components are sufficiently smooth or
the dimensionality is sufficiently large, the optimal rates are identical to those
for high dimensional linear regression and, therefore, there is no additional
cost to entertain a nonparametric model. Otherwise, in the so-called smooth
regime, the rates coincide with the optimal rates for estimating a univariate
function and, therefore, they are immune to the “curse of dimensionality.”

1. Introduction. With the recent advances in science and technology, high di-
mensional regression problems have become ubiquitous in a multitude of areas—
genomics, medical imaging and finance are a few well-known examples. A con-
siderable amount of research effort has been devoted to the understanding of chal-
lenges brought about by the high dimensionality, and development of statistical
methodology to counter them. Most of the existing work focuses on high dimen-
sional linear regression where a number of approaches such as the nonnegative
garrote [Breiman (1995)], the Lasso [Tibshirani (1996)], the SCAD [Fan and Li
(2001)] and the Dantzig selector [Candes and Tao (2007)] have been developed to
exploit sparsity, or perform variable selection; and much progress has also been
made to understand to what extent a high dimensional regression coefficient vec-
tor can be reliably estimated; see, for example, Koltchinskii (2011), Bühlmann and
van de Geer (2011) and references therein.

Linear models, however, could be too restrictive in many applications. As a
more flexible alternative, high dimensional additive models have attracted much
attention in the past several years. See, for example, Lin and Zhang (2006), Yuan
(2007), Koltchinskii and Yuan (2008), Ravikumar et al. (2009), Meier, van de Geer
and Bühlmann (2009), Huang, Horowitz and Wei (2010), Koltchinskii and Yuan
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(2010), Fan, Feng and Song (2011), Raskutti, Wainwright and Yu (2012) and Cui
et al. (2013) among others. Let {(Xi, Yi) : i = 1, . . . , n} be independent copies of
a random couple (X,Y ) following a regression model

Y = f (X) + ε,(1.1)

where the error ε follows a N (0, σ 2) distribution. The additive model amounts to
the assumption that

f (x1, . . . , xd) = f1(x1) + · · · + fd(xd),(1.2)

where the component functions fj s are modeled nonparametrically; see, for exam-
ple, Stone (1985) or Hastie and Tibshirani (1990). Here, we assume that they reside
in certain reproducing kernel Hilbert spaces (RKHS); see, for example, Aronszajn
(1950) and Wahba (1990).

To fix ideas, assume that X follows a distribution � supported on a product
space X d for some compact subset X of R, and that all component functions come
from a common RKHS of functions on X , denoted by (H1,‖ · ‖H1). It is clear that
the additive model (1.2) can be identified with space

Hd := H1 ⊕ · · · ⊕H1

= {g :X d →R|g(x1, . . . , xd) = g1(x1) + · · · + gd(xd),

and g1, . . . , gd ∈ H1
}
.

Obviously, linear models can be viewed as a trivial special case of (1.2) by taking
H1 to be the collection of all univariate linear functions defined over X . Another
canonical example of H1 is the mth (2m > k) order Sobolev space Wm

2 ([0,1]k)
defined on a unit interval (X = [0,1]k). See, for example, Wahba (1990) for further
examples.

We note that for a general g ∈ Hd , the additive representation given by (1.2)
may not be unique. Define the (quasi-)norm ‖f ‖�q(Hd ) (q > 0) by

‖g‖�q(Hd )

= inf
{∥∥(‖g1‖H1, . . . ,‖gd‖H1

)�∥∥
�q

: g1(x1) + · · · + gd(xd) = g(x1, . . . , xd)

and g1, . . . , gd ∈ H1
}
.

In other words, ‖f ‖�q(Hd ) is the �q norm of the vector of RKHS norms of its com-
ponent functions minimized over all of its additive representations. In particular,
when q = 2, ‖ · ‖�2(Hd ) can be viewed as a RKHS norm. More specifically, let
K : X ×X →R be a Mercer kernel generating the RKHS (H1,‖ · ‖H1) and write

Kd

(
(x1, . . . , xd)�,

(
x′

1, . . . , x
′
d

)�)= K
(
x1, x

′
1
)+ · · · + K

(
xd, x′

d

)
.

It is not hard to see that Kd is the generating kernel of the RKHS (Hd,‖ · ‖�2(Hd )).
Another special case of the �q(Hd) norm defined above is the case when q ↓ 0.
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‖·‖�0(Hd ) can be interpreted as the smallest number of additive components needed
to express a function from Hd .

When the dimension d is large, it is of particular interest to consider the case
when f resides in an �q(Hd) ball for 0 < q < 1:

BR

(
�q(Hd)

)= {g ∈ Hd : ‖g‖q
�q(Hd ) ≤ R

}
.

Write

‖g‖L2(�) =
(∫

X d
g2(x) d�(x)

)1/2

.

We are interested in the minimax optimal rate of convergence for estimating f in
terms of the squared ‖ · ‖L2(�) norm. In particular, when the eigenvalues of the
K decays polynomially, that is, its kth largest eigenvalue is of the order k−2α ,
our results imply that the minimax optimal rate for estimating f ∈ BR(�q(Hd)) is
given by

R(n, d) =
(

logd

n

)1−q/2

+ n−2α/r2α+1,(1.3)

up to a constant scaling factor. The optimal rate of convergence given by (1.3)
exhibits an interesting two-regime dichotomy as illustrated in Figure 1.

FIG. 1. When the smoothness index α and dimensionality measured by log logd/ logn falls in
the smooth region in the figure above, the optimal rate is given by n−2α/(2α+1) which is determined
solely by the smoothness index. On the other hand, if they fall into the sparse regime, then the optimal
rate is given by (n−1 logd)1−q/2 which is determined entirely by the dimensionality.
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More specifically, when the component functions are not sufficiently smooth in
the sense that

α <
1

q
− 1

2
,

the second term on the right-hand side of (1.3) is dominated by the first one if d is
ultra-large:

d > exp
[
n(2/(2−q))(1/(2α+1)−q/2)],

and hence the minimax optimal rate becomes

R(n, d) 

(

logd

n

)1−q/2

,(1.4)

where we write for two positive sequences an,d and bn,d , an,d 
 bn,d if an,d/bn,d

is bounded away from both zero and infinity. The rate given by (1.4) happens to
be the minimax optimal rate for estimating a d dimensional linear regression when
assuming the vector of regression coefficient comes from a �q ball in R

d ; see, for
example, Ye and Zhang (2010) or Raskutti, Wainwright and Yu (2011). On the
other hand, when

d ≤ exp
[
n(2/(2−q))(1/(2α+1)−q/2)],

the optimal rate is given by

R(n, d) 
 n−2α/(2α+1).

This rate coincides with the optimal rate for estimating f if we know in ad-
vance that it actually comes from a single component space H1, for example,
f2 = · · · = fd = 0, rather than the d-variate function space Hd ; see, for exam-
ple, Stone (1980, 1982) and Tsybakov (2009). Similar phenomenon depending on
the dimensionality d has also been observed earlier for high dimensional addi-
tive models under exact sparsity (q = 0); see, for example, Koltchinskii and Yuan
(2010), Raskutti, Wainwright and Yu (2012) and Suzuki and Sugiyama (2013).
Our results suggest that such phenomenon is more universal and applies in general
to the approximate sparse case.

It is also worth pointing out that such a regime-switch in d vanishes when the
component functions are sufficiently smooth in that

α ≥ 1

q
− 1

2
,

a phenomenon absent in the case of exact sparsity (q = 0). In this situation, the
second term on the right-hand side of (1.3) is always dominated by the first one
and, therefore, the optimal rate is always

R(n, d) 

(

logd

n

)1−q/2

.
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In other words, we pay no extra price, in terms of rates of convergence, for enter-
taining a generally nonparametric additive model (1.2) when compared with the
much more restrictive linear models, regardless of the value of d .

Although we focus on additive models, our general framework is also closely
related to multiple kernel learning or “aggregation” of kernel machines, a popular
technique in machine learning to combine multiple kernels instead of using a single
one in order to achieve improved prediction performance. These type of problems
have been studied previously by Bousquet and Herrmann (2003), Crammer, Keshet
and Singer (2003), Lanckriet et al. (2004), Micchelli and Pontil (2005), Srebro and
Ben-David (2006), Bach (2008) and Suzuki and Sugiyama (2013) among others.
It is expected that our results here could lead to further understanding of these
problems as well.

The rest of the paper is organized as follows. We first review some basic con-
cepts and properties of reproducing kernel Hilbert spaces in Section 2. Section 3
presents the main results. All proofs are relegated to Section 4.

2. Reproducing Kernel Hilbert Spaces. We begin with a brief review of
some of the basic facts about RKHS, which we shall make repeated use later on.
Interested readers are referred to Aronszajn (1950) and Wahba (1990) for further
details. In particular, we shall focus on the j th component space, for example, the
RKHS defined on the j th coordinate of X ∈ X d .

2.1. Kernel and RKHS. Recall that K is a symmetric positive semi-definite,
square integrable function on X ×X . It can be uniquely identified with the Hilbert
space H1 that is the completion of{

K(x, ·) : x ∈ X
}

under the inner product〈∑
i

ciK(xi, ·),
∑
j

c′
jK
(
x′
j , ·
)〉

K

=∑
i,j

cic
′
jK
(
xi, x

′
j

)
.

In the rest of the section, we shall write H1 and H(K) interchangeably with the
latter notion emphasizing the one-to-one correspondence between a kernel and a
RKHS. Most, if not all, the commonly used kernels are bounded, which we shall
assume in what follows. In fact, without loss of generality, we shall assume in the
rest of the paper that supx K(x, x) = 1. Note that, for any h ∈ H(K),

‖h‖∞ := sup
x∈X
∣∣h(x)

∣∣= sup
x∈X
∣∣〈h,K(x, ·)〉K ∣∣≤ sup

x

∥∥K(x, ·)∥∥K‖h‖K,(2.1)

by the Cauchy–Schwarz inequality. Recall that∥∥K(x, ·)∥∥2
K = 〈K(x, ·),K(x, ·)〉K = K(x,x) ≤ 1.



HIGH DIMENSIONAL ADDITIVE MODELS 2569

Thus,

‖h‖∞ ≤ ‖h‖K,

a convenient fact that we shall use repeatedly in the later analysis.
By the spectral theorem, K admits the following eigenvalue decomposition:

K
(
x, x′)=∑

k≥1

λjkϕjk(x)ϕjk

(
x′),(2.2)

where λj1 ≥ λj2 ≥ · · · ≥ 0 are its eigenvalues and {ϕjk : k ≥ 1} are the correspond-
ing eigenfunctions such that

〈ϕjk, ϕjk′ 〉L2(�j ) = δkk′ .

Here, �j is the j th marginal distribution of �, and δkk′ is the Kronecker delta.
Note that the decomposition (2.2) depends on the j th marginal distribution �j

through eigenfunctions ϕjks. It is well known that the RKHS-norm of any h ∈
H(K) can be written as

‖h‖2
K =∑

k≥1

1

λjk

〈h,ϕjk〉2
L2(�j ),

which means that the “smoothness” of functions in H(K) is determined by the
rate of decay of the eigenvalues λjk , and the unit balls in the RKHS H(K) are
ellipsoids in the space L2(�j ) with “axes”

√
λjk . For example, it is well known

that if �j is the Lebesgue measure on [0,1], then λjk 
 k−2α for Wα
2 .

2.2. Complexity of RKHS. How well we can recover a function from a partic-
ular RKHS is fundamentally related to the capacity of the unit ball in H(K):

B1
(
H(K)

) := {h ∈H(K) : ‖h‖K ≤ 1
}
.

See, for example, Yang and Barron (1999). In particular, the capacity of B1(H(K))

can be measured by its covering number N (B1(H(K)), δ,‖ · ‖∞) where ‖ · ‖∞ is
defined in (2.1). Recall that for δ > 0 and a set F of continuous functions on a
metric space X , the covering number N (F, δ,‖ · ‖∞) with respect to the ‖ · ‖∞
metric is defined as the smallest integer m such that

F =
m⋃

i=1

{
f ∈ F : ∥∥f − f (i)

∥∥∞ ≤ δ
}

for some {f (i)}mi=1 ⊂ F . In particular, if λjk = O(k−2α) and supj,k ‖ϕjk‖∞ < ∞,
then

logN
(
B1
(
H(K)

)
, δ,‖ · ‖∞

)≤ cδ−1/α ∀δ > 0,(2.3)

for some constant c > 0. This holds, for example, for Sobolev spaces of order α.
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For our purposes, we are also interested in certain data-dependent estimates of
the complexity of a function class, namely, Rademacher and Gaussian complexi-
ties; see, for example, Bartlett and Mendelson (2002). Write

Rjn(u) := sup
h∈B1(H(K)):‖h‖L2(�j )≤u

∣∣∣∣∣1n
n∑

i=1

σih(xij )

∣∣∣∣∣,(2.4)

where σis are i.i.d. Rademacher variables, that is, P(σi = 1) = P(σi = −1) = 1/2.
The following bound of Rjn will become useful for our later analysis.

LEMMA 2.1. Assume that λjk ≤ c1k
−2α and supj,k ‖ϕjk‖L∞ < c2 for some

constants c1, c2 > 0. Then there exists a constant c > 0 depending on α, c1 and c2
only such that for any β > 0, with probability at least 1 − d−β ,

Rjn(u) ≤ cn−1/2
(
u1−1/(2α) + u

√
β logd + β logd√

n
+ e−d

)
uniformly for all u ∈ [0,1].

Another quantity of interests to us is the “empirical” Gaussian complexity of
the unit ball in H(K):

Ẑjn(u) := sup
h∈B1(H(K)):‖h‖L2(�jn)≤u

∣∣∣∣∣1n
n∑

i=1

εih(xij )

∣∣∣∣∣(2.5)

where �jn is the j th marginal of the empirical distribution �n. Similar to
Lemma 2.1, we have the following bound for Ẑjn.

LEMMA 2.2. Assume that λjk ≤ c1k
−2α and supj,k ‖ϕjk‖L∞ < c2 for some

constants c1, c2 > 0. Then there exists a constant c > 0 depending on α, c1 and c2
only such that for any β > 0, with probability at least 1 − d−β ,

Ẑjn(u) ≤ cn−1/2(u1−1/(2α) + u
√

β logd + e−d)
uniformly for all u ∈ [0,1].

Both Lemmas 2.1 and 2.2 appears to be standard and follow from a standard
peeling argument [see, e.g., van de Geer (2000)]. Although they are useful for our
analysis, we are unable to find these specific results in the literature. For complete-
ness, we present their proofs in Section 4.2.

3. Main results. In what follows, we shall assume that there exists a constant
ηq > 1 such that

η−1
q ‖g‖2

L2(�) ≤
d∑

j=1

‖gj‖2
L2(�j ) ≤ ηq‖g‖2

L2(�)(3.1)
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for any g ∈ BR(�q(Hd)), where

g(x1, . . . , xd) = g1(x1) + · · · + gd(xd)

and

‖g‖q
�q(Hd ) =

d∑
j=1

‖gj‖q
H1

.

Condition (3.1) is a nonparametric version of the restricted eigenvalue conditions
commonly used in analyzing sparse estimation in high dimensional linear regres-
sion; see, for example, Bickel, Ritov and Tsybakov (2009). It is worth noting that
different from the usual restricted eigenvalue conditions in linear regression, Con-
dition (3.1) is on the distribution of X rather than the design matrix, or observations
X1, . . . ,Xn. The condition is satisfied in particular when � is a product measure.

To fix ideas, in the rest of the paper, we shall also assume that there exist a
constant cλ > 1 and a nonincreasing sequence of nonnegative numbers λ1 ≥ λ2 ≥
· · · such that

c−1
λ λk ≤ λjk ≤ cλλk,(3.2)

for all j = 1,2, . . . , d and k ≥ 1. In addition, similar to the treatment of high di-
mensional linear models [see, e.g., Raskutti, Wainwright and Yu (2011)], we shall
assume in the rest of the paper that c0n

q/2 ≤ d ≤ en for some universal constant
c0 > 0 to ensure nontrivial probabilistic bounds. This, in particular, is true in high
dimensional settings where n < d < en.

We are now in position to present the main results. We first state a minimax
lower bound.

THEOREM 3.1. Assume that λk = k−2α for some α > 1/2. Under the regres-
sion model (1.1) where f ∈ BR(�q(Hd)) and the covariate X follows a distribution
� such that (3.1) and (3.2) hold, and the eigenfunctions {ϕjk : j = 1, . . . , d, k ≥ 1}
are uniformly bounded, there exists a constant c > 0 depending on σ 2, α, R, cλ

and ηq only such that

lim
n→∞ inf

f̃

sup
f ∈BR(�q(Hd ))

P

{
‖f̃ − f ‖2

L2(�) ≥ c

[(
logd

n

)1−q/2

+ n−2α/(2α+1)

]}
> 0.

The lower bound is established via Fano’s lemma; see, for example, Cover and
Thomas (1991). We relegate its proof to Section 4. Next, we show that the rates
given in the lower bound in the previous theorem is attainable. In particular, we
consider the least squares estimator:

f̂ = argmin
g∈BR(�q(Hd ))

{
1

n

n∑
i=1

[
Yi − g(Xi)

]2}
.(3.3)

The next result shows that f̂ is indeed minimax rate optimal.
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THEOREM 3.2. Assume that λk = k−2α for some α > 1/2. Under the regres-
sion model (1.1) where f ∈ BR(�q(Hd)) and the covariate X follows a distribution
� such that (3.1) and (3.2) hold, and the eigenfunctions {ϕjk : j = 1, . . . , d, k ≥ 1}
are uniformly bounded, there exists a constant c > 0 depending on σ 2, α, R, cλ

and ηq only such that for any β > 0 with probability at least 1 − d−β ,

‖f̂ − f ‖2
L2(�) ≤ c(β + 1)

[(
logd

n

)1−q/2
+ n−2α/(2α+1)

]
(3.4)

and

‖f̂ − f ‖2
L2(�n) ≤ c(β + 1)

[(
logd

n

)1−q/2

+ n−2α/(2α+1)

]
,(3.5)

where f̂ is the least squares estimator defined by (3.3).

The proof of Theorem 3.2 is also presented in Section 4. It relies on several
basic facts of the empirical processes theory such as symmetrization inequalities
and contraction inequalities for Rademacher processes that can be found in the
books of Ledoux and Talagrand (1991) and van der Vaart and Wellner (1996).
We also use Talagrand’s concentration inequality for empirical processes; see, for
example, Talagrand (1996) and Bousquet (2002).

Theorems 3.1 and 3.2 together immediately imply that the minimax optimal rate
for estimating f ∈ BR(�q(Hd)) is

‖f̂ − f ‖2
L2(�) 


(
logd

n

)1−q/2

+ n−2α/(2α+1).

This result connects with two strands of literature—estimating high dimensional
linear regression assuming that the coefficient vector belongs to an �q ball, and es-
timating a high dimensional additive model assuming that the underlying function
comes from a �0(Hd) ball. In the case of linear regression, it is known that the
�1 penalty or the Lasso [Tibshirani (1996)] leads to rate optimal estimators under
suitable regularity conditions; see, for example, Ye and Zhang (2010). A simi-
lar phenomenon has also been observed for the high dimensional additive models
where it is shown that a mixed �1 norm penalty of the form

a2
n

d∑
j=1

‖gj‖H1 + an

d∑
j=1

‖gj‖L2(�jn)(3.6)

can lead to rate optimal estimators with appropriate choices of the tuning param-
eter an > 0; see, for example, Koltchinskii and Yuan (2010) and Raskutti, Wain-
wright and Yu (2012). The use of a mixed �1 penalty of the form (3.6) highlights
the difference between linear models and additive models. When dealing with non-
parametric component functions, we need to penalize both the RKHS norm and L2
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norm; the former ensures smoothness of the estimate whereas the latter is needed
for thresholding redundant components, and hence inducing sparsity.

A natural question is whether or not a similar strategy will lead to minimax
rate optimal estimators under an �q(Hd) ball for general 0 < q ≤ 1. Somewhat
surprisingly, the answer appears to be negative in general, and we give here a
heuristic argument why. The challenge occurs in the smooth regime where

α <
1

q
− 1

2
and d ≤ exp

[
n(2/2−q)(1/(2α+1)−q/2)].

Recall that the corresponding minimax optimal rate of convergence in the smooth
regime is given by

n−2α/(2α+1).

As pointed out before, this is the best possible rate of convergence even if there is
only one nonzero component. And to achieve this rate, we need to choose

an � n−α/(2α+1),(3.7)

because, if an is smaller, then in the particular case of one nonzero component,
the minimax optimal rate cannot be attained; see, for example, Tsybakov (2009)
or Koltchinskii and Yuan (2010). Now for a general f from the unit �q(Hd) ball,
we will need a diverging number of nonzero components to approximate it. More
precisely, as we shall show in the proofs, we may need estimate up to⌈(

n

logd

)q/2⌉
nonzero components to balance the approximation error and estimation error due
to estimating the nonzero component functions. If we choose an to be of the order
given by (3.7), then each component can only be estimated with squared L2 error
of the order of

a2
n � n−2α/(2α+1),

leading to an overall rate of convergence no smaller than, up to a multiplicative
constant, (

n

logd

)q/2

n−2α/(2α+1),

at least under the assumption that � is a product measure. This rate is obviously
suboptimal. As a result, in the smooth regime, no matter what value an is, we
cannot attain the minimax optimal rate of convergence through a mixed �1 penalty
of the form (3.6).

As a working model, we assume that the eigenvalues decay at the same poly-
nomial rate across components, and the eigenfunctions ϕjks are bounded, which
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hold true for Sobolev kernels among other commonly used kernels. It is of inter-
est to consider more general settings, for example, when the eigenfunctions are
unbounded, or if the eigenvalues decay at different rates, or if the eigenvalues for
some components decay even exponentially. It is conceivable that our analysis
could be extended to deal with more general situations. But as in the single kernel
case, treating these more general cases is typically more tedious and technical, and
we shall leave them for future studies.

4. Proofs.

4.1. Proof of main results. We now prove the main results Theorems 3.1 and
3.2. For brevity, we shall also assume that σ 2 = 1 and R = 1 in the proofs. The
more general case follows an identical arguments with different constants.

4.1.1. Lower bounds. We establish the lower bound via Fano’s lemma. To this
end, we need to construct a set of functions

G := {g1, . . . , gM}⊂ B1
(
�q(Hd)

)
that are sufficiently apart from each other. Let N be a natural number whose value
will be specified later. For a matrix A ∈ {−1,0,1}d×N , denote by sA the number
of its nonzero rows, that is,

sA = card{i : Ai· �= 0},
where Ai· is the ith row vector of A. Write

gA(x1, . . . , xd) = N−1/2s
−1/q
A

d∑
j=1

N∑
k=1

ajkλ
1/2
j,N+kϕj,N+k(xj ).

It is clear that

‖gA‖q
�q(Hd ) ≤ N−q/2s−1

A

d∑
j=1

∥∥∥∥∥
N∑

k=1

ajkλ
1/2
j,N+kϕj,N+k(xj )

∥∥∥∥∥
q

H1

= s−1
A

d∑
j=1

(
N−1

N∑
k=1

a2
jk

)q/2

.

Because a2
jk ∈ {0,1}, this can be further bounded by

‖gA‖q
�q(Hd ) ≤ s−1

A

d∑
j=1

I(Ai· �= 0) = 1,

which implies that gA ∈ B1(�q(Hd)).
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We now describe how to generate the set G. In particular, we consider functions
of the form gA with A ∈ {±1,0}d×N as described before. We first choose s rows
of A to be nonzero, and set the rest of the rows of A to be zero. The value of s will
become clear later. To this end, we appeal to the Vershamov–Gilbert lemma which
states that we can find a set {θ1, . . . , θM1} ⊂ {0,1}d such that:

(a) ‖θk‖�1 = s for 1 ≤ k ≤ M1;
(b) for any k �= k′, ‖θk − θk′‖�1 ≥ s/2;
(c) logM1 ≥ 1

4s log(d/s).

See, for example, Massart (2007). For a given θ , we set zero the rows of A if the
corresponding coordinate of θ is zero. In the next step, we fill in the remaining
rows of A with ±1. Again, by the Vershamov–Gilbert lemma, there exists a set
{1, . . . ,M2} ∈ {±1}s×N such that:

(a′) for any k �= k′, ‖k − k′‖2
F ≥ Ns/2;

(b′) logM2 ≥ Ns/8.

For a given , we shall fill in the nonzero rows of A by , leading to a collection

G = {gA(θj ,k) : 1 ≤ j ≤ M1,1 ≤ k ≤ M2},
where A(θ,) is a d ×N matrix whose ith row is zero if the ith entry of θ is zero,
and the collection of the nonzero rows of A is given by . In what follows, for
brevity, we shall write

G = {gAk
: 1 ≤ k ≤ M},

where M = M1M2 and

A= {Ak : 1 ≤ k ≤ M}
is the collection of d × N matrices of the form A(θj ,k). By (c) and (b′),

logM ≥ 1
4s log(d/s) + 1

8Ns.

Note that, for any two matrices A,B ∈ {−1,0,1}d×N such that sA = sB =: s,
we have

‖gA − gB‖2
L2(�) = N−1s−2/q

∫
X d

(
d∑

j=1

N∑
k=1

(ajk − bjk)λ
1/2
j,N+kϕj,N+k(xj )

)2

× d�
(
(x1, . . . , xd)�

)
≥ η−1

q N−1s−2/q
d∑

j=1

∥∥∥∥∥
N∑

k=1

(ajk − bjk)λ
1/2
j,N+kϕj,N+k

∥∥∥∥∥
2

L2(�j )

= η−1
q N−1s−2/q

d∑
j=1

N∑
k=1

λj,N+k(ajk − bjk)
2,
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where the inequality follows from (3.1). By (3.2), this can be further lower-
bounded by

‖gA − gB‖2
L2(�) ≥ c−1

λ η−1
q N−1s−2/q

d∑
j=1

N∑
k=1

λN+k(ajk − bjk)
2

≥ c−1
λ η−1

q N−1s−2/qλ2N

d∑
j=1

N∑
k=1

(ajk − bjk)
2

= c−1
λ η−1

q 2−2αN−1−2αs−2/q‖A − B‖2
F.

By construction, for any A �= A′ ∈A,∥∥A − A′∥∥2
F ≥ Ns/2,

and hence, ∥∥gA − gA′
∥∥2
L2(�) ≥ c−1

λ η−1
q 2−1−2αN−2αs1−2/q .

On the other hand, for any A ∈ A,

‖gA‖2
L2(�) = N−1s−2/q

∫
X d

(
d∑

j=1

N∑
k=1

ajkλ
1/2
j,N+kϕj,N+k(xj )

)2

d�
(
(x1, . . . , xd)�

)

≤ ηqN
−1s−2/q

d∑
j=1

∥∥∥∥∥
N∑

k=1

ajkλ
1/2
j,N+kϕj,N+k

∥∥∥∥∥
2

L2(�j )

= ηqN
−1s−2/q

d∑
j=1

N∑
k=1

λj,N+ka
2
jk

≤ cληqN
−1s−2/q

d∑
j=1

N∑
k=1

λN+ka
2
jk

≤ cληqN
−1s−2/qλN

d∑
j=1

N∑
k=1

a2
jk

= cληqN
−2αs1−2/q .

Following a standard argument, the lower bound can be reduced to the error
probability in a multi-way hypothesis test; see, for example, Tsybakov (2009).
More specifically, let � be a random variable uniformly distributed on {1, . . . ,M}.
Then it can be deduced that

inf
f̃

sup
f ∈B1(�q(Hd ))

P

{
‖f̃ − f ‖2

L2(�) ≥ 1

4
min

A �=A′∈A‖gA − gA′‖2
L2(�)

}
≥ inf

�̂
P{�̂ �= �},
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where the infimum on the right-hand side is taken over all decision rules that are
measurable functions of the data. By Fano’s lemma, we get

P{�̂ �= �|X1, . . . ,Xn} ≥ 1 − 1

logM

[
IX1,...,Xn(Y1, . . . , Yn;�) + log 2

]
,(4.1)

where IX1,...,Xn(Y1, . . . , Yn;�) is the mutual information between � and Y1, . . . ,

Yn with X1, . . . ,Xn being held fixed. It is not hard to derive

EX1,...,Xn

[
IX1,...,Xn(Y1, . . . , Yn;�)

]
≤
(

M

2

)−1 ∑
A �=A′∈A

EX1,...,XnK(PgA
‖PgA′ )

≤ n

2

(
M

2

)−1 ∑
A �=A′∈A

EX1,...,Xn‖gA − gA′‖2
L2(�n),

where K(·‖·) denote the Kullback–Leibler distance, Pg stands for conditional dis-
tribution of {Yi : 1 ≤ i ≤ n} given {Xi : 1 ≤ i ≤ n} and the true regression function
in (1.1) is given by f = g, and for any g : X d →R,

‖g‖2
L2(�n) = 1

n

n∑
i=1

[
g(Xi)

]2
.

Thus,

EX1,...,Xn

[
IX1,...,Xn(Y1, . . . , Yn;�)

]≤ n

2

(
M

2

)−1 ∑
A �=A′∈A

‖gA − gA′‖2
L2(�)

≤ n

2
max

A �=A′∈A
‖gA − gA′‖2

L2(�)

≤ 2nmax
A∈A ‖gA‖2

L2(�)

≤ 2cληqnN−2αs1−2/q .

Now, from (4.1), we get

inf
f̃

sup
f ∈B1(�q(Hd ))

P
{‖f̃ − f ‖2

2 ≥ c−1
λ η−1

q 2−2−2αN−2αs1−2/q}
≥ inf

�̂
P{�̂ �= �}

≥ 1 − EX1,...,Xn[IX1,...,Xn(Y1, . . . , Yn;�)] + log 2

logM

≥ 1 − 2cληqnN−2αs1−2/q + log 2

(1/4)s log(d/s) + (1/8)Ns
.
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Taking N = 1 and

s = C1

(
n

logd

)q/2

for a sufficiently small constant C1 > 0 yields

inf
f̃

sup
f ∈B1(�q(Hd ))

P

{
‖f̃ − f ‖2

2 ≥ C2

(
logd

n

)1−q/2}
≥ 3/4,(4.2)

for some constant C2 > 0 depending on α, ηq and cλ only. On the other hand, if
α ≤ 1/q − 1/2, taking

s = 1 and N = C1n
1/(2α+1)

for a sufficiently small constant C1 > 0 yields

inf
f̃

sup
f ∈B1(�q(Hd ))

P
{‖f̃ − f ‖2

2 ≥ C2n
−2α/(2α+1)}≥ 3/4.(4.3)

Combining (4.2) and (4.3), we have

inf
f̃

sup
f ∈B1(�q(Hd ))

P

{
‖f̃ − f ‖2

2 ≥ C2

[(
logd

n

)1−q/2

+ n−2α/(2α+1)

]}
≥ 3/4,

which completes the proof.

4.1.2. Upper bounds. We now prove the upper bounds given in Theorem 3.2.
By definition,

1

n

n∑
i=1

[
Yi − f̂ (Xi)

]2 ≤ 1

n

n∑
i=1

[
Yi − f (Xi)

]2
,

which immediately implies that

1

n

n∑
i=1

[
f̂ (Xi) − f (Xi)

]2 ≤ 2

n

n∑
i=1

εi

[
f̂ (Xi) − f (Xi)

]
.(4.4)

Write �j = f̂j − fj and � = f̂ − f . It is clear that � =∑d
j=1 �j .

Our main strategy is to derive upper and lower bounds for the right- and left-
hand side of (4.4), respectively, and then put them together to derive (3.4).

Step 1. Bounding the right-hand side of (4.4). Observe that∣∣∣∣∣1n
n∑

i=1

εi�j (xij )

∣∣∣∣∣≤ ‖�j‖H1Ẑjn

(‖�j‖L2(�jn)

‖�j‖H1

)
,

where Ẑjn is defined by (2.5). By Lemma 2.2, this can be further bounded by

C1n
−1/2(‖�j‖1−1/(2α)

L2(�jn) ‖�j‖1/(2α)
H1

+ ‖�j‖L2(�jn)

√
(β + 1) logd + e−d‖�j‖H1

)



HIGH DIMENSIONAL ADDITIVE MODELS 2579

for some constant C1 > 0, with probability at least 1 − d−(β+1). By union bound,
with probability 1 − d−β ,

2

n

n∑
i=1

εi

[
f̂ (Xi) − f (Xi)

]

≤ 2
d∑

j=1

∣∣∣∣∣1n
n∑

i=1

εi�j (xij )

∣∣∣∣∣
≤ 2C1n

−1/2
d∑

j=1

‖�j‖1−1/(2α)
L2(�jn) ‖�j‖1/(2α)

H1
(4.5)

+ 2C1n
−1/2
√

(β + 1) logd

d∑
j=1

‖�j‖L2(�jn)

+ 2C1n
−1/2e−d

d∑
j=1

‖�j‖H1 .

We denote by E1 the event that the above inequality holds. We now bound the three
terms on the rightmost side separately.

We first derive a bound for

n−1/2
d∑

j=1

‖�j‖1/(2α)
H1

‖�j‖1−1/(2α)
L2(�jn) .

We treat the cases of 2/(2α + 1) ≥ q and 2/(2α + 1) < q separately.
Case 1: 2/(2α + 1) ≥ q . By Young’s inequality, for a constant ζ > 1 whose

value will be specified later,

n−1/2‖�j‖1/(2α)
H1

‖�j‖1−1/(2α)
L2(�jn)

≤ ζ−4α/(2α−1)‖�j‖2
L2(�jn) + ζ 4α/(2α+1)n−2α/(2α+1)‖�j‖2/(2α+1)

H1
.

Note that for any q ≤ q ′ ≤ 2,

d∑
j=1

‖�j‖q ′
H1

≤ 2

(
d∑

j=1

‖f̂j‖q ′
H1

+
d∑

j=1

‖fj‖q ′
H1

)

≤ 2

(
d∑

j=1

‖f̂j‖q
H1

+
d∑

j=1

‖fj‖q
H1

)

≤ 4.
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In particular, we get
d∑

j=1

‖�j‖2/(2α+1)
H1

≤ 4.

Hence,
d∑

j=1

n−1/2‖�j‖1/(2α)
H1

‖�j‖1−1/(2α)
L2(�jn)

(4.6)
≤ ζ−4α/(2α−1)‖�j‖2

L2(�jn) + 4ζ 4α/(2α+1)n−2α/(2α+1).

Case 2: 2/(2α + 1) < q . Write

n−1/2
d∑

j=1

‖�j‖1/(2α)
H1

‖�j‖1−1/(2α)
L2(�jn)

= n−1/2
∑

j :‖�j‖H1
>n−1/2

‖�j‖1/(2α)
H1

‖�j‖1−1/(2α)
L2(�jn)

+ n−1/2
∑

j :‖�j‖H1
≤n−1/2

‖�j‖1/(2α)
H1

‖�j‖1−1/(2α)
L2(�jn) .

For the first term on the right-hand side, by a similar argument as before, we have

n−1/2
∑

j :‖�j‖H1
>n−1/2

‖�j‖1/2α
H1

‖�j‖1−1/(2α)
L2(�jn)

≤ ζ−4α/(2α−1)
∑

j :‖�j‖H1
>n−1/2

‖�j‖2
L2(�jn)

+ ζ 4α/(2α+1)n−2α/(2α+1)
∑

j :‖�j‖H1
>n−1/2

‖�j‖2/(2α+1)
H1

≤ ζ−4α/(2α−1)
∑

j :‖�j‖H1
>n−1/2

‖�j‖2
L2(�jn)

+ ζ 4α/(2α+1)n−(1−q/2)
∑

j :‖�j‖H1
>n−1/2

‖�j‖q
H1

≤ ζ−4α/(2α−1)
∑

j :‖�j‖H1
>n−1/2

‖�j‖2
L2(�jn) + 4ζ 4α/(2α+1)n−(1−q/2),

where in the last inequality we used the fact that∑
j :‖�j‖H1

>n−1/2

‖�j‖q
H1

≤
d∑

j=1

‖�j‖q
H1

≤ 2
d∑

j=1

(‖f̂j‖q
H1

+ ‖fj‖q
H1

)≤ 4.
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On the other hand, because

‖�j‖L2(�jn) ≤ ‖�j‖L∞ ≤ ‖�j‖H1,

we get

n−1/2
∑

j :‖�j‖H1
≤n−1/2

‖�j‖1/2α
H1

‖�j‖1−1/(2α)
L2(�jn)

≤ n−1/2
∑

j :‖�j‖H1
≤n−1/2

‖�j‖H1

≤ n−(1−q/2)
∑

j :‖�j‖H1
≤n−1/2

‖�j‖q
H1

≤ n−(1−q/2)
d∑

j=1

‖�j‖q
H1

≤ 4n−(1−q/2).

Thus,

n−1/2
d∑

j=1

‖�j‖1/2α
H1

‖�j‖1−1/(2α)
L2(�jn)

(4.7)

≤ ζ−4α/(2α−1)
d∑

j=1

‖�j‖2
L2(�jn) + 8ζ 4α/(2α+1)n−(1−q/2).

Combing (4.6) and (4.7), we get

n−1/2
d∑

j=1

‖�j‖1/2α
H1

‖�j‖1−1/(2α)
L2(�jn)

(4.8)

≤ ζ−4α/(2α−1)
d∑

j=1

‖�j‖2
L2(�jn) + 8ζ 4α/(2α+1)n−(1−max{q/2,1/(2α+1)}).

By Theorem 4 of Koltchinskii and Yuan (2010), there exists a numerical con-
stant C2 > 1 such that with probability at least 1 − d−β for all h ∈ H1, and
j = 1, . . . , d ,

‖h‖L2(�j ) ≤ C2

[
‖h‖L2(�jn) +

(
n−α/(2α+1) +

√
(β + 1) logd

n

)
‖h‖H1

]
(4.9)

and

‖h‖L2(�jn) ≤ C2

[
‖h‖L2(�j ) +

(
n−α/(2α+1) +

√
(β + 1) logd

n

)
‖h‖H1

]
.(4.10)
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Denote by E2 the event that both (4.9) and (4.10) hold. Under E2,

d∑
j=1

‖�j‖2
L2(�jn)

≤ 2C2
2

d∑
j=1

[
‖�j‖2

L2(�j ) +
(
n−2α/(2α+1) + (β + 1) logd

n

)
‖�j‖2

H1

]

≤ 2C2
2

d∑
j=1

‖�j‖2
L2(�j ) + 8C2

2

(
n−2α/(2α+1) + (β + 1) logd

n

)
,

where the second inequality follows from the fact that

d∑
j=1

‖�j‖2
H1

≤ 4.

By (3.1), this implies that

d∑
j=1

‖�j‖2
L2(�jn) ≤ 2C2

2ηq‖�‖2
L2(�) + 8C2

2

(
n−2α/(2α+1) + (β + 1) logd

n

)
.

Together with (4.8), we get

n−1/2
d∑

j=1

‖�j‖1/2α
H1

‖�j‖1−1/(2α)
L2(�jn)

≤ 2C2
2ηqζ

−4α/(2α−1)‖�‖2
L2(�)

(4.11)

+ 8C2
2ζ−4α/(2α−1)

(
n−2α/(2α+1) + (β + 1) logd

n

)
+ 8ζ 4α/(2α+1)n−(1−max{q/2,1/(2α+1)}).

The second term on the rightmost-hand side of (4.5) can also be bounded under
event E2. By (4.10),

d∑
j=1

‖�j‖L2(�jn)

≤ C2

d∑
j=1

‖�j‖L2(�j ) + C2

(
n−α/(2α+1) +

√
(β + 1) logd

n

) d∑
j=1

‖�j‖H1(4.12)

≤ C2

d∑
j=1

‖�j‖L2(�j ) + 4C2

(
n−α/(2α+1) +

√
(β + 1) logd

n

)
,
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where in the second inequality we used the fact that

d∑
j=1

‖�j‖H1 ≤
d∑

j=1

‖�j‖q
H1

≤ 4.

Write

d∑
j=1

‖�j‖L2(�j )

≤ ∑
j :‖�j‖L2(�j )>

√
(logd)/n

‖�j‖L2(�j ) + ∑
j :‖�j‖L2(�j )≤√

(logd)/n

‖�j‖L2(�j ).

The first term can be bounded by the Cauchy–Schwarz inequality∑
j :‖�j‖L2(�j )>

√
(logd)/n

‖�j‖L2(�j )

≤
(

card
{
j : ‖�j‖L2(�j ) >

√
logd

n

})1/2

×
( ∑

j :‖�j‖L2(�j )>
√

(logd)/n

‖�j‖2
L2(�j )

)1/2

.

Observe that

card
{
j : ‖�j‖L2(�j ) >

√
logd

n

}
≤
(

logd

n

)−q/2 d∑
j=1

‖�j‖q
H1

≤ 4
(

logd

n

)−q/2

.

Thus,

∑
j :‖�j‖L2(�j )>

√
(logd)/n

‖�j‖L2(�j ) ≤ 4
(

logd

n

)−q/4
(

d∑
j=1

‖�j‖2
L2(�j )

)1/2

≤ 4η1/2
q

(
logd

n

)−q/4

‖�‖L2(�).

Together with the fact that∑
j :‖�j‖L2(�j )≤√

(logd)/n

‖�j‖L2(�j )

≤ ∑
j :‖�j‖L2(�j )≤√

(logd)/n

‖�j‖q
L2(�j )

(
logd

n

)(1−q)/2
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≤
(

logd

n

)(1−q)/2 d∑
j=1

‖�j‖q
L2(�j )

≤ 4
(

logd

n

)(1−q)/2

,

we get

d∑
j=1

‖�j‖L2(�j ) ≤ 4η1/2
q

(
logd

n

)−q/4

‖�‖L2(�) + 4
(

logd

n

)(1−q)/2

.(4.13)

In light of (4.12), we have√
logd

n

d∑
j=1

‖�j‖L2(�jn)

≤ 4C2η
1/2
q

(
logd

n

)1/2−q/4

‖�‖L2(�)(4.14)

+ 4C2n
−α/(2α+1)

√
logd

n
+ 8C2

√
β + 1

(
logd

n

)1−q/2

,

where we used the fact that logd < n and C2 > 1.
Combing (4.5), (4.11), (4.14) and the fact that

d∑
j=1

‖�j‖H1 ≤ 4,

we get

2

n

n∑
i=1

εi

[
f̂ (Xi) − f (Xi)

]
≤ C3ηqζ

−4α/(2α−1)‖�‖2
L2(�)

+ C3ζ
−4α/(2α−1)

(
n−2α/(2α+1) + (β + 1) logd

n

)
+ C3ζ

4α/(2α+1)n−(1−max{q/2,1/(2α+1)})(4.15)

+ C3

√
β + 1η1/2

q

(
logd

n

)1/2−q/4

‖�‖L2(�)

+ C3

√
β + 1n−α/(2α+1)

√
logd

n

+ C3

√
β + 1

(
logd

n

)1−q/2

+ C3n
−1/2e−d,



HIGH DIMENSIONAL ADDITIVE MODELS 2585

for some constant C3 > 0, under the event E1 ∩ E2.
Step 2. Bounding the left-hand side of (4.4). To bound the left-hand side of

(4.4), first observe that

‖�‖2
L2(�) − ‖�‖2

L2(�n)
(4.16)

≤ sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤‖�‖L2(�)

(‖g‖2
L2(�) − ‖g‖2

L2(�n)

)
.

Note that for any g ∈ B4(�q(Hd)),

‖g‖2
L∞ ≤ ‖g‖2

�1(Hd ) ≤ (‖g‖q
�q(Hd )

)2 ≤ 16

and

‖g‖4
L2(�) ≤ ‖g‖2

L∞‖g‖2
L2(�) ≤ 16‖g‖2

L2(�).

By Talagrand’s concentration inequality, for any fixed u ∈ [0,1],
sup

g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(‖g‖2
L2(�) − ‖g‖2

L2(�n)

)

≤ 2
(
E sup

g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(‖g‖2
L2(�) − ‖g‖2

L2(�n)

)+ 4u

√
t

n
+ 16t

n

)
,

with probability at least 1 − e−t . By the symmetrization inequality,

E sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(‖g‖2
L2(�) − ‖g‖2

L2(�n)

)

≤ 2E sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(
1

n

n∑
i=1

σig
2(Xi)

)
.

Note that g2 is 8-Lipschitz function on B4(�q(Hd)). By the contraction inequality,

E sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(
1

n

n∑
i=1

σig
2(Xi)

)

≤ 8E sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(
1

n

n∑
i=1

σig(Xi)

)
.
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Again by Talagrand’s concentration inequality, there exists a numerical constant
C4 > 0 such that with probability at least 1 − e−t ,

E sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(
1

n

n∑
i=1

σig(Xi)

)

≤ C4

(
sup

g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(
1

n

n∑
i=1

σig(Xi)

)
+ u

√
t

n
+ t

n

)

≤ C4

(
sup∑d

j=1 ‖gj‖q

H1
≤4

‖∑d
j=1 gj‖L2(�)≤u

d∑
j=1

(
1

n

n∑
i=1

σigj (xij )

)
+ u

√
t

n
+ t

n

)
.

In other words,

sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(‖g‖2
L2(�) − ‖g‖2

L2(�n)

)
(4.17)

≤ 16C4

(
sup∑d

j=1 ‖gj‖q

H1
≤4

‖∑d
j=1 gj‖L2(�)≤u

d∑
j=1

(
1

n

n∑
i=1

σigj (xij )

)
+ u

√
t

n
+ t

n

)
,

with probability at least 1 − 2e−t .
Note that

1

n

n∑
i=1

σigj (xij ) ≤ ‖gj‖H1 sup
‖h‖H1

=1

‖h‖L2(�j )≤‖gj‖L2(�j )/‖gj‖H1

(
1

n

n∑
i=1

σih(xij )

)
.

By Lemma 2.2 and union bound, there exists a constant C5 > 0 such that

sup
‖h‖H1

=1

‖h‖L2(�j )≤u

(
1

n

n∑
i=1

σih(xij )

)
≤ C5n

−1/2(u1−1/(2α) + u
√

(β + 1) logd + e−d),
uniformly over u ∈ [0,1] and j = 1, . . . , d with probability at least 1 − d−β . De-
note this event by E3, and we shall now proceed conditional on E3.

It is not hard to see that, under E3,
d∑

j=1

(
1

n

n∑
i=1

σigj (xij )

)
≤ C5n

−1/2
d∑

j=1

(‖gj‖1/2α
H1

‖gj‖1−1/(2α)
L2(�j )

(4.18)
+ ‖gj‖L2(�j )

√
(β + 1) logd + e−d‖gj‖H1

)
.
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Following the same argument as that for (4.8), it can derived

n−1/2 sup∑d
j=1 ‖gj‖q

H1
≤4

‖∑d
j=1 gj‖L2(�)≤u

d∑
j=1

‖gj‖1/2α
H1

‖gj‖1−1/(2α)
L2(�j )

≤ ζ−4α/(2α−1) sup∑d
j=1 ‖gj‖q

H1
≤4

‖∑d
j=1 gj‖L2(�)≤u

d∑
j=1

‖gj‖2
L2(�j )

(4.19)
+ 8ζ 4α/(2α+1)n−(1−max{q/2,1/(2α+1)})

≤ ζ−4α/(2α−1)ηqu
2 + 8ζ 4α/(2α+1)n−(1−max{q/2,1/(2α+1)}).

Similar to (4.13), it can also be shown that for any g1, . . . , gd such that

d∑
j=1

‖gj‖q
H1

≤ 4 and
d∑

j=1

‖gj‖L2(�j ) ≤ u,

we have
d∑

j=1

‖gj‖L2(�j ) ≤ 4η1/2
q

(
logd

n

)−q/4

u + 4
(

logd

n

)1−q/2

.(4.20)

Combining (4.18), (4.19) and (4.20), we have

sup∑d
j=1 ‖gj‖q

H1
≤4

‖∑d
j=1 gj‖L2(�)≤u

d∑
j=1

(
1

n

n∑
i=1

σigj (xij )

)

≤ C5ζ
−4α/(2α−1)ηqu

2

+ 8C5ζ
4α/(2α+1)n−(1−max{q/2,1/(2α+1)})

+ 4C5

√
(β + 1) logd

n

(
η1/2

q

(
logd

n

)−q/4

u +
(

logd

n

)(1−q)/2)
+ C5n

−1/2e−d .

Together with (4.17), conditional on E3,

sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(‖g‖2
L2(�) − ‖g‖2

L2(�n)

)

≤ C6ζ
−4α/(2α−1)ηqu

2 + C6ζ
4α/(2α+1)n−(1−max{q/2,1/(2α+1)})
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+ C6

√
(β + 1) logd

n

(
η1/2

q

(
logd

n

)−q/4

u +
(

logd

n

)(1−q)/2)

+ C6n
−1/2e−d + C6

(
u

√
t

n
+ t

n

)
holds for some constant C6 > 0, with probability at least 1−2e−t . Using a peeling
argument similar to that for Lemma 2.1, we can make this bound uniformly over
u ∈ [0,1]. More specifically, it can be shown that there exist constants C7 > 0 such
that, conditional on E3,

sup
g∈B4(�q(Hd ))

‖g‖L2(�)≤u

(‖g‖2
L2(�) − ‖g‖2

L2(�n)

)

≤ C6ζ
−4α/(2α−1)ηqu

2 + C6ζ
4α/(2α+1)n−(1−max{q/2,1/(2α+1)})

+ C6

√
(β + 1) logd

n

(
η1/2

q

(
logd

n

)−q/4

u +
(

logd

n

)(1−q)/2)
(4.21)

+ C6n
−1/2e−d

+ C7

(
u

√
(β + 1) logd

n
+ (β + 1) logd

n

)
,

uniformly over all u ∈ [0,1] with probability at least 1 − d−β . Denote by E4 the
event that inequality (4.21) holds. Then

P{E4} ≥ P{E4|E3}P(E3) ≥ (1 − d−β)2 ≥ 1 − 2d−β.

Together with (4.16), we get, under event E4,

‖�‖2
L2(�)

≤ ‖�‖2
L2(�n) + C8ζ

−4α/(2α−1)ηqu
2

+ C8ζ
4α/(2α+1)n−(1−max{q/2,1/(2α+1)})

(4.22)

+ C8

√
(β + 1) logd

n

(
η1/2

q

(
logd

n

)−q/4

‖�‖L2(�) +
(

logd

n

)1−q/2)
+ C8n

−1/2e−d

+ C8

(
u

√
(β + 1) logd

n
+ (β + 1) logd

n

)
,

for some constant C8 > 0.
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Step 3. Putting it together. Combining (4.15) and (4.22), we get

‖�‖2
L2(�) ≤ C9ηqζ

−4α/(2α−1)‖�‖2
L2(�)

+ C9ζ
−4α/(2α−1) (β + 1) logd

n

+ C9ζ
4α/(2α+1)n−(1−max{q/2,1/(2α+1)})

+ C9

√
β + 1

(
logd

n

)1/2−q/4

‖�‖L2(�)

+ C9

√
β + 1n−α/(2α+1)

√
logd

n

+ C9(β + 1)

(
logd

n

)1−q/2

+ C9n
−1/2e−d,

for some constant C9 > 0, under the event E1 ∩ E2 ∩ E4.
Take ζ large enough so that

C9ηqζ
−4α/(2α−1) ≤ 1/2.

Then

‖�‖2
L2(�) ≤ 2C9ζ

−4α/(2α−1) (β + 1) logd

n

+ 2C9ζ
4α/(2α+1)n−(1−max{q/2,1/(2α+1)})

+ 2C9

√
β + 1

(
logd

n

)1/2−q/4

‖�‖L2(�)

+ 2C9

√
β + 1n−α/(2α+1)

√
logd

n

+ 2C9

√
β + 1

(
logd

n

)1−q/2

+ 2C9n
−1/2e−d .

Therefore, there exists a constant C10 > 0 such that, under the event E1 ∩ E2 ∩ E4,

‖�‖2
L2(�)

≤ C10(β + 1)

(
n−2α/(2α+1) +

(
logd

n

)1−q/2

+
(

logd

n

)1/2−q/4

‖�‖L2(�)

)
,

which implies (3.4). Statement (3.4) now follows from the fact that

P{E1 ∩ E2 ∩ E4} ≥ 1 − P{Ec
1} − P{Ec

2} − P{Ec
4} ≥ 1 − 4d−β,
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and appropriate rescaling of the constants.
To show (3.5), we first derive, via an identical argument to Step 2, that

‖�‖2
L2(�n) ≤ ‖�‖2

L2(�) + C11ζ
−4α/(2α−1)ηqu

2

+ C11ζ
4α/(2α+1)n−(1−max{q/2,1/(2α+1)})

+C11

√
(β + 1) logd

n

((
logd

n

)−q/4

u + 2
(

logd

n

)1−q/2)
(4.23)

+ C11n
−1/2e−d

+ C11

(
u

√
(β + 1) logd

n
+ (β + 1) logd

n

)
,

for some constant C11 > 0. Together with (3.4), this implies (3.5).

4.2. Proof of auxiliary results. We now present the proofs of Lemmas 2.1
and 2.2.

PROOF OF LEMMA 2.1. An application of Talagrand’s concentration inequal-
ity yields, with probability at least 1 − e−t

Rjn(u) ≤ 2
(
ERjn(u) + u

√
t

n
+ t

n

)
.

It is well known that there exists a numerical constant C1 > 0

ERjn(u) ≤ {E[Rjn(u)
]2}1/2 ≤ C1n

−1/2u1−1/(2α).

See, for example, Mendelson (2002) or Koltchinskii (2011). In other words, with
probability at least 1 − e−t ,

Rjn(u) ≤ C2

(
n−1/2u1−1/(2α) + u

√
t

n
+ t

n

)
for some numerical constant C2 > 0. We now make this inequality uniform over
u ∈ [0,1] via a peeling argument.

In particular, with probability at least 1− exp(−β logd −2 log j) for some con-
stant β > 0,

sup
‖h‖H1

≤1

2−j≤‖h‖L2(�j )≤2−j+1

∣∣∣∣∣1n
n∑

i=1

σih(xij )

∣∣∣∣∣
≤ Rjn

(
2−j+1)

≤ C2n
−1/2[(2−j+1)1−1/(2α) + 2−j+1(β logd + 2 log j)1/2

+ n−1/2(β logd + 2 log j)
]
.
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By union bound, there exists a constant C3 > 0 such that

Rjn(u) ≤ C3n
−1/2
(
u1−1/(2α) + u

√
β logd + β logd√

n

)
,

holds for any u ∈ (e−d(2α/(2α−1)),1], with probability at least

1 −
�2αd log2 e/(2α−1)�∑

j=1

exp(−β logd − 2 log j) ≥ 1 − 2d−β.

On the other hand, when u ≤ e−d(2α/(2α−1)),

Rjn(u) ≤ Rjn

(
e−d(2α/(2α−1)))

≤ C2n
−1/2
(
e−d + e−d(2α/(2α−1))

√
β logd + β logd√

n

)

≤ 2C2n
−1/2
(
e−d + β logd√

n

)
,

with probability at least 1 − d−β , for sufficiently large d . In summary, there exists
a constant C4 > 0 such that

Rjn(u) ≤ C4n
−1/2
(
u1−1/(2α) + u

√
β logd + β logd√

n
+ e−d

)
,

uniformly over all u ∈ [0,1] with probability at least 1 − 3d−β . �

PROOF OF LEMMA 2.2. Note that∫ u

0

[
logN

(
B1(H1), δ,‖ · ‖L∞

)]1/2
du ≤ cαδ1−1/(2α).

Therefore, there exist constants C1,C2 > 0 such that for any fixed u ∈ [0,1]
P
{
Ẑjn(u) ≤ C1n

−1/2(u1−1/(2α) + ut1/2)}≤ C2 exp
[−(u−1/α + t

)]
.

See, for example, an de Geer [(2000); Corollary 8.3]. The rest of the proof follows
a similar peeling argument as that for Lemma 2.1 and is omitted for brevity. �
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