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SUBSAMPLING BOOTSTRAP OF COUNT FEATURES
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Analysis of stochastic models of networks is quite important in light of
the huge influx of network data in social, information and bio sciences, but
a proper statistical analysis of features of different stochastic models of net-
works is still underway. We propose bootstrap subsampling methods for find-
ing empirical distribution of count features or “moments” (Bickel, Chen and
Levina [Ann. Statist. 39 (2011) 2280–2301]) and smooth functions of these
features for the networks. Using these methods, we cannot only estimate the
variance of count features but also get good estimates of such feature counts,
which are usually expensive to compute numerically in large networks. In our
paper, we prove theoretical properties of the bootstrap estimates of variance
of the count features as well as show their efficacy through simulation. We
also use the method on some real network data for estimation of variance and
expectation of some count features.

1. Introduction. The study of networks has received recent increased atten-
tion, not only in social sciences, mathematics and statistics, but also in physics
and computer science. With the information boom, a huge number of network data
sets have appeared. In biology, gene regulation networks, protein–protein interac-
tion networks, neural networks, ecological and epidemiological networks have be-
come increasingly important. In social media, the Facebook, Twitter and Linkedin
networks have come into prominence. Information networks have arisen in con-
nection with text mining. Technological networks such as the Internet and many
other networks related to Internet have also become objects of study.

In this paper, we consider a nonparametric formulation for network models
where node labels carry no information. The model was proposed in Bickel and
Chen [5] and has its origins in the works of Aldous [1] and Hoover [17]. Ex-
changeable probability models on infinite networks have a general representation
based on the results of Aldous [1], Hoover [17], Kallenberg [18] and Diaconis and
Janson [11]. The result is analogous to de Finetti’s theorem. Note that numerical
representation of networks come in the form of the adjacency matrix A, where
Aij = 1 if there is an edge from node i to j and 0 otherwise. We assume Aii = 0;
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that is, there are no self-loops. It is natural to assume exchangeable property for
probability distribution on unlabeled random networks, which means that the prob-
ability distribution on the set of all adjacency matrices L{[Aij ], i, j ≥ 1} satisfy
L{[Aij ]} = L{[Aσiσj

]}, where σ is an arbitrary permutation function on node in-
dices. Such exchangeable probability distributions on random infinite binary arrays
can be characterized as follows: for i, j ≥ 1,

α, ξi, ηij
i.i.d.∼ U(0,1),

Aij = f (α, ξi, ξj , ηij ),

where, f : [0,1]4 → [0,1] is a measurable function, symmetric in its second and
third arguments and ηij = ηji . α, as in de Finetti’s theorem, corresponds to the
mixing distribution and is not identifiable. This representation is not unique, and
f is not identifiable. These distributions can be parametrized through the function

h(u, v) = P [Aij = 1|ξi = u, ξj = v].
The function h is still not unique, but it can be shown that if two functions h1
and h2 define the same distribution L, they can be related through a measure-
preserving transformation. This leads to the Bickel and Chen [5] characterization
of “nonparametric” unlabeled graph models, which is closely related to Lovász’s
notion of “graphons” [21]. The model will be described in more detail in Sec-
tion 2. Other researchers have also studied similar, general classes of models, such
as the latent space models of Hoff, Raftery and Handcock [15] and the inhomoge-
neous random graph models of Bollobás, Janson and Riordan [8]. Many previously
studied probability models for networks fall into this class. The class includes the
stochastic block models (Holland, Laskey and Leinhardt [16], Nowicki and Sni-
jders [25]) and the configuration model (Chung and Lu [9]). Dynamically defined
models such as the “preferential attachment” models (which seem to have been
first mentioned by Yule in the 1920s and given its modern name by Barabási and
Albert [2]) can also be thought of in this way if the dynamical construction process
continues forever, producing an infinite graph. More details are given in Section 5.

Motifs or count statistics are the main statistics that we consider in this paper.
Count statistics can be defined as smooth functions of counts of subgraphs in the
network. Counts of special subgraphs have been extensively used in the network
literature for analyzing network behavior [3, 23, 27]. The count statistics have ap-
peared earlier under the names motif counts in biology [24] and subgraph counts
in probability [21]. It also follows from the work of Lovász [21], Diaconis and Jan-
son [11] and in part from Bickel and Chen [5] that there is a unique set of statistics
whose joint distribution characterize the probability distribution on unlabeled net-
works. These statistics, called empirical moments by Bickel, Chen and Levina [6]
are the counts of subgraphs in the network. The subgraphs most used are small
cycles like triad, tetrad and small acyclic graphs.
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The expectation and variances of count statistics can, in principle, be computed
(Picard et al. [26]) and more usefully be asymptotically approximated [6]. Under
appropriate conditions, normalized count statistics have limiting Gaussian distri-
bution. They have many uses [3, 31, 32], particularly in distinguishing between
the mechanisms generating different graphs as well as providing characterization
of network distributions. The general asymptotic Gaussian distribution of count
statistics was provided in Theorem 1 of [6] with an expression for the asymptotic
mean and variance; however, the paper provided no way to calculate the quantities.

Motifs or count statistics have been used in testing equality of features of net-
works and finding confidence intervals of the count features [22, 28]. However,
a major stumbling block in their use has been the calculation of motifs that have
even moderately large number of vertices (i.e., more than five) and even more chal-
lenging problem of finding estimates of their variances. Finding the correct count
statistics or motifs is a computationally hard problem for large networks, as the
complexity of finding the count of a subgraph is polynomial in terms of number of
vertices, and when the number of vertices in the network is even in thousands, the
computation becomes difficult; if it is in millions, the computation becomes infea-
sible. Using subsampling methods to calculate the count statistics, we can greatly
reduce the computational burden of computing the statistics and inference using
them.

In the statistical literature on networks, some work has been done on devising
sampling designs to select network samples. Various sampling designs have been
proposed in the statistical and computer science literature to derive representative
samples of a given network; see [19, 20] and [29]. Many of these sampling designs
have been analyzed from the design-based sampling point of view [13, 30]. Some
of these methods have been analyzed from a model-based sampling point of view,
where mostly the exponential random graph model (ERGM) has been considered
as the model generating the network, and a likelihood-based approach has been
taken for inference [14]. As a result, only parametric inference was possible. On
the other hand, our approach is not restricted to parametric models as we try to
estimate the certain functionals of the underlying nonparametric generating model,
using the samples obtained from the network data.

1.1. Contribution and structure of our work. We use subsampling-based boot-
strap approaches to estimate the count statistics as well as find the approximate dis-
tributions for such count statistics under the general model of Bickel and Chen [5].

Along with the bootstrap methods and their theoretical analysis, we give two
examples where the use of count statistics provides some useful insights into the
behavior of the networks. One of the two examples is the Jefferson High School
network given in Bearman et al. [3], and the other example uses the Facebook col-
legiate networks provided in Traud et al. [19]. The high school network is a nice
example where counts of specific types of subgraphs in the network and their con-
fidence intervals based on different generating models give us useful insight into



SUBSAMPLING BOOTSTRAP OF NETWORKS 2387

the behavior of nodes in the network [3]. The Facebook collegiate networks are
larger and denser networks, and calculation of count statistics for these networks
would not be computationally feasible without the use of subsampling methods.

In Section 2 we outline our main results. In Section 3 we describe the bootstrap
subsampling methods and the theoretical properties of each bootstrap estimator.
We also indicate a method for estimating asymptotic variances of these estimators
using bootstrap. Additionally, we give a theoretical comparison of the methods.
In Section 4, we give the general theorem on asymptotic Gaussianity of bootstrap
subsampling estimates count statistics and their variance. In Section 5 we perform
a simulation study under two special cases of the general “nonparametric” model:
the stochastic block model and the preferential attachment model, respectively. In
Section 6 we apply our method to test hypotheses about the count statistics of real
networks.

2. Model and statistics. We consider a random unlabeled graph Gn as the
data. Let V (Gn) = {vi, . . . , vn} denote the vertices of Gn and E(Gn) denote the set
of edges of Gn. Thus the number of vertices in Gn is |V (Gn)| = n. We shall only
consider undirected, unweighted graphs in this paper. For the sake of notational
simplicity, we may denote Gn by G.

As usual we suppose the network is represented by an adjacency matrix An×n

whose elements are Aij ∈ {0,1},

Aij =
{

1, if node i links to node j ,
0, otherwise.

A finite sample version of the Aldous–Hoover representation for exchangeable
adjacency matrices An×n becomes, for i, j ∈ {1, . . . , n},

α, ξi, ηij
i.i.d.∼ U(0,1),

Aij = fn(α, ξi, ξj , ηij ),

where, fn : [0,1]4 → [0,1] is a measurable function, symmetric in its second and
third arguments and ηij = ηji . Note that this is not a representation of all ex-
changeable probability distributions on finite networks.

Bickel and Chen [5] considered a special form of the general Aldous–Hoover
representation,

hn(u, v) ≡ P(Aij = 1|ξi = u, ξj = v).

The above-mentioned form can be simplified by decoupling n from the contribu-
tion of (ξi, ξj ). Thus hn is modeled as product of a scale function in terms of n,
ρn, defined as

ρn =
∫ 1

0

∫ 1

0
hn(u, v) dudv
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and a bivariate function independent of n, the latent variable density, w(ξi, ξj ).
We call the resulting model a nonparametric latent variable model, and the model
equation described in Bickel, Chen and Levina [6] becomes, for i, j ∈ {1, . . . , n},
ξi

i.i.d.∼ U(0,1) and

P(Aij = 1|ξi = u, ξj = v) = hn(u, v) = ρnw(u, v)1
(
w ≤ ρ−1

n

)
,(2.1)

where w(u, v) ≥ 0, symmetric, 0 ≤ u, v ≤ 1,
∫ ∫

w(u, v) dudv = 1, 0 < ρn < 1
and we define expected degree λn = nρn.

The graph statistics that we are concerned with are count statistics of subgraphs.
Let R be a subgraph of G, with V (R) ⊆ V (G) and E(R) ⊆ E(G). We have
|V (R)| = p and |E(R)| = e. For notation, if two graphs R and S are equivalent,
we denote them by R ∼= S, and if R is a subgraph of S, we denote them by R ⊆ S.
The integral parameter corresponding to a subgraph R is defined as P(R),

P(R) = E

{ ∏
(i,j)∈E(R)

h(ξi, ξj )
∏

(i,j)∈E(R̄)

(
1 − h(ξi, ξj )

)}
,(2.2)

where R̄ is a subgraph of Kp (Kp is a complete graph on p vertices) with
V (R̄) = {i, j : (i, j) /∈ E(R), i, j ∈ V (R)} and E(R̄) = {(i, j) : (i, j) /∈ E(R), i ∈
V (R), j ∈ V (R)}.

Now, the empirical statistic corresponding to P(R), which is the count statistics
for subgraph R, is

P̂ (R) = 1(n
p

)| Iso(R)|
∑

S⊆Kn,S∼=R

1(S ⊆ G),(2.3)

where Iso(R) is the group of isomorphisms of R, and Kn is the complete graph on
n vertices.

We also have from [6]

E
(
P̂ (R)

) = P(R).

Examples of subgraphs and corresponding count statistics include the follow-
ing:

EXAMPLE 1. R = edge is a subgraph with two vertices and one edge con-
necting them, so P̂ (R) = 1

n(n−1)

∑n
i=1 Di , where Di = degree of vi , vi ∈ V (G).

P(R) = ∫ 1
0 hn(u, v) dudv.

EXAMPLE 2. R = triangle is a 3-clique subgraph, so P̂ (R) = 1
(n

3)
total number

of unique 3-clique subgraphs in Gn,

P(R) =
∫ 1

0

∫ 1

0

∫ 1

0
hn(u, v)hn(v, s)hn(s, u) dudv ds.
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EXAMPLE 3. We define a smooth function of counts of triangles and “V’s,”
known as transitivity, TTr, as

P̂Tr = ρ̂−3
n P̂ (R1)

ρ̂−3
n P̂ (R1) + ρ̂−2

n P̂ (R2)
,

where R1 is a triangle or a 3-cycle, and R2 is a “V” or a path with three vertices
and ρ̂n = P̂ (edge).

EXAMPLE 4. R = p-cycle is a cyclic subgraph with |V (R)| = p, |E(R)| =
p, and R is a ring containing all p vertices. Triangle is a 3-cycle. P(R) =∫ 1

0 · · · ∫ 1
0 hn(u1, u2) · · ·hn(up−1, up)hn(up,u1) du1 · · · dup .

DEFINITION 5 (Wheels). A (k, l)-wheel is an acyclic graph with kl + 1
vertices and kl edges and “hub” vertex (say, {1}), isomorphic to the graph
with edges {((1,2), (2,3), . . . , (k, k + 1))((1, k + 2), (k + 2, k + 3), . . . , (2k,2k +
1)), . . . , ((1, (l − 1)k + 2), ((l − 1)k + 2, (l − 1)k + 3), . . . , (lk, lk + 1))}.

Edges, “V,” “W” are examples of (k, l)-wheels. An edge is a (1,1)-wheel, a “V”
is a (1,2)-wheel and a “W” is a (2,2)-wheel.

Now, as ρn → 0, which is the case for graphs which are not fully dense, that is,

|E(Gn)| = OP (n2), P(R) → 0 as well as its estimator P̂ (R)
P→ 0 and the asymp-

totics on (P̂ (R)−P(R)) become uninformative. So, in order to get a proper analy-
sis of the behavior of P̂ (R) in relation to P(R), we have to appropriately normalize
both P(R) and P̂ (R). The normalized versions of parameter P(R) are defined as

P̃ (R) = ρ−e
n P (R),(2.4)

where e ≡ |E(R)|. Then we define the corresponding normalized statistic to be

T̂ (R) = ρ̂−eP̂ (R),(2.5)

where

ρ̂ = D̄

n − 1
,(2.6)

where Di = degree of vi , vi ∈ V (Gn) for i = 1, . . . , n and D̄ = 1
n

∑n
i=1 Di . Now

the investigation on asymptotic behavior of
√

n(T̂ (R)− P̃ (R)) is possible, as both
terms are asymptotically nonzero quantities. This investigation was done in [6].

We wish to approximate the statistic P̂ (R) and functional Var(P̂ (R)) by non-
parametric bootstrap. We consider two bootstrap procedures:

(I) the uniform subsampling bootstrap procedure and
(II) the subgraph subsampling bootstrap procedure.

How we get the bootstrap estimates will be discussed in next section, and we
will state theorems justifying the use of these bootstrap estimations in next two
sections.



2390 S. BHATTACHARYYA AND P. J. BICKEL

2.1. Bootstrap and model-based sampling. Our work can be viewed from two
different perspectives. The first perspective is that of the bootstrap. In nonparamet-
ric bootstrap, we use resamples or subsamples of the data, where the data comes
from an unknown distribution, to find the functionals of the unknown distribution.
In our situation also, we have a network that has been generated from an under-
lying probability model. We want to subsample networks from our given network
and use those subsampled networks to approximate estimates of functionals of
the underlying population model generating the given network. Note that here we
are interested in the subsampling, not the resampling of a network. Our use of the
bootstrap corresponds to Efron’s [12] use of bootstrap for approximations made by
Monte Carlo quantities, which, in principle, could be calculated using data such as
the empirical variance of complicated estimates.

The second perspective is that of sampling. In sampling, we consider that the
population, from which the sample is selected according to some sampling design,
is a realization of a probabilistic event. So, in our case, we consider the given net-
work as the population, and it is generated from an underlying probability model.
We use subsampling bootstrap or sampling of network data to get estimates for
population quantity (count statistics) and underlying probability model (integral
parameter).

3. Bootstrap methods. We consider two different bootstrap methods. Both
of the methods of bootstrap consider finding subsamples from the whole network
given as the data. In the following subsections, we shall define each of these sub-
sampling bootstrap methods. We shall also compare the theoretical performance
between the two bootstrap schemes.

Let the adjacency matrix of Gn be denoted by An×n. Let R be a subgraph of G,
with V (R) ⊆ V (G) and E(R) ⊆ E(G). We have |V (R)| = p and |E(R)| = e.

3.1. Uniform subsampling bootstrap. In the uniform subsampling bootstrap
scheme, at each bootstrap iteration, a subset of vertices of the full network G is
selected without replacement, and the graph induced by the selected subset of ver-
tices is the subnetwork we consider. This is a vertex subsampling or induced net-
work sampling scheme. Given subnetwork size m and number of bootstrap iterates
B , the uniform subsampling bootstrap scheme has the following steps:

(1) For the bth iterate of the bootstrap, b = 1, . . . ,B .
(2) Choose m vertices without replacement from V (G) and form the induced

subgraph of G based on the selected vertices. Denote the graph formed by H .
(3) Calculate P̂b1(R), given by formula

P̂b1(R) = 1(m
p

)| Iso(R)|
∑

S⊆Km,S∼=R

1(S ⊆ H).(3.1)
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The uniform subsampling bootstrap estimate of P̂ (R) is given by

P̄B1(R) = 1

B

B∑
b=1

P̂b1(R).(3.2)

The uniform subsampling bootstrap scheme is the network version of the com-
mon subsampling bootstrap scheme seen in Bickel et al. [7]. Note that there are
other ways of forming uniformly subsampled bootstrap estimates, as mentioned
in [7]; however, we just mention one in this discourse.

For the bootstrap method, we prove a theorem of following type:

THEOREM 1. Suppose R is fixed acyclic or p-cycle with |V (R)| = p and
|E(R)| = e:

(i) given G, P̂b1(R) is an unbiased estimate of P̂ (R);
(ii) given G, Var(ρ−e

n P̂b1(R)|G) = O( 1
mpρe

n
∨ 1

m
);

(iii) also, if B → ∞, n → ∞, m → ∞, m/n → 0 and B(mpρe
n ∧ m) > O(n),

under G generated from (2.1),
√

n
(
ρ−e

n P̄B1(R) − ρnP (R)
) P→ 0.(3.3)

PROOF. The proof is given in Appendix A2 in [4]. �

3.2. Subgraph subsampling bootstrap. In the subgraph subsampling boot-
strap scheme, we use an enumeration scheme to find all possible subgraphs R

of size |V (R)| = p in the graph G. Then we convert the enumeration scheme
into a sampling scheme by selecting each subgraph R of size p of G with a
fixed probability and counting the number of sampled subgraphs. The enumera-
tion scheme was proposed by Wernicke et al. [33]. A random version of the enu-
meration scheme was also proposed in [33]. We use the random version of the
enumeration scheme to form our sampling scheme.

Let us first discuss the enumeration scheme of Wernicke et al. [33], which we
shall henceforth call ESU. The enumeration algorithm is a breadth-first search
algorithm. The enumeration scheme creates a forest of tree structures such that
each tree corresponds to one vertex of the network G, and each leaf of each tree is
a size-p subgraph [we have |V (R)| = p] of G. Since the counting scheme follows
a breadth-first search route, before performing the ESU algorithm, we need an
ordering of the vertices based on breadth-first search of the graph starting from any
particular vertex (say, v1). We get such a particular fixed ordering of the vertices of
the network with v1 getting lowest order value and subsequently, searched vertices
getting higher order values. The ordering is described in the algorithm ASSIGN

ORDER or AO 1, where, given any set of vertices V , we denote the set of vertices
connected to V , that is, the neighbors of V , by N(V). Also, based on the ordering
defined by AO, we denote vi � vj , if vi has a higher order than vj .
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Algorithm 1 ASSIGNORDER(G,p)
Input: A graph G = (V ,E), where |V (G)| = n.
Output: A vector σ = (σ (1), . . . , σ (n)), where σ is some permutation of

{1, . . . , n}, and σ(i) is associated with vertex vσ(i) ∈ V (G) for all i = 1, . . . , n.
1: σ1 ← 1
2: V ← {v1}
3: i ← 1
4: while |V| < n do
5: Denote k ← |N(V) \ V| and {vh1, . . . , vhk

} = N(V) \ V
6: Define σ(i + j) ← hj for j = 1, . . . , k.
7: i ← i + k

8: V ← V ∪ N(V)

9: end while

The enumeration algorithm starts with an available vertex of lowest possible
order (where order is specified by Algorithm AO 1), say v1. We construct a tree with
the vertex v1 as the root node. We consider v1 as the “parent” node and neighbors
of v1, which have higher order than v1, as its “children.” In the next step, the
“children” node becomes the “parent” node in the tree and has its own neighbors,
which have higher order than the nodes that have already come into the tree as
their “children.” We define Nexcl(v,V) (v is a vertex, and V is a set of vertices) for
N(v) \ V . The tree is allowed to grow up to a height p if we are counting size-p
subgraphs. Thus we can see that each leaf of the tree represents a collection of p

nodes coming from the path connecting the leaf to the root v1. For each vertex,
we have such a tree, and over counting is averted as we maintain the order of
vertices assigned by Algorithm AO 1 while forming the trees. So, with the help of
the particular ordering of vertices, each of the size-p subgraphs (|V (R)| = p) is
counted only once.

The randomized enumeration Algorithm RAND-ESU 2 also creates a forest of
tree structures such that each tree corresponds to one vertex of the network G,
and each leaf of each tree is a size-p subgraph [we have |V (R)| = p] of G. How-
ever, only a random selection of leaves of each tree is present in RAND-ESU with
uniform probability of selection of each leaf. The random enumeration algorithm
starts with an available vertex of lowest possible order (where, order is specified by
Algorithm AO 1), say v1, chosen with probability q1. We construct a tree with the
vertex v1 as the root node. We consider v1 as the “parent” node and neighbors of
v1, which have a higher order than v1 as its “children” and each “child” is selected
with probability q2 independently. In the next step, the “children” nodes become
the “parent” nodes in the tree and has their own neighbors, which have higher order
than the nodes that have already come into the tree, as their “children,” and each
“child” is selected with probability q3. The tree is allowed to grow up to a height
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Algorithm 2 RANDOMIZEDENUMERATESUBGRAPH(G,p)
Input: A graph G = (V ,E), an integer p and an vector (q1, . . . , qp), where 1 ≤

p ≤ |V | and qd ≤ 1 for all d = 1, . . . , p.
Output: SR

p = A sample of subgraphs, R of G, such that |R| = p.
1: for each vertex v ∈ V do
2: VExtension ← {u ∈ N({v}) : u � v}
3: d ← 1
4: With probability qd Call RandExtendSubgraph({v},VExtension, v, d})
5: end for
6: function RANDEXTENDSUBGRAPH(VSubgraph,VExtension, v, d)
7: Input: Graphs VSubgraph,VExtension and vertex v.
8: Output: A sample of subgraphs, R of G, such that |V (R)| = p and v is a

vertex of R.
9: if |VSubgraph| = p then

10: return Subgraph of G induced by VSubgraph
11: else
12: while VExtension �= φ do
13: Remove an arbitrarily chosen vertex w from VExtension
14: V ′

Extension ← VExtension ∪ {u ∈ Nexcl(w,VSubgraph) : u � v}
15: d ← |VSubgraph| + 1
16: With probability qd Call RandExtendSubgraph(VSubgraph ∪

{w},V ′
Extension, v, d)

17: end while
18: end if
19: return
20: end function

p if we are counting size-p subgraphs, and at step d , the probability of selection
is qd . So we can see that each leaf of the tree represents a collection of p nodes
coming from the path connecting the leaf to the root. For each vertex, we have
such a tree. So, with the help of the particular ordering of vertices, a subsample
of the size-p subgraphs (|V (R)| = p) is obtained. The pseudo-code is given in
Algorithm 2.

The ordering is needed for success of the ESU algorithm and its randomized
counterpart 2. We formally state the subsampling algorithm, RAND-ESU 2 in this
paper with an extra set of parameters (q1, . . . , qp). The enumeration version can
be found in [33].

From the sampling scheme RAND-ESU we have a sample SR
p of size-p sub-

graphs of G. Now, if we consider each item to be one size-p subgraph of G, that
is, an element of Sp , then we can try to calculate the inclusion probability of each
item in the sample SR

p .
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The item S ∈ Sp is a subgraph of G induced by the set of vertices {w1, . . . ,wp},
where we take that wi+1 � wi , i = 1, . . . , p − 1. Thus:

π ≡ Inclusion probability of S = P
[
(w1, . . . ,wp) is selected

]
= P

[
wp|(w1, . . . ,wp−1) is selected

]
× P

[
(w1, . . . ,wp−1) is selected

]
= qp · P[

(w1, . . . ,wp−1) is selected
]

= qp · qp−1 · P[
(w1, . . . ,wp−2) is selected

]

= · · · = qp · qp−1 · · ·q1 =
p∏

d=1

qd.

So, each item S ∈ Sp has an inclusion probability π to be in the sample SR
p .

In Theorem 2 of [33] it was proved that the output of the ESU algorithm Sp

contains all subgraphs R of G, such that |V (R)| = p, exactly once. Thus we can
write statistic (2.3) for a specific subgraph R with |V (R)| = p in the following
way:

P̂ (R) = 1(n
p

) ∑
S∈Sp

1(S ∼= R).(3.4)

Essentially, we have a normalized population total in terms of sampling theory.
Our goal is to form a sampling design and devise a corresponding sampling es-
timator of P̂ (R) given G. To meet this goal we use a sampling version of the
enumeration scheme ESU.

Now we have a sampling scheme by which we select a sample SR
p from the pop-

ulation Sp , where each element of Sp has probability of inclusion of π . Thus we
can define a Horvitz–Thompson estimator (for reference, see Chapter 6.2 of [29])
of P̂ (R) based on SR

p as

P̂b2(R) = 1

(
∏p

d=1 qd)
(n
p

) ∑
S∈SR

p

1(S ∼= R).(3.5)

Now if we repeat the same procedure B number of times, each time getting
independent copies of SR

p with replacement from Sp , we can get the subgraph
subsampling bootstrap estimate,

P̄B2(R) = 1

B

B∑
b=1

P̂b2(R).(3.6)

For the bootstrap method, we prove a theorem of following type:

THEOREM 2. Suppose R is fixed acyclic or p-cycle with |V (R)| = p and
|E(R)| = e:

(i) given G, P̂b2(R) is an unbiased estimate of P̂ (R);
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(ii) given G, Var(ρ−e
n P̂b2(R)|G) = O(( 1

q1
− 1) 1

n
+ 1

nρ
e−p+1
n

· ∏p
d=2

1
λnqd

);

(iii) for B → ∞ and qd → 0 for all d = 1, . . . , p such that 1
B

( 1
q1

− 1) → 0 and

B
∏p

d=2 qd ≥ 1
np−1ρe

n
and n → ∞, λn → ∞, and under G generated from (2.1),

√
n
(
ρ−e

n P̄B2(R) − ρ−e
n P (R)

) P→ 0.(3.7)

PROOF. The proof is given in Appendix A3 in [4]. �

Note that the main reason for taking repeated independent samples, SR
p for this

case, is to reduce the variance of the bootstrap estimates and to make the estimates
more stable.

3.3. Estimation of variance and covariance. We first start with the situa-
tion when the source of variation is only the randomness coming from sam-
pling from the underlying model (2.1). We denote Var[ρ−eP̂ (R)] as σ 2(R;ρ)

and Cov(ρ−e1P̂ (R1), ρ
−e2P̂ (R2)) as σ(R1,R2;ρ). Note that, e1 = |E(R1)|, e2 =

|E(R2)|, p1 = |V (R1)| and p2 = |V (R2)|.
PROPOSITION 6. For connected subgraphs R, R1 and R2 of G, we have that

σ 2(R;ρ) = 1

(ρe
(n
p

)| Iso(R)|)2

∑
W :W=S∪T

S,T ∼=R,S∩T �=∅

E

[ ∑
W⊆Kn

1(W ⊆ G)

]

−
(

1 − ((n − p)!)2

n!(n − 2p)!
)(

P̃ (R)
)2

,

σ (R1,R2;ρ) = 1

(ρe1+e2
( n
p1

)( n
p2

)| Iso(R1)|| Iso(R2)|)

× ∑
W :W=S∪T ,

S∼=R1,T ∼=R2,S∩T �=∅

E

[ ∑
W⊆Kn

1(W ⊆ G)

]

−
(

1 − (n − p1)!(n − p2)!
n!(n − p1 − p2)!

)
P̃ (R1)P̃ (R2).

PROOF. The proof is given in Appendix B1 in [4]. �

Note that if we take k = |V (W)| and eW ≡ |E(W)|, then k = p, . . . ,2p − 1 and
each term of sum on the RHS of the previous equation is

1

(ρe
(n
p

)| Iso(R)|)2E

[ ∑
W⊆Kn

1(W ⊆ H)

]
= ρeW

(n
k

)| Iso(W)|
(ρe

(n
p

)| Iso(R)|)2 P̃ (W)

(3.8)
= O

(
nk−2pρeW −2e).
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We can analyze each such term separately:

(1) If k = |V (W)| = 2p − 1, then W is a connected graph, with eW = 2e. Thus
we have that the main leading term equals O( 1

n
).

(2) In the case k = |V (W)| < (2p − 1):

• If R is acyclic, then eW − 2e ≤ k − 2p − 1 since e = p − 1, so O(nk−2p ×
ρeW −2e) = o(n−1) if λn = nρn → ∞.

• If R is a p-cycle, eW − 2e = k − 2p < 0 if k = |V (W)| = p and eW − 2e ≤
k − 2p − 1 if p < k < (2p − 1), so O(nk−2pρeW −2e) = O(λ

−p
n ) + o(n−1) if

λn → ∞.
• If R is any other cyclic graph, O(nk−2pρeW −2e) = O(n−cρ−d), where 0 < c ≤

p and 0 < d ≤ c(c − 1)/2 for each c. So, in order to have n−cρ−d ≤ Mn−1, the
worst rate that λn can have is λn = O(n1−2/p).

For connected and acyclic or p-cycle R, R1 and R2, we get that

σ 2(R;ρ) = O

(
1

n
∨ 1

λ
p
n

)
,

σ (R1,R2;ρ) = O

(
1

n

)
.

So, for calculation of variance, if R is acyclic or p-cycle, we only estimate the
count of the features which are W = S ∪ T and |V (W)| = 2p − 1 and |V (W)| =
p. Thus using the expansion given in Proposition 6, the empirical estimator of
σ 2(R;ρ) is defined as

σ̂ 2(R) = 1/(1 − x)

(ρ̂e
n

(n
p

)| Iso(R)|)2

∑
W⊆Kn:W=S∪T ,

S,T ∼=R,|S∩T |=1,p

1(W ⊆ G) − xρ̂−2e
n P̂ (R)2

(1 − x)
,(3.9)

where x = (1 − ((n−p)!)2

n!(n−2p)!), and using the expansion given in Proposition 6, the
empirical estimator of σ(R1,R2;ρ) is defined as

σ̂ (R1,R2) = 1/(1 − y)

(ρ̂
e1+e2
n

( n
p1

)( n
p2

)| Iso(R1)|| Iso(R2)|)
(3.10)

× ∑
W⊆Kn,W=S∪T ,

S∼=R1,T ∼=R2,|S∩T |=1

1(W ⊆ G) − yρ̂
−(e1+e2)
n P̂ (R1)P̂ (R2)

(1 − y)
,

where y = (1 − (n−p1)!(n−p2)!
n!(n−p1−p2)! ).

σ̂ 2(R) and σ̂ (R1,R2) become consistent estimates of σ 2(R;ρ) and σ(R1,R2;
ρ) as well as σ 2(R; ρ̂) and σ(R1,R2; ρ̂), respectively.
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LEMMA 7. As λn → ∞ and n → ∞, if R, R1, R2 is connected acyclic or
p-cycle, then additionally λ

p
n ≥ O(n),

σ̂ 2(R)

σ 2(R; ρ̂)

P→ 1,(3.11)

σ̂ (R1,R2)

σ (R1,R2; ρ̂)

P→ 1.(3.12)

PROOF. The proof is given in Appendix B2 in [4]. �

Now we can see that σ̂ 2(R) and σ̂ (R1,R2) are nothing but count statistics on
the statistic W = S ∪ T . So, using bootstrap methods, we define a bootstrap-based
estimate of σ̂ 2(R), for i = 1,2,

σ̂ 2
Bi(R) = ∑

W=S∪T ,S,T ∼=R,

|S∩T |=1,p

(ρ̂
eW
n

( n
pW

)| Iso(R)|)
(1 − x)(ρ̂e

n

(n
p

)| Iso(R)|)2 P̄Bi(W)

(3.13)

− xρ̂−2e
n P̄Bi(R)2

(1 − x)
,

where x = (1 − ((n−p)!)2

n!(n−2p)!). A bootstrap-based estimate of σ̂ (R1,R2) is

σ̂Bi(R1,R2)

= ∑
W=S∪T ,S∼=R1,

T ∼=R2,|S∩T |=1

(ρ̂
eW
n

( n
pW

)| Iso(W)|)
(1 − y)(ρ̂

e1+e2
n

( n
p1

)( n
p2

)| Iso(R1)|| Iso(R2)|)
P̄Bi(W)(3.14)

− yρ̂
−(e1+e2)
n P̄Bi(R1)P̄Bi(R2)

(1 − y)
,

where y = (1− (n−p1)!(n−p2)!
n!(n−p1−p2)! ) and P̄Bi(W) (i = 1,2) are bootstrap count statistics

estimates, defined in equations (3.2) and (3.6).

LEMMA 8. As λn → ∞, n → ∞, B → ∞ and under the conditions of Theo-
rems 1 and 2, if R, R1 and R2 are acyclic or p-cycle, then additionally λ

p
n ≥ O(n),

σ̂ 2
Bi(R)

σ 2(R; ρ̂)

P→ 1 for i = 1,2,(3.15)

σ̂Bi(R1,R2)

σ (R1,R2; ρ̂)

P→ 1 for i = 1,2.(3.16)

PROOF. The proof is given in Appendix B3 in [4]. �
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3.4. Comparison of the bootstrap methods. The variance of each of the sub-
sampling bootstrap methods, just on the basis of the randomness generated from
the bootstrap sampling, is given in Theorems 1 and 2. Also, the worst-case com-
putational complexity of finding count statistics for subgraphs R of size p, for
the uniform subsampling bootstrap, becomes O(Bmp), whereas for the subgraph
subsampling bootstrap scheme, the worst-case complexity is O(B

∏p
d=1(nqd)).

Now the question of balancing computational complexity and statistical stability
become important.

For dense networks, say when ρn = n−ε with ε > 0 small (say between 0 < ε <

1/2), we also have λn = n1−ε:

• For uniform subsampling from Theorem 1, we get that Var(ρ−eP̄B1(R)) =
O( 1

n1+2ε ) with m = nε and B = n1+ε . The worst-case computational cost be-

comes O(n1+(p+1)ε).
• For subgraph subsampling from Theorem 2, we get that Var(ρ−eP̄B2(R)) =

O( 1
n1+ε ) for p-cycle R and O( 1

n1+2ε ) for acyclic R with qd = O( 1
n1−ε ) for

d = 2, . . . , p and B = n2ε . The worst-case computational complexity becomes
O(n1+(p+1)ε).

Thus in dense networks, both the subsampling bootstrap methods can achieve low
enough bootstrap variance for low computational cost. In fact, the gain in compu-
tational complexity is quite astonishing as polynomial complexity gets reduced to
near-linear complexity. The uniform subsampling bootstrap is a better choice for
its ease of use and marginally smaller variance for p-cycle R. However, since m

has to be greater than p, for large R, the benefit of using the uniform subsampling
bootstrap starts to reduce, and in these cases, the subgraph subsampling bootstrap
might be a better choice.

For the sparse case, say when ρn = nε−1 with ε > 0 small (say between 0 < ε <

1/2), we also have λn = n−ε:

• For uniform subsampling from Theorem 1, we get that Var(ρ−eP̄B1(R)) =
O( 1

n2 ) for acyclic R and O( 1
n1+ε ) for p-cycle R with m = n1−ε and B = n1+ε .

The worst-case computational cost becomes O(np−((p−1)ε−1)).
• For subgraph subsampling from Theorem 2, we get that Var(ρ−eP̄B2(R)) =

O( 1
n2−ε ) for acyclic R and O( 1

n1+ε ) for p-cycle R with qd = O( 1
nε ) for

d = 1, . . . , p and B = n. The worst-case computational complexity becomes
O(np−(pε−1)).

Thus in sparse networks, the computational advantage of using the subsampling
bootstrap starts to reduce, especially for small subgraphs R. However, for large
subgraphs R, there is still a computational advantage to using subsampling boot-
strap methods. The subgraph subsampling bootstrap scheme is a better choice in
this case as it has smaller variance for similar computational complexity.
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But for sparse graphs, the methods still remain polynomial in worst-case com-
plexity, and for large p and n, the methods become numerically infeasible. In those
cases, it becomes more of a detection problem than a counting problem, and a fun-
damentally different approach will be required for feasible inference.

4. Theoretical results. In this section, we shall try to provide asymptotic dis-
tribution for normalized bootstrap estimates of count statistics. We define normal-
ized bootstrap estimates of count statistic for subgraph R from (3.2) and (3.6) by

T̂Bi(R) = ρ̂−e
n P̄Bi(R),(4.1)

where i = 1,2 for the two different bootstrap schemes. By obtaining an estimate
of the asymptotic variance of ρ−eP̂ (R), we can estimate its asymptotic distribu-
tion and thus construct hypothesis tests based on the asymptotic distribution. We
combine the results obtained in Section 3 to prove Theorem 3.

THEOREM 3. Suppose R is fixed, acyclic or p-cycle with |V (R)| = p and
|E(R)| = e and

∫ ∞
0

∫ ∞
0 w2e(u, v) dudv < ∞. Under the conditions defined in

Theorems 1 and 2, for i = 1,2, if λn(≡ nρn) → ∞ and B → ∞,
√

n
(
T̂Bi(R) − P̃ (R)

) P→ 0,(4.2)

√
n

(
T̂Bi(R) − P̃ (R)

σ̂Bi(R)

)
w→ N(0,1).(4.3)

If for fixed, acyclic or p-cycle subgraphs (R1, . . . ,Rk), we define, TBi(R) =
(T̂Bi(R1), . . . , T̂Bi(Rk)) and P(R) = (P̃ (R1), . . . , P̃ (Rk))√

n
((

TBi(R) − P(R)
)T

�̂
−1/2
Bi (R)

(
TBi(R) − P(R)

)) w→ N(0, I),(4.4)

where [�̂Bi]st = σ̂Bi(Rs,Rt), s, t = 1, . . . , k and if Rs = Rt = R, σ̂Bi(Rs,Rt ) =
σ̂ 2

Bi(R). These results also hold for subgraphs R, which are r-cycles.

4.1. Proof of Theorem 3. The proof follows from the lemma and theorems
of the previous section. Since we have

√
n-consistent bootstrap estimators of

ρ−eP̄Bi(R) for i = 1,2. Now, from the Theorem 1(a) in [6], we know that as
λn → ∞ if ρ̂n = D̄

n−1 , as defined in (2.6),

ρ̂n

ρn

P→ 1,

√
n

(
ρ̂n

ρn

− 1
)

w→ N
(
0, σ 2)

.

Now, we define the bootstrap estimates in (4.1). Thus we get by applying Slutsky’s
Theorem that

√
n
(
T̂Bi(R) − P̃ (R)

) P→ 0 for i = 1,2.
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The statement about bootstrap estimate of variance follows from Lemma 8 and the
definitions of bootstrap variance in the form of equation (3.13).

Thus we have
√

n-consistent bootstrap estimators, T̂Bi(R) (for i = 1,2) of T̂ (R)

and consistent estimators, σ̂ 2
Bi(R) (for i = 1,2) of σ 2(R;ρ). Also from Theorem 1

of [6], we have, for subgraphs R1, . . . ,Rk of Gn,
√

n
((

T̂ (R1), . . . , T̂ (Rk)
) − (

P̃ (R1), . . . , P̃ (Rk)
)) w→ N

(
0,�(R)

)
.

Thus we can combine the results from Theorems 1 and 2 with the above theo-
rem, using Slutsky and convergence type theorems, to get the symptomatic nor-
mality behavior of T̂Bi(R). As n → ∞, λn → ∞, and under the conditions of
Theorems 1 and 2, if we define TBi(R) = (T̂Bi(R1), . . . , T̂Bi(Rk)) and P(R) =
(P̃ (R1), . . . , P̃ (Rk))

√
n
((

TBi(R) − P(R)
)
�̂

−1/2
Bi (R)

(
TBi(R) − P(R)

)) w→ N(0, I) for i = 1,2

where [�̂Bi]st = σ̂Bi(Rs,Rt ), s, t = 1, . . . , k, and if Rs = Rt = R, σ̂Bi(Rs,Rt ) =
σ̂ 2

Bi(R) for i = 1,2.

5. Simulation results. We apply the two representative bootstrap subsam-
pling schemes for simulated datasets to determine their performance. We generate
data from two different simulation models. Both models are special cases of the
nonparametric model described in [5]. The two models that we consider are the
following:

• the stochastic block model and
• the preferential attachment model.

For each of the models, we try to find the estimate of the count statistics features
and their confidence intervals through bootstrap subsampling. The features that we
consider are generalized (k, l)-wheels, p-cycles and a smooth function of count
statistics, transitivity.

5.1. Count statistics. In these simulations, the main class of acyclic features
we consider are (k, l)-wheels. We also consider the count of the cyclic patterns
such as triads or triangles or 3-cycles and tetrads or quadrilaterals or 4-cycles. We
also consider a smooth function of counts of triangle and (1,2)-wheel, known as
transitivity, P̂Tr, defined in Example 3.

5.2. Stochastic block model. Let w correspond to a K-block model defined by
parameters θ = (π, ρn, S), where πa is the probability of a node being assigned to
block a as before, and

Fab = P(Aij = 1|i ∈ a, j ∈ b) = snSab, 1 ≤ a, b ≤ K,

and the probability of node i to be assigned to block a is πa (a = 1, . . . ,K).
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(a) (b)

(c) (d)

FIG. 1. Stochastic block model: For n = 1000, we vary average degree (λn) and (a) plot estimated
normalized tetrad count and (b) plot estimated transitivity and their 95% confidence interval (CI),
where CI is estimated using bootstrap estimates of variance of the estimators. For ν = 0.5, we vary n,
and (c) plot estimated normalized tetrad count and (d) plot estimated transitivity and their 95%
confidence interval (CI). We use different colors to indicate different bootstrap subsampling schemes
and graph parameters.

We consider a stochastic block model with K = 2, S = (0.4
0.4

0.5
0.7

)
, sn = 5ν

√
n

n

and π = (0.5,0.5). Thus we get ρn = πT Fπ . First, we keep n = 1000 fixed and
vary ν such that ρn varies from 10 to 100. Second, we vary ν fixed at 0.5 and vary
n = 500 to 3000.

In the following figures, we try to see the behavior of mean and variances of the
count statistics. In Figure 1(a)–(d), we compare the asymptotic 95% confidence
interval of P̃ (R), where R is a 4-cycle or tetrad and E(T̂Tr), using bootstrap mean
and variance estimates, as considered in Theorem 3. The bootstrap estimate of
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(a) (b)

FIG. 2. Stochastic block model: For ν = 0.5, we vary n and (a) plot estimated coverage proba-
bility of 95% CI for (1,3)-wheel count and (b) plot estimated coverage probability of 95% CI for
normalized tetrad count. We use different colors to indicate different bootstrap subsampling schemes.

asymptotic variance of T̂ Bi
Tr is obtained from the bootstrap estimates of σ̂ 2

Bi(R1),
σ̂ 2

Bi(R2) and σ̂Bi(R1,R2) by using Delta method and using the Theorem 3.
We also try to see the estimated coverage probabilities of bootstrap estimated

confidence intervals for P̃ (R). In Figure 2(a)–(b), we plot estimated coverage
probabilities of asymptotic 95% confidence interval for P̃ (R), where R is a (1,3)-
wheel and a 4-cycle. We keep ν fixed and vary n from 200 to 3000. Estimated
coverage probabilities start becoming close to 0.95 at around n = 2000.

In Figure 3, we compare the mean of the bootstrap estimates with the parameter
P̃ (R). In Figure 3(a), we keep n fixed but vary λn from λn 10 to 100 by varying ν,
and in Figure 3(b), we keep ν fixed and vary n from 500 to 3000. Thus we get
reasonable estimates of integral parameters of graph as we vary the average degree
and number of vertices of the graph.

In Figure 4, we compare the variance of the bootstrap estimates, based on boot-
strap iterations for both the bootstrap schemes. We see that bootstrap variance is
usually lower for the subgraph subsampling scheme as we increase the number of
vertices of the graph for different count statistics.

5.3. Preferential attachment model. In the preferential attachment model,
given k initial vertices, k + 1th vertex attach to one of the preceding k vertices
with probability proportional to degree. Now we have degree of vertex v, defined
as Dv and D̄ = 1

n

∑
v=1 Dv . Also, we have

τ(v) � Dv

D̄
.
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(a) (b)

FIG. 3. Stochastic block model: For n = 1000, we vary average degree (λn) and (a) plot esti-
mated normalized (1,6)-wheel count. For ν = 0.5, we vary n and (b) plot estimated normalized
(1,6)-wheel count. We use different colors to indicate different bootstrap subsampling schemes and
graph parameters.

Thus following equation (2.1), we have the probability of edge formation as

w(u, v) = τ(u)

T (u)
1(u ≤ v) + τ(v)

T ′(u)
1(v ≤ u),

(a) (b)

FIG. 4. Stochastic block model: For ν = 0.5, we vary the number of vertices (n) and plot (a) boot-
strap variance of estimated transitivity and (b) bootstrap variance of normalized tetrad count. We
use different colors to indicate different bootstrap subsampling schemes.
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(a) (b)

FIG. 5. (a) For n = 1000 we vary λn, and we plot estimated transitivity T̂ B2
Tr and their 95% con-

fidence interval (CI), where CI is estimated using bootstrap estimates of variance of the estimators.
(b) We vary n, and we plot estimated normalized tetrad count, T̂B2(R), R = tetrad and their 95%
confidence interval (CI).

where T (u) = ∫ 1
u τ (s) ds and T ′(v) = 1 − T (v) and

τ(u) =
∫ 1

0
w(u, v) dv.

Now the preferential attachment model can be defined by the following formula
on w:

w(u, v) = τ(u)∫ 1
u τ (s) ds

1(u ≤ v) + τ(v)∫ 1
v τ (s) ds

1(v ≤ u).

Thus for

w(u, v) = (1 − u)−1/2(1 − v)−1/2,

we have

τ(v) = c(1 − v)−1/2,

which is equivalent to power law of degree distribution F ≡ τ−1.
We simulate networks from both stochastic block models and preferential at-

tachment models, and then we try to compare the distribution of count statis-
tics of the graph for two different networks. In Figure 5(a) we vary the parame-
ters of SBM as F = μF(1) + (1 − μ)F (2), where F (1) = Diag(0.035,0.065) and
F (2) = 0.00112. We increase μ to increase λn and SBM have more pronounced
cluster structure. We keep the average degree, λn, of the two simulated networks
the same, and then we try to get the asymptotic distribution of the transitivity
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statistic, T̂Tr, for the two cases for each λn. We see here that for low λn, we can-
not statistically distinguish between the transitivity of networks generated from
two different models, but they become statistically distinguishable as average de-
gree, λn and μ, increase. In Figure 5(b), take SBM as in Section 5.2 and PFA
as in Section 5.3 keeping the average degree, λn, of the two simulated networks
the same, and vary n, and we can statistically distinguish the normalized tetrad
count of networks between the two different models for large n based on subgraph
subsampling scheme.

6. Real data examples. Social networks recently has become quite large af-
ter the introduction of social networking sites. We consider two different social
networks as a platform for our experiments. The first one, high school romantic re-
lations data, is a small social network, whereas the second one, Facebook college
social network, has a greater number of nodes and links. For both cases we use a
subgraph subsampling bootstrap scheme.

6.1. High school network. In this application, we try to quantitatively verify
some of the hypotheses mentioned by the authors of [3] when presenting the data.
The network here is formed by students of Jefferson High School as nodes, and
if two students have romantic relations, then there exists a link between those two
nodes. In the paper [3] where the data was presented, an observation was made
about the dearth of short cycles in the network. Our application here is trying
to answer the question of whether the absence of short cycles in this graph is
significant or not. We consider a very simple model for the data.

We consider that the data has been generated from two different models:

(a) Stochastic block model with two blocks (Male and Female), and the con-
nection probability matrix is given by

P =
(

P11 P12

P12 P22

)
,

where Pab = the average number of edges between blocks a and b in the net-
work, where a, b = 1,2 are the two blocks with male = 1 and female = 2. In this
network, we have P11 = 0, P12 = 0.0058 and P22 = 0.000025. The probability of
belonging to the two blocks is (0.497,0.503).

(b) Preferential attachment model with ρ = λn

n
, where λn = the average degree

of the network = 1.66 and n is the number of nodes.

Now, for these two simple models, we can theoretically find the normalized count
of small cycles. Then we can perform a hypothesis test to find out whether the
number of small cycles we see in this network is significantly small or not. For
both models, we can find P̃ (R), where R = the cycles of size 3 and 4 based on
the parameters defined for models in (a) and (b) and using equation (2.4), and we
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TABLE 1
The normalized subgraph counts, their standard deviation and the expected counts from the
stochastic block model (SBM) and preferential attachment model (PFA) for the whole high

school network

Subgraph Normalized count Standard deviation Count (SBM) Count (PFA)

(1,2)-wheel 2.27 0.17 1.01 2.97
3-cycle 1.31 0.1 0.01 1.04
4-cycle 9.47 3.16 0.63 3.06

shall call it P̃0(R). Also, for the network, the unknown integral parameter for the
subgraph R is P̃ (R). Formally, the hypothesis becomes

H0 : P̃ (R) = P̃0(R) vs P̃ (R) < P̃0(R)

for each R and for each model (a) and (b). We use the results of Theorem 3 to
form the asymptotic test. The results are given in Table 1. We see in the results
that according to the two simple models, it is extremely unlikely for 3-cycles and
4-cycles to occur in the graph. In fact, the original network has too many 4-cycles
short cycles, not too few. This is an interesting observation coming out of our sim-
ple exploratory analysis. Thus our simple models do not capture the probabilistic
mechanism of the original network correctly, and we need to analyze the short
cycles in the network more closely to understand their formation.

Note that this is a very small and sparse network. For this network, the use of
Theorem 1 from [6] would have sufficed, but we give the example as an example of
the use of count statistics and their quantitative behavior. In [3], simulation-based
tests were used.

Comparison of count statistics in the social network literature has been based
on parametric simulation [19] or data bank related tests [32]. In these tests, the
networks are generated from either a random graph model or from a data bank of
networks (as in [10]). Permutation of nodes’ block identity-based tests are used
for fitting block models [32]. We use asymptotically Gaussian tests based on non-
parametric exchangeable models for comparing graphs. The hypothetical model
we consider is nonparametric and thus more general than simulation-based tests
on specific random graph models or data bank-based tests. Permutation of nodes’
block identity-based tests seem to function more as measures of goodness of fit of
the block model assignment of the particular graph.

6.2. Facebook network. In this application, we try to quantitatively analyze
the behavior of some of the known descriptive statistics for Facebook collegiate
networks. The networks were presented in the paper by Traud et al. [31]. The net-
work is formed by Facebook users acting as nodes, and if two Facebook users are
“friends” there is an edge between the corresponding nodes. Along with the net-
work structure, we also have the data on covariates of the nodes. Each node has
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covariates: gender, class year and data fields that represent (using anonymous nu-
merical identifiers) high school, major and dormitory residence. We try to answer
two very basic questions quantitatively for these networks:

(1) Can the node covariates act as cluster identifiers?
(2) Can two college networks be distinguishable in terms of some basic de-

scriptive statistics?

In order to address the first question, we consider the network of a specific college
(Caltech). We consider the covariates class year, major and dormitory residence as
our covariates of interest. We take the induced network created by levels of each
of these covariates and try to see if those networks have different clustering prop-
erties. For example, consider class year and major as the covariates of interest.
We consider the nodes belonging two different class years and find their induced
network from the whole collegiate network. Similarly, we consider the nodes be-
longing two different majors and find their induced network from the whole col-
legiate network. Now, we have two different networks: one having nodes coming
exclusively from two different class years and the other having nodes coming ex-
clusively from two different majors. We now try to find which of the two networks
is more “clustered” by comparing the transitivity of the two networks. We can re-
peat the same exercise for any two covariates and choose a subset of their levels.
For the two networks, the unknown integral parameter for transitivity is P̃ 1

Tr and
P̃ 2

Tr, respectively. Formally, the hypothesis becomes

H0 : P̃ 1
Tr = P̃ 2

Tr vs P̃ 1
Tr �= P̃ 2

Tr.

The second question can also be answered in a spirit similar to the first. We
consider the full collegiate network of two different colleges (Caltech and Prince-
ton). Then, we try to compare the transitivity of these two collegiate networks. For
the two networks, the unknown integral parameter for transitivity is P̃ 1

Tr and P̃ 2
Tr,

respectively. Formally, the hypothesis becomes

H0 : P̃ 1
Tr = P̃ 2

Tr vs P̃ 1
Tr �= P̃ 2

Tr.

These comparisons could, in principle, be possible using the results given in
Bickel et al. [6], but they are computationally intractable. Using bootstrap estima-
tors, we can estimate the variance of the estimators and thus perform hypothesis
testing in reasonable time.

In Tables 2, 3 and 4, we present an excerpt of the result of our analysis and
answer both of the questions. These results give a better understanding about the
network statistics reported in [31], like those reported in Table 3.1 of [31]. Using
the numerical comparison of the transitivity values reported in the table of [31]
alone can be statistically unreliable, without a proper testing of whether the differ-
ence in values for different networks is statistically significant. Such comparison
statements are now possible to make with the methods proposed in this paper.
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TABLE 2
Transitivity of induced networks formed by considering only two levels of a specific covariate of a

specific collegiate network

Class year (CY) Dormitory (DM) Major (MJ)

Estimated transitivity 0.15 0.22 0.12

Now, without finding the bootstrap estimate of count statistics and its variance,
finding the asymptotic distribution of these count statistics will not be possible.
Thus with the help of the bootstrap-based estimates, we can perform hypothesis
testing on the count statistics and provide the estimates of their asymptotic distri-
bution.

7. Conclusion and future works. In this paper, we have considered two
known subsampling schemes of networks and have tried to show situations where
they are applicable to finding the asymptotic distribution of certain count statistics
of the network. We have showed that the normalized bootstrap subsample esti-
mates of the count statistics and their smooth functions have asymptotic normal
distribution. We have proposed bootstrap schemes by which we can efficiently
compute the asymptotic mean and variance of these count statistics. We have also
showed that the subgraph sampling bootstrap scheme seems most stable, and we
recommend using this scheme as bootstrap subsampling scheme in most cases.

We also use the estimated asymptotic mean and variances of the count statistics
to construct hypothesis tests. These hypothesis tests can serve several purposes,
such as:

(a) distinguishing between the count statistics of two different networks;
(b) distinguishing between parts of same network;
(b) testing whether a network has been generated from a specific model by

comparing the empirical and population versions of the count statistic;
(c) testing how close parameters of two different network models can become.

TABLE 3
The difference between class year and dorm is not significant,
but the difference between dorm and major is significant by an
asymptotic normal test at 5% level. The data was presented in

Traud et al. [31]

Difference CY and DM DM and MJ

Estimated 0.07 0.1
Estimated SD 0.05 0.035
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TABLE 4
The difference of transitivity between two networks is not

significant by an asymptotic normal test at 5% level. Therefore
Network 1 cannot be said to be more “clusterable.” The data

was presented in Traud et al. [31]

Network 1 Network 2

Estimated transitivity 0.29 0.16
Estimated difference 0.13
Estimated difference SD 0.11

All of these different qualitative tests can be made quantitative by using hypothesis
tests using the count statistics. Using subsample bootstrap estimates of count statis-
tics, we show from simulations that transitivity of networks from stochastic block
models becomes easier to differentiate from transitivity of the preferential attach-
ment model as the average degree grows. Similarly, in real networks, such as the
Facebook collegiate network, we show that certain covariate-based subnetworks
have more “cluster” structure than others. Also, even in large networks, conclu-
sions based only on means, as opposed to confidence statements using variances,
could be unreliable.

7.1. Future works. One natural generalization could be the use of a bootstrap
scheme to get asymptotic distribution of global statistics, such as graph cut, con-
ductance, functionals of graphon (nonintegral functionals) and such parameters.
Sample and bootstrap estimates of such parameters are sometimes obtainable, but
their theoretical properties are still unknown. It would be a nice future endeavor to
extend our bootstrap subsampling scheme to estimate such global characteristics
of the networks.

Acknowledgments. We thank Aiyou Chen, Dave Choi and Liza Levina for
helpful discussions and comments.

SUPPLEMENTARY MATERIAL

Supplement to “Subsampling bootstrap of count features of networks”
(DOI: 10.1214/15-AOS1338SUPP; .pdf). In the Supplement, we prove Theo-
rems 1, 2, Proposition 6, Lemmas 7 and 8.
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