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ADAPTATION TO LOWEST DENSITY REGIONS WITH
APPLICATION TO SUPPORT RECOVERY1

BY TIM PATSCHKOWSKI AND ANGELIKA ROHDE

Ruhr-Universität Bochum

A scheme for locally adaptive bandwidth selection is proposed which
sensitively shrinks the bandwidth of a kernel estimator at lowest density re-
gions such as the support boundary which are unknown to the statistician.
In case of a Hölder continuous density, this locally minimax-optimal band-
width is shown to be smaller than the usual rate, even in case of homoge-
neous smoothness. Some new type of risk bound with respect to a density-
dependent standardized loss of this estimator is established. This bound is
fully nonasymptotic and allows to deduce convergence rates at lowest den-
sity regions that can be substantially faster than n−1/2. It is complemented
by a weighted minimax lower bound which splits into two regimes depending
on the value of the density. The new estimator adapts into the second regime,
and it is shown that simultaneous adaptation into the fastest regime is not pos-
sible in principle as long as the Hölder exponent is unknown. Consequences
on plug-in rules for support recovery are worked out in detail. In contrast to
those with classical density estimators, the plug-in rules based on the new
construction are minimax-optimal, up to some logarithmic factor.

1. Introduction. Adaptation in the classical context of nonparametric func-
tion estimation in Gaussian white noise has been extensively studied in the statis-
tical literature. Since Nussbaum (1996) has established asymptotic equivalence in
Le Cam’s sense for the nonparametric models of density estimation and Gaussian
white noise, a rigorous framework is provided which allows to carry over spe-
cific statistical results established for the Gaussian white noise model to the model
of density estimation, at least in dimension one. Density estimation is as one of
the most fundamental problems in statistics subject to a variety of recent studies;
see, for example, Efromovich (2008), Gach, Nickl and Spokoiny (2013), Lepski
(2013), Birgé (2014) and Liu and Wong (2014). It has become clear that under the
conditions for the asymptotic equivalence to hold, minimax rates of convergence in
density estimation with respect to pointwise or mean integrated squared error loss
coincide with the optimal convergence rates obtained in the context of nonpara-
metric regression, and the procedures are typically identical on the level of ideas.
A main requisite on the density for Nussbaum’s (1996) asymptotic equivalence is

Received September 2014; revised May 2015.
1Supported by the DFG Priority Program SPP 1324, RO 3766/2-1.
MSC2010 subject classifications. 62G07.
Key words and phrases. Anisotropic density estimation, bandwidth selection, adaptation to lowest

density regions, density dependent minimax optimality, support estimation.

255

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1366
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


256 T. PATSCHKOWSKI AND A. ROHDE

the assumption that it is compactly supported and uniformly bounded away from
zero on its support. If this assumption is violated, the density estimation experi-
ment may produce statistical features which do not have any analog in the regres-
sion context. For instance, minimax estimation of noncompactly supported densi-
ties under Lp-loss bears striking differences to the compact case; see Juditsky and
Lambert-Lacroix (2004), Reynaud-Bouret, Rivoirard and Tuleau-Malot (2011) and
Goldenshluger and Lepski (2011, 2014). The minimax rates reflect an interplay of
the regularity parameters and the parameter of the loss function, an effect which is
caused by the tail behavior of the densities under consideration. In this article, we
recover such an exclusive effect even for compactly supported densities. It turns
out that minimax estimation in regions where the density is small is possible with
higher accuracy although fewer observations are available, leading to rates which
can be substantially faster than n−1/2. Even more, this accuracy can be achieved to
a large extent without a priori knowledge of these regions by a kernel density es-
timator with an adaptively selected bandwidth. As discovered by Butucea (2001),
the exact constant of normalization for pointwise adaptive univariate density esti-
mation on Sobolev classes depends increasingly on the density at the point of es-
timation itself. The crucial observation is that the classical bias variance trade-off
does not reflect the dependence of the kernel estimator’s variance on the density,
which brings the idea of an estimated variance in the bandwidth selection rule into
play. Although Butucea’s interesting result requires the point of estimation to be
fixed, it suggests that a potential gain in the rate might be possible at lowest density
regions. In this paper, we investigate the problem of adaptation to lowest density
regions under anisotropic Hölder constraints. A bandwidth selection rule is intro-
duced which provably attains fast pointwise rates of convergence at lowest density
regions. On this way, new weighted lower risk bounds over anisotropic Hölder
classes are established, which split into two regimes depending on the value of the
density. We show that the new estimator uniformly improves the global minimax
rate of convergence, adapts to the second regime and finally that adaptation into
the fastest regime is not possible in principle if the density’s regularity is unknown.
We identify the best possible adaptive rate of convergence

n−β̄/(β̄+d)

(up to a logarithmic factor), where β̄ is the unnormalized harmonic mean of the
d-dimensional Hölder exponent.

This breakpoint determines the attainable speed of convergence of plug-in esti-
mators for functionals of the density where the quality of estimation at the bound-
ary is crucial. We exemplarily demonstrate it for the problem of support recovery.
In order to line up with the related results of Cuevas and Fraiman (1997) about
plug-in rules for support estimation and Rigollet and Vert (2009) on minimax anal-
ysis of plug-in level-set estimators, we measure the performance of the plug-in
support estimator with respect to the global measure of symmetric difference of



ADAPTATION TO LOWEST DENSITY REGIONS 257

sets under the margin condition [Polonik (1995); see also Mammen and Tsybakov
(1999) and Tsybakov (2004)]. In contrast to level set estimation, however, plug-in
rules for the support functional possess sub-optimal convergence rates when the
classical kernel density estimator with minimax-optimal global bandwidth choice
is used. We determine the optimal minimax rate for support recovery

n−γβ/(β+d)

(up to a logarithmic factor), where γ denotes the margin exponent, d the dimension
and β the isotropic Hölder exponent. Our result demonstrates that support recovery
is possible with higher accuracy than level set estimation as already conjectured by
Tsybakov (1997). We finally show that the performance of the plug-in support es-
timator resulting from our new density estimator turns out to be minimax-optimal
up to a logarithmic factor.

The article is organized as follows. Section 2 contains the basic notation. In Sec-
tion 3, the adaptive density estimator is introduced, new weighted lower pointwise
risk bounds are derived and the optimality performance of the estimator is proved.
Section 4 addresses the important problem of density support estimation as an ex-
ample of a functional which substantially benefits from the new density estimator.
The proofs are deferred to Section 5 and the supplemental article [Patschkowski
and Rohde (2015)].

2. Preliminaries and notation. All our estimation procedures are based on
a sample of n real-valued d-dimensional random vectors Xi = (Xi,1, . . . ,Xi,d),
i = 1, . . . , n (d ≥ 1 and if not stated otherwise n ≥ 2), that are independent and
identically distributed according to some unknown probability measure P on Rd

with continuous Lebesgue density p. E⊗n
p denotes the expectation with respect to

the n-fold product measure P⊗n. Let

p̂n,h(t) = p̂n,h(t,X1, . . . ,Xn) := 1

n

n∑
i=1

Kh(t − Xi),

denote the kernel density estimator with d-dimensional bandwidth h = (h1, . . . ,

hd) at point t ∈ Rd , where

Kh(x) :=
(

d∏
i=1

hi

)−1

K

(
x1

h1
, . . . ,

xd

hd

)

describes a rescaled kernel supported on
∏d

i=1[−hi, hi]. The kernel function K

is assumed to be compactly supported on [−1,1]d and to be of product structure,
that is, K(x1, . . . , xd) = ∏d

i=1 Ki(xi). Additionally, Ki,hi
(x) := h−1

i Ki(x/hi), i =
1, . . . , d . The components Ki are assumed to integrate to one and to be continuous
on its support with Ki(0) > 0. If not stated otherwise, they are symmetric and
nonnegative, implying that the kernel is of first order. Recall that K is said to be
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of kth order, k = (k1, . . . , kd) ∈ Nd , if the functions x �→ x
ji

i Ki(xi), ji ∈ N with
1 ≤ ji ≤ ki , i = 1, . . . , d , satisfy∫

x
ji

i Ki(xi) dλ(xi) = 0,

where λd denotes the Lebesgue measure on Rd throughout the article. The
Lebesgue measure on R is denoted by λ. For any function f : Rd → R and
x = (x1, . . . , xd) ∈ Rd , we define the univariate functions

fi,x :R −→ R
(2.1)

y �−→ f (x1, . . . , xi−1, y, xi+1, . . . , xd)

and denote by P
(fi,x)

y,l the Taylor polynomial

P
(fi,x)

y,l (·) :=
l∑

k=0

f
(k)
i,x (y)

k! (· − y)k(2.2)

of fi,x at the point y ∈ R of degree l (whenever it exists). Let Hd(β,L) be the
anisotropic Hölder class with regularity parameters (β,L), that is, any function f

belonging to this class fulfills for all y, y′ ∈ R the inequality

sup
x∈Rd

∣∣fi,x(y) − fi,x

(
y′)∣∣ ≤ L

∣∣y − y′∣∣βi

for those i ∈ {1, . . . , d} with βi ≤ 1, and in case βi > 1 admits derivates with
respect to its ith coordinate up to the order 	βi
 := max{n ∈ N : n < βi}, such that
the approximation by the Taylor polynomial satisfies

sup
x∈Rd

∣∣fi,x(y) − P
(fi,x)

y′,	βi
(y)
∣∣ ≤ L

∣∣y − y′∣∣βi for all y, y′ ∈R.

For adaptation issues, it is assumed that β = (β1, . . . , βd) ∈ ∏d
i=1[β∗

i,l , β
∗
i,u] and

L ∈ [L∗
l ,L

∗
u] for some positive constants β∗

i,l < β∗
i,u, i = 1, . . . , d , and L∗

l < L∗
u.

For short, we simply write β∗ and L∗ for the couples (β∗
l , β∗

u) and (L∗
l ,L

∗
u), and

finally R(β∗,L∗) for the rectangle
∏d

i=1[β∗
i,l, β

∗
i,u] × [L∗

l ,L
∗
u]. It turns out that all

rates of convergence emerging in an anisotropic setting involve the unnormalized
harmonic mean of the smoothness parameters

β̄:=
(

d∑
i=1

1

βi

)−1

.

To focus on rates only and for ease of notation, we denote by c positive constants
that may change from line to line. All relevant constants will be numbered consec-
utively. Dependencies of the constants on the functional classes’ parameters are
always indicated and it should be kept in mind that the constants can potentially
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depend on the chosen kernel, the loss function and the dimension as well. Further-
more, Pd(β,L) denotes the set of all probability densities in Hd(β,L). It is well
known that any function f ∈ Pd(β,L) is uniformly bounded by a constant

c1(β,L) = sup
{‖p‖sup : p ∈ Pd(β,L)

}
(2.3)

depending on the regularity parameters only.

3. New lower risk bounds, adaptation to lowest density regions. The
fully nonparametric problem of estimating a density p at some given point t =
(t1, . . . , td) has quite a long history in the statistical literature and has been exten-
sively studied. Considering different estimators, a very natural question is whether
there is an estimator that is optimal and how optimality can be exactly described.
A common concept of optimality is stated in a minimax framework. An estimator
Tn(t) = Tn(t,X1, . . . ,Xn) is called minimax-optimal over the class Pd(β,L) if
its risk matches the minimax risk

inf
Tn(t)

sup
p∈Pd (β,L)

E⊗n
p

∣∣Tn(t) − p(t)
∣∣r

for some r ≥ 1, where the infimum is taken over all estimators. However, the min-
imax approach is often rated as quite pessimistic as it aims at finding an estimator
which performs best in the worst situation. Different in spirit is the oracle ap-
proach. Within a pre-specified class T of estimators, it aims at finding for any
individual density the estimator T̂n ∈ T which is optimal, leading to oracle in-
equalities of the form

E⊗n
p

∣∣T̂n(t) − p(t)
∣∣r ≤ c inf

Tn∈T
E⊗n

p

∣∣Tn(t) − p(t)
∣∣r + Rn(t)

with a remainder term Rn(t) depending on the class T , the underlying density
p and the sample size only. Besides having the drawback that there is no notion
of optimality judging about the adequateness of the estimator’s class, an equally
severe problem may be caused by the fact that the remainder term is uniform in T ,

and thus a worst case remainder. The latter is responsible for the fact that our fast
convergence rates cannot be deduced from the oracle inequality in Goldenshluger
and Lepski (2013), the order for their remainder being unimprovable, however. In
this article, we introduce the notion of best possible p-dependent minimax speed of
convergence ψn

p(t),β,L within the function class Pd(β,L) and aim at constructing
an estimator Tn(t) bounding the risk

sup
p∈Pd (β,L)

sup
t∈Rd :
p(t)>0

E⊗n
p

( |Tn(t) − p(t)|
ψn

p(t),β,L

)r

uniformly over a range of parameters (β,L). First, this requires a suitable defini-
tion of the quantity ψn

p(t),β,L.



260 T. PATSCHKOWSKI AND A. ROHDE

3.1. New weighted lower risk bound. As we want to work out the explicit
dependence on the value of the density, it seems suitable to fix an arbitrary constant
ε ∈ (0,1), and to pick out maximal not necessarily disjoint subsets Uδ of Pd(β,L)

with the following properties: ∪Uδ = {p ∈ Pd(β,L) : p(t) > 0}, and pairwise
ratios p(t)/q(t), p,q ∈ Uδ , are bounded away from zero by ε and from infinity by
1/ε. This motivates the construction of the subsequent theorem.

THEOREM 3.1 (New weighted lower risk bound). For any β = (β1, . . . , βd)

with 0 < βi ≤ 2, i = 1, . . . , d , L > 0 and r ≥ 1, there exist constants c2(β,L, r) >

0 and n0(β,L) ∈ N, such that for every t ∈ R the pointwise minimax risk over
Hölder-smooth densities is bounded from below by

inf
0<δ≤c1(β,L)

inf
Tn(t)

sup
p∈Pd (β,L):
δ/2≤p(t)≤δ

E⊗n
p

( |Tn(t) − p(t)|
ψn

p(t),β

)r

≥ c2(β,L, r)

for all n ≥ n0(β,L), where ψn
x,β := x ∧ (x/n)β̄/(2β̄+1) and c1(β,L) defined

in (2.3).

REMARK 3.2. (i) The lower bound of the above theorem is attained by the
oracle estimator

Tn(t) := p̂n,hn,δ (t) · 1{δ ≥ n−β̄/(β̄+1)}(3.1)

with hn,δ,i = (δ/n)(1/(2β̄+1))(1/βi). Hence, ψn
p(t),β cannot be improved in princi-

ple. We refer to it in the sequel as p-dependent speed of convergence within the
functional class Pd(β,L).

(ii) Note that for the classical minimax rate n−β̄/(2β̄+1),

lim
n→∞ inf

0<δ≤c1(β,L)
inf

Tn(t)
sup

p∈Pd (β,L):
δ/2≤p(t)≤δ

E⊗n
p

( |Tn(t) − p(t)|
n−β̄/(2β̄+1)

)r

= 0

as a direct consequence of the subsequently formulated Theorem 3.3. The p-
dependent speed of convergence ψn

p(t),β is of substantially smaller order than the
classical one along a shrinking neighborhood of lowest density regions.

Note that the exponent β̄ /(2 β̄ +1) implicitly depends on the dimension d and
coincides in case of isotropic smoothness with the well-known exponent β/(2β +
d). It splits into two regimes which are listed and specified in the following table.

Regime Rate ψn
x,β

(i) x ≤ n−β̄/(β̄+1) x

(ii) n−β̄/(β̄+1) < x ≤ c1(β,L) (x
n
)β̄/(2β̄+1)
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FIG. 1. New lower bound (solid line), classical lower bound (dashed line).

The worst p-dependent speed of convergence within Pd(β,L), namely

sup
0<x≤c1(β,L)

ψn
x,β,

reveals the classical minimax rate n−β̄/(2β̄+1). The fastest rate in regime (ii) is of
the order

n−β̄/(β̄+1) for x = n−β̄/(β̄+1),

which is substantially smaller than the classical minimax risk bound. Figure 1
visualizes the split-up into the regimes and relates the new p-dependent rate of
Theorem 3.1 to the classical minimax rate for different sample sizes from n = 50
to n = 800.

It becomes apparent from the proof that the lower bound actually even holds
for the subset of (β,L)-regular densities with compact support. At first glance,
however, the new lower bound is of theoretical value only, because the value of
a density at some point to be estimated is unknown. The question is whether it
is possible to improve the local rate of convergence of an estimator without prior
knowledge in regions where fewer observations are available, that is, to which
extent it is possible to adapt to lowest density regions.

3.2. Adaptation to lowest density regions. Adaptation is an important chal-
lenge in nonparametric estimation. Lepski (1990) introduced a sequential multi-
ple testing procedure for bandwidth selection of kernel estimators in the Gaussian
white noise model. It has been widely used and refined for a variety of adaptation
issues over the last two decades. For recent references, see Giné and Nickl (2010),
Chichignoud (2012), Goldenshluger and Lepski (2011, 2014), Chichignoud and
Lederer (2014), Jirak, Meister and Reiß (2014), Dattner, Reiss and Trabs (2014)
and Bertin, Lacour and Rivoirard (2014) and Lepski (2015) among many others.
Our subsequently constructed estimator is based on the anisotropic bandwidth se-
lection procedure of Kerkyacharian, Lepski and Picard (2001), which has been de-
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veloped in the Gaussian white noise model, but incorporates the new approach of
adaptation to lowest density regions. Although Goldenshluger and Lepski (2013)
pursue a similar goal via some kind of empirical risk minimization, their oracle
inequality provides no faster rates than n−1/2 times the average of the density over
the unit cube around the point under consideration. They deduce from it adap-
tive minimax rates of convergence with respect to the Lp-risk over anisotropic
Nikol’skii classes for density estimation on Rd . As concerns adaptation to low-
est density regions such as the unknown support boundary, this oracle inequality
is not sufficient as no faster rates than n−1/2 can be deduced from it, and it is
not clear whether these faster rates are attainable for their estimator in principle.
Besides having the drawback that there is no notion of optimality judging about
the adequateness of the estimator’s class, an equally severe problem of the oracle
approach may be caused by the fact that the remainder term is uniform in the es-
timator’s class, and thus a worst case remainder. The latter is responsible for the
fact that our fast convergence rates cannot be deduced from the oracle inequality in
Goldenshluger and Lepski (2013), the order for their remainder being unimprov-
able, however. It raises the question whether this imposes a fundamental limit on
the possible range of adaptation (the corresponding inequality resulting from the
bound on P⊗n(B1,m) has to be satisfied as well). We shall demonstrate in what
follows that it is even possible to attain substantially faster rates, indeed that adap-
tation to the whole second regime of Theorem 3.1 is an achievable goal, and that
this describes precisely the full range where adaptation to lowest density regions is
possible as long as the density’s regularity is unknown. Our procedure uses kernel
density estimators p̂n,h(t) with multivariate bandwidths h = (h1, . . . , hd), which
are able to deal with different degrees of smoothness in different coordinate direc-
tions. Note that optimal bandwidths for estimation of Hölder-continuous densities
are typically derived by a bias-variance trade-off balancing the bias bound

∣∣p(t) −E⊗n
p p̂n,h(t)

∣∣ ≤ c(β,L) ·
d∑

i=1

h
βi

i ,(3.2)

see (5.3) in Section 5 for details, against the rough variance bound

Var
(
p̂n,h(t)

) ≤ c1(β,L)‖K‖2
2

n
∏d

i=1 hi

,(3.3)

where ‖ · ‖2 is the Euclidean norm [on L2(λ
d)]. This bound leads to suboptimal

rates of convergence whenever the density is small since it is not able to capture
small values of p in a small neighborhood around t in contrast to the sharp convo-
lution bound

Var
(
p̂n,h(t)

) ≤ 1

n

(
(Kh)

2 ∗ p
)
(t) =: σ 2

t (h).(3.4)

Balancing (3.2) and (3.4) leads to smaller bandwidths at lowest density regions
as compared to bandwidths resulting from the classical bias-variance trade-off be-
tween (3.2) and (3.3). The convolution bound (3.4) is unknown and it is natural to
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replace it by its unbiased empirical version

σ̃ 2
t (h) := 1

n2 ∏d
i=1 h2

i

n∑
i=1

K2
(

t − Xi

h

)
.

However, σ̃ 2
t (h) concentrates extremely poorly around its mean if the bandwidth h

is small, which is just the important situation at lowest density regions. Precisely,
Bernstein’s inequality provides the bound

P⊗n

(∣∣∣∣ σ̃
2
t (h)

σ 2
t (h)

− 1
∣∣∣∣ ≥ η

)
≤ 2 exp

(
− 3η2

2(3 + 2η)‖K‖2
sup

σ 2
t (h) · n2

d∏
i=1

h2
i

)
,(3.5)

which suggests to study the following truncated versions instead:

σ 2
t,trunc(h) := max

{
log2 n

n2 ∏d
i=1 h2

i

, σ 2
t (h)

}
,

(3.6)

σ̃ 2
t,trunc(h) := max

{
log2 n

n2 ∏d
i=1 h2

i

, σ̃ 2
t (h)

}
.

Without the logarithmic term, the truncation level ensures tightness of the family
of random variables σ̃ 2

t,trunc(h)/σ 2
t,trunc(h), because the exponent in (3.5) remains a

nondegenerate function in η. The logarithmic term is introduced in order to guar-
antee sufficient concentration of suph |1 − σ̃ 2

t,trunc(h)/σ 2
t,trunc(h)|.

Construction of the adaptive estimator. Our estimation procedure is devel-
oped in the anisotropic setting, in which neither the variance bound nor the bias
bound provides an immediate monotone behavior in the bandwidth. Unlike in
the univariate or isotropic multivariate case, Lepski’s (1990) idea of mimick-
ing the bias-variance trade-off fails. Consequently, our estimation scheme imi-
tates the anisotropic procedure of Kerkyacharian, Lepski and Picard (2001) and
Klutchnikoff (2005), developed in the Gaussian white noise model, with the fol-
lowing changes. First, their threshold given by the variance bound in the Gaus-
sian white noise setting is replaced essentially with the truncated estimate in (3.6),
which is sensitive to small values of the density. Moreover, it is crucial in the
anisotropic setting that our procedure uses an ordering of bandwidths according
to these estimated variances instead of an ordering according to the product of the
bandwidth’s components. The bandwidth selection scheme chooses a bandwidth
in the set

H :=
{
h = (h1, . . . , hd) ∈

d∏
i=1

(0, hmax,i] :
d∏

i=1

hi ≥ log2 n

n

}
,

where for simplicity we set (hmax,1, . . . , hmax,d) = (1, . . . ,1). Let furthermore

J :=
{
j = (j1, . . . , jd) ∈ Nd

0 :
d∑

i=1

ji ≤
⌊

log2

(
n

log2 n

)⌋}
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be a set of indices and denote by

G := {(
2−j1, . . . ,2−jd

) : j ∈ J
} ⊂ H

the corresponding dyadic grid of bandwidths, that serves as a discretization for the
multiple testing problem in Lepski’s selection rule. For ease of notation, we abbre-
viate dependences on the bandwidth (2−j1, . . . ,2−jd ) by the multi-index j . Next,
with j ∧m denoting the minimum by component, the set of admissible bandwidths
is defined as

A = A(t)

:=
{
j ∈ J : ∣∣p̂n,j∧m(t) − p̂n,m(t)

∣∣ ≤ c3

√
σ̂ 2

t (m) logn(3.7)

for all m ∈ J with σ̂ 2
t (m) ≥ σ̂ 2

t (j )
}
,

with a properly chosen constant c3 = c3(β
∗,L∗) satisfying the constraint (5.17)

appearing in the proof of Theorem 3.3. Here, both the threshold and the ordering
of bandwidths are defined via the truncated variance estimator

σ̂ 2
t (h) := min

{
σ̃ 2

t,trunc(h),
‖K‖2

2c1

n
∏d

i=1 hi

}
(3.8)

= min

{
max

[
log2 n

n2 ∏d
i=1 h2

i

,
1

n2 ∏d
i=1 h2

i

n∑
i=1

K2
(

t − Xi

h

)]
,

‖K‖2
2c1

n
∏d

i=1 hi

}
,

where c1 = c1(β
∗,L∗) is an upper bound on c1(β,L) in the range of adaptation.

The threshold in (3.7) could be modified by a further logarithmic factor to avoid
the dependence of the constants on the range of adaptation. Recall again that this
refined estimated threshold is crucial for our estimation scheme. The procedure
selects the bandwidth among all admissible bandwidths with

ĵ = ĵ (t) ∈ arg min
j∈A

σ̂ 2
t (j ).(3.9)

Finally,

p̂n := p̂
n,ĵ

∧ c1

defines the adaptive estimator. In case of isotropic Hölder smoothness, it is suf-
ficient to restrict the grid to bandwidths with equal components, and we even
simplify the method by replacing the ordering by estimated variances in con-
dition (3.8) ”for all m ∈ J with σ̂ 2

t (m) ≥ σ̂ 2
t (j )” by the classical order “for all

m ∈ J with m ≥ j” as the componentwise ordering is the same for all components.
Performance of the adaptive estimator. Clearly, the truncation in the threshold

imposes serious limitations to which extent adaptation to lowest densities regions
is possible. However, a careful analysis of the ratio

sup
h

∣∣∣∣ σ̃
2
t,trunc(h)

σ 2
t,trunc(h)

− 1
∣∣∣∣
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rather than the difference suph |σ̃ 2
t,trunc(h)−σ 2

t,trunc(h)| allows to prove indeed that
adaptation is possible in the whole second regime.

THEOREM 3.3 (New upper bound). For any rectangle R(β∗,L∗) with
[β∗

i,l , β
∗
i,u] ⊂ (0,2], [L∗

l ,L
∗
u] ⊂ (0,∞) and r ≥ 1, there exists a constant c4(β

∗,
L∗, r) > 0, such that the new density estimator p̂n with adaptively chosen band-
width according to (3.9) satisfies

sup
(β,L)∈R(β∗,L∗)

sup
p∈Pd (β,L)

sup
t∈Rd

E⊗n
p

( |p̂n(t) − p(t)|
ψ̃n

p(t),β

)r

≤ c4
(
β∗,L∗, r

)
for all n ≥ 2, where

ψ̃n
x,β := [

n−β̄/(β̄+1) ∨ (x/n)β̄/(2β̄+1)](logn)3/2.

The p-dependent speed of convergence ψ̃n
p(t),β (except the logarithmic factor)

is plotted in Figure 2, which shows the superiority of the new estimator in low den-
sity regions. It also depicts that the new estimator is able to adapt to regime (ii) up
to a logarithmic factor, and that it improves the rate of convergence significantly
in both regimes as compared to the classical minimax rate. Besides, although not
emphasized before, p̂n is fully adaptive to the smoothness in terms of Hölder reg-
ularity.

As ψ and ψ̃ coincide (up to a logarithmic factor) in regime (ii) but differ in
regime (i), the question arises whether the breakpoint

n−β̄/(β̄+1)

describes the fundamental bound on the range of adaptation to lowest density re-
gions. The following result shows that this is indeed the case as long as the den-
sity’s regularity is unknown.

FIG. 2. New upper bound without logarithmic factor (solid line), classical upper bound (dashed
line).
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THEOREM 3.4. For any β2 < β1 ≤ 2 and any sequence (ρ(n)) converging to
infinity with

ρ(n) = O
(
n

β1−β2
(2β1+1)(β2+1) (logn)−3/2),

there exist L1,L2 > 0 and densities pn ∈ P1(β1,L1) with

n−β1/(β1+1)

pn(t)
= o(1)

as n → ∞, such that for every estimator Tn(t) satisfying

E⊗n
pn

∣∣Tn(t) − pn(t)
∣∣ ≤ c4

(
β∗

1 ,L∗
1, r

)(pn(t)

n

)β1/(2β1+1)

(logn)3/2,(3.10)

there exist n0(β1, β2,L1,L2) and a constant c > 0 both independent of t , with

sup
q∈Pd (β2,L2):

q(t)≤c(n)·n−β2/(β2+1)

E⊗n
q |Tn(t) − q(t)|
n−β2/(β2+1)

≥ c

for all n ≥ n0(β1, β2,L1,L2) and any sequence (c(n)) with c(n) ≥ ρ(n)−1.

The following consideration provides a heuristic reason why adaptation to
regime (i) is not possible in principle. Consider the univariate and Lipschitz contin-
uous triangular density p : R → R, x �→ (1 − |x|)1{|x| ≤ 1}. If δn < n−β/(β+1) =
n−1/2, the expected number of observations in {p ≤ δn} is less than one. Without
the knowledge of the regularity, it is intuitively clear that it is impossible to predict
whether local averaging is preferable to just estimating by zero.

3.2.1. Adaptation to lowest density regions when β is known. If the Hölder
exponent β ∈ (0,2] is known to the statistician, the form of the oracle estima-
tor (3.1) suggests that some further improvement in regime (i) might be possible
by considering the truncated estimator

p̂n(·) · 1{p̂n(·) ≥ n−β̄/(β̄+1)(logn)ζ1
}

(3.11)

for some suitable constant ζ1 > 0. In fact, elementary algebra shows that this
threshold does not affect the performance in regime (ii) (up to a logarithmic
term). For isotropic Hölder smoothness, we prove in the supplemental article
[Patschkowski and Rohde (2015)] that the estimator (3.11) indeed attains the p-
dependent speed of convergence

ϑn
p(t),β = ψn

p(t),β ∨ n−ζ2

up to logarithmic terms, with ψn
x,β as defined in Theorem 3.1. Here, the constant ζ2

can be made arbitrarily large by enlarging c3 and ζ1. That is, if the Hölder exponent
is known, adaptation to regime (i) is possible to a large extent.
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3.2.2. Extension to β > 2. As concerns an extension of Theorems 3.1 and 3.3
to arbitrary β > 2, Lemma 5.1(ii) demonstrates that the variance of the kernel
density estimator never falls below the reference speed of convergence ψ̃n

p(t),β .
However, it can be substantially larger, resulting in a lower speed of convergence
as compared to the reference speed of convergence. Therefore, it seems necessary
to introduce a p-dependent speed of convergence which does not incorporate the
value of the density p(t) only but also information on the derivatives. An exception
of outstanding importance are points t close to the support boundary, because not
only p(t) itself but also all derivatives are necessarily small. Theorem A.1, which
is deferred to the supplemental article [Patschkowski and Rohde (2015)], reveals
that our procedure then even reaches the fast adaptive speed of convergence at the
support boundary for every β > 0. In fact, as β → ∞, adaptive rates arbitrarily
close to n−1 can be attained.

4. Application to support recovery. The phenomenon of faster rates of con-
vergence in regions where the density is small may have strong consequences on
plug-in rules for certain functionals of the density. As an application of the results
of Section 3, we investigate the support plug-in functional. Support estimation has
a long history in the statistical literature. Geffroy (1964) and Rényi and Sulanke
(1963, 1964) are cited as pioneering reference most commonly, followed by further
contributions of Chevalier (1976), Devroye and Wise (1980), Grenander (1981),
Hall (1982), Groeneboom (1988), Tsybakov (1989, 1991, 1997), Cuevas (1990),
Korostelev and Tsybakov (1993), Härdle, Park and Tsybakov (1995), Mammen
and Tsybakov (1995), Cuevas and Fraiman (1997), Gayraud (1997), Hall, Nuss-
baum and Stern (1997), Baíllo, Cuevas and Justel (2000), Cuevas and Rodríguez-
Casal (2004), Klemelä (2004), and Biau, Cadre and Pelletier (2008), Biau, Cadre,
Mason and Pelletier (2009), Brunel (2013) and Cholaquidis, Cuevas and Fraiman
(2014) as a by far nonexhaustive list of contributions. In order to demonstrate the
substantial improvement in the rates of convergence for the plug-in support esti-
mator based on the new density estimator, we first establish minimax lower bounds
for support estimation under the margin condition which have not been provided
in the literature so far. Theorems 4.4 and 4.5 then reveal that the minimax rates for
the support estimation problem are substantially faster than for the level set esti-
mation problem, as already conjectured in Tsybakov (1997). In fact, in the level
set estimation framework, when β and L are given, the classical choice of a band-
width of order n−1/(2β+d) in case of isotropic Hölder smoothness leads directly
to a minimax-optimal plug-in level set estimator as long as the offset is suitably
chosen [Rigollet and Vert (2009)]. In contrast, this bandwidth produces suboptimal
rates in the support estimation problem, no matter how the offset is chosen. At first
sight, this makes the plug-in rule as a by-product of density estimation inappropri-
ate. We shall demonstrate subsequently, however, that our new density estimator
avoids this problem. In order to line up with the results of Cuevas and Fraiman
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(1997) and Rigollet and Vert (2009), we work essentially under the same type of
conditions. The distance between two subsets A and B of Rd is measured by

d�(A,B) := λd(A�B),

where � denotes the symmetric difference of sets

A�B := (A \ B) ∪ (B \ A).

Subsequently, Ā denotes the topological closure of a set A ⊂ Rd . We impose the
following condition, which characterizes the complexity of the problem. It was
introduced by Polonik (1995) [see also Mammen and Tsybakov (1999), Tsybakov
(2004) and Cuevas and Fraiman (1997)], where the latter authors referred to it as
sharpness order.

DEFINITION 4.1 (Margin condition). A density p : Rd → R is said to satisfy
the κ-margin condition with exponent γ > 0, if

λd({x ∈ Rd |0 < p(x) ≤ ε
}) ≤ κ2 · εγ

for all 0 < ε ≤ κ1, where κ = (κ1, κ2) ∈ (0,∞)2.

In particular, λd(∂�p) = 0 for every density which satisfies the margin condi-
tion, where ∂�p denotes the boundary of the support �p . To highlight the line of
ideas, we restrict the application to the important special case of isotropic smooth-
ness. Let H iso

d (β,L) denote the isotropic Hölder class with one-dimensional pa-
rameters β and L, which is for 0 < β ≤ 1 defined by

H iso
d (β,L) := {

f : Rd →R : ∣∣f (x) − f (y)
∣∣ ≤ L‖x − y‖β

2 for all x, y ∈ Rd}.
For β > 1, it is defined as the set of all functions f : Rd → R that are 	β
 times
continuously differentiable such that the following property is satisfied:∣∣f (x) − P

(f )
y,	β
(x)

∣∣ ≤ L‖x − y‖β
2 for all x, y ∈ Rd,(4.1)

where

P
(f )
y,l (x) := ∑

|k|≤l

Dkf (y)

k1! · · ·kd !(x1 − y1)
k1 · · · (xd − yd)kd

with |k| := ∑d
i=1 ki and the partial differential operator

Dk := ∂ |k|

∂x
k1
1 · · · ∂x

kd

d

denotes the multivariate Taylor polynomial of f at the point y ∈ Rd up to the lth
order; see also (2.2) for the coinciding definition in one dimension. Correspond-
ingly, P iso

d (β,L) denotes the set of probability densities contained in H iso
d (β,L).

The following lemma demonstrates that not every combination of margin exponent
and Hölder continuity is possible.
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LEMMA 4.2. There exists a compactly supported density in P iso
d (β,L) satis-

fying a margin condition to the exponent γ if and only if γβ ≤ 1.

4.1. Lower risk bounds for support recovery. For any subset A ⊂ Rd and ε >

0, the closed outer parallel set of A at distance ε > 0 is given by

Aε :=
{
x ∈ Rd : inf

y∈A
‖x − y‖2 ≤ ε

}

and the closed inner ε-parallel set by A−ε := ((Ac)ε)c. Here, ‖ · ‖2 denotes the
Euclidean norm (on Rd ). A support satisfying

0 < lim inf
ε→0

λd(�p \ �−ε
p )

λd(�ε
p \ �p)

≤ lim sup
ε→0

λd(�p \ �−ε
p )

λd(�ε
p \ �p)

< ∞

is referred to as boundary regular support. Note that a support is always boundary
regular if its Minkowski surface measure is well-defined (in the sense that outer
and inner Minkowski content exist and coincide). The minimax lower bound is
formulated under the assumption of �p fulfilling the following complexity con-
dition (to the exponent μ = γβ), which even slightly weakens the assumption of
boundary regularity under the margin condition.

DEFINITION 4.3 (Complexity condition). A set A is said to satisfy the ξ -
complexity condition to the exponent μ > 0 if for all 0 < ε ≤ ξ1 there exists a
disjoint decomposition A = A1,ε ∪ A2,ε such that

λd(Aε
1,ε \ A1,ε) ∨ λd(A2,ε)

εμ
≤ ξ2,

where ξ = (ξ1, ξ2) ∈ (0,∞)2.

Note that a boundary regular support of a (β,L)-Hölder-smooth density satis-
fying the margin condition to the exponent γ fulfills the complexity condition to
the exponent μ ≥ γβ for the canonical decomposition �p = �p ∪∅. Let us finally
relate the margin condition (4.1) to the two-sided margin condition

λd{x ∈ Rd : 0 <
∣∣p(x) − λ

∣∣ ≤ ε
} ≤ cεγ ,

which is imposed in the context of density level set estimation for some level λ > 0;
cf. Rigollet and Vert (2009). If �p,λ = {x ∈ Rd : p(x) > λ} denotes the λ-level set
at level λ > 0, the two-sided (κ, γ )-margin condition provides the bound

λd(�ε
p,λ \ �p,λ

) ≤ κ2
(
cεβ∧1)γ(4.2)

for all ε ≤ κ1, where c = L for β ≤ 1 and c = supx∈Rd ‖∇p(x)‖2 for β > 1. In
contrast, the margin condition at λ = 0 provides no bound on λd(�ε

p \ �p). The
complexity condition is a mild assumption which guarantees such type of bound.
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For β ≤ 1, the relation (4.2) for λ = 0 implies the complexity condition to the
exponent μ = γβ . Note that the typical situation is indeed

λd(�ε
p \ �p

)
/ε = O(1) and ε/λd(�ε

p \ �p

) = O(1)

as ε → 0. For instance, this holds true for any finite union of compact convex sets
in Rd as a consequence of the isoperimetric inequality [Theorem III.2.2, Chavel
(2001)] and Theorem 3.1 [Bhattacharya and Rango Rao (1976)]. If it exists, the
limit

lim
ε↘0

λd(�ε
p \ �p)

ε

corresponds to the surface measure of the boundary if the latter is sufficiently reg-
ular. Due to the relation γβ ≤ 1 by Lemma 4.2 and the decomposition into suitable
subsets, the complexity condition relaxes this regularity condition on the surface
area substantially. The subset of P iso

d (β,L) consisting of densities satisfying the
κ-margin condition to the exponent γ with support fulfilling the ξ -complexity con-
dition to the exponent μ = γβ is denoted by P iso

d (β,L,γ, κ, ξ).

THEOREM 4.4 (Minimax lower bound). For any β > 0 and any margin expo-
nent γ > 0 with γβ ≤ 1, there exist c5(β,L) > 0, n0(β,L,γ ) ∈ N and parameters
κ, ξ ∈ (0,∞), such that the minimax risk with respect to the measure of symmetric
difference of sets is bounded from below by

inf
�̂n

sup
p∈P iso

d (β,L,γ,κ,ξ)

E⊗n
p

[
d�(�̂n,�p)

] ≥ c5(β,L) · n−γβ/(β+d)

for all n ≥ n0(β,L,γ ).

4.2. Minimax-optimal plug-in rule. We use the plug-in support estimator with
the kernel density estimator of Section 3. This density estimator improves the rate
of convergence in particular at the support boundary. For the isotropic procedure,
the index set J is restricted to bandwidths coinciding in all components. We even
simplify the ordering by estimated variances in condition (3.8) ”for all m ∈ J with
σ̂ 2

t (m) ≥ σ̂ 2
t (j )” by the classical order “for all m ∈ J with m ≥ j” as Lemma 5.2

shows that the relevant orderings are equivalent up to multiplicative constants for
0 < β ≤ 2. Furthermore, under isotropic smoothness it is natural to use a rota-
tion invariant kernel, that is, K(x) = K̃(‖x‖2) with K̃ supported on [0,1] and
continuous on its support with K̃(0) > 0. The following theorem shows that the
corresponding plug-in rule

�̂n = {
x ∈Rd : p̂n(x) > αn

}
with offset level

αn := c6(β,L)

(
(logn)3/2

n

)β/(β+d)√
logn(4.3)
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and constant c6(β,L) specified in the proof of the following theorem, is able to
recover the support with minimax optimal rate, up to a logarithmic factor.

THEOREM 4.5 (Uniform upper bound). For any β ≤ 2, γ > 0 with γβ ≤ 1
and κ, ξ ∈ (0,∞), there exist a constant c7 = c7(β,L,γ, κ, ξ) > 0 and n0 ∈ N,
such that

sup
p∈P iso

d (β,L,γ,κ,ξ)

E⊗n
p

[
d�(�̂n,�p)

] ≤ c7 · n−γβ/(β+d)(logn)2γ

for all n ≥ n0.

As the rate already indicates, it is getting apparent from the proof that this result
can be established only if the minimax optimal density estimator actually adapts
up to the fastest rate in regime (ii).

REMARK 4.6. The results show the simultaneous optimality of the adaptive
density estimator of Section 3 in the plug-in rule for support estimation. Corre-
spondingly, they are restricted to β ≤ 2. Whether the rate n−γβ/(β+d) is minimax
optimal for β > 2 provided γβ ≤ 1, and whether it can be attained by a plug-in
rule in principle, remains open for the moment.

Let us finally point out two consequences. We have shown that the optimal
minimax rates for support estimation are significantly faster than the corresponding
rates for level set estimation

n−γβ/(2β+d)

under the margin condition [Rigollet and Vert (2009)]. Although any level set of
a fixed density satisfying the margin condition to the exponent γ fulfills the com-
plexity condition to the exponent μ = γβ as long as β ≤ 1, the hypotheses in the
proof of the lower bounds of Rigollet and Vert (2009) do even satisfy this con-
dition for some fixed ξ , uniformly in n, as well. Hence, their optimal minimax
rates of convergence remain the same under our condition. On an intuitive level,
this phenomenon can be nicely motivated by comparing the Hellinger distance
H(P,Q) between the probability measure P with Lebesgue density p and Q whose
Lebesgue density q = p + p̃ is a perturbation of p with a small function p̃ around
the level α ≥ 0; see Tsybakov (1997), Extension (E4). If α > 0, then simple Taylor
expansion of

√
p + p̃ yields H 2(P,Q) ∼ ∫

p̃2 dλd , whereas H 2(P,Q) ∼ ∫
p̃ dλd

in case α = 0. Thus, perturbations at the boundary (α = 0) can be detected with
the higher accuracy resulting in faster attainable rates for support estimation than
for level set estimation. Moreover, the rates for plug-in support estimators already
established in the literature by Cuevas and Fraiman (1997) turn out to be always
suboptimal in case of Hölder continuous densities of boundary regular support. To
be precise, Cuevas and Fraiman (1997) establish in Theorem 1(c) a convergence
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rate under the margin condition given in terms of ρn = nρ and the offset level
αn = n−α (in their notation), which are assumed to satisfy 0 < α < ρ and their
condition (R2), namely

ρn

∫
|p̂n − p|dλd = oP(1) and ρnα

1+γ
n = o(1) as n → ∞.

As a consequence, ρn = o(nβ/(2β+d)) for typical candidates p ∈ P iso
d (β,L), that

is, densities p which are locally not smoother than (β,L)-regular. Under the mar-
gin condition to the exponent γ > 0, this limits their rate of convergence n−ρ+α

to

d�(�p, �̂n) = oP
(
n−(β/(2β+d))(γ /(1+γ ))),

which is substantially slower than the above established minimax rate. The crucial
point is that even with the improved density estimator of Section 3, the above
mentioned condition on ρn in (R2) cannot be improved, because any estimator can
possess the improved performance at lowest density regions only. For this reason,
the L1-speed of convergence of a density estimator is not an adequate quantity to
characterize the performance of the corresponding plug-in support estimator.

5. Lemmas 5.1–5.7, proofs of Theorems 3.3 and 3.4. Due to space con-
straints, all remaining proofs are deferred to the supplemental article [Patschkowski
and Rohde (2015)]. In the proof of Theorem 3.3, we frequently make use of the
bandwidth

h̄i := c8(β,L) · max
{(

logn

n

)(β̄/(β̄+1))(1/βi)

,

(
p(t) logn

n

)(β̄/(2β̄+1))(1/βi)}
(5.1)

for i = 1, . . . , d , with constant c8(β,L) of Lemma 5.1, which can be thought of as
an optimal adaptive bandwidth. The truncation in the definition of h̄ results from
the necessary truncation in σ 2

t,trunc. With the exponents

j̄i = j̄i (t) :=
⌊

log2

(
1

h̄i

)⌋
+ 1, i = 1, . . . , n(5.2)

the bandwidth 2−j̄i is an approximation of h̄i by the next smaller bandwidth on
the grid G such that h̄i/2 ≤ 2−j̄i ≤ h̄i for all i = 1, . . . , d .

Before turning to the proof of Theorem 3.3, we collect some technical ingredi-
ents. First, recall the classical upper bound on the bias of a kernel density estimator.
With the notation provided in Section 2, and K of order maxi βi at least, we obtain

bt (h) := p(t) −E⊗n
p p̂n,h(t)

=
∫

K(x)
(
p(t + hx) − p(t)

)
dλd(x)

=
d∑

i=1

∫
K(x)

(
p
([t, t + hx]i−1

)− p
([t, t + hx]i))dλd(x),
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using the notation [x, y]0 = y, [x, y]d = x, [x, y]i = (x1, . . . , xi, yi+1, . . . , yd),
i = 1, . . . , d − 1 for two vectors x, y ∈ Rd and denoting by hx = (h1x1, . . . , hdxd)

the componentwise product. Taylor expansions for those components i with βi ≥ 1
lead to

p
([t, t + hx]i−1

)− p
([t, t + hx]i)

=
	βi
∑
k=1

p
(k)
i,[t,t+hx]i (ti)

(hixi)
k

k!

+ (
p
([t, t + hx]i−1

)− P
(pi,[t,t+hx]i )
ti ,	βi
 (ti + hixi)

)
.

Hence,

∣∣bt (h)
∣∣ ≤ L

d∑
i=1

c9,i (β)h
βi

i =: Bt(h)(5.3)

with constants c9,i (β) := ∫ |xi |βi |K(x)|dλd(x) < ∞.
With a slight abuse of notation, dependencies on some bandwidth h = 2−j

are subsequently expressed in terms of the corresponding grid exponent j =
(j1, . . . , jd), that is, Bt(h) equals Bt(j), etc. For any multi-index j , we use the
abbreviation

|j | :=
d∑

i=1

ji.

The following lemmata are crucial ingredients for the proof of Theorem 3.3.

LEMMA 5.1. (i) For any (β,L) with 0 < βi ≤ 2, p ∈ Pd(β,L), and for any
bandwidth h = (h1, . . . , hd) with hi ≤ c8(β,L)p(t)1/βi , i = 1, . . . , d with

c8(β,L) := min
i=1,...,d

(
2dL

‖K‖2
2

∫
|xi |βiK2(x) dλd(x)

)−1/βi

,

the following inequality chain holds true

1

2

‖K‖2
2

n
∏d

i=1 hi

p(t) ≤ 1

n

(
(Kh)

2 ∗ p
)
(t) ≤ 3

2

‖K‖2
2

n
∏d

i=1 hi

p(t).

(ii) For any constant c10 > 0, there exists a constant c11(β,L) = c11(β,L,

c10) > 0, such that for any (β,L), 0 < βi < ∞, i = 1, . . . , d , and p ∈ Pd(β,L),

c11(β,L)

n
∏d

i=1 hi

p(t) ≤ 1

n

(
(Kh)

2 ∗ p
)
(t)

for every bandwidth h = (h1, . . . , hd) with hi ≤ c10p(t)1/βi , i = 1, . . . , d .
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(iii) For any density p with isotropic Hölder smoothness (β,L), 0 < β < ∞ and
bandwidth h, we have

1

n

(
(Kh)

2 ∗ p
)
(t) ≤ L‖K‖2

2

nhd

(
h + inf

y∈�c
p

‖t − y‖2

)β
,

where K is a rotation invariant kernel supported on the closed Euclidean unit ball.

Lemma 5.1(ii) provides an extension of the results of Rohde (2008, 2011).

LEMMA 5.2. There exists some constant c12(β,L) > 0, such that for any p ∈
Pd(β,L), 0 < βi ≤ 2, i = 1, . . . , d , and t ∈ Rd the inequality

σ 2
t,trunc(j ∧ m) ≤ c12(β,L)

(
σ 2

t,trunc(j) ∨ σ 2
t,trunc(m)

)
holds true for all (nonrandom) indices j = (j1, . . . , jd) and m = (m1, . . . ,md)

with j ≥ j̄ componentwise. If additionally m ≥ j componentwise, then

σ 2
t,trunc(j) ≤ c12(β,L)σ 2

t,trunc(m).

The next lemma carefully analyzes the ratio of the truncated quantities σ 2
t,trunc

and σ̃ 2
t,trunc.

LEMMA 5.3. For the quantities σ 2
t,trunc(h) and σ̃ 2

t,trunc(h) defined in (3.6) and
any η ≥ 0 holds

P⊗n

(∣∣∣∣ σ̃
2
t,trunc(h)

σ 2
t,trunc(h)

− 1
∣∣∣∣ ≥ η

)
≤ 2 exp

(
− 3η2

2(3 + 2η)‖K‖2
sup

log2 n

)
.

LEMMA 5.4. For any (β,L) with 0 < βi ≤ 2, i = 1, . . . , d , there exist con-
stants c13(β,L) and c14(β,L) > 0 such that for the multi-index j̄ as defined in
(5.2) and the bias upper bound Bt as given in (5.3),

Bt(j̄ ) ≤ c13(β,L)

√
σ 2

t,trunc(j̄ ) logn,(5.4)

√
σ 2

t,trunc(j̄ ) ≤ c14(β,L)

{(
logn

n

)β̄/(β̄+1)

∨
(

p(t) logn

n

)β̄/(2β̄+1)}
.(5.5)

LEMMA 5.5. For any (nonrandom) index j = (j1, . . . , jd), the tail probabili-
ties of the random variable

Y := p̂n,j (t) −E⊗n
p p̂n,j (t)√

σ 2
t,trunc(j) logn

,

are bounded by

P⊗n(|Y | ≥ η
) ≤ 2 exp

(
− logn

4
· (η2 ∧ η

))

for any η ≥ 0, any t ∈Rd and n ≥ n0 with n0 depending on ‖K‖sup only.
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LEMMA 5.6. Let Z be some nonnegative random variable satisfying

P(Z ≥ η) ≤ 2 exp(−Aη)

for some A > 0. Then

(
EZm)1/m ≤ c15

m

A

for any m ∈ N, where the constant c15 does not depend on A and m.

LEMMA 5.7 [Klutchnikoff (2005)]. For all k, l ∈ J , the absolute value of the
difference of bias terms is bounded by∣∣bt (k ∧ l) − bt (l)

∣∣ ≤ 2Bt(k)

for all t ∈ Rd .

PROOF OF THEOREM 3.3. Recall the notation of Section 3 and denote p̂
n,ĵ

=
p̂n. In a first step, the risk

E⊗n
p

∣∣p̂
n,ĵ

(t) − p(t)
∣∣r

is decomposed as follows:

E⊗n
p

∣∣p̂
n,ĵ

(t) − p(t)
∣∣r

= E⊗n
p

[∣∣p̂
n,ĵ

(t) − p(t)
∣∣r · 1{σ̂ 2

t (ĵ ) ≤ σ̂ 2
t (j̄ )

}]
(5.6)

+E⊗n
p

[∣∣p̂
n,ĵ

(t) − p(t)
∣∣r · 1{σ̂ 2

t (ĵ ) > σ̂ 2
t (j̄ )

}]
=: R+ + R−.

We start with R+, which is decomposed again as follows:

R+ ≤ 3r−1(E⊗n
p

[∣∣p̂
n,ĵ

(t) − p̂
n,ĵ∧j̄

(t)
∣∣r · 1{σ̂ 2

t (ĵ ) ≤ σ̂ 2
t (j̄ )

}]
+E⊗n

p

[∣∣p̂
n,ĵ∧j̄

(t) − p̂n,j̄ (t)
∣∣r · 1{σ̂ 2

t (ĵ ) ≤ σ̂ 2
t (j̄ )

}]
(5.7)

+E⊗n
p

[∣∣p̂n,j̄ (t) − p(t)
∣∣r · 1{σ̂ 2

t (ĵ ) ≤ σ̂ 2
t (j̄ )

}])
=: 3r−1(S1 + S2 + S3),

where we used the inequality (x +y + z)r ≤ 3r−1(xr +yr + zr) for all x, y, z ≥ 0.
This decomposition bears the advantage that only kernel density estimators with
well-ordered bandwidths are compared. We focus on the estimation of S1, S2 and
S3 and start with S2 using the selection scheme’s construction. Clearly, ĵ ∈ A as
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defined in (3.7). As a consequence, the following inequality holds true:

S2 ≤ cr
3E

⊗n
p

[(
σ̂ 2

t (j̄ ) logn
)r/2 · 1

{∣∣∣∣ σ̃
2
t,trunc(j̄ )

σ 2
t,trunc(j̄ )

− 1
∣∣∣∣ < 1

}]

+ cr
3E

⊗n
p

[(
σ̂ 2

t (j̄ ) logn
)r/2 · 1

{∣∣∣∣ σ̃
2
t,trunc(j̄ )

σ 2
t,trunc(j̄ )

− 1
∣∣∣∣ ≥ 1

}]

≤ 2r/2cr
3

(
min

{
σ 2

t,trunc(j̄ ),
‖K‖2

2c1

n2−|j̄ |

}
logn

)r/2

+ cr
3

(‖K‖2
2c1

n2−|j̄ | logn

)r/2

P⊗n

(∣∣∣∣ σ̃
2
t,trunc(j̄ )

σ 2
t,trunc(j̄ )

− 1
∣∣∣∣ ≥ 1

)
,

where we used the condition in the indicator function in the first summand to bound
the estimated truncated variance σ̃ 2

t,trunc from above by 2σ 2
t,trunc, and additionally

the upper truncation level in the second summand. By the deviation inequality of
Lemma 5.3, we can further estimate S2 by

S2 ≤ 2r/2cr
3
(
σ 2

t,trunc(j̄ ) logn
)r/2

+ cr
3

(‖K‖2
2c1

n2−|j̄ | logn

)r/2

· 2 exp
(
− 3

10‖K‖2
sup

log2 n

)
.

The second term is always of smaller order than the first term because 2−|j̄ | ≤ 1
and, therefore, for n ≥ 2,(‖K‖2

2c1

n2−|j̄ | logn

)r/2

· 2 exp
(
− 3

10‖K‖2
sup

log2 n

)
≤ c

(
log3 n

n2(2−|j̄ |)2

)r/2

for some constant c depending on c1, r and the kernel K only. Finally,

S2 ≤ c(β,L)
(
σ 2

t,trunc(j̄ ) logn
)r/2

.

We will now turn to S3, the third term in (5.7). We split the risk into bias and
stochastic error. It holds

S3 ≤ E⊗n
p

(∣∣p̂n,j̄ (t) −E⊗n
p p̂n,j̄ (t)

∣∣+ Bt(j̄ )
)r(5.8)

and by Lemma 5.4

Bt(j̄ ) ≤ c13(β,L)

√
σ 2

t,trunc(j̄ ) logn.(5.9)

Denoting by

Zk := p̂n,k(t) −E⊗n
p p̂n,k(t)√

σ 2
t,trunc(k) logn

for k ∈ J ,(5.10)
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the decomposition (5.8), the bias variance relation (5.9) and the inequality (x +
y)r ≤ 2r−1(xr + yr), x, y ≥ 0 together with Lemma 5.6 yields

S3 ≤ (
σ 2

t,trunc(j̄ ) logn
)r/2 ·E⊗n

p

(|Zj̄ | + c13(β,L)
)r

≤ (
σ 2

t,trunc(j̄ ) logn
)r/2 · 2r−1E⊗n

p

(|Zj̄ |r + c13(β,L)r
)

≤ c(β,L)
(
σ 2

t,trunc(j̄ ) logn
)r/2

.

It remains to show an analogous result for S1, the first term in (5.7). Clearly,

S1 ≤ ∑
j∈J

E⊗n
p

[(∣∣p̂n,j (t) −E⊗n
p p̂n,j (t)

∣∣+ ∣∣p̂n,j∧j̄ (t) −E⊗n
p p̂n,j∧j̄ (t)

∣∣
(5.11)

+ ∣∣bt (j ∧ j̄ ) − bt (j)
∣∣)r · 1{σ̂ 2

t (j ) ≤ σ̂ 2
t (j̄ ), ĵ = j

}]
.

By Lemmas 5.7 and 5.4,

∣∣bt (j ∧ j̄ ) − bt (j)
∣∣ ≤ 2Bt(j̄ ) ≤ 2c13(β,L)

√
σ 2

t,trunc(j̄ ) logn.

On account of this inequality and in view of (5.11), it suffices to bound the expec-
tations in the following expression:

S1 ≤ 3r−1(σ 2
t,trunc(j̄ ) logn

)r/2

×
{∑

j∈J
E⊗n

p

[( |p̂n,j (t) −E⊗n
p p̂n,j (t)|√

σ 2
t,trunc(j̄ ) logn

)r

1
{
σ̂ 2

t (j ) ≤ σ̂ 2
t (j̄ ), ĵ = j

}]

(5.12)

+ ∑
j∈J

E⊗n
p

[( |p̂n,j∧j̄ (t) −E⊗n
p p̂n,j∧j̄ (t)|√

σ 2
t,trunc(j̄ ) logn

)r

1
{
σ̂ 2

t (j ) ≤ σ̂ 2
t (j̄ ), ĵ = j

}]

+ ∑
j∈J

2rc13(β,L)r · P⊗n(ĵ = j)

}
.

Denoting

Aj,j̄ :=
{∣∣∣∣ σ̃

2
t,trunc(j)

σ 2
t,trunc(j)

− 1
∣∣∣∣ < 1

2
and

∣∣∣∣ σ̃
2
t,trunc(j̄ )

σ 2
t,trunc(j̄ )

− 1
∣∣∣∣ < 1

2

}
,(5.13)

it follows

∑
j∈J

E⊗n
p

[( |p̂n,j (t) −E⊗n
p p̂n,j (t)|√

σ 2
t,trunc(j̄ ) logn

)r

1
{
σ̂ 2

t (j ) ≤ σ̂ 2
t (j̄ ), ĵ = j

}]

= ∑
j∈J

E⊗n
p

[( |p̂n,j (t) −E⊗n
p p̂n,j (t)|√

σ 2
t,trunc(j̄ ) logn

)r

1
{
σ̂ 2

t (j ) ≤ σ̂ 2
t (j̄ ), ĵ = j

} · 1Aj,j̄

]
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+ ∑
j∈J

E⊗n
p

[( |p̂n,j (t) −E⊗n
p p̂n,j (t)|√

σ 2
t,trunc(j̄ ) logn

)r

1
{
σ̂ 2

t (j ) ≤ σ̂ 2
t (j̄ ), ĵ = j

} · 1Ac
j,j̄

]

=: S1,1 + S1,2.

Applying Lemma 5.6 and Hölder’s inequality for any p > 1,

S1,1 ≤
(

3(1 ∨ c1‖K‖2
2)

c1‖K‖2
2

)r/2 ∑
j∈J

E⊗n
p

[|Zj |r · 1{ĵ = j}]

≤
(

3(1 ∨ c1‖K‖2
2)

c1‖K‖2
2

)r/2(
1 + ∑

j∈J
E⊗n

p

[|Zj |r1{|Zj | ≥ 1
}
1{ĵ = j}])

≤
(

3(1 ∨ c1‖K‖2
2)

c1‖K‖2
2

)r/2

×
(

1 + ∑
j∈J

E⊗n
p

[|Zj |rp1
{|Zj | ≥ 1

}]1/p · P(ĵ = j)(p−1)/p

)

≤
(

3(1 ∨ c1‖K‖2
2)

c1‖K‖2
2

)r/2(
1 + cr

15

(
8rp

logn

)r ∑
j∈J

P(ĵ = j)(p−1)/p

)

≤
(

3(1 ∨ c1‖K‖2
2)

c1‖K‖2
2

)r/2(
1 + cr

15

(
8rp

logn

)r(∑
j∈J

P(ĵ = j)

)(p−1)/p

· |J |1/p

)
.

By the constraint 2−|j | ≥ log2 n/n for any j ∈ J , there exists some constant c > 0
such that |J | ≤ c(logn)d . Setting finally p = d logn, yields S1,1 ≤ c(β∗,L∗). As
concerns S1,2, by the Cauchy–Schwarz inequality,

S1,2 ≤ ∑
j∈J

(
σ 2

t,trunc(j)

σ 2
t,trunc(j̄ )

)r/2

E⊗n
p

[|Zj |r1{ĵ = j}1Ac
j,j̄

]

≤ ∑
j∈J

(
σ 2

t,trunc(j)

σ 2
t,trunc(j̄ )

)r/2

E⊗n
p

[|Zj |2r1{ĵ = j}]1/2

×
{
P⊗n

(∣∣∣∣ σ̃
2
t,trunc(j)

σ 2
t,trunc(j)

− 1
∣∣∣∣ ≥ 1

2

)
+ P⊗n

(∣∣∣∣ σ̃
2
t,trunc(j̄ )

σ 2
t,trunc(j̄ )

− 1
∣∣∣∣ ≥ 1

2

)}1/2

.

Via the lower and upper truncation levels in the definition of σ 2
t,trunc,

σ 2
t,trunc(k)

σ 2
t,trunc(l)

≤ (1 ∨ c1‖K‖2
2)n

2

log4 n
for any k, l ∈ J ,(5.14)

and the remaining expectation
∑

j∈J E⊗n
p [|Zj |2r1{ĵ = j}] can be bounded by

Lemma 5.6 as above. Finally, the probabilities compensate (5.14) by Lemma 5.3.
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As concerns the expectation in (5.12), we proceed analogously using

σ 2
t,trunc(j ∧ j̄ ) ≤ c12(β,L)

(
σ 2

t,trunc(j̄ ) ∨ σ 2
t,trunc(j)

)
by Lemma 5.2 and σ 2

t,trunc(j) ≤ c(β,L)σ 2
t,trunc(j̄ ) on Aj,j̄ ∩ {σ̂ 2

t (j ) ≤ σ̂ 2
t (j̄ )}.

Combining the results for S1, S2 and S3 proves that R+ as defined in (5.6) is
estimated by

R+ ≤ c(β,L)
(
σ 2

t,trunc(j̄ ) logn
)r/2

.

To deduce a similar inequality for R−, it remains to investigate the probability

P⊗n(σ̂ 2
t (ĵ ) > σ̂ 2

t (j̄ )
)
,

since p̂n and p are both upper bounded by c1. If σ̂ 2
t (ĵ ) > σ̂ 2

t (j̄ ), then j̄ cannot
be an admissible exponent [see (3.7)], because ĵ had not been chosen in the min-
imization problem (3.9) otherwise. Hence, by definition there exists a multi-index
m ∈ J with σ̂ 2

t (m) ≥ σ̂ 2
t (j̄ ) such that

∣∣p̂n,j̄∧m(t) − p̂n,m(t)
∣∣ > c3

√
σ̂ 2

t (m) logn.

Subsuming, we get

P⊗n(σ̂ 2
t (ĵ ) > σ̂ 2

t (j̄ )
)

≤ ∑
m∈J

P⊗n
(∣∣p̂n,j̄∧m(t) − p̂n,m(t)

∣∣ > c3

√
σ̂ 2

t (m) logn, σ̂ 2
t (m) ≥ σ̂ 2

t (j̄ )
)
,

and we divide the absolute value of the difference of the kernel density estimators
as in (5.11) into the difference of biases |bt (j̄ ∧ m) − bt (m)| and two stochastic
terms |p̂n,j̄∧m(t) −E⊗n

p p̂n,j̄∧m(t)| and |p̂n,m(t) −E⊗n
p p̂n,m(t)|. As before,

∣∣bt (j̄ ∧ m) − bt (m)
∣∣ ≤ 2Bt(j̄ ) ≤ 2c13(β,L)

√
σ 2

t,trunc(j̄ ) logn

by Lemmas 5.7 and 5.4, leading to the inequality

P⊗n(σ̂ 2
t (ĵ ) > σ̂ 2

t (j̄ )
)

≤ ∑
m∈J

P⊗n
(∣∣p̂n,j̄∧m(t) −E⊗n

p p̂n,j̄∧m(t)
∣∣+ ∣∣p̂n,m(t) −E⊗n

p p̂n,m(t)
∣∣

> c3

√
σ̂ 2

t (m) logn − 2c13(β,L)

√
σ 2

t,trunc(j̄ ) logn, σ̂ 2
t (m) ≥ σ̂ 2

t (j̄ )
)

≤ ∑
m∈J

(
P⊗n(B1,m) + P⊗n(B2,m)

)
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with

B1,m :=
{∣∣p̂n,j̄∧m(t) −E⊗n

p p̂n,j̄∧m(t)
∣∣

>
1

2

(
c3

√
σ̂ 2

t (m) logn − 2c13(β,L)

√
σ 2

t,trunc(j̄ ) logn
)
, σ̂ 2

t (m) ≥ σ̂ 2
t (j̄ )

}
,

B2,m :=
{∣∣p̂n,m(t) −E⊗n

p p̂n,m(t)
∣∣

>
1

2

(
c3

√
σ̂ 2

t (m) logn − 2c13(β,L)

√
σ 2

t,trunc(j̄ ) logn
)
, σ̂ 2

t (m) ≥ σ̂ 2
t (j̄ )

}
.

To start with the second probability, we intersect event B2,m with Am,j̄ as defined
in (5.13). Obviously,

P⊗n(B2,m) ≤ P⊗n(B2,m ∩ Am,j̄ ) + P⊗n(Ac
m,j̄

)
.

The definition of c3 and Lemma 5.5 allow to bound the probability

P⊗n(B2,m ∩ Am,j̄ ) ≤ P⊗n

( |p̂n,m(t) −E⊗n
p p̂n,m(t)|√

σ 2
t,trunc(m) logn

> c16(β,L)

)

(5.15)

≤ 2 exp
(
−c16(β,L)2 ∧ c16(β,L)

4
logn

)

with

c16(β,L) :=
(

c3

2
− c13(β,L)

√√√√2
1 ∨ c1‖K‖2

2

c1‖K‖2
2

)
·
√√√√1

2

c1‖K‖2
2

1 ∨ c1‖K‖2
2

.(5.16)

At this point, we specify a lower bound on c3. Precisely, c3 has to be chosen large
enough to guarantee that

c16(β,L)2 ∧ c16(β,L)

4
≥ r β̄

β̄ +1
+ 1(5.17)

for any β in the range of adaptation. Finally, by means of Lemma 5.3,

P⊗n(Ac
m,j̄

)

≤ P⊗n

(∣∣∣∣ σ̃
2
t,trunc(j̄ )

σ 2
t,trunc(j̄ )

− 1
∣∣∣∣ ≥ 1

2

)
+ P⊗n

(∣∣∣∣ σ̃
2
t,trunc(m)

σ 2
t,trunc(m)

− 1
∣∣∣∣ ≥ 1

2

)
(5.18)

≤ 4 exp
(
− 3

32‖K‖2
sup

log2 n

)
,
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which is of smaller order than the bound in (5.15). Altogether, with this restriction
on c3,

P⊗n(B2,m) ≤ c(β,L)
(
σ 2

t,trunc(j̄ ) logn
)r/2

.

By Lemma 5.2, the probability P⊗n(B1,m) can be bounded in the same way using
additionally

σ 2
t,trunc(j̄ ∧ m) ≤ c12(β,L)

(
σ 2

t,trunc(j̄ ) ∨ σ 2
t,trunc(m)

) = c(β,L)σ 2
t,trunc(m),

because σ 2
t,trunc(j̄ ) ≤ c(β,L)σ 2

t,trunc(m) on the event Am,j̄ ∩ {σ̂ 2
t (m) ≥ σ̂ 2

t (j̄ )}.
Summarizing,

P⊗n(σ̂ 2
t (ĵ ) > σ̂ 2

t (j̄ )
) ≤ c(β,L)

(
σ 2

t,trunc(j̄ ) logn
)r/2

.(5.19)

Finally, by Lemma 5.4,(
E⊗n

p

∣∣p̂
n,ĵ

(t) − p(t)
∣∣r)1/r

≤ c(β,L)

{(
logn

n

)β̄/(β̄+1)

∨
(

p(t) logn

n

)β̄/(2β̄+1)}√
logn.

This completes the proof of Theorem 3.3. �

PROOF OF THEOREM 3.4. Before we construct the densities pn and qn, we
first specify their amplitudes �n and δn in t , respectively. Let

�n := n−β1/(β1+1) · �(n),

δn := 4c4
(
β∗

1 ,L∗
1, r

)(�n

n

)β1/(2β1+1)

(logn)3/2(5.20)

= 4c4
(
β∗

1 ,L∗
1, r

)
�n · �(n)−(β1+1)/(2β1+1)(logn)3/2,

for

�(n) := n
β1−β2

(β1+1)(β2+1)

converging to infinity. Note first that with this choice of �(n) it holds that �n =
n−β2/(β2+1), and hence tends to zero as n goes to infinity. The amplitude δn is
smaller than �n for sufficiently large n, and hence also tends to zero. Furthermore,
it holds

δn = 4c4
(
β∗

1 ,L∗
1, r

) · n− β2
β2+1 · n

β2−β1
(2β1+1)(β2+1) · (logn)3/2 = o

(
n

− β2
β2+1

)
.

Denote by K(·;βi), i = 1,2 the univariate, symmetric and nonnegative functions
to the Hölder exponent βi , respectively, as defined in the supplemental article
[Patschkowski and Rohde (2015)], Section A.4, normalized by appropriate choices
of c17(βi) such that both functions integrate to one. Let L̃i = L̃i(βi), i = 1,2 be
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such that K(·;βi) ∈ P1(βi, L̃i). Note that K(·;h,βi) := hβiK(·/h;βi) has the
same Hölder regularity as K [as opposed to Kh(·;βi) := h−1K(·/h;βi), which
has the same Hölder parameter βi but not necessarily the same L̃i ].

To ensure that pn(t) = �n we use the scaled version K(·− t;g1,n, β1) for some
bandwidth g1,n defined below, preserving the Hölder regularity. In order to re-
establish integrability to one, a second part is added alongside. The density qn is
then defined as pn with a perturbation added and subtracted around t , that is,

pn(x) = K(x − t;g1,n, β1) + K(x − t − g1,n − g2,n;g2,n, β1) ∈ P1(β1,L1),

qn(x) = pn(x) − K(x − t;hn,β2) + K(x − t − 2hn;hn,β2) ∈ P1(β2,L2),

with

g1,n :=
(

�n

K(0;β1)

)1/β1

,

g2,n := (
1 − g

β1+1
1,n

)1/(β1+1)
,

hn :=
(

�n − δn

K(0;β2)

)1/β2

and suitable constants L1 and L2 independent of n. The construction of the
hypotheses is depicted in Figure 3. Recall that the particular construction of
K(·;h,β) does not change the Hölder parameters and note that the classes⋃

L>0 Cc ∩ P1(β,L), 0 < β ≤ 2, are nested (Cc denotes the set of continuous
functions from R to R of compact support). The bandwidth g1,n tends to zero, and
hence g2,n converges to one. In particular, g2,n is positive for sufficiently large n.
In turn, hn ensures that qn(t) = δn. Note furthermore that �n > �n − δn and
K(0;β1) < K(0;β2) since the constant c17(β) is monotonously increasing in β

and β2 < β1. Thus, hn is smaller than g1,n and consequently qn is nonnegative for
sufficiently large n.

Let Tn(t) be an arbitrary estimator with property (3.10). Note first that we can
pass on to the consideration of the estimator

T̃n(t) := Tn(t) · 1{Tn(t) ≤ 2�n

}
,

FIG. 3. Construction of pn (dashed line) and qn (solid line).
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since it both improves the quality of estimation of pn(t) and qn(t): Obviously,

E⊗n
pn

∣∣T̃n(t) − pn(t)
∣∣ = E⊗n

pn

[
pn(t) · 1{Tn(t) − pn(t) > pn(t)

}]
+E⊗n

pn

[∣∣Tn(t) − pn(t)
∣∣ · 1{Tn(t) − pn(t) ≤ pn(t)

}]
≤ E⊗n

pn

∣∣Tn(t) − pn(t)
∣∣

and because of qn(t) ≤ pn(t) also

E⊗n
qn

∣∣T̃n(t) − qn(t)
∣∣ ≤ E⊗n

qn

∣∣Tn(t) − qn(t)
∣∣.

As in the proof of the constrained risk inequality in Cai, Low and Zhao (2007), by
reverse triangle inequality holds

E⊗n
qn

∣∣T̃n(t) − qn(t)
∣∣ ≥ (�n − δn) −E⊗n

qn

∣∣T̃n(t) − pn(t)
∣∣.

In contrast to their proof, we need the decomposition:

E⊗n
qn

∣∣T̃n(t) − qn(t)
∣∣

≥ (�n − δn) −E⊗n
qn

[∣∣Tn(t) − pn(t)
∣∣1Bn

]
(5.21)

−E⊗n
qn

[∣∣T̃n(t) − pn(t)
∣∣1Bc

n

]
=: (�n − δn) − S1 − S2,

where

Bn :=
{
x = (x1, . . . , xn) ∈Rn :

n∏
i=1

qn(xi)

pn(xi)
≤ �n

δn

}
.

By definition of �n and δn in (5.20) and the risk bound (3.10) the first two sum-
mands in (5.21) can be further estimated by

(�n − δn) − S1

≥ (�n − δn) −E⊗n
pn

∣∣Tn(t) − pn(t)
∣∣ · �n

δn

≥ (�n − δn)

(
1 − c4(β

∗
1 ,L∗

1, r)(�n/n)β1/(2β1+1)(logn)3/2(�n/δn)

�n − δn

)

= δn

(
�(n)(β1+1)/(2β1+1)(logn)−3/2

4c4(β
∗
1 ,L∗

1, r)
− 1

)

×
(

1 − c4(β
∗
1 ,L∗

1, r)(�n/n)β1/(2β1+1)(logn)3/2(�n/δn)

�n(1 − 4c4(β
∗
1 ,L∗

1, r) · �(n)−(β1+1)/(2β1+1)(logn)3/2)

)
,
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which is lower bounded by

(�n − δn) − S1 ≥ δn

�(n)(β1+1)/(2β1+1)(logn)−3/2

8c4(β
∗
1 ,L∗

1, r)

×
(

1 − 2c4(β
∗
1 ,L∗

1, r)(�n/n)β1/(2β1+1)(logn)3/2

δn

)

= δn

�(n)(β1+1)/(2β1+1)(logn)−3/2

16c4(β
∗
1 ,L∗

1, r)

for sufficiently large n. Furthermore,

S2 ≤ 2�n ·Q⊗n
n

(
Bc

n

) = δn

�(n)(β1+1)/(2β1+1)(logn)−3/2

2c4(β
∗
1 ,L∗

1, r)
·Q⊗n

n

(
Bc

n

)
,

and it remains to show that Q⊗n
n (Bc

n) tends to zero. By Markov’s inequality,

Q⊗n
n

(
Bc

n

) = Q⊗n
n

(
n∏

i=1

qn(Xi)

pn(Xi)
>

�n

δn

)

≤ δn

�n

(
Eqn

qn(X1)

pn(X1)

)n

≤ δn

�n

(
1 +

∫
qn(x)

pn(x)
qn(x)1

{
qn(x) > pn(x)

}
dx

)n

≤ δn

�n

(
1 + (2�n − δn)

2

K(3hn;g1,n, β1)
· 2hn

)n

≤ δn

�n

(
1 + 4�2

n

g
β1
1,nK(3hn/g1,n;β1)

· 2hn

)n

≤ δn

�n

(
1 + c(β1, β2)�

(β2+1)/β2
n

)n
for sufficiently large n, where the last inequality is due to

hn/g1,n = c(β1, β2)�
(β1−β2)/(β1β2)
n −→ 0,

that is, K(3hn/g1,n;β1) stays uniformly bounded away from zero. Finally,

Q⊗n
n

(
Bc

n

) ≤ δn

�n

exp
(
n log

(
1 + c(β1, β2)�

(β2+1)/β2
n

))

≤ δn

�n

exp
(
n · c(β1, β2)�

(β2+1)/β2
n

)
and

n�(β2+1)/β2
n = 1,

such that Q⊗n
n (Bc

n) ≤ c(β1, β2) · δn/�n −→ 0. �
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SUPPLEMENTARY MATERIAL

Supplement to “Adaptation to lowest density regions with application to
support recovery” (DOI: 10.1214/15-AOS1366SUPP; .pdf). Supplement A is or-
ganized as follows. Section A.1 contains the proofs of Lemmas 5.1–5.6, which are
central ingredients for the proof of Theorem 3.3. Section A.2 is concerned with
the remaining proofs of Section 3. Section A.3 contains the proofs of Section 4.
Section A.4 introduces a specific construction of a kernel function with prescribed
Hölder regularity, which is frequently used throughout the article.
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