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BAYESIAN T -OPTIMAL DISCRIMINATING DESIGNS

BY HOLGER DETTE∗,1,2, VIATCHESLAV B. MELAS†,1,3

AND ROMAN GUCHENKO†

Ruhr University at Bochum∗ and St. Petersburg State University†

The problem of constructing Bayesian optimal discriminating designs
for a class of regression models with respect to the T -optimality criterion in-
troduced by Atkinson and Fedorov [Biometrika 62 (1975a) 57–70] is consid-
ered. It is demonstrated that the discretization of the integral with respect to
the prior distribution leads to locally T -optimal discriminating design prob-
lems with a large number of model comparisons. Current methodology for
the numerical construction of discrimination designs can only deal with a few
comparisons, but the discretization of the Bayesian prior easily yields to dis-
crimination design problems for more than 100 competing models. A new
efficient method is developed to deal with problems of this type. It com-
bines some features of the classical exchange type algorithm with the gra-
dient methods. Convergence is proved, and it is demonstrated that the new
method can find Bayesian optimal discriminating designs in situations where
all currently available procedures fail.

1. Introduction. Optimal design theory provides useful tools to improve the
accuracy of statistical inference without any additional costs by carefully plan-
ning experiments before they are conducted. Numerous authors have worked on
the construction of optimal designs in various situations. For many models, op-
timal designs have been developed explicitly [see the monographs of Atkinson,
Donev and Tobias (2007), Pukelsheim (2006)], and several algorithms have been
developed for their numerical construction if the optimal designs are not available
in explicit form; see Yang, Biedermann and Tang (2013), Yu (2010), among oth-
ers. On the other hand the construction of such designs depends sensitively on the
model assumptions, and an optimal design for a particular model might be ineffi-
cient if it is used in a different model. Moreover, in many experiments it is often
not obvious which model should be finally fitted to the data, and model building
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is an important part of data analysis. A typical and very important example are
Phase II dose-finding studies, where various nonlinear regression models of the
form

Y = η(x, θ) + ε,(1.1)

have been developed for describing the dose–response relation [see Pinheiro, Bretz
and Branson (2006)], but the problem of model uncertainty arises in nearly any
other statistical application. As a consequence, the construction of efficient de-
signs for model identification has become an important field in optimal design
theory. Early work can be found in Stigler (1971), who determined designs for dis-
criminating between two nested univariate polynomials by minimizing the volume
of the confidence ellipsoid for the parameters corresponding to the extension of
the smaller model. Several authors have worked on this approach in various other
classes of nested models; see, for example, Dette and Haller (1998) or Song and
Wong (1999), among others.

A different approach to the problem of constructing optimal designs for model
discrimination is given in a pioneering paper by Atkinson and Fedorov (1975a),
who proposed the T -optimality criterion to construct designs for discriminating
between two competing regression models. Roughly speaking their approach pro-
vides a design such that the sum of squares for a lack of fit test is large. Atkinson
and Fedorov (1975b) extended this method for discriminating a selected model η1
from a class of other regression models, say {η2, . . . , ηk}, k ≥ 2. In contrast to the
work Stigler (1971) and his followers, the T -optimality criterion does not require
competing nested models and has found considerable attention in the statistical lit-
erature with numerous applications, including such important fields as chemistry
and pharmacokinetics; see, for example, Atkinson (2008), Atkinson, Bogacka and
Bogacki (1998), López-Fidalgo, Tommasi and Trandafir (2007), Ponce de Leon
and Atkinson (1991), Tommasi (2009), Uciński and Bogacka (2005) or Foo and
Duffull (2011) for some more recent references. A drawback of the T -optimality
criterion consists of the fact that—even in the case of linear models—the crite-
rion depends on the parameters of the model η1. This means that T -optimality is
a local optimality criterion in the sense of Chernoff (1953), and that it requires
some preliminary knowledge regarding the parameters. Consequently, most of the
cited papers refer to locally T -optimal designs. Although there exist applications
where such information is available [e.g., in the analysis of dose–response stud-
ies as considered in Pinheiro, Bretz and Branson (2006)], in most situations such
knowledge can be rarely provided. Several authors have introduced robust versions
of the classical optimality criteria such as Bayesian or minimax D-optimality crite-
ria in order to determine efficient designs for model discrimination, which are less
sensitive with respect to the choice of parameters; see Chaloner and Verdinelli
(1995), Dette (1997), Pronzato and Walter (1985). The robustness problem of
the T -optimality criterion has been already mentioned in Atkinson and Fedorov
(1975a), who proposed a Bayesian approach to address the problem of parameter
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uncertainty in the T -optimality criterion. Wiens (2009) imposed (linear) neighbor-
hood structures on each regression response and determined least favorable points
in these neighborhoods in order to robustify the locally T -optimal design problem.
Dette, Melas and Shpilev (2012) considered polynomial regression models and
determined explicitly Bayesian T -optimal discriminating designs for the criterion
introduced by Atkinson and Fedorov (1975a). Their results indicate the difficulties
arising in Bayesian T -optimal design problems.

The scarcity of literature on Bayesian T -optimal discriminating designs can be
explained by the fact that in nearly all cases of practical interest, these designs
have to be found numerically, and even this is a very hard problem. These numer-
ical difficulties become apparent even in the case of locally T -optimal designs.
Atkinson and Fedorov (1975a) proposed an exchange type algorithm, which has a
rather slow rate of convergence and has been used by several authors. Braess and
Dette (2013) pointed out that besides its slow convergence, this algorithm does not
yield an accurate solution of the optimal discriminating design problem if more
than 5 model comparisons are under consideration. These authors developed a
more efficient algorithm for the determination of locally T -optimal discriminating
designs for several competing regression models by exploring relations between
optimal design problems and (nonlinear) vector-valued approximation theory. Al-
though the resulting algorithm provides a substantial improvement of the exchange
type methods, it cannot deal with Bayesian optimality criteria in general, and the
development of an efficient procedure for this purpose is a very challenging and
open problem.

The goal of the present paper is to fill this gap. We utilize the fact that in ap-
plications, the integral with respect to the prior distribution has to be determined
by a discrete approximation, and we show that the discrete Bayesian T -optimal
design problem is a special case of the local T -optimality criterion for a very large
number of competing models, as considered in Braess and Dette (2013). The com-
peting models arise from the different support points used for the approximation of
the prior distribution by a discrete measure, and the number of model comparisons
in the resulting criterion easily exceeds the 200. Therefore, the algorithm in Braess
and Dette (2013) does not provide an accurate solution of the corresponding opti-
mization problem, and we propose a new method for the numerical construction of
Bayesian T -optimal designs with substantial computational advantages. Roughly
speaking, the support points of the design in each iteration are determined in a
similar manner, as proposed in Atkinson and Fedorov (1975a), but for the calcu-
lation of the corresponding weights, we use quadratic programming or a gradient
approach. It turns out that the new procedure is extremely efficient and is able to
find Bayesian T -optimal designs with a few number of iterations.

The rest of this paper is organized as follows. In Section 2 we give an intro-
duction into the problem of designing experiments for discriminating between
competing regression models and also derive some basic properties of locally T -
optimal discriminating designs. In particular we show how the Bayesian T -optimal
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design problem is related to a local one with a large number of model compar-
isons; see Section 2.2. Section 3 is devoted to the construction of new numerical
procedures (in particular, Algorithm 3.2), for which we prove convergence to a
T -optimal discriminating design. Our approach consists of two steps, consecu-
tively optimizing with respect to the support points (step 1) and weights of the
design (step 2). For the second step, we also discuss two procedures to speed up
the convergence of the algorithm. The results are illustrated in Section 4, calcu-
lating several Bayesian T -optimal discriminating designs in examples, where all
other available procedures do not provide an accurate numerical solution of the op-
timal design problem. For example, the new procedure is able to solve locally T -
optimal designs with more than 240 model comparisons, as they arise frequently in
Bayesian T -optimal design problems. In particular, we illustrate the methodology
of calculating Bayesian T -optimal discriminating designs for a dose finding clini-
cal trial, which has recently been discussed in Pinheiro, Bretz and Branson (2006).
The corresponding R-package is provided in the CRAN library; see http://cran.r-
project.org/web/packages/rodd/index.html. Finally all proofs are deferred to the
Appendix.

2. T -optimal discriminating designs. Consider the regression model (1.1),
where x belongs to some compact set X and observations at different experimental
conditions are independent. For the sake of transparency and a clear representation,
we assume that the error ε is normally distributed. The methodology developed in
the following discussion can be extended to more general error structures follow-
ing the line of research in López-Fidalgo, Tommasi and Trandafir (2007), but for
the sake of brevity, details are deferred to future research.

Throughout this paper we consider the situation where ν different models, say
ηi(x, θi), i = 1, . . . , ν,(2.1)

are available to describe the dependency of Y on the predictor x. In (2.1) the
quantity θi denotes a di -dimensional parameter, which varies in a compact space,
say �i (i = 1, . . . , ν). Following Kiefer (1974) we consider approximate designs
that are defined as probability measures, say ξ , with finite support. The support
points x1, . . . , xk of a design ξ give the locations where observations are taken,
while the weights ω1, . . . ,ωk describe the relative proportions of observations at
these points. If an approximate design is given and n observations can be taken, a
rounding procedure is applied to obtain integers ni (i = 1, . . . , k) from the not nec-
essarily integer valued quantities ωin such that

∑k
i=1 ni = n. We are interested in

designing an experiment, such that a most appropriate model can be chosen from
the given class {η1, . . . , ην} of all competing models.

2.1. T -optimal designs. In the case of ν = 2 competing models Atkinson and
Fedorov (1975a) proposed to fix one model, say η1(·, θ1), with corresponding pa-
rameter θ1 and to maximize the function

T12(ξ) = inf
θ2∈�2

∫
X

[
η1(x, θ1) − η2(x, θ2)

]2
ξ(dx)(2.2)

http://cran.r-project.org/web/packages/rodd/index.html
http://cran.r-project.org/web/packages/rodd/index.html
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in the class of all (approximate) designs. Roughly speaking, these designs maxi-
mize the power of the test of the hypothesis η1 versus η2. Note that the resulting
optimal design depends on the parameter θ1 for the first model, which has to be
fixed by the experimenter. This means that these designs are local in the sense
of Chernoff (1953). It was pointed out by Dette, Melas and Shpilev (2013) that
locally T -optimal designs may be very sensitive with respect to misspecification
of θ1. In a further paper Atkinson and Fedorov (1975b) generalized their approach
to construct optimal discriminating designs for more than 2 competing regression
models and suggested the criterion

T (ξ) = min
2≤j≤ν

T1j (ξ) = min
2≤j≤ν

inf
θj∈�j

∫
X

[
η1(x, θ1) − ηj (x, θj )

]2
ξ(dx).(2.3)

This criterion determines a “good” design for discriminating the model η1 against
η2, . . . , ην , where the parameter θ1 has the same meaning as before. As pointed
out by Tommasi and López-Fidalgo (2010) and Braess and Dette (2013), there are
many situations where it is not clear which model should be considered as fixed,
and these authors proposed a symmetrized Bayesian (instead of minimax) version
of the T -optimality criterion, that is,

TP(ξ) =
ν∑

i,j=1

pi,jTi,j (ξ)

(2.4)

=
ν∑

i,j=1

pi,j inf
θi,j∈�j

∫
X

[
ηi(x, θ i) − ηj (x, θi,j )

]2
ξ(dx),

where the quantities pi,j denote nonnegative weights reflecting the importance
of the comparison between the models ηi and ηj . We note again that this crite-
rion requires the specification of the parameter θi , whenever the corresponding
weight pi,j is positive. Throughout this paper we will call a design maximizing
one of the criteria (2.2)–(2.4) locally T -optimal discriminating design, where the
specific criterion under consideration is always clear from the context. For some
recent references discussing locally T -optimal discriminating designs, we refer to
Atkinson (2008), López-Fidalgo, Tommasi and Trandafir (2007), Tommasi (2009),
Uciński and Bogacka (2005) or Braess and Dette (2013), among many others. For
the formulation of the first result we require the following assumptions, which are
sufficient for the convergence results established in this paper.

ASSUMPTION 2.1. For each i = 1, . . . , ν, the functions ηi(·, θi) are continu-
ously differentiable with respect to the parameter θi ∈ �i .

For a design ξ we also introduce the notation

�∗
i,j (ξ) = arg inf

θi,j∈�j

∫
X

[
ηi(x, θ i) − ηj (x, θi,j )

]2
ξ(dx),(2.5)

which is used in the formulation of the following result.
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THEOREM 2.1. If Assumption 2.1 is satisfied, then the design ξ∗ is a locally
TP-optimal discriminating design if and only if there exist distributions μ∗

ij on the
sets �∗

i,j (ξ
∗), defined in (2.5), such that the inequality

ν∑
i,j=1

pi,j

∫
�∗

i,j (ξ∗)

[
ηi(x, θ i) − ηj (x, θi,j )

]2
μ∗

ij (dθi,j ) ≤ TP
(
ξ∗)

(2.6)

is satisfied for all x ∈ X . Moreover, there is equality in (2.6) for all support points
of the locally TP-optimal discriminating design ξ∗.

Theorem 2.1 provides an extension of the corresponding theorem in Dette and
Titoff (2009), and the proof is similar and therefore omitted. For designs ξ, ζ on X
we next introduce the function

Q(ζ, ξ) =
∫
X

ν∑
i,j=1

pi,j inf
θi,j∈�∗

ij (ξ)

[
ηi(x, θ i) − ηj (x, θi,j )

]2
ζ(dx),(2.7)

which plays an important role in the subsequent discussion. Using Lemma A.1
from the Appendix it is easy to check [see, e.g., Atkinson and Fedorov (1975a)]
that

∂TP(ξ(α))

∂α

∣∣∣∣
α=0

= Q(ζ, ξ) − TP(ξ),

where ξ(α) = (1 − α)ξ + αζ denotes the convex combination of the designs ξ

and ζ . In the following discussion we need an extension of Theorem 2.1.

THEOREM 2.2. If Assumption 2.1 is satisfied and the design ξ is not TP-
optimal, then there exists a design ζ ∗, such that the inequality Q(ζ ∗, ξ) > TP(ξ)

holds.

In order to obtain a more manageable condition of this result, let μ̂i,j (ξ) denote
a measure on the set �∗

i,j (ξ) (i, j = 1, . . . , ν) for which the function

max
x∈X

ν∑
i,j=1

pi,j

∫
�∗

i,j (ξ)

[
ηi(x, θ i) − ηj (x, θi,j )

]2
μi,j (dθi,j )

attains its minimal value, and define

�(x, ξ) =
ν∑

i,j=1

pi,j

∫
�∗

i,j (ξ)

[
ηi(x, θ i) − ηj (x, θi,j )

]2
μ̂ij (dθi,j ).(2.8)

COROLLARY 2.3. If Assumption 2.1 is satisfied and the design ξ is not TP-
optimal, then there exists a point x ∈ X such that

�(x, ξ) > TP(ξ).
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ASSUMPTION 2.2. For any design ξ such that TP(ξ) > 0 and weight pi,j �= 0,
the infima in (2.4) are attained at a unique point θ̂i,j = θ̂i,j (ξ) in the interior of the
set �j .

If Assumptions 2.1 and 2.2 are satisfied, the function Q in (2.7) simplifies to

Q(ζ, ξ) =
∫
X

ν∑
i,j=1

pi,j

[
ηi(x, θ i) − ηj (x, θ̂i,j )

]2
ζ(dx).

Moreover, the function � defined in (2.8) simplifies to

�(x, ξ) =
ν∑

i,j=1

pi,j

[
ηi(x, θ i) − ηj (x, θ̂i,j )

]2
.

2.2. Bayesian T -optimal designs. As pointed out by Dette, Melas and Shpilev
(2012) locally T -optimal designs are rather sensitive with respect to misspecifi-
cation of the unknown parameters θi , and it might be appropriate to construct
more robust designs for model discrimination. The problem of robustness was al-
ready mentioned in Atkinson and Fedorov (1975a), and these authors proposed a
Bayesian version of the T -optimality criterion which reads in the situation of the
criterion (2.4) as follows:

T B
P (ξ) =

ν∑
i,j=1

pi,j

∫
�i

inf
θi,j∈�j

∫
X

[
ηi(x, λi) − ηj (x, θi,j )

]2
ξ(dx)Pi (dλi).(2.9)

Here for each i = 1, . . . , ν, the measure Pi denotes a prior distribution for the pa-
rameter θi in model ηi , such that all integrals in (2.9) are well defined. Throughout
this paper we will call any design maximizing the criterion (2.9) a Bayesian T -
optimal discriminating design. For (two) polynomial regression models, Bayesian
T -optimal discriminating designs have been explicitly determined by Dette, Melas
and Shpilev (2013), and their results indicate the intrinsic difficulties in the con-
struction of optimal designs with respect to this criterion.

In the following discussion we will link the criterion (2.9) to the locally T -
optimality criterion (2.4) for a large number of competing models. For this purpose
we note that in nearly all situations of practical interest, an explicit evaluation
of the integral in (2.9) is not possible, and the criterion has to be evaluated by
numerical integration approximating the prior distribution by a measure with finite
support. Therefore we assume that the prior distribution Pi in the criterion is given
by a discrete measure with masses τi1, . . . , τi�i

at the points λi1, . . . , λi�i
. The

criterion in (2.9) can then be rewritten as

T B
P (ξ) =

ν∑
i,j=1

�i∑
k=1

pi,j τik inf
θi,j∈�j

∫
X

[
ηi(x, λik) − ηj (x, θi,j )

]2
ξ(dx),(2.10)
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which is a locally T -optimality criterion of the form (2.4). The choice of the
weights τi,k and points λi,k depends on the particular models under consideration,
where the main goal is to provide a good approximation of the integrals in (2.9)
with a small number �i and a “good” choice of points and weights. Quadrature
formulas are recommended for this purpose; see Abramowitz and Stegen (1965).

Note that the only difference between the criterion obtained from the Bayesian
approach and (2.4) consists of the fact that the criterion (2.10) involves substan-
tially more comparisons of the functions ηi and ηj (even if a “good” rule for nu-
merical integration has been used). Because for each support point of the prior dis-
tribution in the criterion (2.10), the infimum has to be calculated numerically, the
optimization of the criterion (2.10) is computationally expensive. Consequently,
the computation of Bayesian T -optimal discriminating design problems is particu-
larly challenging. In the following sections we provide an efficient solution to this
problem.

3. Calculating locally T -optimal designs. Braess and Dette (2013) proposed
an algorithm for the numerical construction of locally T -optimal designs, which is
based on vector-valued Chebyshev approximation. This algorithm is quite difficult
both in terms of description and implementation. Moreover, it requires substantial
computational resources and is therefore only able to deal with a small number of
comparisons in the T -optimality criterion. The purpose of this section is to develop
a more efficient method which is able to deal with a large number of comparisons
in the criterion and avoids the drawbacks of the procedures in Atkinson and Fe-
dorov (1975a) and Braess and Dette (2013).

Recall the definition of the function � in (2.8), and note that under Assump-
tion 2.1 it follows from Corollary 2.3 that there exists a point x ∈ X , such that the
inequality

�(x, ξ) > TP(ξ)

holds, whenever ξ is not a locally T -optimal discriminating design. The algorithm
of Atkinson and Fedorov (1975a) uses this property to construct a sequence of de-
signs which converges to the locally T -optimal discriminating design. For further
reference, it is stated here.

ALGORITHM 3.1 [Atkinson and Fedorov (1975a)]. Let ξ0 denote a given
(starting) design, and let (αs)

∞
s=0 be a sequence of positive numbers, such that

lims→∞ αs = 0,
∑∞

s=0 αs = ∞,
∑∞

s=0 α2
s < ∞. For s = 0,1, . . . define

ξs+1 = (1 − αs)ξs + αsξ(xs+1),

where ξ(xs+1) denotes the Dirac measure at the point

xs+1 = arg max
x∈X

�(x, ξs).
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It can be shown that this algorithm converges in the sense that

lim
s→∞TP(ξs) = TP

(
ξ∗)

,

where ξ∗ denotes a locally T -optimal discriminating design; see also Aletti, May
and Tommasi (2013), Aletti, May and Tommasi (2014). However, a major problem
of Algorithm 3.1 is that it yields a sequence of designs with an increasing num-
ber of support points. As a consequence, the resulting design (after applying some
stopping criterion) is concentrated on a large set of points. Even if this problem
can be solved by clustering or by determining the extrema of the final function
�(x, ξs), it is much more difficult to deal with the accumulation of support points
during the iteration. Moreover, Braess and Dette (2013) demonstrated that in many
cases the iteration process may take several hundred iterations to obtain a locally
T -optimal discriminating design with a required precision, resulting in a high com-
putational complexity for the recalculation of the optimum values

θ̂i,j ∈ arg inf
θi,j∈�∗

i,j (ξ)

∫
X

[
ηi(x, θ i) − ηj (x, θi,j )

]2
ξ(dx)(3.1)

in the optimality criterion (2.4). These authors also showed that Algorithm 3.1 may
not find the optimal design if there are too many model comparisons involved in
the T -optimality criterion (2.4).

Therefore, we propose the following basic procedure for the calculation of lo-
cally T -optimal discriminating designs as an alternative to Algorithm 3.1. Roughly
speaking, it consists of two steps treating the maximization with respect to support
points (step 1) and weights (step 2) separately, where two methods implementing
the second step will be given below; see Sections 3.1 and 3.2 for details.

ALGORITHM 3.2. Let ξ0 denote a starting design such that TP(ξ0) > 0, and
define recursively a sequence of designs (ξs)s=0,1,... as follows:

(1) Let S[s] denote the support of the design ξs . Determine the set E[s] of all
local maxima of the function �(x, ξs) on the design space X , and define S[s+1] =
S[s] ∪ E[s].

(2) We define ξ = {S[s+1],ω} as the design supported at S[s+1] (with a vector
w of weights) and determine the locally TP-optimal design in the class of all de-
signs supported at S[s+1]; that is, we determine the vector ω[s+1] maximizing the
function

g(ω) = TP
({S[s+1],ω})

=
ν∑

i,j=1

pi,j inf
θi,j∈�j

∑
x∈S[s+1]

[
ηi(x, θ i) − ηj (x, θi,j )

]2
wx.

(Here wx denotes the weights at the point x ∈ Ss+1.) All points in S[s+1] with
vanishing components in the vector of weights ω[s+1] will be removed, and the
new set of support points will also be denoted by S[s+1]. Finally the design ξs+1 is
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defined as the design with the set of support points S[s+1] and the corresponding
nonzero weights.

THEOREM 3.3. Let Assumption 2.1 be satisfied, and let (ξs)s=0,1,... denote the
sequence of designs obtained by Algorithm 3.2, then

lim
s→∞TP(ξs+1) = TP

(
ξ∗)

,

where ξ∗ denotes a locally T -optimal discriminating design.

A proof of Theorem 3.3 is deferred to the Appendix. Note that the algorithm
adds all local maxima of the function �(x, ξs) as possible support points of the
design in the next iteration. Consequently, in its current form, Algorithm 3.2 also
accumulates too many support points. To avoid this problem, it is suggested to re-
move at each step those points from the support, whenever their weight is smaller
than m0.25, where m denote the working precision of the software used in the im-
plementation (which is 2.2 × 10−16 for R). Note also that this refinement does
not affect the convergence of the algorithm from a practical point of view. A more
important question is how to implement the second step of the procedure, that is,
the maximization of function g(ω). Before we discuss two computationally effi-
cient procedures for this purpose in the following sections, we state an important
property of the function �(x, ξs+1) obtained in each iteration.

LEMMA 3.4. Let Assumptions 2.1 and 2.2 be satisfied. At the end of each
iteration of Algorithm 3.2, the function �(x, ξs+1) attains one and the same value
for all support points of the design ξs+1.

3.1. Quadratic programming. Let S[s+1] = {x1, . . . , xn} denote the set ob-
tained in the first step of Algorithm 3.2, and define ξ as a design supported at
S[s+1] with corresponding weights ω1, . . . ,ωn, which have to be determined in
step 2 of the algorithm by maximizing the function

g(ω) =
ν∑

i,j=1

pi,j

n∑
k=1

ωk

[
ηi(xk, θ i) − ηj (xk, θ̂i,j )

]2
,(3.2)

where θ̂i,j = θ̂i,j (ω) ∈ �∗
i,j (ξ) is defined in (3.1). For this purpose we suggest the

linearization of the functions ηj (xk, θi,j ) in the neighborhood of point θ̂i,j . More
precisely, we consider the function

g(ω) =
ν∑

i,j=1

pi,j min
αi,j∈Rdj

n∑
k=1

ωk

[
ηi(xk, θ i) − ηj (xk, θ̂i,j )

− αT
i,j

∂ηj (xk, θi,j )

∂θi,j

∣∣∣∣
θi,j=θ̂i,j

]2

=
ν∑

i,j=1

pi,j min
αi,j∈Rdj

[
αT

i,j JT
i,j�Ji,j αi,j − 2ωTRi,j αi,j + bT

i,jω
]
,
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where dj is the dimension of the parameter space �j , � = diag(ω1, . . . ,ωn) and
the matrices Ji,j ∈ R

n×dj , Ri,j ∈ R
n×dj and the vectors bi,j ∈ R

n are defined by

Ji,j =
(

∂ηj (xr , θi,j )

∂θi,j

∣∣∣∣
θi,j=θ̂i,j

)
r=1,...,n

,

Ri,j =
([

ηi(xr , θ i) − ηj (xr , θ̂i,j )
]∂ηj (xr , θi,j )

∂θi,j

∣∣∣∣
θi,j=θ̂i,j

)
r=1,...,n

,

bi,j = ([
ηi(xr , θ i) − ηj (xr , θ̂i,j )

]2)
r=1,...,n,

respectively. Obviously the minimum with respect to αi,j is achieved by αi,j =
(JT

i,j�Ji,j )
−1RT

i,jω which gives

g(ω) = −ωTQ(ω)ω + bTω,

where b = ∑ν
i,j=1 pi,j bi,j and

Q(ω) =
ν∑

i,j=1

pi,j Ri,j

(
JT
i,j�Ji,j

)−1RT
i,j .

The matrix Q(ω) depends on ω, but if we ignore this dependence and take the ma-
trix � = diag(ω1, . . . ,ωn) as fixed, then we end up with a quadratic programming
problem, that is,

φ(ω,ω) = −ωTQ(ω)ω + bTω → max
ω

,

(3.3)
n∑

k=1

ωk = 1; ωk ≥ 0, k = 1, . . . , n.

This problem is solved iteratively until convergence, substituting each time the
solution obtained in the previous iteration instead of ω. We note that a similar idea
has also been proposed by Braess and Dette (2013).

REMARK 3.5. (1) Note that the calculation of the optimal values in (3.1) is
computationally easier for Algorithm 3.2 because the number of support points of
the designs calculated during the iterations is substantially smaller than for Algo-
rithm 3.1.

(2) The calculation of the optimal weights as proposed in Section 3.1 could also
be combined with Algorithm 3.1 to produce an acceleration of the algorithm. We
have implemented Algorithm 3.1 with this additional step and found that Algo-
rithm 3.1 is about two times slower than Algorithm 3.2.

(3) In the practical implementation of the procedure, it is recommended to per-
form only a few iterations of this step such that an improvement in the difference
between the value of the criterion of the starting design in step 2 and the design
obtained in the iteration of (3.3) is observed. This will speed up the convergence of
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the procedure substantially. In this case, equality of the function � at the support
points of the calculated design (as stated in Lemma 3.4) is only achieved approxi-
mately.

(4) Note that the statement regarding the convergence of the algorithm is only
correct if the optimization problem in (3.3) is solved “explicitly.” In practice, the
maximum has to be found iteratively, and there appears a trade-off between nu-
merical complexity and accuracy in the solution of (3.3). However, in all the
examples considered so far, we observed convergence of the procedure, even if
only a few iterations of (3.3) are used. In our R program the user can spec-
ify the number of iterations used in this part of the algorithm; see http://cran.r-
project.org/web/packages/rodd/index.html. Thus if any problem regarding conver-
gence is observed, the number of iterations should be increased (of course, at the
cost of the speed of the algorithm).

3.2. A gradient method. A further option for the second step in Algorithm 3.2
is a specialized gradient method, which is used for the function

g(ω) =
ν∑

i,j=1

pi,j

n∑
k=1

ωk

[
ηi(xk, θ i) − ηj (xk, θ̂i,j )

]2
,(3.4)

where θ̂i,j = θ̂i,j (ω) is defined in (3.1). For its description we define the functions

vk(ω) =
ν∑

i,j=1

pi,j

[
ηi(xk, θ i) − ηj

(
xk, θ̂i,j (ω)

)]2
, k = 1, . . . , n,

and iteratively calculate a sequence of vectors (ω(γ ))γ=0,1,.... At the beginning we
choose ω(0) = ω (e.g., equal weights). If ω(γ ) = (ω(γ ),1, . . . ,ω(γ ),n) is given, we
proceed for γ = 0,1, . . . as follows. We determine indices k and k corresponding
to max1≤k≤n vk(ω(γ )) and min1≤k≤n vk(ω(γ )), respectively, and define

α∗ = arg max
0≤α≤ω(γ ),k

g
(
ω(γ )(α)

)
,(3.5)

where the vector ω(γ )(α) = (ω(γ ),1(α), . . . ,ω(γ ),n(α)) is given by

ω(γ ),i(α) =
⎧⎪⎨
⎪⎩

ω(γ ),i + α, if i = k,
ω(γ ),i − α, if i = k,
ω(γ ),i, else.

The vector ω(γ+1) of the next iteration is then defined by ω(γ+1) = ω(γ )(α
∗). The

following theorem shows that the generated sequence of vectors converges to a
maximizer of the function g in (3.4) and is proved in the Appendix.

THEOREM 3.6. The sequence (ω(γ ))γ∈N converges to a vector

ω∗ ∈ arg maxg(ω).

http://cran.r-project.org/web/packages/rodd/index.html
http://cran.r-project.org/web/packages/rodd/index.html
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REMARK 3.7. It is worthwhile to mention that the one-dimensional optimiza-
tion problem (3.5) is computationally rather expensive. In the implementation we
use a linearization of the optimization problem, which is obtained similarly to the
method described in Section 3.1.

4. Implementation and numerical examples. We illustrate the new algo-
rithm in two examples calculating Bayesian T -optimal discriminating designs. For
this purpose we have implemented the procedure for the calculation of the locally
T -optimal discriminating design in R, where the user has to specify the weights
pi,j and the corresponding preliminary information regarding the parameters θi ;
see http://cran.r-project.org/web/packages/rodd/index.html. To be precise, we call

P =
⎡
⎢⎣

p1,1 p1,2 · · · p1,ν−1 p1,ν
...

...
...

...
...

pν,1 pν,2 · · · pν,ν−1 pν,ν

⎤
⎥⎦

the comparison table for the locally T -optimal discriminating design problem un-
der consideration. This table has to be specified by the experimenter. We recall that
a Bayesian T -optimal design problem with a discrete prior can be reduced to a lo-
cally T -optimal one with a large number of model comparisons. For illustration
purposes we consider in a first example the case ν = 2 (see Section 4.1), where the
Bayesian T -optimality criterion (2.2) reduces to

T B
12(ξ) =

�∑
k=1

τk inf
θ2∈�2

∫
X

[
η1(x, λk) − η2(x, θ2)

]2
ξ(dx).(4.1)

This is the locally T -optimality criterion (2.4) with ν = � + 1,pi,�+1 = τi (i =
1, . . . , �) and pi,j = 0 otherwise, that is,

TP(ξ) =
�+1∑

i,j=1

pi,j inf
θi,j∈�j

∫
X

[
ηi(x, θ i) − ηj (x, θi,j )

]2
ξ(dx),(4.2)

where the comparison table is given by

P = (pi,j )i,j=1,...,�+1 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 τ1
0 0 · · · 0 τ2
...

...
...

...
...

0 0 · · · 0 τ�

0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎦ ∈ R

�+1×�+1,(4.3)

ηi(x, θ i) = η1(x, λi), i = 1, . . . , � and η�+1(x, θi,j ) = η2(x, θi,�+1). Thus, instead
of making only one comparison, as is required for the locally T -optimality crite-
rion, the Bayesian approach (with a discrete approximation of the prior) yields a
criterion with � comparisons, where � denotes the number of support points used
for the approximation of the prior distribution. The extension of this approach to

http://cran.r-project.org/web/packages/rodd/index.html
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more than two models is easy and left to the reader. This case is considered in our
second example; see Section 4.2.

We have implemented both procedures described in Sections 3.1 and 3.2, and
the results are similar. For this reason we only represent the Bayesian T -optimal
discriminating designs calculated by Algorithm 3.2, where the quadratic program-
ming method was used in step 2; see Section 3.1 for details.

4.1. Bayesian T -optimal discriminating designs for exponential models. Con-
sider the problem of discriminating between the two regression models

η1(x, θ1) = θ1,1 − θ1,2 exp
(−θ1,3x

θ1,4
)
,

(4.4)
η2(x, θ2) = θ2,1 − θ2,2 exp(−θ2,3x),

where the design space is given by the interval [0,10]. Exponential models in the
form (4.4) are widely used in applications. For example, the model η2 is frequently
fitted in agricultural sciences, where it is called Mitscherlich’s growth law and
is used for describing the relation between the yield of a crop and the amount
of fertilizer. In fisheries research this model is called Bertalanffy growth curve
and is used for the description of the length of a fish in dependence of its age;
see Ratkowsky (1990). Optimal designs for exponential regression models have
been determined by Han and Chaloner (2003) among others. In the following we
will demonstrate the performance of the new algorithm in calculating Bayesian T -
optimal discriminating designs for the two exponential models. Note that it only
makes sense to consider the Bayesian version of T12, because the model η2 is
obtained as a special case of η1 for θ1,4 = 1. It is easy to see that the locally T -
optimal discriminating designs do not depend on the linear parameters of η1, and
we have chosen θ2,1 = 2 and θ2,2 = 1 for these parameters. For the parameters θ1,3
and θ1,4 we considered independent prior distributions supported at the points

μj + σ(i − 3)

2
, i = 1, . . . ,5; j = 3,4,(4.5)

where μ3 = 0.8,μ4 = 1.5 and different values of the variance σ 2 are investigated.
The corresponding weights at these points are proportional (in both cases) to

1√
2πσ 2

exp
(
−(i − 3)2

8

)
; i = 1, . . . ,5.(4.6)

We note that this yields 25 terms in the Bayesian optimality criterion (4.1).
Bayesian T -optimal discriminating designs are depicted in Table 1 for various
values of σ 2, where an equidistant design at 11 points 0,1, . . . ,10 was used as
starting design.

A typical determination of the optimal design takes between 0.03 seconds (in
the case σ 2 = 0) and 1.4 seconds (in the case σ 2 = 0.4) CPU time on a standard
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TABLE 1
Bayesian T -optimal discriminating designs for the two exponential models in (4.4). The support

points and weights of the independent prior distributions for the parameters θ1,3 and θ1,4
are given by (4.5) and (4.6), respectively

σ 2 Optimal design σ 2 Optimal design

0.0 0.000 0.441 1.952 10.000 0.285 0.000 0.453 1.758 10.000
0.209 0.385 0.291 0.115 0.207 0.396 0.292 0.105

0.1 0.000 0.452 1.877 10.000 0.3 0.000 0.452 1.747 4.951 10.000
0.209 0.391 0.290 0.110 0.207 0.396 0.292 0.003 0.102

0.2 0.000 0.455 1.811 10.000 0.4 0.000 0.446 1.651 4.699 10.000
0.208 0.394 0.291 0.107 0.200 0.384 0.290 0.060 0.066

PC (with an Intel core i7-4790K processor). The algorithm using the procedure de-
scribed in Section 3.2 in step 2 requires between 0.11 seconds (in the case σ 2 = 0)
and 11.6 seconds (in the case σ 2 = 0.4) CPU time. We observe that for small
values of σ 2 the optimal designs are supported at 4 points, while for σ 2 ≥ 0.285
the Bayesian T -optimal discriminating design is supported at 5 points. The corre-
sponding function � from the equivalence Theorem 2.1 is shown in Figure 1.

4.2. Bayesian T -optimal discrimination designs for dose finding studies.
Nonlinear regression models have also numerous applications in dose response
studies, where they are used to describe the dose response relationship. In these
and similar situations the first step of the data analysis consists of the identification
of an appropriate model, and the design of the experiment should take this task into
account. For example, for modeling the dose response relationship of a Phase II
clinical trial, Pinheiro, Bretz and Branson (2006) proposed the following plausible
models:

η1(x, θ1) = θ1,1 + θ1,2x,

η2(x, θ2) = θ2,1 + θ2,2x(θ2,3 − x),
(4.7)

η3(x, θ3) = θ3,1 + θ3,2x/(θ3,3 + x),

η4(x, θ4) = θ4,1 + θ4,2/
(
1 + exp(θ4,3 − x)/θ4,4

)
,

where the designs space (dose range) is given by the interval X = [0,500]. In this
reference some prior information regarding the parameters for the models is also
provided, that is,

θ1 = (60,0.56), θ2 = (60,7/2250,600),

θ3 = (60,294,25), θ4 = (49.62,290.51,150,45.51).

Locally optimal discrimination designs for the models in (4.7) have been deter-
mined by Braess and Dette (2013) in the case pi,j = 1/6 (1 ≤ j < i ≤ 4), which
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FIG. 1. The function on the left-hand side of inequality (2.6) in the equivalence Theorem 2.1 for
the numerically calculated Bayesian T -optimal discriminating designs. The competing regression
models are given in (4.4).

means that the resulting local T -optimality criterion (2.4) consists of 6 model com-
parisons.

We begin with an illustration of the new methodology developed in Section 3,
calculating again the locally T -optimal discriminating design for this scenario.
The proposed algorithm needs only four iterations for the calculation of a design,
say ξ4, which has at least efficiency

EffTP(ξ4) = TP(ξ̃4)

supζ TP(ζ )
≥ 0.999;

for a definition of efficiencies with respect to general optimality criteria, see
Pukelsheim (2006). The function �(·, ξ1) after the first iteration is displayed in
Figure 2, where we use the same starting design as in Braess and Dette (2013).
The support points of ξ1 are shown as circles and—as stated in Lemma 3.4—we
can see that function �(x, ξ1) attains one and the same value, which is represented
with a dotted line, for all support points. We finally note that the algorithm pro-
posed in Braess and Dette (2013) needs 9 iterations to find a design with the same
efficiency.



BAYESIAN T -OPTIMAL DISCRIMINATING DESIGNS 1975

FIG. 2. The function �(·, ξ1) after the first iteration of Algorithm 3.2.

We now investigate Bayesian T -optimal discriminating designs for a similar sit-
uation. For the sake of a transparent representation we only specify a prior distribu-
tion of the four-dimensional parameter θ4 for the calculation of the discriminating
design, while θ1, θ2 and θ3 are considered as fixed. In order to obtain a design
which is robust with respect to model misspecification, we chose a discrete prior
with 81 points in R

4. More precisely, the support points of the prior distribution
are given by the points{

μe1,e2,e3,e4 |e1, e2, e3, e4 ∈ {−1,0,1}},(4.8)

where

μe1,e2,e3,e4 = (μ1 + e1σ,μ2 + e2σ,μ3 + e3σ,μ4 + e4σ),

μ = (μ1,μ2,μ3,μ4) = (49.62,290.51,150,45.51)

and different values for σ 2 are considered. The weights at the corresponding points
are proportional (normalized such that their sum is 1) to

1

(2πσ 2)2 exp
(‖μe1,e2,e3,e4 − μ‖2

2

2σ 2

)
, e1, e2, e3, e4 ∈ {−1,0,1},(4.9)

where ‖ · ‖2 denotes the Euclidean norm. The resulting Bayesian optimality crite-
rion (2.10) consist of 246 model comparisons. In this case the method of Braess
and Dette (2013) fails to find the Bayesian T -optimal discriminating design.
Bayesian T -optimal discriminating designs have been calculated by the new Al-
gorithm 3.2 for various values of σ 2, and the results are shown in Table 2. A typ-
ical determination of the optimal design takes between 0.09 seconds (in the case
σ 2 = 0) and 7.8 seconds (in the case σ 2 = 372) CPU time on a standard PC. The
algorithm using the procedure described in Section 3.2 in step 2 requires between
0.75 seconds (in the case σ 2 = 0) and 37.1 seconds (in the case σ 2 = 372) CPU
time. For small values, the Bayesian T -optimal discriminating designs are sup-
ported at 4 points including the boundary of the design space. The smaller (larger)
interior support point is increasing (decreasing) if σ 2 is increasing. For larger val-
ues of σ 2 even the number of support points of the optimal design increases. For
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TABLE 2
Bayesian T -optimal discriminating designs for the models in (4.7). The weights in criterion (2.9)
are given by pi,j = 1/6; 1 ≤ i < j ≤ 4, and the support and masses of the prior distribution are

defined by (4.8) and (4.9), respectively

σ 2 Optimal design

0 0.000 78.783 241.036 500.0
0.255 0.213 0.357 0.175

202 0.000 84.467 234.134 500.0
0.257 0.225 0.351 0.167

302 0.000 91.029 225.713 500.0
0.259 0.237 0.345 0.159

332 0.000 92.692 222.735 500.0
0.260 0.240 0.344 0.156

352 0.000 91.743 129.322 221.118 500.0
0.260 0.214 0.036 0.336 0.154

372 0.000 89.881 129.590 170.306 220.191 500.0
0.260 0.170 0.091 0.019 0.310 0.150

example, if σ 2 = 352 or 372, the Bayesian T -optimal discriminating design has 5
or 6 points (including the boundary points of the design space). These observations
are in line with the theoretical finding of Braess and Dette (2007) who showed that
the number of support points of Bayesian D-optimal designs can become arbitrar-
ily large with an increasing variability in the prior distribution. The corresponding
functions from the equivalence Theorem 2.1 are shown in Figure 3.

4.3. A brief comparison with alternative procedures. In this section we will
provide a brief comparison of the method proposed in this paper with the cur-
rently available algorithms. First, note that the performance of the algorithms of
Yu (2010) and Yang, Biedermann and Tang (2013) depends on the specification of
a grid, which approximates the design space X . In contrast to these methods, the
approach proposed in the present paper does not use such a discretization.

For locally T -optimal discriminating design problems, we have already pro-
vided a comparison with the method proposed in Braess and Dette (2013) in the
previous sections. For a large number of model comparisons, as required by the
Bayesian T -optimality criterion considered in this paper, it is very difficult to
implement this method, and for these reasons the procedure of Braess and Dette
(2013) is not included in the comparison. Similarly, the method of Yu (2010) is par-
ticularly designed for the construction of optimal designs with respect to Kiefer’s
�p-optimality criteria. It is not clear how this approach can be modified for the
Bayesian T -optimality criterion. On the other hand, we were able to adapt the
method proposed by Yang, Biedermann and Tang (2013) to the current problem
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FIG. 3. The function on the left-hand side of inequality (2.6) in the equivalence Theorem 2.1 for
the numerically calculated Bayesian T -optimal discriminating designs. The competing regression
models are given in (4.7).

of constructing Bayesian T -optimal discriminating designs. We also consider a
modification of the algorithm proposed by Atkinson and Fedorov (1975a) in our
comparison.

To be precise the implementation of the algorithm of Atkinson and Fedorov
(1975a) follows the description in Algorithm 3.1. In every iteration the point xs+1
corresponding to the global maximum of the function � defined in (2.8) is added
to the support of the design. For the choice of the weights, several suggestions
have been made in the literature, and we have investigated some of these proposals
for the construction of the Bayesian T -optimal discriminating designs. The per-
formance of Algorithm 3.1 depends very sensitively on this choice, and for some
rules the procedure is not even able to find the Bayesian T -optimal discriminating
design with the required accuracy. For example, recall that in the (s + 1)st iter-
ation of Algorithm 3.1 the weights at the points xs,1, . . . , xs,n, xs+1 are given by
(1 − αs)ws,1, . . . , (1 − αs)ws,n, αs , respectively, where {xs,i}ni=1 {ws,i}ni=1 are the
support points and weights of the design ξs from the previous iteration. If the scal-
ing factor αs in each iteration is determined such that the new vector of weights
maximizes the function g defined in (3.2), Algorithm 3.1 is not able to find a design
with an accuracy of (at least) 0.999. In our numerical study of Algorithm 3.1 we
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found that the most efficient method in Algorithm 3.1 from the previous iteration is
to choose the weights according to the rule αs = 1/(s + 1) in the sth iteration, and
this “best” version of Algorithm 3.1 was considered in our comparison. We would
also like to emphasize once again that Algorithm 3.1 produces a sequence of de-
signs with a large number of support points and several modifications to reduce
the number of support points are numerically not stable.

The algorithm proposed in Yang, Biedermann and Tang (2013) combines fea-
tures of Algorithm 3.1 for the choice of the new support with an optimization
procedure for the corresponding weights. This method has a particular focus on
Kiefer’s �p-optimal designs. The general idea of this algorithm (adding in a first
step a new support point and optimizing in a second step with respect to the
weights in order to reduce the number of support points) is similar to the meth-
ods proposed in this paper. However, there are important differences between the
two procedures. On one hand, the algorithm proposed in Yang, Biedermann and
Tang (2013) adds only one support point in each step of the iteration, whereas the
methods proposed here include all local extreme points of the sensitive function
� defined in (2.8). On the other hand, a general Newton method is used by Yang,
Biedermann and Tang (2013) for the optimization with respect to the weights in
step 2, while Algorithm 3.2 (with its two versions for step 2) incorporates special
techniques for this purpose, which address the specific features of the T -optimality
criterion under consideration.

The algorithm proposed in Yang, Biedermann and Tang (2013) can be adapted
for the construction of Bayesian T -optimal discriminating designs (by replacing
the Newton step for the calculation of the weights for the �p-optimality criteria
by a similar nonlinear programming procedure), and this modification will also be
considered in our comparison.

In Table 3 we display the computing time (in seconds) for the different algo-
rithms in the examples considered in Sections 4.1 and 4.2. We consider two dif-
ferent cases for the variance σ 2, where the case σ 2 = 0 corresponds to the situa-
tion of locally T -optimal discriminating designs. We observe that Algorithm 3.2,
which uses quadratic programming in step 2 of the procedure, has the best perfor-
mance. Algorithm 3.2, which uses the gradient method in step 2 of the procedure,
is about 3–8 times slower. On the one hand, the most efficient procedure based on
Algorithm 3.1 of Atkinson and Fedorov (1975a) needs a substantially larger com-
puting time for the calculation of the Bayesian T -optimal discriminating design.
In most cases under consideration the computing time is about 100 times larger
than the time required by Algorithm 3.2 with the quadratic programming method.
The adaptation of the algorithm proposed by Yang, Biedermann and Tang (2013)
shows a better performance than Algorithm 3.1 in Example 4.4 in the case σ 2 = 0.
In all other cases Algorithm 3.1 provides better results with respect to computing
time. In particular, the adaptation of the method proposed by Yang, Biedermann
and Tang (2013) was not able to find the Bayesian T -optimal discriminating de-
sign in Example 4.7 in the case σ 2 = 372. In all cases under consideration the new
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TABLE 3
Computing times of various algorithms for the determination of Bayesian T -optimal discriminating
designs in Examples 4.4 and 4.7. Alg. 3.2(1): Algorithm 3.2 using quadratic programming in step 2;
Alg. 3.2(2): Algorithm 3.2 using the gradient method in step 2; AF: Algorithm 3.1 of Atkinson and
Fedorov (1975a) with an optimized choice of weights; YTB: adaptation of the method proposed by

Yang, Biedermann and Tang (2013)

Example σ 2 Alg. 3.2(1) Alg. 3.2(2) AF YTB

(4.4) 0.0 0.03 0.11 12.4 3.0
0.4 1.4 11.6 218.3 369.1

(4.7) 0.0 0.09 0.75 5.7 12.1
372 7.8 37.1 762.3 –

algorithms proposed in this paper were able to calculate the Bayesian T -optimal
discriminating design with substantially shorter computing times than the currently
available procedures.

5. Conclusions. In this paper we have investigated the problem of construct-
ing optimal designs for model discrimination with a particular focus on Bayesian
T -optimality criteria. It is demonstrated that—from a practical point of view—the
Bayesian T -optimality criterion is closely related to a local T -optimality criterion
for a very large class of competing models because the integrals in the criterion
have to be approximated by quadrature formulas.

As a consequence, the numerical determination of Bayesian T -optimal designs
is a particular challenging task, and currently available methods are computation-
ally too expensive to solve the corresponding optimization problem in a reason-
able time with the required accuracy. In this paper a new algorithm is developed,
which combines the features of classical exchange type algorithms with two com-
monly used optimization approaches, namely quadratic programming and gradient
methods. The convergence of the sequence of designs generated by this method is
proved, and its application is illustrated in several examples, where the currently
available methods for the determination of Bayesian T -optimal designs do not
yield a satisfactory solution of the optimal design problems. The new methodology
is available in R and therefore is easily accessible for practitioners; see http://cran.r-
project.org/web/packages/rodd/index.html.

In this paper the methodology is developed for the situation regression models
with Gaussian errors as considered in the classical work of Atkinson and Fedorov
(1975a). An interesting direction for future research consists of an extension of the
results for more general distribution families, as discussed, for example, in Uciński
and Bogacka (2005) and López-Fidalgo, Tommasi and Trandafir (2007). We ex-
pect that similar methods for the determination of Bayesian optimal discriminating
designs can also be developed for these models.

http://cran.r-project.org/web/packages/rodd/index.html
http://cran.r-project.org/web/packages/rodd/index.html
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APPENDIX: PROOFS

A.1. An auxiliary result.

LEMMA A.1. Let ϕ(v, y) be a twice continuously differentiable function of
two variables v ∈ V ⊂ R

k and y ∈ Y , where Y is a compact set. Denote by Y∗ the
set of all points where the minimum miny∈Y ϕ(v, y) is attained, and let q ∈ R

k be
an arbitrary direction. Then

∂

∂q
min
y∈Y ϕ(v, y) = min

y∈Y∗
∂ϕ(v, y)

∂q
,(A.1)

where ∂/∂q denotes the directional derivative in the direction of q .

PROOF. See Pshenichnyi (1971), page 75. �

A.2. Proofs.

PROOF OF THEOREM 2.2. Assume without loss of generality that pi,j > 0
for all i, j = 1, . . . , ν. Let ξ∗ denote any locally T -optimal discriminating design,
and let θ = (θi,j )i,j=1,...,ν denote the vector consisting of all θi,j ∈ �∗

i,j (ξ
∗). We

introduce the function

ϕ
(
x, θ, ξ∗) =

ν∑
i,j=1

pi,j

[
ηi(x, θ i) − ηj (x, θi,j )

]2(A.2)

and consider the product measure

μ(dθ) = ∏
i,j=1,...,ν

μi,j (dθi,j ),(A.3)

where μij are measures on the sets �∗
i,j (ξ

∗) defined by (2.5). Similarly, we define
μ∗(dθ) = ∏

i,j=1,...,ν μ∗
i,j (dθi,j ) as the product measure of the measures μ∗

i,j in
Theorem 2.1. From this result we have

TP
(
ξ∗) ≥ sup

ζ

∫
X

∫
�∗(ξ∗)

ϕ
(
x, θ, ξ∗)

μ∗(dθ)ζ(dx)

≥ inf
μ

sup
ζ

∫
X

∫
�∗(ξ∗)

ϕ
(
x, θ, ξ∗)

μ(dθ)ζ(dx)

= sup
ζ

inf
μ

∫
X

∫
�∗(ξ∗)

ϕ
(
x, θ, ξ∗)

μ(dθ)ζ(dx),

where the sup and inf are calculated in the class of designs ζ on X and product
measures μ on �∗(ξ∗) = ⊗ν

i,j=1 �∗
i,j (ξ∗), respectively. It now follows that the

characterizing inequality (2.6) in Theorem 2.1 is equivalent to the inequality

sup
ζ

Q
(
ζ, ξ∗) ≤ TP

(
ξ∗)

.

Consequently, any nonoptimal design must satisfy the opposite inequality. �
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PROOF OF COROLLARY 2.3. Let ξ denote a design such that TP(ξ) > 0,
and recall the definition of the set �∗

ij (ξ) in (2.5). We consider for a vector
θ = (θi,j )i,j=1,...,ν ∈ �∗(ξ) = ⊗

i,j=1,...,ν �∗
i,j (ξ), the function ϕ(·, ·, ξ) is defined

in (A.2) and product measures μ(dθ) of the form (A.3) on �∗(ξ). Now the well-
known minimax theorem [see, e.g., Sion (1958)] and the definition of the function
Q in (2.7) yield

max
x∈X �(x, ξ) = inf

μ
max
x∈X

∫
�∗(ξ)

ϕ(x, θ, ξ)μ(dθ)

= inf
μ

sup
ζ

∫
X

∫
�∗(ξ)

ϕ(x, θ, ξ)μ(dθ)ζ(dx)

= sup
ζ

inf
μ

∫
X

∫
�∗(ξ)

ϕ(x, θ, ξ)μ(dθ)ζ(dx)

= sup
ζ

inf
θ∈�∗(ξ)

∫
ϕ(x, θ, ξ)ζ(dx) = sup

ζ

Q(ζ, ξ),

where the infimum is calculated with respect to all measures μ in the form of (A.3),
and the supremum is calculated with respect to all experimental designs ζ on X .
Note that X is compact by assumption, and it can be checked that the set �∗(ξ)

is also compact as a closed subset of a compact set. Consequently all suprema
and infima are achieved, and there exists a design ζ ∗ supported at the set of local
maxima of the function �(x, ξ), such that

Q
(
ζ ∗, ξ

) = sup
ζ

Q(ζ, ξ) = max
x∈X �(x, ξ).

The assertion of Corollary 2.3 now follows from Theorem 2.2. �

PROOF OF THEOREM 3.3. Obviously, the inequality

TP
({S[s],ω[s]}) ≤ TP

({S[s+1],ω[s+1]})
holds for all s as optimization with respect to ω occurs on a larger set. Moreover,
the sequence TP(ξs) is bounded from above by TP(ξ∗) and has a limit, which is
denoted by T ∗∗

P . Consequently, there exists a subsequence of designs, say ξsj , j =
1,2, . . . converging to a design, say ξ∗∗. Note that TP is upper semi-continuous as
the infimum of continuous functions, which implies TP(ξ∗∗) = T ∗∗

P . Now, assume
that TP(ξ∗∗) < TP(ξ∗). Then ξ∗∗ is not locally T -optimal, and by Theorem 2.2
there exists a constant δ > 0 such that

sup
ζ

Q
(
ζ, ξ∗∗) − TP

(
ξ∗∗) = 2δ,

where the function Q is defined in (2.7). Therefore for sufficiently large j , say,
j ≥ N we obtain [using again the lower semi-continuity of supζ Q(ζ, ξ)] that

sup
ζ

Q(ζ, ξsj ) − TP(ξsj ) > δ,
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whenever j ≥ N . Note that by construction the sequence (TP(ξs))s∈N is increasing
and therefore

TP(ξsj+1) − TP(ξsj ) ≥ TP(ξsj+1) − TP(ξsj ).(A.4)

In order to estimate the right-hand side, we consider for j ≥ N and α ∈ [0,1], the
design

ξ̃sj+1(α) = (1 − α)ξsj + αζj ,

where ζj is the measure for which the function Q(ζ, ξsj ) attains its maximal value
in the class of all experimental designs supported at the local maxima of the func-
tion �(x, ξsj ), and define

αsj+1 = arg max
0≤α≤1

TP
(
ξ̃sj+1(α)

)
.

By construction of ξsj+1 is the best design supported at supp(ξsj ) ∪ supp(ζj ),
and (A.4) yields

TP(ξsj+1) ≥ TP(ξsj+1) ≥ TP
(
ξ̃sj+1(αsj+1)

)
.(A.5)

We introduce the notation h(j,α) = TP(ξ̃sj (α)) and note that

∂TP(ξ̃sj+1(α))

∂α

∣∣∣∣
α=0

= Q(ζj , ξsj ) − TP(ξsj ) = sup
ζ

Q(ζ, ξsj ) − TP(ξsj ) > δ.

A Taylor expansion gives

h(j + 1, αsj+1) − h(j + 1,0) = max
α∈[0,1]

[
TP

(
ξ̃sj+1(α)

) − TP
(
ξ̃sj+1(0)

)]

≥ max
α∈[0,1]

[
α

∂TP(ξ̃sj+1(α))

∂α

∣∣∣∣
α=0

− 1

2
α2K

]

> max
α∈[0,1]

[
αδ − 1

2
α2K

]
= δ2

2K
,

where K is an absolute upper bound of the second derivative. Therefore it follows
from (A.5) that

TP(ξsj+1) − TP(ξsj ) ≥ TP(ξsj+1) − TP(ξsj )

≥ TP
(
ξ̃sj+1(αsj+1)

) − TP(ξsj )

= h(j + 1, αsj+1) − h(j + 1,0) ≥ δ2

2K
,

which gives for L > N + 1,

TP(ξsL) − TP(ξsN ) =
L−1∑
j=N

[
TP(ξsj+1) − TP(ξsj )

] ≥ [L − N ] δ2

2K
.
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The left-hand side of this inequality converges to the finite value T (ξ∗∗) − T (ξsN )

as L → ∞, while the right-hand side converges to infinity. Therefore we obtain a
contradiction to our assumption TP(ξ∗∗) < TP(ξ∗), which proves the assertion of
Theorem 3.3. �

PROOF OF LEMMA 3.4. Fix t ∈ {1, . . . , n}, and note that wt = 1 −∑n
�=1,� �=t w�. Under Assumptions 2.1 and 2.2 we obtain by formula (A.1)

∂g(ω)

∂ωk

=
ν∑

i,j=1

pi,j

[
ηi(xk, θ i) − ηj

(
xk, θ̂i,j (ω)

)]2

−
ν∑

i,j=1

pi,j

[
ηi(xt , θ i) − ηj

(
xt , θ̂i,j (ω)

)]2
.

The condition ∂g(ω)
∂ωk

= 0, k = 1, . . . , n, k �= t is the necessary condition for
weight optimality, and consequently it follows from the definition of the func-
tion �(x, ξs+1) that this function attains one and the same value for all support
points of the design ξs+1. �

PROOF OF THEOREM 3.6. The proof is similar to the proof of Theorem 3.3.
Denote

κ(γ,α) = g
(
ω(γ )(α)

)
,

where the vector ω(γ )(α
∗) is calculated at the γ th iteration using the defini-

tion (3.4). Since the sequence g(ω(γ )) is bounded and increasing (by construc-
tion), it converges to some limit, say g∗∗. Consequently there exists a subsequence
of vector of weights, say ω(γj ), j = 1,2, . . . converging to a vector, say ω∗∗. Note
that g is upper semi-continuous as the infimum of continuous functions, which
implies g(ω∗∗) = g∗∗. Now, assume that g(ω∗∗) < g(ω∗). Then it follows by an
application of Theorem 2.1 with X = {x1, . . . , xn} that there exists a constant δ > 0
such that

∂g(ω(α))

∂α

∣∣∣∣
α=0

= 2δ > 0.

Here the vector ω(α) is defined in the same way as ω(γ )(α), where ω(γ ) is replaced
by ω = ω∗∗. Therefore for sufficiently large j , say, j ≥ N , we obtain (using the
lower semi-continuity of g) that κ(γj ,0) > δ, and a Taylor expansion yields

κ
(
γj+1, α

∗
(γj+1)

) − κ
(
γj ,α

∗
(γj )

) ≥ max
α

(
α

∂g(ω(α))

∂α
− 1

2
α2K

)
= δ2

2K
,

where α∗
(γj ) is the value α∗ defined in (3.4) from the γj th iteration, and K is an

absolute upper bound of the second derivative. Using the same arguments as in the
proof of Theorem 3.3, we obtain a contradiction, which proves the assertion of the
theorem. �
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