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Estimation mainly for two classes of popular models, single-index and
partially linear single-index models, is studied in this paper. Such models
feature nonstationarity. Orthogonal series expansion is used to approximate
the unknown integrable link functions in the models and a profile approach
is used to derive the estimators. The findings include the dual rate of conver-
gence of the estimators for the single-index models and a trio of convergence
rates for the partially linear single-index models. A new central limit theorem
is established for a plug-in estimator of the unknown link function. Mean-
while, a considerable extension to a class of partially nonlinear single-index
models is discussed in Section 4. Monte Carlo simulation verifies these the-
oretical results. An empirical study furnishes an application of the proposed
estimation procedures in practice.

1. Introduction. In the last decade or so, nonlinear (nonparametric or semi-
parametric) and nonstationary time series models have been studied extensively
and improved dramatically as witnessed by the literature, such as those based
on the nonparametric kernel approach by Karlsen and Tjøstheim (2001), Karlsen,
Myklebust and Tjøstheim (2007), Gao et al. (2009a, 2009b), Phillips (2009), Wang
and Phillips (2009a, 2009b, 2012), Gao (2014), Gao and Phillips (2013a, 2013b)
and Phillips, Li and Gao (2013), among others. The main development in the
field is the establishment of new estimation and specification testing procedures
as well as the resulting asymptotic properties. In recent years, the conventional
nonparametric kernel-based estimation and specification testing theory has been
extended to the nonparametric series based approach; see, for example, Dong and
Gao (2013, 2014).

We first consider a partially linear single-index model of the form

yt = β�
0 xt + g

(
θ�

0 xt

) + et , t = 1, . . . , n,(1.1)

where yt is a scalar process, g(·), the so-called link function, is an unknown non-
linear integrable function from R to R, β0 and θ0 are the true but unknown d-
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dimensional column vectors of parameters, the superscript � signifies the trans-
pose of a vector (or matrix, hereafter), xt is a d-dimensional integrated process, et

is an error process and n is sample size.
The motivations of this study are as follows. In a fully nonparametric estimation

context, researchers often suffer from the so-called “curse of dimensionality”, and
hence dimensionality reduction is particularly of importance in such a situation.
One efficient way of doing so is to use index models like model (1.1). Moreover,
model (1.1) is also an extension of linear parametric models, since it would be-
come a linear model under the particular choice of the link function. Taking these
into account, models such as (1.1) are often used as a reasonable compromise
between fully parametric and fully nonparametric modelling. See, for example,
Carroll et al. (1997), Xia, Tong and Li (1999), Xia et al. (2002), Yu and Ruppert
(2002), Zhu and Xue (2006), Liang et al. (2010), Wang et al. (2010) and Ma and
Zhu (2013). Nevertheless, most researchers only focus on the stationary covariate
case so that their theoretical results are not applicable for practitioners who use
partially linear single-index model to deal with nonstationary time series data. For
example, in macroeconomic context practitioners may be concerned with infla-
tion, unemployment rates and other economic indicators. These variables exhibit
nonstationary characteristics. Therefore, it is desirable in such circumstances to
develop estimation theory for the partially linear single-index models.

Furthermore, recent studies by Gao and Phillips (2013a, 2013b) have pointed
out that, for multivariate I (1) processes, the conventional kernel estimation
method may not be workable because the limit theory may break down. This gives
rise to a challenge of seeking alternative estimation methods.

When β0 = 0, model (1.1) becomes a single-index model

yt = g
(
θ�

0 xt

) + et , t = 1, . . . , n,(1.2)

which has been studied extensively for the case where xt is stationary [see, e.g.,
Härdle, Hall and Ichimura (1993), Xia and Li (1999) and Wu, Yu and Yu (2010)].

We shall first consider model (1.2), but this is mainly a preliminary stage on
our way to the general model (1.1). Standing on its own, model (1.2) has limited
applicability since it is integrable, and among other things, does not include the
linear model. Coupled with the assumption that {xt } is a unit root process, this
implies that only an order of O(

√
n) observations can be used in the estimations

of θ0 and g in (1.2). The function g is only capable of describing finite domain
behaviour in xt . As θ�

0 xt increases, g(θ�
0 xt ) goes to zero. All of this will be made

precise in the following.
When the g function is added as a component in model (1.1), one obtains a

model whose behaviour is governed by the linear component with g superim-
posed, whereas as xt becomes large it reduces to the linear component. The re-
sulting model (1.1) can be likened to a smooth transition regression model [STR
model, Teräsvirta, Tjøstheim and Granger (2010)], where as xt increases the model
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changes smoothly to the linear model. Our model in this sense extends the smooth
transition model to a situation where there is an index involved and with a non-
stationary input process. We believe that this is a situation which is of interest
both theoretically and practically, as witnessed for example by our empirical study
where quite different index behaviour is obtained in the close domain as compared
to the far out region.

It is indeed possible to generalise our model to include a nonlinear behaviour
also far out, which leads to the next stage of modelling. As a linear function is
a particular H -regular function while an integrable function belongs to I -regular
functions, studied by Park and Phillips (1999, 2001), Wang and Phillips (2009a), in
a third stage we extend model (1.1) using a known H -regular function to substitute
the linear function, in order to make the model more flexible and applicable.

Following the existing identifiability condition, for example, Lin and Kulasek-
era (2007), we assume for models studied later that ‖θ0‖ = 1 and the first nonzero
component of θ0 is positive. Notice that there is no extra condition needed for β0
to make (1.1) identifiable, as discussed in Section 2.2 below. To facilitate the the-
oretical development in the following sections, we assume that θ0 is an interior
point located within a compact and convex parameter space �, which is also a
usual assumption in a parameter estimation context. To focus on the unit root case,
we also assume throughout that cointegration will not happen for θ around θ0. In
other words, there exists a neighbourhood of θ0, N (θ0, δ) ⊂ �, such that for any
θ ∈N (θ0, δ), θ�xt is always an I (1) process.

The findings of this paper are summarised as follows. The rate of convergence
of the estimators of θ0 in both models (1.1) and (1.2) is a composite of two dif-
ferent rates in a new coordinate system where θ0 is on one axis. θ̂n has a rate of
n−1/4 on the θ0-axis, and another rate as fast as n−3/4 on all axes orthogonal to θ0.
Overall, θ̂n possesses convergence rate n−1/4. This is expected and comes from the
integrability of g(·), which in turn reduces the number of effective observations to√

n. Moreover, the rate of convergence of β̂n to β0 is n−1, consistent with that of a
linear model with a unit root input. The normalisation of θ̂n, ‖θ̂n‖−1θ̂n, converges
to θ0 with a rate faster than θ̂n in both models. A new central limit theorem for a
plug-in estimator of the form ĝn(u) converging to g(u), where u ∈ R, is compara-
ble with the conventional kernel estimator in the literature. These phenomena are
verified with finite sample experiments below.

Theoretical results heavily depend on the level of nonstationarity of the inte-
grated time series and the integrability of the link functions. These properties result
in a slow rate of convergence for the link function involving an I (1) process and
fast rate of convergence for a linear model with an I (1) process. These are very
different from the literature where the regressors are stationary. In addition, Monte
Carlo simulations generally need relative larger sample sizes than those for the
cases where the regressors are stationary if the regression function is integrable,
since random walk on one hand diverges at rate

√
n, and on the other hand it pos-

sesses recurrent property making it possible to return to the effective domain of
the integrable function g.
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Two papers related to this study are Chang and Park (2003) and Guerre and
Moon (2006) in terms of regressor. However, Chang and Park (2003) stipulate that
their link function is a smooth distribution function-like transformation and they
are not interested in the estimation of the unknown link function. Guerre and Moon
(2006) point out in the discussion section that their method developed for binary
choice models may be applicable for the estimation of single-index models where
the link function g(x) → ∞ as |x| → ∞. Clearly, they are quite different from the
setting of this study.

The organisation of the rest of the paper is as follows. Section 2 gives estima-
tion procedures and assumptions for models (1.1) and (1.2). Asymptotic theory
is established in Section 3 for the estimator θ̂n in model (1.2) and the estimator
(β̂n, θ̂n) in model (1.1). A central limit theorem for a plug-in estimator of the form
ĝn(u) is given in Section 3. An extension of model (1.1) is discussed in Section 4
and Monte Carlo simulation experiments are conducted in Section 5. Section 6
shows the implementation of the proposed estimation schedules with an empirical
dataset. Appendix A presents some technical lemmas. The proof of the main re-
sults in Section 3 is given in Appendix B. A supplemental document [Dong, Gao
and Tjøstheim (2015)] contains Appendices C, D and E where all the proofs of
the key lemmas listed in Appendix A as well as some other lemmas are shown in
Appendix C, the complete proof of the results in Section 3 is placed in Appendix D
and the results in Section 4 are proven in Appendix E.

Throughout the paper, the following notation is used. ‖ · ‖ is Euclidean norm
for vectors and element-wise norm for matrices, that is, if A = (aij )nm, ‖A‖ =
(
∑n

i=1
∑m

j=1 a2
ij )

1/2; Id is the d-dimensional identity matrix; [a] is the maximum

integer not exceeding a; R is the real line; for any function f (·), ḟ (x), f̈ (x) and
···
f (x) are the derivatives of the first, second and third order of f (·) at x. Here, when
f (x) is a vector-valued function its derivatives should be understood as element-
wise. Furthermore, φ(·) stands for the density function of a multivariate standard
normal variable;

∫
f (w)dw means a multiple integral when w is a vector. Conver-

gence in probability and convergence in distribution are signified as →P and →D ,
respectively.

2. Estimation procedure and assumptions. Suppose that the link function
g(·) belongs to L2(R) = {f (x) : ∫

f 2(x) dx < ∞}. It is known that the Hermite
function sequence {Hi (x)} is an orthonormal basis in L2(R) where by definition

Hi (x) = (√
π2i i!)−1/2

Hi(x) exp
(
−x2

2

)
, i ≥ 0,(2.1)

and Hi(x) are Hermite polynomials orthogonal with density exp(−x2). The or-
thogonality reads

∫
Hi (x)Hj (x) dx = δij , the Kronecker delta.



PARTIALLY LINEAR SINGLE-INDEX MODELS 429

Thus, a continuous function g(·) ∈ L2(R) may be expanded into an orthogonal
series

g(x) =
∞∑
i=0

ciHi (x) and ci =
∫

g(x)Hi (x) dx.(2.2)

Throughout, let k be a positive integer and define gk(x) = ∑k−1
i=0 ciHi (x) as the

truncation series and γk(x) = g(x) − gk(x) = ∑∞
i=k ciHi (x) as the residue after

truncation.

2.1. Estimation procedure for single-index models. By virtue of (2.2), we
write model (1.2) for t = 1, . . . , n as

yt = Z�
k

(
θ�

0 xt

)
c + γk

(
θ�

0 xt

) + et ,

where Z�
k (·) = (H0(·), . . . ,Hk−1(·)), c� = (c0, . . . , ck−1) and k is the truncation

parameter determined later.
Let Y = (y1, . . . , yn)

�, Z = (Zk(θ
�
0 x1), . . . ,Zk(θ

�
0 xn))

� an n × k matrix,
γ = (γk(θ

�
0 x1), . . . , γk(θ

�
0 xn))

� and e = (e1, . . . , en)
�. We have a matrix form

equation Y = Zc+γ +e, and hence by the Ordinary Least Squares (OLS) method,
c̃ = c̃(θ0) = (Z�Z)−1Z�Y is an estimate for c in terms of θ0. Nonetheless, since
θ0 is unknown, we only have a form of c̃. To estimate θ0, define for θ ∈ �,
Ln(θ) = 1

2
∑n

t=1[yt − Z�
k (θ�xt )c̃(θ)]2. Then we choose an optimum θ̂n such that

θ̂n = argmin
θ∈�

Ln(θ),(2.3)

as an estimator for θ0. Once θ̂n is available, we have a plug-in estimator ĝn(u) ≡
ĝn(u; θ̂n) = Zk(u)�ĉ for any u ∈ R where ĉ = c̃(θ̂n), which is purely based on
the sample, and hence applicable. The estimation procedure proposed here is the
profile method [see, Severini and Wong (1992), Liang et al. (2010)].

Additionally, to be in concert with the identification condition ‖θ0‖ = 1, we
define the normalisation of θ̂n, θ̂n,emp = ‖θ̂n‖−1θ̂n. An asymptotic theory for both
θ̂n,emp and θ̂n will be studied in Section 3 below.

2.2. Estimation procedure for partially linear single-index models. Usually,
researchers, such as Xia, Tong and Li (1999), impose an identification condition
that β0 is perpendicular to θ0 on the partially linear single-index models. This is be-
cause when β0 is not perpendicular to θ0, a new vector β0 − (β�

0 θ0)θ0 can be used
in the place of β0 and the g function will be replaced by g(u) + (β�

0 θ0)u. How-
ever, in model (1.1) the lack of orthogonality between β0 and θ0 does not affect
the identifiability of the model at all. See the verification at the end of Appendix C
in the supplementary material [Dong, Gao and Tjøstheim (2015)].

Our estimation procedure in partially linear single-index models is proposed as
follows. By virtue of (2.2) again, for each t rewrite (1.1) as

yt − β�
0 xt = Zk

(
θ�

0 xt

)�
c + γk

(
θ�

0 xt

) + et ,
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where Zk(·), c and γk(·) are defined as before.
Denote X = (x1, x2, . . . , xn)

� an n × d matrix, and Y,Z,γ, e remain the same
as in the last subsection. We have matrix form equation: Y − Xβ = Zc + γ +
e. Then the OLS gives that c̃ = c̃(β0, θ0) = (Z�Z)−1Z�(Y − Xβ0). Due to the
same reason as before, define for generic (β, θ), Ln(β, θ) = 1

2
∑n

t=1[yt − β�xt −
Z�

k (θ�xt )c̃(β, θ)]2. The estimator of (β0, θ0) is given by(
β̂n

θ̂n

)
= argmin

β∈Rd ,θ∈�

Ln(β, θ).(2.4)

Similarly, a plug-in estimator is obtained, ĝn(u) ≡ ĝn(u; β̂n, θ̂n) = Z�
k (u)ĉ where

ĉ = c̃(β̂n, θ̂n). Once the estimators of the parameters are available, and the
normalisation θ̂n,emp = ‖θ̂n‖−1θ̂n is defined to satisfy the identification condition.

2.3. Assumptions. Before we establish our main theory in Section 3 below, we
introduce some necessary conditions.

ASSUMTPION A. (a) Let {εj ,−∞ < j < ∞} be a sequence of d-dimensional
independent and identically distributed (i.i.d.) continuous random variables with
Eε1 = 0, E[ε1ε

�
1 ] = 
 > 0 and E‖ε1‖p < ∞ for some p > 2. The characteristic

function of ε1 is integrable, that is,
∫ |E exp(iuε1)|du < ∞.

(b) Let xt = xt−1 + vt for t ≥ 1 and x0 = OP (1), where {vt } is a linear process
defined by vt = ∑∞

j=0 ρjεt−j , in which {ρj } is a square matrix such that ρ0 = Id ,∑∞
j=0 ‖ρj‖ < ∞ and ρ = ∑∞

j=0 ρj is of full rank.
(c) There is a σ -field Ft such that (et ,Ft ) is a martingale difference sequence,

that is, for all t , E(et |Ft−1) = 0 almost surely (a.s.). Also, E(e2
t |Ft−1) = σ 2

e a.s.
and μ4 := sup1≤t≤n E(e4

t |Ft−1) < ∞ a.s.
(d) xt is adapted with Ft−1.
(e) Let Vn(r) = 1√

n

∑[nr]
i=1 vi and Un(r) = 1√

n

∑[nr]
i=1 ei . Suppose that (Un(r),

Vn(r)) →D (U(r),V (r)) as n → ∞. Here, (U(r),V (r)) is a (d + 1)-vector of
Brownian motions.

REMARK 2.1. All conditions in Assumption A are routine requirements in
the nonstationary model estimation context. Conditions (a) and (b) stipulate that
the regressor xt is an integrated process generated by a linear process vt which
has the i.i.d. sequence {εj ,−∞ < j < ∞} as building blocks. Meanwhile, (c),
(d) and (e) are extensively used in related papers such as Park and Phillips
(2000), Wang and Phillips (2009a, 2009b, 2012), Gao et al. (2009a, 2009b),
Gao, Tjøstheim and Yin (2012), among others. The σ -field Ft may be taken as
Ft = σ(. . . , εt , εt+1; e1, . . . , et ).

By Skorohod representation theorem [Pollard (1984), page 71] there ex-
ists (U0

n (r),V 0
n (r)) in a richer probability space such that (Un(r),Vn(r)) =D
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(U0
n (r),V 0

n (r)) for which (U0
n (r),V 0

n (r)) →a.s. (U(r),V (r)) uniformly on
[0,1]d+1. To avoid the repetitious embedding procedure of (Un(r),Vn(r)) to
the richer probability space where (U0

n (r),V 0
n (r)) is defined, we simply write

(Un(r),Vn(r)) = (U0
n (r),V 0

n (r)) instead of (Un(r),Vn(r)) =D (U0
n (r),V 0

n (r)).
Since Lemma A.2 below is derived in this richer probability space, all proofs in
the paper should be understood in the richer space as well. We will not repeat this
again.

ASSUMTPION B. (a) g(x) is differentiable on R and g(m−)(x)x ∈ L2(R) for
 = 0,1, . . . ,m with some given integer m.

(b) k = [a · nκ ] with some constant a > 0, κ ∈ (0,1/8) and κ(m − 3) ≥ 1
2 with

m as in (a) above.

REMARK 2.2. Condition (a) ensures the negligibility of the truncation resid-
uals (see the derivation at the beginning of Lemma C.1 of Appendix C of the
supplementary document). Regarding condition (b), although it is stringent for κ ,
we may choose, for example, κ ∈ [ 5

44 , 5
41 ] and m = 8 in practice. Large m and

small κ are chosen such that the orthogonal series expansion for the link function
converges so fast that all residues after truncation do not affect the limit theory, as
can be seen in the proof of Theorem 3.1 in the supplementary material Dong, Gao
and Tjøstheim (2015).

3. Asymptotic theory.

3.1. Asymptotic theory for single-index models. To derive an asymptotic the-
ory for θ̂n given by (2.3), we shall use basic ideas from Wooldridge (1994). Let
Sn(θ) = ∂

∂θ
Ln(θ) and Jn(θ) = ∂2

∂θ ∂θ� Ln(θ) be the score and Hessian, respectively.
As usual, we have the expansion

0 = Sn(θ̂n) = Sn(θ0) + Jn(θn)(θ̂n − θ0),(3.1)

where Jn(θn) is the Hessian matrix with the rows evaluated at a point θn between
θ̂n and θ0.

To facilitate the development of the asymptotic theory, we consider coordinate
rotation in R

d . Let Q = (θ0,Q2) be an orthogonal matrix. Note that such Q does
exist since θ0 = 0. We shall use the orthogonal matrix Q to rotate all vectors in R

d .
In particular,

α0 := Q�θ0 = (
α10, α

�
20

)� where α10 = ‖θ0‖2 = 1, α20 = Q�
2 θ0 = 0,

zt := Q�xt = (
x1t , x

�
2t

)� where x1t := θ�
0 xt , x2t := Q�

2 xt ,(3.2)

α := Q�θ for any generic θ.
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Accordingly, we can rewrite the single-index model as yt = g(θ�
0 QQ�xt ) +

et = g(α�
0 zt ) + et . In addition, by Assumption A and the continuous mapping

theorem, we have for r ∈ [0,1],
1√
n
x1[nr] →D V1(r) = θ�

0 V (r) and
1√
n
x2[nr] →D V2(r) = Q�

2 V (r).(3.3)

It is noteworthy that the rotation is not necessary in practice, as shown in the
simulation section, and it is also logically impossible since θ0 is unknown. The
rotation is only used as a tool to derive an asymptotic theory for the proposed
estimator.

If α̂n is the nonlinear least squares estimator of α0, then α̂n = Q�θ̂n. Moreover,
the score function Sn(α) and the Hessian Jn(α) for the parameter α can be obtained
from those for θ . More precisely, Sn(α) = Q�Sn(θ) and Jn(α) = Q�Jn(θ)Q. Pre-
multiplying equation (3.1) by Q�, we have

0 = Sn(α̂n) = Sn(α0) + Jn(αn)(α̂n − α0).(3.4)

The following theorem gives asymptotic distributions for the score Sn(α0) and
the Hessian Jn(α0) as well as α̂n − α0.

THEOREM 3.1. Denote Dn = diag(n1/4, n3/4Id−1). Under Assumptions A
and B, as n → ∞

D−1
n Sn(α0) →D R1/2W(1) and D−1

n Jn(α0)D
−1
n →P R,(3.5)

where W(1) is a d-dimensional vector of standard normal random variables inde-
pendent of V (r), and the symmetric block matrix R = ( r11

r21

r12
r22

)
is given by

r11 = L1(1,0)

∫
s2ġ2(s) ds, r12 =

∫ 1

0
V �

2 (r) dL1(r,0)

∫
sġ2(s) ds,

r21 = r�
12, r22 =

∫ 1

0
V2(r)V

�
2 (r) dL1(r,0)

∫
ġ2(s) ds,

in which V1 and V2 given by (3.3) are Brownian motions of dimension 1 and d −1,
respectively, L1(r,0) denotes the local time process of Brownian motion V1(·),
standing for the sojourning time of V1 at zero over [0, r].

As a result, under the same conditions, α̂n is consistent and as n → ∞
Dn(α̂n − α0) →D R−1/2W(1).(3.6)

A standard book introducing the local time process of Brownian motion is
Revuz and Yor (2005). In view of the structure of Dn, we have two limits
from (3.6),

n1/4(α̂1n − 1) →D MN(0, ρ11) and n3/4α̂2n →D MN(0, ρ22),(3.7)
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where α̂n = (α̂1n, α̂
�
2n)

�, MN(0,�) stands for mixture normal distribution for the
case where the covariance matrix � is stochastic, ρ11 and ρ22 are diagonal blocks
on the matrix R−1 = (ρ11

ρ21

ρ12
ρ22

)
,

ρ11 = (
r11 − r12r

−1
22 r21

)−1 and ρ22 = (
r22 − r21r

−1
11 r12

)−1
.(3.8)

Hence, α̂n has two different convergence rates for its components.
Note by (3.7) that in the coordinate system Q where θ0 is an axis, the estimator

θ̂n has dual convergence rates: the rate of convergence for the coordinate on θ0 (i.e.,
α̂1n) is n−1/4, while on all directions orthogonal to θ0 the rate of convergence for
the coordinates (i.e., α̂2n) is as fast as n−3/4. This difference in convergence rate
can be explained in the following way. Due to the unit root behaviour of {xt } its
probability mass is spreading out in a Lebesgue type fashion. Since g is integrable,
g(θ�

0 x) ≈ 0 outside the effective range of g. This means that only moderate values
of {xt } can contribute to g along θ0, but in such directions that are orthogonal to
θ0, there is no restriction on {xt }, so that even for far out values of {xt }, they can
contribute, and hence increase the effective sample size. Certainly, no such effect
can take place in univariate models.

As defined in Section 2, θ̂n,emp = ‖θ̂n‖−1θ̂n. Intuitively, θ̂n,emp might have
a faster rate of convergence than that of θ̂n. This can be seen using the α-
representation of the rotated system. Because of θ̂n = Qα̂n and hence ‖θ̂n‖ =
‖α̂n‖, θ̂n,emp = Qα̂n,unit, where α̂n,unit = (α̂1

n,unit, (α̂
2
n,unit)

�)� = ‖α̂n‖−1α̂n. The
following results give the rates of convergence for α̂n,unit and then for θ̂n and
θ̂n,emp, respectively.

COROLLARY 3.1. Under Assumptions A and B, we have as n → ∞,

n3/2(
α̂1

n,unit − 1
) →D −1

2‖ξ‖2 and n3/4α̂2
n,unit →D ξ,

where ξ ∼ MN(0, ρ22) is the limit given by (3.7).

Note that, after the normalisation, the slow rate becomes as fast as n−3/2

whereas the fast rate remains the same. Note also that α̂1
n,unit →P 1 but α̂1

n,unit =
‖α̂n‖−1α̂1n ≤ 1. The intuitive reason for the fast rate of α̂1

n,unit is that it takes advan-
tage of the direction orthogonal to θ0, where there is larger supply of information
from far out xt ’s as explained above. The rates are also verified with Monte Carlo
simulation. The resulting rates for θ̂n are given in Theorem 3.2 below.

THEOREM 3.2. Under Assumptions A and B, we have as n → ∞,

n1/4(θ̂n − θ0) →D MN
(
0, ρ11θ0θ

�
0

)
,(3.9)

n3/4(θ̂n,emp − θ0) →D MN
(
0,Q2ρ22Q

�
2

)
.(3.10)
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REMARK 3.1. As can be seen, θ̂n →P θ0 at rate of n−1/4 and θ̂n,emp →P θ0 at
rate of n−3/4. Again roughly speaking, the normalisation scales θ̂n to the unit ball,
and hence accelerates the slow rate of θ̂n. Due to the fast convergence of θ̂n,emp,
all the following assertions regarding θ̂n remain true if θ̂n is replaced by θ̂n,emp.
A geometric illustration is given in Appendix C of the supplementary material
[Dong, Gao and Tjøstheim (2015)] to explain the slow and fast rates. We do not
wish to repeat this again.

Furthermore, by Theorem 3.2 we have θ̂n ∼ MN(θ0, n
−1/4ρ11θ0θ

�
0 ). We next

show that the estimator of the covariance matrix of θ̂n is the inverse of the
Hessian matrix of the form [Jn(θ̂n)]−1 or even [J̃n(θ̂n)]−1, where J̃n(θ) =∑n

t=1
˙̂g2
n(θ

�xt )xtx
�
t is the leading term of Jn(θ). Meanwhile, define the estimators

for σe and L1(1,0) by

σ̂ 2
e = 1

n

n∑
t=1

[
yt − ĝn

(
θ̂�
n xt

)]2 and L̂n1(1,0) = 1√
n

n∑
t=1

H 2
0

(
θ̂�
n xt

)
,(3.11)

respectively, where H0(·) is the first function in the Hermite sequence.

COROLLARY 3.2. Under Assumptions A and B, we have as n → ∞,

σ̂ 2
e →P σ 2

e and L̂n1(1,0) − L1(1,0) →P 0(3.12)

and
√

n
[
Jn(θ̂n)

]−1 →P ρ11θ0θ
�
0 and

√
n
[
J̃n(θ̂n)

]−1 →P ρ11θ0θ
�
0 .(3.13)

We then establish the following central limit theory for the plug-in estimator
ĝn(u) = Z�

k (u)ĉ defined in Section 2.1, where u ∈ R.

THEOREM 3.3. Under Assumptions A and B, as n → ∞, supu∈R |ĝn(u) −
g(u)| →P 0, and

σ̂−1
e L̂

1/2
n1 (1,0)n1/4∥∥Zk(u)

∥∥−1(
ĝn(u) − g(u)

) →D N(0,1).(3.14)

REMARK 3.2. The order involved in the normality is OP (1)n1/4k−1/2 in view
of ‖Zk(u)‖2 = O(1)k. This is comparable with the kernel estimate in the literature.
Theorem 3.1 of Wang and Phillips [(2009a), page 721] shows that, for univariate
regression yt = f (xt ) + ut , the normaliser of f̂ (x) − f (x) is (h

∑n
t=1 Kh(xt −

x))1/2 where h is a bandwidth, Kh(·) = K(·/h)/h is a kernel function and f̂ (x) is
the kernel estimate of f (x). Note that (h

∑n
t=1 Kh(xt − x))1/2 = OP (1)n1/4h1/2.

Thinking of k−1 as equivalent to the bandwidth h, the normalisers in the two situ-
ations are quite comparable.
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REMARK 3.3. Noting that ĝn(u) − g(u) = Z�
k (u)(ĉ − c) − γk(u) and by the

orthogonality of the basis functions,
∫
(ĝn(u) − g(u))2 dx = ‖ĉ − c‖2 + ‖γk(u)‖2

where ‖γk(u)‖ is the norm of γ (u) in the function space. Using Lemma A.3 be-
low, ‖ĉ − c‖2 = OP (kn−1/2) and Lemma C.1 (in the supplementary material),
‖γk(u)‖2 = O(k−m), an optimal truncation parameter k∗ may be found to be pro-
portional to k∗ = [n1/2(m+1)] when ‖ĉ − c‖2 and ‖γk(u)‖2 have the same order
going to zero. Here, m is the smoothness order of g(u).

3.2. Asymptotic theory for partially linear single-index models. Denote ϑ0 =
(β�

0 , θ�
0 )� and ϑ = (β�, θ�)� as a generic parameter for simplicity. Let Sn(ϑ)

and Jn(ϑ) be the respective score and Hessian functions of Ln(ϑ) in the minimi-
sation problem (2.4). Let ϑ̂n be the estimator of ϑ0. We then have the expansion:

0 = Sn(ϑ̂n) = Sn(ϑ0) + Jn(ϑn)(ϑ̂n − ϑ0),(3.15)

where Jn(ϑn) is the Hessian matrix with the rows evaluated at a point ϑn between
ϑ̂n and ϑ0.

We also need to rotate our index vectors in model (1.1), namely, reparametreris-
ing the model, in order to derive the asymptotics. Using the orthogonal matrix
Q = (θ0,Q2) again, we can rewrite the model as

yt = β�
0 QQ�xt + g

(
θ�

0 QQ�xt

) + et = λ�
0 zt + g

(
α�

0 zt

) + et ,(3.16)

where λ0 = Q�β0 = (λ10, λ
�
20)

� with λ10 = θ�
0 β0 a scalar, λ20 = Q�

2 β0 a (d −1)-
dimensional vector, α0 = Q�θ0, zt = Q�xt are defined the same as before. Let
λ = Q�β and α = Q�θ for the generic vector rotation. Also, group them by μ0 =
(λ�

0 , α�
0 )� and μ = (λ�, α�)�.

Let Ln(μ) be the counterpart of Ln(β, θ) after reparameterisation. If μ̂n,
the minimiser of Ln(μ), is the estimator of μ0, then μ̂n = diag(Q�,Q�)ϑ̂n.
Moreover, the score function Sn(μ) and the Hessian Jn(μ) for the parameter
μ can be obtained from those for ϑ . Namely, Sn(μ) = diag(Q�,Q�)Sn(ϑ)

and Jn(μ) = diag(Q�,Q�)Jn(ϑ)diag(Q,Q). Premultiplying equation (3.15) by
diag(Q�,Q�), we have

0 = Sn(μ̂n) =Sn(μ0) + Jn(μn)(μ̂n − μ0),(3.17)

from which the following theorem is derived.

THEOREM 3.4. Under Assumptions A and B, μ̂n →P μ0. Moreover, as n →
∞

n(̂λn − λ0) →D Q�
(∫ 1

0
V (r)V �(r) dr

)−1 ∫ 1

0
V (r) dU(r),(3.18)

Dn(α̂n − α0) →D R−1/2W(1),(3.19)

where (U(r),V (r)) is given in Assumption A, Dn, R and W are the same as in
Theorem 3.1.
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Theorem 3.4 shows that for the partially linear single-index model, the estima-
tors of the parameters in the linear part have the same rates of convergence as those
in the linear model, while the estimator of the index vector retains the dual rates
in the system of Q. Hence, there is a trio of rates of convergence accommodated
in the partially linear single-index model case. From Theorem 3.4, we may derive
asymptotic distributions for both β̂n and θ̂n.

THEOREM 3.5. Under Assumptions A and B, for (β̂n, θ̂n) given by (2.4) we
have, as n → ∞,

n(β̂n − β0) →D

(∫ 1

0
V (r)V �(r) dr

)−1 ∫ 1

0
V (r) dU(r),(3.20)

n1/4(θ̂n − θ0) →D MN
(
0, ρ11θ0θ

�
0

)
.(3.21)

Furthermore, using (3.19), for θ̂n, the results of Theorems 3.2–3.3 and Corollar-
ies 3.1–3.2 with θ̂n,emp and ĝn(u) defined in the same fashion remain true.

THEOREM 3.6. Under Assumptions A and B, the results of Theorems 3.2–3.3
and Corollaries 3.1–3.2 also remain true for θ̂n and ĝn(u) in model (1.1).

The proof of the main results in this section is given in Appendix B below,
except that Theorem 3.1 and Corollaries 3.1–3.2 are shown in Appendix D in the
supplementary material [Dong, Gao and Tjøstheim (2015)].

4. Extension to the general H -regular class. For integrated time series, the
rate of convergence of the unknown parameters involved in a regression func-
tion heavily depends on the functional form of the regression function under
consideration. The literature focuses on two classes of functions, that is, the so-
called I -regular class and H -regular class. Integrable functions belong to the I -
regular class, while functions like power functions and polynomial functions are
H -regular. For more detail, we refer to Park and Phillips (1999, 2001).

Observe that the partially linear single-index model is a combination of the two
classes. As already stated, this can be seen as a smooth transition model whose
behaviour in the finite domain is a linear model perturbed by the g-function com-
ponent, the influence of which is reduced for a large ‖xt‖. Such models have broad
applications. Nonetheless, if the linear part may be relaxed to a nonlinear form, the
model will be more flexible and more applicable. To do so, we combine a general
H -regular function with a general I -regular function to introduce a partially non-
linear single-index model of the form:

yt = f
(
β�

0 xt

) + g
(
θ�

0 xt

) + et , t = 1, . . . , n,(4.1)

where f (·) is parametrically known and H -regular, g(·) is nonparametrically un-
known and integrable, and β0 and θ0 are the unknown parameters.
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In some circumstances, one may have some idea on the trend in yt generated
by an index variable β�xt , for example, linear or quadratic. Thus, model (4.1)
should give an accurate description for such a relation. Certainly, the partially lin-
ear single-index model is a special case of model (4.1) with f (u) = u. The objec-
tive of this section is then to estimate (β0, θ0) and g(·).

Before we propose our estimation method, we give a definition for the H -
regular class.

DEFINITION 4.1. We say that the function f (x) is asymptotically homoge-
neous, or H -regular, if for all η > 0

f (ηx) = υ(η)F (x) + ξ(η;x),
∣∣ξ(η;x)

∣∣ ≤ a(η)P (x),(4.2)

where F(x) and P(x) are both locally integrable, and lim supη→∞
a(η)
υ(η)

= 0.

If f is H -regular with υ and F satisfying (4.2), we call υ and F the asymptotic
order and the limit homogeneous function of f , respectively. Note that any poly-
nomial and power function with positive power are H -regular. Note also that this
definition is not the exact one in the reference above, since in this section f (·) is
required to be differentiable.

Estimation procedure: The estimation procedure follows similarly from that for
model (1.1). Using expansion (2.2), for each t rewrite (4.1) as yt − f (β�

0 xt ) =
Zk(θ

�
0 xt )

�c + γk(θ
�
0 xt ) + et , where Zk(·), c and γk(·) are defined as before. Let

Ỹ = (y1 − f (β�
0 x1), . . . , yn − f (β�

0 xn))
�, and Z, γ and e remain the same as

before. We then have the matrix form equation, Ỹ = Zc + γ + e. Then the OLS
gives c̃ = c̃(β0, θ0) = (Z�Z)−1Z�Ỹ .

Define, Ln(β, θ) = 1
2

∑n
t=1[yt − f (β�xt ) − Z�

k (θ�xt )c̃(β, θ)]2. The estimator
of (β0, θ0) is given by (

β̂n

θ̂n

)
= argmin

θ∈�,β

Ln(β, θ).(4.3)

Similarly, a plug-in estimator ĝn(u) ≡ Zk(u)�ĉ for any real u ∈ R, where ĉ =
c̃(β̂n, θ̂n) is obtained once (β̂n, θ̂n) is available.

Asymptotic theory: The same notation as in Section 3.2 is used for the minimi-
sation problem (4.3). Also, in order to derive the corresponding asymptotic theory,
we need to rotate vectors. Using the orthogonal matrix Q = (θ0,Q2) again,

yt = f
(
β�

0 QQ�xt

) + g
(
θ�

0 QQ�xt

) + et = f
(
λ�

0 zt

) + g
(
α�

0 zt

) + et ,

where the notation used is the same as in (3.16), λ = Q�β and α = Q�θ for
generic vector rotation. We also define μ0 = (λ�

0 , α�
0 )� and μ = (λ�, α�)�.

It is still true that if μ̂n is the estimator of μ0 given by the minimiser of
Ln(μ), then μ̂n = diag(Q�,Q�)ϑ̂n. Moreover, Sn(μ) = diag(Q�,Q�)Sn(ϑ)

and Jn(μ) = diag(Q�,Q�)Jn(ϑ)diag(Q,Q).
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THEOREM 4.1. Suppose that (i) f is H -regular with asymptotic order υ and
limit homogeneous function F ; (ii) ḟ and f̈ are H -regular with asymptotic order υ̇

and limit homogeneous function Ḟ , and asymptotic order ϋ and limit homogeneous
function F̈ , respectively; (iii) |F(β�

0 x)−F(β�x)| is not a zero function on ‖x‖ <

δ for some δ > 0 and if β = β0; (iv) υ(
√

n)−1
√

k
3 → 0, where k is the truncation

parameter satisfying Assumption B; (v) |υ̇−2(u)ϋ(u)υ(u)| is bounded in u ≥ M0
for some M0 > 0.

Under Assumptions A and B, we have μ̂n →P μ0. Moreover, as n → ∞
nυ̇(

√
n)(̂λn − λ0) →D Q�

(∫ 1

0

[
Ḟ

(
β�

0 V (r)
)]2

V (r)V �(r) dr

)−1

(4.4)

×
∫ 1

0
Ḟ

(
β�

0 V (r)
)
V (r) dU(r),

Dn(α̂n − α0) →D R−1/2W(1),(4.5)

where (U(r),V (r)), Dn, R and W are the same as in Theorem 3.1.

REMARK 4.1. It is reasonable to require that the derivatives of f are H -
regular if f is H -regular, as stated in conditions (i) and (ii). Condition (iii) is
simply an identification condition, while (iv) and (v) are technical requirements
that can be fulfilled easily by many usual H -regular functions. Similar conditions
for parameter estimation in regression models involving I (1) processes can be
found in Park and Phillips (2001). Particularly, f (x) = x is a special case such
that conditions (i)–(v) are trivially satisfied.

Similar to Theorems 3.5 and 3.6, we derive some corresponding limit distribu-
tions for β̂n and θ̂n as well as a plug-in estimate ĝn(u) below.

THEOREM 4.2. Under the same conditions as Theorem 4.1, we have as n →
∞

nυ̇(
√

n)(β̂n − β0) →D

(∫ 1

0

[
Ḟ

(
β�

0 V (r)
)]2

V (r)V �(r) dr

)−1

(4.6)

×
∫ 1

0
Ḟ

(
β�

0 V (r)
)
V (r) dU(r),

n1/4(θ̂n − θ0) →D MN
(
0, ρ11θθ�

0
)
,(4.7)

where the same notation is used as in Theorem 3.5.
Also, a plug-in estimate of the form: ĝn(u) = Z�

k (u)ĉ has the asymptotic nor-
mality as in Theorem 3.3. The results in Theorem 3.2 and Corollaries 3.1–3.2
remain valid.

The proofs of Theorems 4.1–4.2 are given in Appendix E of the supplementary
material [Dong, Gao and Tjøstheim (2015)].
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5. Simulation experiments. This section studies the finite-sample perfor-
mance of the proposed estimates. Let d = 2 and xt be generated by

xt = xt−1 + vt with vt = r0vt−1 + εt ,(5.1)

for t = 1, . . . , n, where r0 = 0.1, εt ∼ iiN(0, σ 2I2), x0 = 0 surely. Let sample size
n = 400,600 and 1000. The number of Monte Carlo replications is M = 2000.
The truncation parameter is k = [a · nκ ] with κ = 5

44 and a = 3.65, satisfying the
conditions in Assumption B. We shall then use two examples.

EXAMPLE 5.1. Consider a single-index model yt = g(θ�
0 xt ) + et , et ∼

N(0,1), t = 1, . . . , n. There are two parts in the simulation, according as θ�
0 =

(0.6,−0.8) and θ�
0 = (1,0) that both satisfy ‖θ0‖ = 1.

We calculate the bias and standard deviation for θ̂n = (θ̂1n, θ̂2n)
�:

Bias = ¯̂θn − θ0, S.d. =
(

1

M

M∑
=1

(θ̂n − ¯̂θn)
⊗2

)⊗1/2

,(5.2)

where ⊗ denotes an element-wise operation, and ¯̂θn = 1
M

∑M
=1 θ̂n, in which θ̂n

stands for the th replication of the estimate.
In order to evaluate the asymptotic theory given in Theorem 3.2, we also cal-

culate the bias and the standard deviation of θ̂n,emp = θ̂n/‖θ̂n‖ in the same way as
in (5.2).

Part I. Set θ�
0 = (0.6,0.8), σ = 0.6 and g(u) = (1 + u2)e−u2

. We use the pro-
posed procedure in Section 2.1 to estimate θ0.

As can be seen from Table 1, both the biases and the standard deviations for θ̂n

decrease as the sample size increases, and θ̂1n and θ̂2n have similar performance.
Moreover, the biases and standard deviations of θ̂n,emp indicate that θ̂n,emp has a
rate of convergence faster than that of θ̂n, as shown in Theorem 3.2.

TABLE 1
Bias and standard deviation for single-index model

Bias S.d.

n 400 600 1000 400 600 1000

θ̂1n −0.0647 −0.0519 −0.0388 0.2678 0.2507 0.2042
θ̂2n −0.0832 −0.0684 −0.0453 0.3461 0.3285 0.2586
θ̂1
n,emp 0.0043 0.0024 −0.0016 0.1005 0.0820 0.0679

θ̂2
n,emp 0.0063 0.0066 0.0050 0.0717 0.0659 0.0515
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TABLE 2
Bias and standard deviation for single-index model

Bias S.d.

n 400 600 1000 400 600 1000

α̂1n 0.0866 0.0768 0.0340 0.3803 0.3748 0.3338
α̂2n 0.0013 −0.0008 −0.0006 0.1388 0.1186 0.0898
α̂1

n,unit −0.0073 −0.0061 −0.0031 0.0246 0.0237 0.0128

α̂2
n,unit 0.0011 −0.0018 −0.0003 0.1186 0.1080 0.0779

Part II. Put θ�
0 = (1,0), σ = 0.6 and g(u) = (1 +u2) exp(−u2). As pointed out

before, the rotation of the parameters is only for the derivation of the asymptotic
theory. To evaluate the asymptotic theory given in Theorem 3.1, we directly take
θ�

0 = α�
0 = (1,0) so that α̂n = θ̂n in this experiment.

As can be seen from Table 2, both the biases and the standard deviations of α̂1n

and α̂2n decrease as the sample size increases. Particularly, the decrease for α̂2n is
much faster than that for α̂1n. This verifies the type of rates of convergence given
in Theorem 3.1 that α̂2n − α20 = OP (n−3/4), while α̂1n − α10 = OP (n−1/4).

Nonetheless, shown by the standard deviations, α̂1
n,unit converges significantly

faster than α̂2
n,unit. This is also implied by Corollary 3.1 that α̂1

n,unit − α10 =
OP (n−3/2) and α̂2

n,unit − α20 = OP (n−3/4). Note also that the biases of α̂1
n,unit

are always negative (by definition, α̂1
n,unit ≤ α10 = 1) for each Monte Carlo exper-

iment. As a result, the biases of α̂1
n,unit approach zero relatively slower than those

of α̂2
n,unit. In addition, α̂2

n,unit and α̂2n perform quite similarly since they have the
same rate of convergence.

EXAMPLE 5.2. In this example, a partially linear single-index model of the
form: yt = β�

0 xt + g(θ�
0 xt ) + et , et ∼ N(0,1), t = 1, . . . , n, is examined with

g(u) = (1 + u2) exp(−u2), β�
0 = (0.3,0.5), θ�

0 = (0.6,−0.8) and σ = 0.8 in-
volved in εt ∼ iiN(0, σ 2I2).

Formulae in (5.2) are used for θ̂n, θ̂n,emp and β̂n. All simulation results with
sample size n = 400,600,1000 and σ = 0.8 are reported in Table 3. As can be
seen, both the biases and the standard deviations decrease as the sample size in-
creases. Moreover, the rate of θ̂n,emp approaching the true value looks faster than
that of θ̂n. This is supported by Theorems 3.5 and 3.6 that θ̂n − θ0 = OP (n−1/4)

and θ̂n,emp − θ0 = OP (n−3/4).
Meanwhile, since β̂n = (β̂1n, β̂2n)

� possesses the fastest rate of convergence of
n−1 by Theorem 3.5, both the biases and the standard deviations of β̂n support the
large sample behaviour. Therefore, the asymptotic theory established in Section 3
has been evaluated in these examples.
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TABLE 3
Bias and standard deviation for partially linear single-index model

Bias S.d.

n 400 600 1000 400 600 1000

θ̂1n −0.0495 −0.0470 −0.0324 0.2652 0.2494 0.1991
θ̂2n 0.0676 0.0645 0.0435 0.3433 0.3340 0.2572
θ̂1
n,emp 0.0038 0.0031 0.0023 0.0934 0.0798 0.0597

θ̂2
n,emp −0.0062 −0.0041 −0.0019 0.0761 0.0621 0.0475

β̂1n −0.0010 −0.0002 0.0001 0.0106 0.0068 0.0038
β̂2n −0.0007 0.0001 0.0001 0.0118 0.0067 0.0037

6. Empirical study. We propose to use a partially linear single-index model
to fit an empirical data set before we make some comparisons with some candidate
models.

The data. The aggregate US data on consumption, income, investment and inter-
est rate are obtained from Federal Reserve Economic Data (FRED). We consider
a quarterly data set over 1960:1–2009:3 with 199 observations. Let rt stand for the
real interest rate, and ct = log(Ct ), it = log(It ) and vt = log(Vt ), where Ct, It and
Vt are the consumption expenditures, disposable incomes and investments, respec-
tively, for t = 1, . . . ,199. The data of ct , it , vt and rt are plotted in (a) of Figure 1.
It can be seen that all of them have trending components except rt . To meet the
theoretical assumptions, we de-trend the data for ct , it and vt . More precisely, sup-
pose that ct = μ1 + ct−1 + u1t , it = μ2 + it−1 + u2t and vt = μ3 + vt−1 + u3t

for t = 2, . . . ,199, where uit , i = 1,2,3, are error terms. Then μi are estimated
as: μ̂1 = 1

198
∑199

i=2(ct − ct−1) = 0.1022, μ̂2 = 1
198

∑199
i=2(it − it−1) = 0.1302,

μ̂3 = 1
198

∑199
i=2(vt − vt−1) = 0.0181.

Define for each t , c̃t = ct − μ̂1t , ĩt = it − μ̂2t and ṽt = vt − μ̂3t . They are the
de-trended versions being plotted in (b) of Figure 1, correspondingly.

An ADF test is applied to each of c̃t , ĩt and ṽt , respectively. The ADF test fails to
reject the null of possessing a unit root with p-values 0.7595, 0.6293 and 0.7637,
respectively. In addition, it is known that rt is an I (1) process [Gao et al. (2009b)].
To visualise the I (1) processes, the plots of the differences are given in Figure 2.

The model. A partially linear single-index model is proposed to fit the data c̃t ,
ĩt , ṽt as well as rt in the following forms:

yt = β�
0 xt + g

(
θ�

0 xt

) + et ,(6.1)

where t = 2, . . . ,199, yt = c̃t and x�
t = (x1t , x2t , x3t , x4t , x5t ) in which x1t = ĩt−1,

x2t = ĩt , x3t = ṽt , x4t = ṽt−1, x5t = rt , and g(·) is an unknown integrable function,
et is the error term. Note that we only include the first lagged information in the
discussion, as they are more relevant than the other lags.
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FIG. 1. The real data and the de-trended data. (a) The real data. (b) The detrended data.

FIG. 2. Difference of dataset. (a) Difference of detrended consumption. (b) Difference of detrended
income. (c) Difference of detrended investment. (d) Difference of interest rate.
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FIG. 3. Estimated data and estimated link function. (a) Model (6.1). (b) Confidence interval curve.

Estimation. Before implementing our proposed procedures to estimate model
(6.1), one issue is to determine a suitable truncation parameter k so that the func-
tion g(·) can be better approximated by the first k terms in {Hi (x)}. Toward this
end, we propose using the Generalised Cross-Validation (GCV) method [see Gao,
Tong and Wolff (2002)] as an initial step to select an optimal value k. Note that
while there is no theory for such selection in the nonstationary time series case,
the initial selection method works numerically in this example. Let k̂ denote an
optimal value such that

k̂ = argmin
k∈Kn

(
1 − k

n

)−2

σ̂ 2(k),(6.2)

where σ̂ 2(k) = 1
n

∑n
t=1(yt − β�xt − Zk(θ

�xt )
�c̃(β, θ))2, Kn = {1, . . . ,12}.

We have k̂ = 5 by GCV, β̂n = (−0.0479,0.5701,−1.1689,1.8685,−0.1223)

and θ̂n = (0.2110,−0.3452,0.0835,2.6095,−0.2022). Meanwhile, we have ĉ =
c̃(β̂n, θ̂n) = (−89.64,112.54,−74.65,28.94,−3.33)�. This suggests

ĝ5(u) = [−89.64d−1
0 H0(u) + 112.54d−1

1 H1(u) − 74.65d−1
2 H2(u)

(6.3)
+ 28.94d−1

3 H3(u) − 3.33d−1
4 H4(u)

]
e−u2/2,

where Hi(u) are the Hermite polynomials, and di = (
√

π2i i!)1/2 are the norm of
Hi(u) in L2(R, e−u2

) for i = 0,1, . . . ,4.
In comparison, the de-trended log consumption yt = c̃t is plotted along with the

estimated de-trended log consumption by the partially linear single-index model
ŷt = β̂�

n xt + ĝ5(θ̂
�
n xt ) in (a) of Figure 3.

Note also by (6.3) that the estimated link function ĝ5(u) is integrable on R.
According to the normality in Theorem 3.3, we draw the confidence bands for
ĝ5(u) at the significance level of 80% in (b) of Figure 3.
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Comparison. To check whether the estimated relationship by the partially linear
model is a suitable one, we shall compare model (6.1) with two natural competitors
of the form

yt = h
(
θ�

10xt

) + e1t ,(6.4)

yt = β�
linearxt + e2t ,(6.5)

where h(·) is integrable and unknown, and et are the error terms for  = 1,2.
To begin with, the linear model is estimated by OLS with β̂linear = (−0.0628,

0.7952,−1.2315,0.9414,−0.0644)�. Moreover, GCV is applied for model (6.4)
with σ̂ 2(k) = 1

n

∑n
t=1(yt − Zk(θ

�xt )
�c̃(θ))2, and we have k̂ = 3. Then θ̂1n =

(−0.0014,0.0152,−0.0229,0.0176,−0.0016)�. Meanwhile, the estimate of ĉ =
c̃(θ̂1n) = (237.05,−61.92,315.32)� implies

ĥ3(u)
(6.6)

= [
237.05d−1

0 H0(u) − 61.92d−1
1 H1(u) + 315.32d−1

2 H2(u)
]
e−u2/2,

using the same notation as in (6.3).
To proceed further, we compare the so-called in-sample and out-of-sample mean

square errors among the three models.
(i) In-sample mean square error (MSEin): As above, all unknown parameters

and functions in the three models (6.1), (6.4) and (6.5) are estimated based on the
whole observations (xt , yt ), t = 2, . . . ,199. Once these have been done, we shall
have estimated ŷ

t with  = 1,2,3 corresponding to models (6.1), (6.4), (6.5) for
t = 2, . . . ,199,

ŷ1
t = β̂�

n xt + ĝ5
(
θ̂�
n xt

)
, ŷ2

t = ĥ3
(
θ̂�

1nxt

)
and ŷ3

t = β̂�
linearxt .

Then the in-sample mean square errors are calculated, for  = 1,2,3, by

MSEin() = 1

198

199∑
t=2

(
yt − ŷ

t

)2
.(6.7)

Meanwhile, to verify the choice of GCV, the MSEin for model (6.1) with k =
3,4,6,7, respectively, and for model (6.4) with k = 1,2,4,5, respectively, are
calculated as well.

(ii) Out-of-sample mean square error (MSEout): Each time, one part of obser-
vations is used to estimate all unknown parameters and functions in the three
models; then the next value of the dependent variable is forecasted using the es-
timated models. More precisely, letting j = 1,2, . . . ,10, we use the observations
{(yt , xt ) : 2 ≤ t ≤ 178 + 2j} to estimate the unknown parameters and functions
[with fixed k̂ = 5 for model (6.1) and k̂ = 3 for model (6.4)] in the three mod-
els, then the next y179+2j is forecasted by the three models using the estimated
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TABLE 4
The MSEs for models (6.1), (6.4), (6.5)

k = 3 4 5 6 7

Partially linear single-index model (6.1)
MSEin 0.0968 0.1018 0.0946 0.1460 0.1559
MSEout 0.2418 0.1761 0.1232 0.2146 0.1786

Single-index model (6.4) Linear model (6.5)
MSEin 0.3011 0.1641 0.1544 0.7709 1.4076 0.1666
MSEout 0.6962 0.2733 0.2607 1.9060 3.0838 0.2598

parameters,

ŷ1
179+2j = β̂�

j x179+2j + ĝ
j
5

(
θ̂�
j x179+2j

)
,

ŷ2
179+2j = ĥ

j
3

(
θ̂�

1j x179+2j

)
and ŷ3

179+2j = β̂�
j,linearx179+2j .

The MSEout are evaluated, for  = 1,2,3, by

MSEout() = 1

10

10∑
j=1

(
yt − ŷ

179+2j

)2
.(6.8)

In addition, to assess the choice of GCV, the MSEout for model (6.1) with k =
3,4,6,7, respectively, and for model (6.4) with k = 1,2,4,5, respectively, are
computed as well. All MSEin and MSEout are given in Table 4.

In summary, among the three models, the partially linear single-index model
(6.1) performs much better than the other two, in the sense that both its MSEin and
MSEout are the smallest within the models. Particularly, model (6.1) outperforms
models (6.4) and (6.5) over all choices of the truncation parameter regardless of
whether or not it is chosen by GCV method. This is possibly because model (6.1)
is the combination of a linear trend and a local adjustment by the link function
such that it is more flexible than the other two.

Note also that, with k̂ = 5 model (6.1) has the best performance. Therefore,
model (6.1) with k̂ = 5 is the most favourable one to explain the empirical rela-
tionship between the consumption and the income, investment and real interest
rate for the US data from the period of 1960 to 2009.

7. Conclusions. The estimation procedures for both single-index and par-
tially single-index models in the presence of nonstationarity and integrability have
been proposed. New asymptotic properties for the proposed estimates have been
established. The rate of convergence of the estimators of the index vector θ0 con-
sists of two different components in a new coordinate system for both the single-
index and the partially linear single-index models, while the estimator of the co-
efficient vector β0 has the super n-rate. The normality of the plug-in estimate of
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the link function involved in each model has been established. To satisfy the iden-
tification condition, the normalisation of the estimator of θ0 in each case has been
proposed and interestingly it possesses a fast rate of convergence. Motivated by
more applicability, the partially linear single-index model is extended by using a
general H -regular function to replace the linear function. New results have been
obtained. Meanwhile, Monte Carlo simulations have supported the key theoreti-
cal properties. Furthermore, the empirical study has shown that the partially linear
single-index model outperforms both the linear and the single-index models, and
is the most suitable one for the aggregate US data on consumption, income, invest-
ment and interest rate.

APPENDIX A: LEMMAS

Three lemmas are given in this appendix while their proofs are shown in Ap-
pendix C of the supplementary material [Dong, Gao and Tjøstheim (2015)].

LEMMA A.1. The following assertions hold:

(1) 1√
t
(x1t , x

�
2t ) has a joint probability density ψt(x,w�); and given Fs (de-

fined in Assumption A), 1√
t−s

(x1t − x1s, x
�
2t − x�

2s) has a joint density ψts(x,w�)

where t > s + 1. Meanwhile, these density functions are bounded uniformly in
(x,w) as well as t and (t, s), respectively.

(2) For large t and t − s, we have ψt(x,w�) = φ(w)ft (x)(1 + o(1)) and
ψts(x,w�) = φ(w)fts(x)(1 + o(1)) where φ(w) is the density of an (d − 1)-
dimensional normal distribution, ft (x) is the marginal density of 1√

t
x1t and fts(x)

is the marginal density of 1√
t−s

(x1t − x1s).

LEMMA A.2. (1) Under Assumptions A and B, we have as n → ∞,
‖ 1√

n
Z�Z − L1(1,0)Ik‖ = oP (1) in a richer probability space.

(2) Let Ẑ be the matrix Z defined in Section 2 with θ being replaced by θ̂n.
Under Assumptions A and B, we have 1√

n
‖Z�Z − Ẑ�Ẑ‖ = oP (1).

LEMMA A.3. Under Assumptions A and B, we have ‖c̃(θ0)−c‖2 = OP (1) k√
n

as n → ∞ where c̃(θ0) is defined in Section 2.1.

APPENDIX B: PROOFS OF THE MAIN RESULTS

The full proof of Theorem 3.2 and the outlines of the proofs of Theorems 3.3
and 3.4 are given below. In the meantime, all detailed proofs for the theorems and
corollaries in Section 3 and that in Section 4 are given in Appendices D and E,
respectively, of the supplementary material [Dong, Gao and Tjøstheim (2015)].
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PROOF OF THEOREM 3.2. Noting that 4
√

nD−1
n → diag(1,0d−1) as n → ∞

where 0d−1 is a zero matrix of (d − 1) × (d − 1), by the continuous mapping
theorem and Theorem 3.1 we have

4
√

n(θ̂n − θ0)

= 4
√

n
(
DnQ

�)−1
DnQ

�(θ̂n − θ0) = Q 4
√

nD−1
n Dn(α̂n − α0)(B.1)

→D Qdiag(1,0d−1)R
−1/2W(1) = MN

(
0, ρ11θ0θ

�
0

)
.

In addition, it follows from θ̂n,emp = Qα̂n,unit, θ0 = Qα0 and Corollary 3.1 that

n3/4(θ̂n,emp − θ0) = Qn3/4

(
α̂1

n,unit − 1

α̂2
n,unit

)
= (θ0Q2)

(
0

n3/4α̂2
n,unit

)
+ oP (1)

= Q2n
3/4α̂2

n,unit + oP (1) →D MN
(
0,Q2ρ22Q

�
2

)
. �

OUTLINE OF THE PROOF OF THEOREM 3.3. The uniform consistency of
ĝn(u) follows from Lemma A.3 directly. Indeed, for large n and by the consistency
of θ̂n and the continuity of c̃(θ) in θ , we have ‖ĉ−c‖2 = ‖c̃(θ̂n)−c‖2 = OP (1) k√

n
.

sup
u∈R

∣∣ĝn(u) − g(u)
∣∣ ≤ sup

u∈R
∣∣Z�

k (u)[̂c − c]∣∣ + sup
u∈R

∣∣γk(u)
∣∣ ≤ sup

u∈R
∥∥Zk(u)

∥∥‖ĉ − c‖

+ sup
u∈R

∣∣γk(u)
∣∣ = OP (1)

√
kn−1/4+κ/2 + o(1)k−(m−2)/2−1/12

= oP (1),

where the facts that supu∈R ‖Zk(u)‖ ≤ C
√

k and supu∈R |γk(u)| ≤
Ck−(m−2)/2−1/12 with some constant C > 0 are given in Lemma C.1 in the sup-
plementary material of the paper.

For the normality, in view of the consistency of σ̂e and L̂n1(1,0), we show the
result with the replacement of σe and L1(1,0). Meanwhile, in order to correspond
to the plug-in of θ̂n, denote by Ẑ the matrix Z defined in Section 2 with replace-
ment of θ0 by θ̂n. Noting that c̃ = c̃(θ0) = (Z�Z)−1Z�Y and Y = Zc + γ + e

given in Section 2.1,

ĉ = c̃(θ̂n) = (
Ẑ�Ẑ

)−1
Ẑ�(Zc + γ + e)

= c + (
Ẑ�Ẑ

)−1
Ẑ�(γ + e) + (

Ẑ�Ẑ
)−1

Ẑ�(Z − Ẑ)c.

It follows from Lemma A.2 that

ĝn(u) − g(u)

= Z�
k (u)ĉ − g(u) = Z�

k (u)(ĉ − c) − γk(u)

= Z�
k (u)

(
Ẑ�Ẑ

)−1
Ẑ�(γ + e) + Z�

k (u)
(
Ẑ�Ẑ

)−1
Ẑ�(Z − Ẑ)c − γk(u)
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= 1√
n
L−1

1 (1,0)Z�
k (u)Ẑ�e

(
1 + oP (1)

) + 1√
n
L−1

1 (1,0)Z�
k (u)Ẑ�γ

+ 1√
n
L−1

1 (1,0)Z�
k (u)Ẑ�(Z − Ẑ)c − γk(u)

= 1√
nL1(1,0)

Z�
k (u)Z�e + 1√

nL1(1,0)
Z�

k (u)(Ẑ − Z)�e

+ 1√
nL1(1,0)

Z�
k (u)Ẑ�γ

+ 1√
nL1(1,0)

Z�
k (u)Ẑ�(Z − Ẑ)c − γk(u).

To fulfill the normality, we need to show

(1) σ−1
e L1(1,0)−1/2 1

4
√

n

∥∥Zk(u)
∥∥−1

Z�
k (u)Z�e →D N(0,1),

(2)
1

4
√

n‖Zk(u)‖Z�
k (u)Ẑ�γ = oP (1),

(3)
1

4
√

n‖Zk(u)‖Z�
k (u)Ẑ�(Z − Ẑ)c = oP (1),

(4) 4
√

n
∥∥Zk(u)

∥∥−1
γk(u) = o(1),

(5)
1

4
√

n

∥∥Zk(u)
∥∥−1

Z�
k (u)(Ẑ − Z)�e = oP (1).

To begin with (1), observe that

n−1/4σ−1
e L

−1/2
1 (1,0)

∥∥Zk(u)
∥∥−1

Z�
k (u)Z�e

= n−1/4σ−1
e L

−1/2
1 (1,0)

∥∥Zk(u)
∥∥−1

n∑
t=1

Z�
k (u)Zk

(
θ�

0 xt

)
et ,

which is a martingale array in view of Assumption A. We shall use Corollary 3.1
of Hall and Heyde (1980) to show the normality of (1).

The conditional variance process is, by Lemma A.2,

1√
n
σ−2

e L−1
1 (1,0)

∥∥Zk(u)
∥∥−2

n∑
t=1

(
Z�

k (u)Zk

(
θ�

0 xt

))2
E

(
e2
t |Fn,t−1

)

= 1√
n
L−1

1 (1,0)
∥∥Zk(u)

∥∥−2
n∑

t=1

(
Z�

k (u)Zk(x1t )
)2

= 1√
n
L−1

1 (1,0)
∥∥Zk(u)

∥∥−2
Z�

k (u)

(
n∑

t=1

Zk(x1t )
�Zk(x1t )

)
Zk(u)
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= L−1
1 (1,0)

∥∥Zk(u)
∥∥−2

Z�
k (u)

(
1√
n
Z�Z

)
Zk(u)

= ∥∥Zk(u)
∥∥−2

Z�
k (u)Zk(u)

(
1 + oP (1)

) = 1 + oP (1).

Moreover, to make the conditional Lindeberg’s condition fulfilled it suffices to
show∥∥Zk(u)

∥∥−4 1

n

n∑
t=1

E
[(

Z�
k (u)Zk(x1t )et

)4|Fn,t−1
]

≤ C
∥∥Zk(u)

∥∥−4 1

n

n∑
t=1

∥∥Zk(u)
∥∥4∥∥Zk(x1t )

∥∥4 = C
1

n

n∑
t=1

∥∥Zk(x1t )
∥∥4 = oP (1)

by a routine calculation using the density of t−1/2x1t in Lemma A.1. This finishes
the normality for (1). For the sake of brevity, the proof for (2)–(5) is relegated to
the supplementary material. The outline then is completed. �

OUTLINE OF THE PROOF OF THEOREM 3.4. Denote for any ϑ = (β, θ),

Sn(ϑ) =
(
Sn,1(ϑ)

Sn,2(ϑ)

)
=

⎛⎜⎜⎝
∂Ln(ϑ)

∂β

∂Ln(ϑ)

∂θ

⎞⎟⎟⎠ ,

Jn(ϑ) =
(
Jn,11(ϑ) Jn,12(ϑ)

Jn,21(ϑ) Jn,22(ϑ)

)
=

⎛⎜⎜⎜⎝
∂2Ln(ϑ)

∂β ∂β�
∂2Ln(ϑ)

∂β ∂θ�
∂2Ln(ϑ)

∂θ ∂β�
∂2Ln(ϑ)

∂θ ∂θ�

⎞⎟⎟⎟⎠ .

Also, for any μ = (λ,α), Sn(μ) and Jn(μ) are defined similarly but with the
parameters rotated.

Denote D̃n = diag(nId,Dn). Thus, (3.17) may be equivalently written as

D̃−1
n Sn(μ0) + D̃−1

n Jn(μn)D̃
−1
n D̃n(μ̂n − μ0) = 0.(B.2)

It follows from (B.2) that

n−1Sn,1(μ0) + n−2Jn,11(μn)n(̂λn − λ0)
(B.3)

+ n−1Jn,12(μn)D
−1
n Dn(α̂n − α0) = 0,

D−1
n Sn,2(μ0) + D−1

n Jn,21(μn)n
−1n(̂λn − λ0)

(B.4)
+D−1

n Jn,22(μn)D
−1
n Dn(α̂n − α0) = 0.

The results of (3.18) and (3.19) will be derived from (B.3) and (B.4), respec-
tively. These are shown in the following two steps.
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Step 1: We first prove (3.19) from (B.4). First of all, note that Sn,2(μ0) and
Jn,22(μ0) are exactly the Sn(α0) and Jn(α0) in Theorem 3.1, respectively, since
yt − β�

0 xt in model (1.1) plays the same role as yt in model (1.2). Therefore,

D−1
n Sn,2(μ0) →D R1/2W(1) and D−1

n Jn,22(μ0)D
−1
n →P R,(B.5)

where R and W are defined in Theorem 3.1.
To prove (3.19), it therefore suffices to show that

Dn(α̂n − α0) = [
D−1

n Jn,22(μ0)D
−1
n

]−1
D−1

n Sn,2(μ0) + oP (1).(B.6)

Once again, Theorem 10.1 of Wooldridge (1994) is used to prove (B.6). It is
shown in detail in the supplemental material that n(̂λn − λ0) = Q�n(β̂n − β0) =
OP (1) and D−1

n Jn,21(μ0)n
−1 = oP (1). Define for some δ > 0, C̃n = n−δD̃n =

diag(n1−δId,Cn) such that C̃nD̃
−1
n → 0 as n → ∞, where Cn = n−δDn used in

the proof of Theorem 3.1. It follows from (B.4) that

0 = D−1
n Sn,2(μ0) + n−2δC−1

n

[
Jn,21(μn) − Jn,21(μ0)

]
n−1+δn(̂λn − λ0) + oP (1)

+ D−1
n Jn,22(μ0)D

−1
n Dn(α̂n − α0)

+ n−2δC−1
n

[
Jn,22(μn) − Jn,22(μ0)

]
C−1

n Dn(α̂n − α0).

The requirements (i)–(ii) in Theorem 10.1 of Wooldridge (1994) are trivially
fulfilled and the requirement (iii) will be satisfied if we can show

sup
{μ:‖C̃n(μ−μ0)‖<1}

∥∥n−1+δC−1
n

[
Jn,21(μ) − Jn,21(μ0)

]∥∥ = oP (1),(B.7)

sup
{μ:‖C̃n(μ−μ0)‖<1}

∥∥C−1
n

[
Jn,22(μ) − Jn,22(μ0)

]
C−1

n

∥∥ = oP (1).(B.8)

With the choice of δ ∈ (0,1/24), both (B.7) and (B.8) are proved in the supplemen-
tal material of the paper, and hence the requirement (B.6) is verified if we choose
δ ∈ (0,1/24).

Furthermore, (B.5) shows that condition (iv) in Wooldridge’s theorem holds.
Thus, the limit distribution (3.19) now follows directly.

Step 2: We now turn to prove (3.18) from (B.3). Since Jn,12(μn) = Jn,21(μn)
�,

Dn(α̂n − α0) = OP (1) by Step 1, D−1
n Jn,21(μ0)n

−1 = oP (1) (as shown in the
supplementary material), and Jn,11(μn) is independent of μn, we have

n(̂λn − λ0) = (
n−2Jn,11(μn)

)−1
n−1Sn,1(μ0) + oP (1)

by (B.7). Note that

1

n
Sn,1(μ0) = 1

n
Q� ∂Ln(ϑ0)

∂β
= 1

n
Q�

n∑
t=1

(
yt − β�

0 xt − ĝn

(
θ�

0 xt

))
xt

= 1

n

n∑
t=1

etQ
�xt + oP (1) →D Q�

∫ 1

0
V (r) dU(r),
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as shown in Appendix D of the supplementary material when n → ∞. Note also
that

1

n2Jn,11(μn) = 1

n2 Q�
n∑

t=1

xtx
�
t Q → Q�

∫
V (r)V (r)� drQ

almost surely using Theorem 3.1 of Park and Phillips (2001), from which (3.18)
follows. The outline of the proof is completed. �

PROOF OF THEOREM 3.5. The result of (3.20) follows directly from (3.18).
In view of the proof of Theorem 3.2 as well as (3.19), equation (3.21) holds. �

PROOF OF THEOREM 3.6. In view of (3.19) and the proofs of Theorems 3.2–
3.3, it holds. �
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