The Annals of Statistics

2015, Vol. 43, No. 5, 2132-2167

DOI: 10.1214/15-A0S1331

© Institute of Mathematical Statistics, 2015

FULLY ADAPTIVE DENSITY-BASED CLUSTERING

BY INGO STEINWART!
University of Stuttgart

The clusters of a distribution are often defined by the connected compo-
nents of a density level set. However, this definition depends on the user-
specified level. We address this issue by proposing a simple, generic al-
gorithm, which uses an almost arbitrary level set estimator to estimate the
smallest level at which there are more than one connected components. In
the case where this algorithm is fed with histogram-based level set estimates,
we provide a finite sample analysis, which is then used to show that the al-
gorithm consistently estimates both the smallest level and the corresponding
connected components. We further establish rates of convergence for the two
estimation problems, and last but not least, we present a simple, yet adaptive
strategy for determining the width-parameter of the involved density estima-
tor in a data-depending way.

1. Introduction. One definition of density-based clusters, which was first
proposed by Hartigan [10], assumes i.i.d. data D = (xy, ..., X, ) generated by some
unknown distribution P that has a continuous density /. For a user-defined thresh-
old p > 0, the clusters of P are then defined to be the connected components of
the level set {h > p}. This so-called single level approach has been studied by
several authors; see, for example, [6, 10, 14, 17, 20] and the references therein.
Unfortunately, however, different values of p may lead to different (numbers of)
clusters (see, e.g., the illustrations in [5, 19]), and there is no generally accepted
rule for choosing p, either. In addition, using a couple of different candidate values
creates the problem of deciding which of the resulting clusterings is best. For this
reason, Rinaldo and Wasserman [20] note that research on data-dependent, auto-
matic methods for choosing p (and the width parameter of the involved density
estimator) “would be very useful.”

A second, density-based definition for clustering, which is known as the clus-
ter tree approach, avoids this issue by considering all levels and the correspond-
ing connected components simultaneously. Its focus thus lies on the identification
of the hierarchical tree structure of the connected components for different lev-
els; see, for example, [5, 10, 13, 27, 28] for details. For example, Chaudhuri and
Dasgupta [5] show, under some assumptions on /4, that a modified single linkage
algorithm recovers this tree in the sense of [11], and Kpotufe and von Luxburg
[13] obtain similar results for an underlying k-NN density estimator. In addition,
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Kpotufe and von Luxburg [13] propose a simple pruning strategy that removes
connected components that artificially occur because of finite sample variability.
However, the notion of recovery taken from [11] only focuses on the correct esti-
mation of the cluster tree structure and not on the estimation of the clusters itself;
cf. the discussion in [24].

Defining clusters by the connected components of one or more level sets clearly
requires us to estimate level sets in one form or the other. Level set estimation it-
self is a classical nonparametric problem, which has been considered by various
authors; see, for example, [1-3, 7, 12, 15, 16, 18, 21, 22, 26, 29]. In these articles,
two different performance measures are considered for assessing the quality of a
density level set estimate, namely the mass of the symmetric difference between
the estimate and the true level set, and the Hausdorff distance between these two
sets. Estimators that are consistent with respect to the Hausdorff metric clearly
capture all topological structures eventually, so that these estimators form an al-
most canonical choice for density-based clustering with fixed level p. In contrast,
level set estimators that are only consistent with respect to the first performance
measure are, in general, not suitable for the cluster problem, since even sets that
are equal up to measure zero may have completely different topological properties.

Another, very recent density-based cluster definition (see [4]) uses Morse theory
to define the clusters of P. The idea of this approach is best illustrated by water
flowing on a terrain. Namely, for each mode xq of %, the corresponding modal
cluster is the set of points from which water flows, on the steepest descent path, to
xo on the terrain described by —A. Under suitable smoothness assumptions on 4,
it turns out that these modal clusters form a partition of the input space modulo
a Lebesgue zero set. Unlike in the single level approach, essentially all points of
the input domain are thus assigned to a cluster. However, the required smoothness
assumptions are somewhat strong, and so far, a consistent estimator has only been
found for the one-dimensional case; see [4], Theorem 1.

In this work, we consider none of these approaches. Instead, we follow the ap-
proach of [24]; that is, we are interested in estimating (a) the infimum of all p
at which the level set has more than one component and (b) the corresponding
components. In addition, the usual continuity assumption on # is avoided. Let us
therefore briefly describe the approach of [24] here; more details can be found in
Section 2.

Its first step consists of defining level sets M, that are independent of the ac-
tual choice of the density; see (2.1). Here we note that this independence is crucial
for avoiding ambiguities when dealing with discontinuous densities. So far, some
approaches have been made to address these difficulties. For example, Cuevas and
Fraiman [6] introduced a thickness assumption for sets C that rules out cases in
which neighborhoods of x € C have not sufficient mass. This thickness assumption
excludes some topological pathologies such as topologically connecting bridges of
zero mass, while others, such as cuts of measure zero, are not addressed. These is-
sues are avoided in [20] by considering level sets of convolutions k * P of the
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underlying distribution P with a continuous kernel X on R having a compact sup-
port. Since such convolutions are always continuous, these authors cannot only
deal with discontinuous densities, but also with distributions that do not have a
Lebesgue density at all. However, different kernels or kernel widths may lead to
different level sets, and consequently, their approach introduces new parameters
that are hard to control by the user. In this respect, recall that for some other func-
tionals of densities, Donoho [8] could remove these ambiguities, but so far it is
unclear whether this is also possible for cluster analysis.

In a second step, the infimum p* over all levels p for which M, contains more
than one connected component is considered. To reliably estimate p*, it is fur-
ther assumed that there exists some p** > p* such that the component structure
of M, remains persistent for all p € (p*, p**]. Note that such persistence is as-
sumed either explicitly or implicitly in basically all density-based clustering ap-
proaches (see, e.g., [5, 13]), as it seems intuitively necessary for dealing with
vertically uncertainty caused by finite sample effects. Another assumption im-
posed on P, namely that M, has exactly two components between p* and p**,
seems to be more restrictive at first glance. However, the opposite is true: if, for
example, 4 : [0, 1] — (0, 0o) is a continuous density with exactly two distinct,
strict local minima at say x| and x», then we only have more than two connected
components in a small range above p* if h(x1) = h(x;). Compared to the case
h(x1) # h(x2), the latter seems to be rather singular, in particular, if one considers
higher-dimensional analogs. Finally note that we could look for further splits of
components above the level p** in a similar fashion. This way we would recover
the cluster tree approach, and, at least for the one-dimensional case, also the Morse
approach by some trivial modifications already discussed in [4]. However, such an
iterative approach is clearly out of the scope of this paper.

The first main result of this paper is a generic algorithm, which is based on an
arbitrary level set estimator, for estimating both p* and the corresponding clusters.
In the case in which the underlying level set estimator enjoys guarantees on its
vertical and horizontal uncertainty, we further provide an error analysis for both
estimation problems in terms of these guarantees. A detailed statistical analysis is
then conducted for histogram-based level set estimators. Here, our first result is
a finite sample bound, which is then used to derive (as in [24]) consistency. We
further provide rates of convergence for estimating p* under an assumption on P
that describes how fast the connected components of M, move apart for increasing
p € (p*, p**]. The next main result establishes rates of convergence for estimat-
ing the clusters. Here we additionally need the well-known flatness condition of
Polonik (see [16]) and an assumption that describes the mass of §-tubes around
the boundaries of the M,’s. Unlike previous articles, however, we do not need to
restrict our considerations to (essentially) rectifiable boundaries. All these rates
can only be achieved if the histogram width is chosen in a suitable, distribution-
dependent way, and therefore we finally propose a simple data-driven parameter
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selection strategy. Our last main result shows that this strategy often achieves the
above rates without knowing characteristics of P.

Since this work strongly builds upon [23, 24], let us briefly describe our main
new contributions. First, in [24], only the consistency of the histogram-based algo-
rithm is established; that is, no rate of convergence is presented. While in [23], such
rates are established, the situation considered in [23] is different. Indeed, in [23],
an algorithm that uses a Parzen window density estimator to estimate the level sets
is considered. However, this algorithm requires the density to be o-Holder contin-
uous for known «. Second, neither of the papers considers a data-dependent way
of choosing the width parameter of the involved density estimator. Besides these
new contributions, this paper also adds a substantial amount of extra information
regarding the imposed assumptions and, last but not least, polishes many of the
results from [24].

The rest of this paper is organized as follows. In Section 2 we recall the cluster
definition from [24] and generalize the clustering algorithm from [24]. In Section 3
we provide a finite-sample analysis for the case, in which the generic algorithm is
fed with plug-in estimates of a histogram. In Section 4 we then establish consis-
tency and the new learning rates. Section 5 contains the description and the anal-
ysis of the new data-driven width selection strategy. Proofs of some of our results
that are new, compared to those in [23, 24], can be found in Section 6. The remain-
ing proofs, auxiliary results and an example of a large class of distributions on R?
with continuous densities that satisfy all the assumptions made in this paper can
be found in [25].

2. Preliminaries: Level sets, clusters and a generic algorithm. In this sec-
tion we recall and refine several notions related to the definition of clusters in [24].
In addition, we present a generic clustering algorithm, which is based on the ideas
developed in [24].

Let us begin by fixing some notation and assumptions used throughout this
paper: (X, d) is always a compact metric space, and B(X) denotes its Borel o-
algebra. Moreover, @ is a known o-finite measure on B(X), and P is an un-
known p-absolutely continuous distribution on B(X) from which the data D =
(x1,...,x,) € X" will be drawn in an i.i.d. fashion. In the following, we always
assume that p has full support, that is, supp u = X. Of course, the example we are
most interested in is that of X = [0, 1]¢ and u being the Lebesgue measure on X,
but alternatives such as the surface measure on a sphere are possible, too.

Given an A C X, we write fi for its interior, A for its closure and 9A := A \ fi
for its boundary. Finally, 14 denotes the indicator function of A and A A B, the
symmetric difference of two sets A and B.

2.1. Density-independent density level sets. Unlike most papers dealing with
density-based clustering, we will not assume that the data-generating distribution
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FI1G. 1. topologically relevant changes on sets of measure zero. Left: The thick solid lines indicate
a set consisting of two connected components A1 and Ay. If h = cl,u4, is a density of P for
a suitable constant c, then A1 and Ay are the connected components of {h > p} for all p € [0, c].
Right: This is a similar situation, but with topologically relevant changes on sets of measure zero. The
straight horizontal thin line indicates a line of measure zero connecting the two components, and the
dashed lines indicate cuts of measure zero. Clearly, ' := cla,uA,UA5UA, is another density of P,
but the connected components of {h' > p} are the four sets Ay, ..., A4 forall p € [0, c].

P has a continuous density. Unfortunately, this generality makes it more chal-
lenging to define density-level-based clusters. Indeed, since the data is generated
by P, we actually need to define clusters for distributions and not for densities.
Consequently, a well-defined density-based notion of clusters either needs to be
independent of the choice of the density, or pick, for each P, a somewhat canoni-
cal density. Now, if we assume that each considered P has a continuous density #,
then these #’s may serve as such canonical choices. In the absence of continuous
densities, however, it is no longer clear how a “canonical” choice should look. In
addition, the level sets of two different densities of the same P may have very
distinct connected components (see, e.g., Figure 1) so that defining the clusters of
P by the connected components of {# > p} becomes inconsistent. In other words,
neither of the two alternatives above is readily available for general P.

This issue is addressed in [24] by considering “density level sets” that are in-
dependent of the choice of the density. To recall this idea from [24], we fix an
arbitrary ju-density h of P. Then, for every p > 0,

wo(A) = u(ANth=p)),  AeBX)
defines a o-finite measure ©, on B(X) that is actually independent of our choice
of h. As a consequence, the set
(2.1) M, :=supp ,,

which in [24] is called the density level set of P to the level p, is independent of
this choice, too. It is shown in [24] (see also [25], Lemma A.1.1) that these sets are
ordered in the usual way, that is, M,, C M, whenever p; < p>. Furthermore, for
any pu-density i of P, the definition immediately gives

22 p{h=pI\Mp)=p({h=p}N(X\Mp))=pnp,(X\ Mp)=0;

that is, modulo p-zero sets, the level sets {h > p} are not larger than M. In fact,
M, turns out to be the smallest closed set satisfying (2.2), and it is shown in [24]
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(see also [25], Lemma A.1.2) that we have both
23)  (h=pycM,Clh=p] and M, 4 {h=>p)Cdlh=p).

For technical reasons we will not only need (2.2) but also the “converse” as well
as a modification of (2.2). The exact requirements are introduced in the following
definition, which slightly deviates from [24].

DEFINITION 2.1. We say that P is normal at level p > 0O if there exist two
u-densities i1 and &y of P such that

w(Mp\ {hy = p)) = u(lha > p} \ M,) =0.

Moreover, we say that P is normal if it is normal at every level.

It is shown in [25], Lemma A.1.3, that P is normal if it has both an upper semi-
continuous p-density 71 and a lower semi-continuous p-density h;. Moreover,
if P has a u-density & such that w(a{h > p}) =0, then P is normal at level p
by (2.3). Finally, note that if the conditions of normality at level p are satisfied for
some p-densities 71 and sy of P, then they are actually satisfied for all ;-densities
h of P, and we have u(M, A {h > p}) =0.

The remarks made above show that most distributions one would intuitively
think of are normal. The next lemma demonstrates that there are also distributions
that are not normal at a continuous range of levels.

LEMMA 2.2. There exists a Lebesgue absolutely continuous distribution P on
[0, 1] and a ¢ > 0 such that P is not normal at p for all p € (0, c].

2.2. Comparison of partitions and some notions of connectivity. Follow-
ing [24] we will define clusters with the help of connected components over a
range of level sets. To prepare this definition, we recall some notions related to
connectivity in this subsection. Moreover, we introduce a tool that makes it possi-
ble to compare the connected components of two level sets.

To motivate the following definition, which generalizes the ideas from [24], we
note that the connected components of a set form a partition.

DEFINITION 2.3. Let A C B be nonempty sets and P(A) and P(B) be parti-
tions of A and B, respectively. Then P(A) is comparable to P(B), and we write
P(A) C P(B) if, for all A’ € P(A), there is a B’ € P(B) with A’ C B’.

Informally speaking, P(A) is comparable to P(B) if no cell A" € P(A) is bro-
ken into pieces in P(B). In particular, if P; and P, are two partitions of A, then
‘P1 C P, if and only if P is finer than P;.
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Let us now assume that we have two partitions P(A) and P(B) such that
P(A) C P(B). Then it is easy to see (cf. [25], Lemma A.2.1) that there exists
a unique map ¢ : P(A) — P(B) such that, for all A’ € P(A), we have

A Ct(A).

Following [24], we call ¢ the cell relating map (CRM) between A and B. More-
over, we write {4 p := ¢ when we want to emphasize the involved pair (A, B).
Note that ¢ is injective, if and only if no two distinct cells of P(A) are contained
in the same cell of P(B). Conversely, ¢ is surjective, if and only if every cell in
‘P(B) contains a cell of P(A). Therefore, ¢ is bijective, if and only if there is a
structure preserving a one-to-one relation between the cells of the two partitions.
In this case, we say that P(A) is persistent in P(B) and write P(A) E P(B).

The next lemma establishes a very useful composition formula for CRMs. For
a proof, which is again inspired by [24], we refer to [25], Section A.2.

LEMMA 2.4. Let A C B C C be nonempty sets with partitions P(A), P(B)
and P(C) such that P(A) C P(B) and P(B) C P(C). Then we have P(A) C
P(C), and the corresponding CRMs satisfy

tac=¢B,colA,B-

The lemma above shows that the relations C and C are transitive. Moreover, if
P(A) EP(C), then ¢4 p must be injective, and ¢{p c must be surjective, and we
have P(A) C P(B) if and only if P(B) T P(C).

Now recall that an A C X is (topologically) connected if, for every pair
A’, A” C A of relatively closed disjoint subsets of A with A’ U A” = A, we have
A’ = @ or A” = &. The maximal connected subsets of A are called the connected
components of A. It is well known that these components form a partition of A,
which we denote by C(A). Moreover, for closed A C B with |C(B)| < oo we have
C(A) C C(B); see [24] or [25], Lemma A.2.3.

Following [24], we will also consider a discrete version of path-connectivity.
To recall the latter, we fix at > 0 and an A C X. Then x, x’ € A are t-connected
in A if there exist x1,...,x, € A such that x; = x, x, = x" and d(x;, x;j11) < T
foralli =1,...,n — 1. Clearly, being t-connected gives an equivalence relation
on A. We write C; (A) for the resulting partition and call its cells the t-connected
components of A. It is shown in [24] (see also [25], Lemma A.2.7) that C;(A) C
C;(B)forall AC B and 7 > 0.

For a closed A and t > 0, we have C(A) C C;(A) with a surjective CRM ¢ :
C(A) — C;(A); see [24] or [25], Proposition A.2.10. To characterize, when this
CRM is even bijective, let us assume that 1 < |[C(A)| < co. Then

(2.4) i :=min{d (A", A"): A", A" € C(A) with A" # A"}
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FIG. 2. The role of T};. Left: A set A consisting of two connected components A" and A" drawn in
solid lines. The dotted lines indicate the contours of the set of all points that are within t-distance
of A’, respectively A", for some fixed T > T3 and the sup-norm. Since there are some elements in
A" that are within t-distance of A’, there is only one t-connected component, namely A. The CRM
¢ : C(A) — C;(A) is thus surjective but not injective. Right. Here we have the same situation for
some T < rz. In this case, A’ and A" are also the t-connected components of A, and the CRM
¢ :C(A) — C;(A) is bijective.

denotes the minimal distance between mutually different components of C(A).
Now it is shown in [24] (or [25], Proposition A.2.10) that

CA)=Cr(A) < T1e(0,7];

see also Figure 2 for an illustration. In other words, 7} is the largest (horizon-
tal) granularity t at which the connected components of A are not glued together.
Finally, this threshold is ordered for closed A C B in the sense that Ty > 7}, when-
ever |C(A)| < oo, |C(B)| < 00, and the CRM ¢ : C(A) — C(B) is injective. We
refer to [24] or [25], Lemma A.2.11.

2.3. Clusters. Using the concepts developed in the previous subsections, we
can now recall the definition of clusters from [24].

DEFINITION 2.5. The distribution P can be clustered between p* > 0 and
p** > p* if P is normal and for all p € [0, p**], the following three conditions are
satisfied:

(i) we have either [C(M,)| =1 or [C(M,)| =2;
(ii) if we have |C(M,)| =1, then p < p*;
(iii) if we have |C(M))| =2, then p > p* and C(M =) EC(M,).

Using the CRMs ¢, : C(M+<) — C(M)), we then define the clusters of P by
A= U @), ie(l2)
pPE(p*,p**]
where Ay and A; are the two topologically connected components of M .

By conditions (iii) and (ii), we find p < p* = |C(M,,)| =1 = p < p* as well as
p>p*=C(My)|=2= p=>p*forall p € [0, p**]; see also Figure 3. At each
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Ps [ \ ek
0, 7 X p

2 // : . p*
Py :X1 :X2 :X3

FI1G. 3. Definition of clusters. Left: A 1-dimensional mixture of three Gaussians together with
the level p* and a possible choice for p**. The component structure at level py € (p*, p**) co-
incides with that at level p**, while for p; < p*, we only have one connected component. The levels
03, P4 > p** are not considered by Definition 2.5, and thus the component structure at these levels is
arbitrary. Finally, the clusters of the distribution are the open intervals (x1, x2) and (x», x3). Right:
Here we have a similar situation for a mixture of three 2-dimensional Gaussians drawn by contour
lines. The thick solid lines again indicate the levels p* and p**, and the thin solid lines show a level
0 € (p*, p**). The dashed lines correspond to a level p < p* and a level p > p™*. This time the
clusters are the two connected components of the open set that is surrounded by the outer thick solid
line.

level below p* there is thus only one component, while there are two components
at all levels in between p* and p**. Moreover, in both cases the corresponding
partitions are persistent.

Since all ¢,’s are bijective, we find ¢, (A1) N ¢,(A2) = @ for all p € (p*, p™*],
and using ¢,(A1) /" A7 for p \( p*, we conclude that A7 N A5 = @. In general,
the sets A* are neither open nor closed, and we may have d(A7, A%) = 0; that is,
the clusters may touch each other; see again Figure 3.

2.4. Cluster persistence under horizontal uncertainty. In general, we can only
expect nonparametric estimates of M, that are both vertically and horizontally un-
certain. To some extent the vertical uncertainty, which is caused by the estimation
error, has already been addressed by the persistence assumed in our cluster def-
inition. In this subsection, we complement this by recalling tools from [24] for
dealing with horizontal uncertainty, which is usually caused by the approximation
error.

To quantify horizontal uncertainty, we need for A C X, § > 0, the sets

AT = {xeX:d(x, A) <6},
AT =X\ (X \ AT,

where d(x, A) := inf, ¢4 d(x, x") denotes the distance between x and A. Simply
speaking, adding a 8-tube to A gives A*®, while removing a §-tube gives A 9.
These operations, as well as closely related operations based on the Minkowski
addition and difference have already been used in the literature on level set esti-
mation; see, for example, [30]. Some simple properties of these operations can be
found in [25], Lemma A.3.1.
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Now let L, be an estimate of M, having vertical and horizontal uncertainty in
the sense of

-4 +4
Mp+8 cLpc Mp—S’

for some ¢, § > 0. Ideally, we additionally have C(Mpﬂfs) CC(L,C C(M;r_aa). To
reliably use C(L,) as an estimate of C(M)), it then suffices to know C (Mp_fg) C

C(M,)CC (M;,F_‘Ss). Unfortunately, however, the latter is typically not true. Indeed,
even in the absence of horizontal uncertainty, we do not have C(M,4.) T C(M,_;)
if p+e> p* and p — & < p*. Moreover, in the absence of vertical uncertainty,
we usually do not have C (Mp*‘s YECWM,) EC (Mp+5), either, as components of
C(M,) may be glued together in C (M;‘S) or cut apart in C (Mp_‘s); see Figure 5.
To repair such cuts, our algorithm will consider 7-connected components instead
of connected components. In the rest of this section we thus investigate under
which conditions we do have C; (Mp_fg) EC(M,) EC, (M;r_‘sg). We begin with
the following definition taken from [24] that excludes bridges and cusps that are
too thin.

DEFINITION 2.6. We say that P has thick level sets of order y € (0, 1] up to
the level p** > 0, if there exist constants cpick > 1 and Sgick € (0, 1] such that, for
all § € (0, Shick] and p € [0, p™*], we have
(2.5) sup d(x, M;°) < cickd” .

xXeM,

In this case, we call ¥ (8) := 3cmickd” the thickness function of P.

Thickness assumptions have been widely used in the literature on level set es-
timation (see, e.g., [22]), where the case y =1 is considered. To some extent, the
latter is a natural choice, as is discussed in detail in [25], Section A.3. In particular,
for d = 1 we always have y = 1, and for d = 2 [25], Example B.2.1, provides a
rich class of continuous densities with y = 1. Figure 4 illustrates how different
shapes of level sets lead to different y’s.

The following result, which summarizes some findings from [24] (see also [25],
Theorems A.4.2 and A.4.4), provides an answer to our persistence question.

THEOREM 2.7. Assume that P can be clustered between p* and p™* and
that it has thick level sets of order y up to p**. Let \r be its thickness function.
Using (2.4), we define the function t : (0, p™* — p*] — (0, 00) by

1
(2.6) () := grj&p*ﬂ.

Then t* is increasing, and for all €* € (0, p™ — p*], § € (0, Snick], T €
(W (), t*(e™)] and all p € [0, p**], the following statements hold.:

(i) we have 1 < |Co(M}*)| <2and 1 < |C.(M%)| <2;
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FIG. 4. Thick level sets. Left: The thick solid line indicates a level set M, below or at the level
0*, and the thin solid lines show the two components B’ and B" of M;‘S. Because of the quadratic
shape of M, around the thin bridge, the set M, has thickness of order y = 1/2. Right: Here we have
the same situation for a distribution that has thick level sets of order y = 1. Note that the smaller
y on the left leads to a significantly wider separation of B' and B" than on the right, which in turn
requires larger T to glue the parts together.

(i) if p < p™ or p = p* + &%, then we have
C:(M,°) EC(M,) =Cr(M,) EC- (M),

Theorem 2.7 in particular shows that for sufficiently small § and 7, the com-
ponent structure of M, is not changed when §-tubes are added or removed and
T-connected components are considered instead. Not surprisingly, however, the
meaning of “sufficiently small,” which is expressed by the functions t* and v,
changes when we approach the level p* from above. Moreover, note that even for
sufficiently small § and 7, Theorem 2.7 does not specify the structure of C, (M;‘S)

and C; (M;‘S) at the levels p € [p*, p* + £*). In fact, for such p, the components

of M, may be accidentally glued together in C, (M;)HS); see, for example, Figure 5.
This effect complicates our analysis significantly.
Let us now summarize the assumptions that will be used in the following.

ASSUMPTION C. We have a compact metric space (X, d), a finite Borel mea-
sure i on X with suppu = X and a p-absolutely continuous distribution P that
can be clustered between p* and p**. In addition, P has thick level sets of order
y € (0, 1] up to the level p**. We denote the corresponding thickness function by
Y and write t* for the function defined in (2.6).

2.5. A generic clustering algorithm and its analysis. In this section, we
present and analyze a generic version of the clustering algorithm from [24]. The
main difference between our algorithm and the algorithm of [24] is that our generic
algorithm can use any level set estimator that has control over both its vertical and
horizontal uncertainty.

Our first result, which is a generic version of [24], Theorem 24, relates the
component structure of a family of level set estimates to the component structure
of certain sets Mp_jig. For a proof we refer to [25], Section A.6.
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FIG. 5. Difficulties around p*. Left: The thick solid line indicates an M, for p < p*, and the
thin solid lines show M;‘s. While M p consists of one connected component, M;‘s has two such
components, B’ and B", and hence C(Mp_‘s) is not persistent in C(Mp). The two types of dotted
lines indicate the set of all points that are within t-distance of B', respectively B” for two values of
T. Only for the larger t we have C¢ (Mg‘s) E C(Mp); that is, in this case T-connectivity does glue
the separated regions together. Right: The thick solid lines indicate an M, for some p € (p*, p**]
having two connected components, A’ and A", and thin solid lines show the two components of
M;”S. The two types of dotted lines indicate the set of all points that are within t-distance of (AHT,

respectively (At for the two values of © used left. This time, we have C(My) E C¢ (M;)"‘s) only
for the smaller value of t. Together, these graphics thus illustrate that good values for § and T at one
level may be bad at a different level. However, Theorem 2.7 shows that this undesired behavior can
be excluded with the help of the functions ©™* and r for all levels p & [p*, p* + &*).

THEOREM 2.8. Let Assumption C be satisfied. Furthermore, let £* € (0, p** —
p*1, 8 € (0, dmick]l, T € (W (8), t*(e*)] and ¢ € (0, €*]. In addition, let (L,),>0 be
a decreasing family of sets L, C X such that

(2.7) M3 cL, cM+‘S

pte

holds for all 0 > 0. Then, for all p € [0, p** — 3¢] and the corresponding CRMs
¢:C; (M, ) — C;(L,), the following disjoint union holds:
(2.8) C:(L,)=¢(C (M;Jre)) {B'€C:(Ly): B'NLyio. =2}

Theorem 2.8 shows that for suitable 8, ¢ and t, all T-connected components B’
of L, are either contained in the image ¢(C; (M p_fg)) or vanish at level p + 2¢,
thatis, B'N L 42, = @. Now assume we can detect the latter components. By The-

orem 2.8 we can then identify the t-connected components B’ that are contained
in £(C; (M p+5)) and if, in addition, ¢ is injective, these identified components

have the same structure as C; (M, Jr8) By Theorem 2.7 we can further hope that

C:(M, +€) CE C(Mj+¢), so that we can relate the identified components to those
of C(M,+¢). Assuming these steps can be carried out precisely, we obtain Algo-
rithm 1; see also Figure 6, which scans through the values of p from small to large
and stops as soon as it identifies either no component or at least two.

The following theorem provides bounds for the level pj, and the components
B; (D) returned by Algorithm 1. It extends the analysis from [24].
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FI1G. 6. lllustration of Algorithm 1 Left: A density (thick solid line) having two modes on the left
and a flat part on the right. A plug-in approach based on a density estimate (thin solid line with
three modes) is used to provide the level set estimator Ly (bold horizontal line at level p), which

satisfies Mp__is CLyC M;'_sg. Only the left component of L, does not vanish at p + 2&, and thus

Algorithm 1 identifies only one component at its line 3. Right: Here we have the same situation at
a higher level. This time both components of L, do not vanish at p + 2¢, and hence Algorithm 1
identifies two components at its line 3.

THEOREM 2.9. Let Assumption C be satisfied. Furthermore, let £* < (p™* —
0%)/9, 8§ € (0, Snick]l, T € (W(8), T*(e™)] and ¢ € (0, €*]. In addition, let D be a
data set and (Lp ) p>0 be a decreasing family satisfying (2.7) for all p > 0. Then
the following statements are true for Algorithm 1:

(i) the returned level p}, satisfies both p}, € [p* + 2¢, p* + &* + 5¢] and

(2.9) T~ (8) <3t*(pp — p* +e);

Algorithm 1 Clustering with the help of a generic level set estimator
Require: Some t > 0 and ¢ > 0.
A decreasing family (Lp,,),>0 of subsets of X.
Ensure: An estimate of p* and the clusters A} and AJ.
I: p<0
2: repeat
3. Identify the T-connected components B, ..., B}, of Lp , satisfying

B{NLp pi2e # 9.

p<p+e
until M # 1
D p<—p+2e
: Identify the T-connected components {, R B;w of Lp,, satisfying

Bi/ N LD,p+28 # 2.

8: return pj, := p and the sets B;(D) := Bi’ fori=1,..., M.
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(i) algorithm 1 returns two sets B1(D) and B>(D), and these sets can be or-
dered such that we have

2 2
; u(Bi(D) & AY) < 2;M(A?‘ \ (4 7)

(2.10) s .
£\ {h > p)).

Here, Ai’fﬁf € C(Mx 1¢) are ordered in the sense ofAfOBJrg C A}

3. Finite sample analysis of a histogram-based algorithm. In this section,
we consider the case where the level set estimates Lp , fed into Algorithm 1 are
produced by a histogram. The main result in this section shows that the error esti-
mates of Theorem 2.9 hold with high probability.

To ensure (2.7), we will use, as in [24], partitions that are geometrically well
behaved. To this end, recall that the diameter of an A C X is

diam A := sup{d(x, x') : x,x" € A}.

Now, the assumptions made on the used partitions are as follows:

ASSUMPTION A. Foreach§ € (0, 1], As = (A1, ..., Ap,) is a partition of X.
Moreover, there exist constants d > 0 and c¢pare > 1 such that, for all § € (0, 1] and
i=1,...,mgs, we have

diam A; <, ms < cpand™ and  p(A;) = 8.

The most important examples of families of partitions satisfying Assumption A
are hyper-cube partitions of X C R? in combination with the Lebesgue measure;
see [25], Example A.7.1, for details. Other situations in which partitions satisfying
Assumption A can be found include spheres X := S ¢ R?*! together with their
surface measures and d = d — 1, sufficiently compact metric groups in combination
their Haar measure and known, sufficiently smooth d-dimensional sub-manifolds
equipped their surface measure. For details we refer to [25], Lemma A7.2 and
Corollary A.7.3.

Let us now assume that Assumption A is satisfied. Moreover, for a data set
D = (x1,...,x,) € X" we denote, in a slight abuse of notation, the corresponding
empirical measure by D, that is, D := %Zl’;l dx,;» where 8, is the Dirac measure
at x. Then the resulting histogram is

< D(A;
(3.1) hps()=Y ,u((AJ-)) .
J

j=1
The following theorem provides a finite sample analysis for using the plug-in esti-
mates Lp , :={hp,s > p}in Algorithm 1.

lAj(x), xeX.
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THEOREM 3.1. Let Assumptions A and C be satisfied. For a fixed § €
(0, 8thickl, ¢ = 1, n > 1 and © > ¥ (8), we fix an € > 0 satisfying the bound

(3.2) 6> o | Esd
. - part 282dn’

where E¢ 5 := ¢ +1In(2cpat) —d1Iné, or if P has a bounded (i-density h, the bound

(3.3) . \/2cpan<1+||hnoo>E§,5 2epuEes
' 8dn 38dn

We further pick an ¢* > 0 satisfying
34 e* > ¢ +infl{e’ € (0, p™* — p*] : T¥(¢') > 7}.

For each data set D € X", we now feed Algorithm 1 with the parameters T and ¢,
and with the family (Lp,,),>0 given by

Lp,,:={hps > p}, p > 0.

If e* < (p™* — p*)/9, then with probability P" not less than 1 — e™5, we have a
D € X" satisfying the assumptions and conclusions of Theorem 2.9.

At this point we like to emphasize that a finite sample bound in the form of
Theorem 3.1 can be derived from our analysis whenever Algorithm 1 uses a den-
sity level set estimator guaranteeing the inclusions Mp_ji9 CLp,C M;fs with
high probability. A possible example of such an alternative level set estimator is
a plug-in approach based on a moving window density estimator, since for the
latter it is possible to establish a uniform convergence result similar to [25], Theo-
rem A.8.1; see, for example, [9, 23]. Unfortunately, the resulting level sets become
computationally unfeasible when used naively, and hence we have not included
this approach here. It is, however, an interesting open question, whether sets Lp ,
that are constructed differently from the moving window estimator can address
this issue. So far, the only known result in this direction [23] constructs such sets
for «-Holder-continuous densities # with known o, but we conjecture that a sim-
ilar construction may be possible for general 4, too. In addition, strategies such
as approximating the sets Lp , by fine grids may be feasible, at least for small
dimensions, too.

4. Consistency and rates. The first goal of this section is to use the finite
sample bound of Theorem 3.1 to show that Algorithm 1 estimates both p* and the
clusters AY consistently. We then introduce some assumptions on P that lead to
convergence rates for both estimation problems.

The following consistency result is a modification of [24], Theorem 26; see
also [25], Section A.9, for a corresponding modification of its proof.
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THEOREM 4.1. Let Assumptions A and C be satisfied, and let (gy,), (§,) and
(tn) be strictly positive sequences converging to zero such that ¥ (8,) < t, for all
sufficiently large n, and

Ing !
n_ _
Jim g =0
n n

.1

For n > 1, consider Algorithm 1 with the input parameters &,, T, and the family
(Lp,p)p>0 given by Lp ,:=1{hps, > p}. Then, for all € > 0, we have
lim P"({DeX":0<pp—p"<e})=1,

n— o0
and if W(A} U A3\ (A7 U A%)) =0, we also have
lim P"({D € X" : w(B1(D) & AY) + u(Ba(D) A A3) <€) =1,

n—oo

where, for B1(D) and By(D), we use the same numbering as in (2.10).

Note that the assumption (A7 U A3\ (A} U A3)) = 0 is satisfied if there exists
a p-density 4 of P such that u(a{h < p*}) =0; see [25], Section A.9.

Theorem 4.1 shows that for suitably chosen parameters and histogram-based
level set estimates Algorithm 1 asymptotically recovers both p* and the clusters
A7 and A}, if the distribution P has level sets that are thicker than a user-specified
order y . To illustrate this, suppose that we choose 8, ~ n~ and &, ~ n~# for some
a, B > 0. Then it is easy to check that (4.1) is satisfied if and only if 2(ad + 8) < 1.
For t, ~n=%" Inn, we then have ¥ (§,) < 7, for all sufficiently large n, and there-
fore, Algorithm 1 recovers the clusters for all distributions P that have thick levels
of order y. Similarly, the choice 7, ~ (In n)~! leads to consistency for all distribu-
tions P that have thick levels of some order y > 0. Finally note that (4.1) can be
replaced by

-1
Iné,

dg2

néges;

—0

if we restrict our consideration to distributions with bounded p-densities. The
proof of this is a straightforward modification of the proof of Theorem 4.1.

To give two examples, recall from the discussion in [25], Section A.5, that for
the one-dimensional case X = [a, b], we always have y = 1. In two dimensions
this is, however, no longer true as, for example, Figure 4 illustrates. Nonetheless,
there do exist many examples of both discontinuous and continuous densities for
which we have thickness y = 1; see [25], Section B.2. Finally note that the con-
struction used there can be easily generalized to higher dimensions.

For our next goal, which is establishing rates for both j(B; (D) A A7) — 0 and
pp — p*, we need, as usual, some assumptions on P. Let us begin by introducing
an assumption that leads to rates for the estimation of p*.
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DEFINITION 4.2. Let Assumption C be satisfied. Then the clusters of P have

separation exponent k € (0, oo] if there is a constant ¢y, > 0 such that

T4(6) = Coepe /"

for all ¢ € (0, p*™ — p*]. Moreover, the separation exponent « is exact if there
exists another constant cgep > 0 such that, for all ¢ € (0, p*™* — p*], we have

() §Esep81/".

The separation exponent describes how fast the connected components of the
M, approach each other for p \( p*. Note that the separation exponent is mono-
tone, that is, a distribution having separation exponent « also has separation expo-
nent «’ for all ¥’ < k. In particular, the “best” separation exponent is k = 0o, and
this exponent describes distributions, for which we have d (A7, A;) > C..; that is,
the clusters A} and A3 do not touch each other.

To illustrate the separation exponent, let us consider X := —[3, 3] and, for
6, B € (0,00] and p* € [0, 1/6), the distribution Py g that has the density

4.2) ho.p(x) = p* +co.p(Mo.(Ix))1x1” + 111 23 (1x]) + 123 (1x) (3 — 1x1)P),

where cg g is a constant ensuring that /g g is a probability density; see also
Figure 7 for two examples. Note that Py g can be clustered between p* and
p** := p* 4 cq,g. Moreover, Py g always has exact separation exponent 6.

The polynomial behavior in the upper vicinity of p* of the distributions (4.2) is
somewhat archetypal for smooth densities on R. For example, for C2-densities &
whose first derivative 4" has exactly one zero xq in the set {# = p*} and whose sec-
ond derivative satisfies 4" (xg) > 0, one can easily show with the help of Taylor’s
theorem that their behavior in the upper vicinity of p* is asymptotically identical
to that of (4.2) for k =0 =2 and B = 1. Moreover, larger values for ¥k = 6 can
be achieved by assuming that higher derivatives of & vanish at xg. Analogously,
the class of continuous densities on R? from [25], Section B.2, have separation
exponent k = 2 (see [25], Example B.2.1), as these densities, similar to Morse
functions, behave like x12 — x% in the vicinity of the saddle point. Again, the con-
struction can be modified to achieve other exponents.

In the following we show how the separation exponent influences the rate for
estimating p*. We begin with a finite sample bound.

sep?

THEOREM 4.3. Let Assumptions A and C be satisfied, and assume addition-
ally that P has a bounded w-density h and that its clusters have separation expo-
nent k € (0, 00]. For some fixed § € (0, 8ick], ¢ =1, n > 1 and t > 2y (8), we
pick an ¢ > 0 satisfying (3.3), that is,

e > \/ZCpart(l + 12 lloo) (s + In(2cpart) — dInéd) i 2¢part(s + In(2cpart) — dIné)
- 8dn 389n '
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Let us assume that £* := & + (T /cg,)" satisfies €* < (p** — p*)/9. Then if Al-
gorithm 1 receives the input parameters €, T and the family (Lp ,),>0 given by
Lp.p,:=1{hp,s > p}, the probability P" of a D € X" that satisfies

(4.3) e<pp—p°,

(4.4) pp — P = (T/cgep) + 66

is not less than 1 — e=S. Moreover, if the separation exponent k is exact and k <
00, then we can replace (4.3) by

45) 1<T Y+ X o
. — E< — .

The finite sample guarantees of Theorem 4.3 can be easily used to derive (exact)
rates for p}, — p*. The following corollary presents, modulo (double) logarithmic
factors, the best rates we can derive by this approach.

COROLLARY 4.4. Let Assumptions A and C be satisfied, and assume that P
has bounded p-density and that its clusters have separation exponent k € (0, 00).
Furthermore, let (g,), (8,) and (t,) be sequences with

Inn - Inlnp\ </ Cretd Inn\ /@re+d) |
&n ™~ <7n ) , O ~ <7) and T, ~ b/,

and assume that, for n > 1, Algorithm 1 receives the input parameters &, T, and
ﬁe family (Lp,p)p>0 given by Lp , :==1{hp.s, > p}. Then there exists a constant
K > 1 such that for all sufficiently large n, we have

— 1
(4.6) P"({DeX":p}—p*<Kepy})>1——.
n
Moreover, if the separation exponent k is exact, there exists another constant K > 1

such that for all sufficiently large n, we have

— 1
“.7) P"({D € X" :Key < pp — p* < Ken}) =1 ——.
n

Finally, if k = 00, then (4.7) holds for all sufficiently large n if

Inn-Inl 172
£,y ~ <w) L 8, ~(nlnn) YD g 1, ~ (Inlnn)Y/GO.
n

Recall that for the one-dimensional distributions (4.2) we have y =1 and k =6,
so that the exponent in the rates above becomes Z(fﬁ. In particular, for the C2-case
discussed there, we have 6 = 2, and thus we get a rate with exponent 2/5, while for
6 — oo the exponent converges to 1/2. Similarly, for the typical, two-dimensional
distributions considered in [25], Section B.2, we have y =1,k =2 and d = 2, and
hence the exponent in the rate is 1/3.
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Our next goal is to establish rates for i(B; (D) A AY) — 0. Since this is a mod-
ified level set estimation problem, let us recall some assumptions on P, which
have been used in this context. The first assumption in this direction is a one-sided
variant of a well-known condition introduced by Polonik [16].

DEFINITION 4.5. Let u be a finite measure on X and P be a distribution on X
that has a p-density &. For a given level p > 0, we say that P has flatness exponent
¥ € (0, oo] if there exists a constant cqac > O such that

(4.8) w({0<h—p<s}) < (chats)?, s > 0.

Clearly, the larger the ¢, the more steeply 4 must approach p from above. In
particular, for ¥} = oo, the density # is allowed to take the value p but is otherwise
bounded away from p. For example, the densities in (4.2) have a flatness exponent
¥ =min{l/0,1/8} if 6 < oo and B < oo and a flatness exponent ¥ = oo if 6 =
B = oo. Finally, for the two-dimensional distributions of [25], Section B.2, the
flatness exponent is not fully determined by their definition, but some calculations
show that we have 9 € (0, 1].

Next, we describe the roughness of the boundary of the clusters.

DEFINITION 4.6. Let Assumption C be satisfied. Given some « € (0, 1], the
clusters have an a-smooth boundary if there exists a constant cpoundg > O such that,
for all p € (p*, p**1, § € (0, Stick] and i = 1, 2, we have

4.9) n((AL) PO\ (AD) ™) < coounad®,

where A L and A)zo denote the two connected components of the level set M,,.

In R, considering o > 1 does not make sense, and for an A C R4 with rectifi-
able boundary, we always have o = 1; see [25], Lemma A.10.4. The a-smoothness
of the boundary thus enforces a uniform version of this, which, however, is not very
restrictive; see, for example, the densities of (4.2), for which we have ¢ = 1 and
Cbound = 4, and [25], Example B.2.2, for which we also have o = 1.

The following assumption collects all conditions we need to impose on P to get
rates for estimating the clusters.

ASSUMPTION R.  Assumptions A and C are satisfied, and P has a bounded p-
density . Moreover, P has a flatness exponent ¢ € (0, oo] at level p*, its clusters
have an a-smooth boundary for some « € (0, 1] and its clusters have a separation
exponent « € (0, oo].

Let us now investigate how well our algorithm estimates the clusters A} and A3.
As usual, we begin with a finite-sample estimate.
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3t(e)

P*+e

pP*+e

p* | ] p*

FIG. 7. Separation and flatness. Left: The density hg g described in (4.2) for 6 =3 and g =2/3.
The bold horizontal line indicates the set {p* < h < p* + ¢}, and 3t*(¢) describes the width of the
valley at level p* + ¢. Right: Here we have the same situation for 0 =2/3 and B = 3. The value of
¢ is chosen such that 3t*(¢) equals the value on the left. The smaller value of @ narrows the valley,
and hence & needs to be chosen larger. As a result, it becomes more difficult to estimate p* and the
clusters. Indeed, ignoring logarithmic factors, Corollary 4.4 gives a rate of n=3/7 on the left and a
rate ofn_2/7 on the right, while Corollary 4.8 gives a rate ofn_l/7 on the left and a rate ofn_z/21
on the right. Finally, in the most typical case 6 =2 and f = 1 not illustrated here, we obtain the
rates n=1/3 and n=1/3

THEOREM 4.7. Let Assumption R be satisfied, and assume that 8, ¢, t, €*, ¢,
nand (Lp,,) >0 are as in Theorem 4.3. Then the probability P" of having a data
set D € X" satisfying (4.3), (4.4) and

/’L(Bl (D) A AT) + M(BZ(D) A A;) =< 6Cboundaw + (Cﬂat(f/gsep)’( + 7Cﬂat<‘5‘)l9

is not less than 1 — e~ 5, where the sets B1(D) and B> (D) are ordered as in (2.10).
Moreover, if the separation exponent k is exact and satisfies k < 0o, then (4.5)
also holds for these data sets D.

Note that for finite values of ¥ and «, the bound in Theorem 4.7 behaves like
8% 4+ 1% 4 ¢” and in this case it is thus easy to derive the best convergence rates
our analysis yields. The following corollary presents corresponding results and
also provides rates for the cases ¥ = oo or k = 0.

COROLLARY 4.8. Assume that Assumption R is satisfied, and write ¢ :=
min{w, ¥ y«k}. Furthermore, let (¢,,), (8,) and (t,) be sequences with

0/(20+94d)
6, ~ (ln_”> (InInn)~"9/Bo+494)
n

Inn - Inlnn\ ¥/ Cetdd)
5 ~ (7> and

n

Inn - (Inlnn)2\?v/@etdd)
 ~ (—n ) .

Assume that, for n > 1, Algorithm 1 receives the parameters &,, T, and the family
(Lp,p)p>0 given by Lp , :={hps, > p}. Then there is a constant K > 1 such
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that, for all n > 1 and the ordering as in (2.10), we have

>1—-—.

Inn - (lnlnn)2>l‘/‘e/(29+79d)) |
n

2
P"|D:)» w(B;(D)A A} §K<

(0+ St 47 '

Let us now compare the established rates for estimating p* and the clusters in
the most important case, thatis, « = 1. If ¥y« < 1, we obtain o = ¥y« in Corol-
lary 4.8, and the exponent in the asymptotic behavior of the optimal (§,,) becomes
ﬁ. Since this equals the exponent in Corollary 4.4, and, modulo the extra
Inlnn terms, we also have the same behavior for (e,,) and (7,,) in both corollaries,
we conclude that we obtain the rates in Corollaries 4.4 and 4.8 with (essentially)
the same controlling sequences (g,), (6,) and (t,) of Algorithm 1. If ¥y« <1, we
can thus achieve the best rates for estimating p* and the clusters simultaneously.
Unfortunately, this changes if ¢y« > 1. Indeed, while the exponent for (§,) in
Corollary 4.4 remains the same, it changes from ﬁ to Zfﬁ in Corollary 4.8,
and a similar effect takes place for the sequences (e,) and (t,). The reason for
this difference is that in the case ¥k > 1 the estimation of p* is easier than the
estimation of the level set M+, and since for estimating the clusters we need to do
both, the level set estimation rate determines the rate for estimating the clusters.

To illustrate this difference between the estimation of p* and the clusters in
more detail, let us consider the toy model (4.2) in the case 8 = = oo, that is,
k = oo. Then the clusters are stumps, and the sets M, do not change between p*
and p**. Intuitively, the best choice for estimating p* are then sufficiently small but
fixed values for 6, and t,, so that &, converges to O as fast as possible. In Corol-
lary 4.4 this is mimicked by choosing very slowly decaying sequences (§,) and
(74). On the other hand, to find A} and A7 it suffices to identify one p € (p*, p**]
and to estimate the connected components of M. The best way to achieve this is
to use a sufficiently small but fixed value for ¢, and sequences (8,) and (t,) that
converge to zero as fast as possible. In Corollary 4.8 this is mimicked by choosing
a very slowly decaying sequence (&,) and quickly decaying sequences (8,) and
(Tn).

As for estimating the critical level p*, we do not know so far, whether our
rates for estimating the clusters are minmax optimal, but our conjecture is that
they are optimal modulo the logarithmic terms. To motivate our conjecture, let us
consider the case @« = y = 1. Moreover, assume that two-sided versions of [25],
(A.10.4) and (A.10.6), hold for all p € (p*, p**], respectively, p = p*. Then we
have x =6 and ¥ = 1/0 by [25], Lemmas A.10.1 and A.10.5, and thus we find
o = 1. Consequently, the rates in Corollary 4.8 have the exponent ﬁ. This is
exactly the same exponent as the one obtained in [22] for minmax optimal and
adaptive Hausdorff estimation of a fixed level set. In addition, it seems that their
lower bound, which is based on [29], is, modulo logarithmic factors, the same for
assessing the estimator in the way we have done it in Corollary 4.8. While this



FULLY ADAPTIVE DENSITY-BASED CLUSTERING 2153

coincidence indicates that our rates may be (essentially) optimal, it is, of course,
not a rigorous argument. A detailed analysis is, however, out of the scope of this
paper. Another interesting question, which is also out of the scope, is whether the
estimates B; (D) approximate the true clusters A in the Hausdorff metric, too, and
if so, whether we can achieve the rates reported in [22].

5. Data-dependent parameter selection. In the last section we derived rates
of convergence for both the estimation of p* and the clusters. In both cases, our
best rates required sequences (g,), (8,) and (7,) that did depend on some proper-
ties of P, namely «, k, ¥. Of course, these parameters are not available to us in
practice, and therefore the obtained rates are of little practical value. The goal of
this final section is to address this issue by proposing a simple data-dependent pa-
rameter selection strategy that is able to recover the rates of Corollary 4.4 without
knowing anything about P. We further show that this selection strategy recovers
the rates of Corollary 4.8 in the case of ¥ ykx < «.

We begin by presenting the parameter selection strategy. To this end, let A C
(0,1] be finiteand n > 1, ¢ > 1. For § € A, we fix a 75, > 0 and define

. C\/Cpart(g + In(2cpart|Al) —dInd) Inlnn

’ 8dn
n 2cpart (¢ + In(2cpart| A]) — dInd)
38dn '
where C > 1 is some user-specified constant. Now assume that, for each § € A, we
run Algorithm 1 with the parameters €5 ,, and 75, and the family (L p ,),>0 given
by Lp,,:={hps > p}. We write pj, s for the corresponding level returned by
Algorithm 1. Let us consider a width 7, , € A that achieves the smallest returned
level, that is,

(5.1)

2 57 inpy s
(5.2) DA €AZMIN PP 5

Note that in general, this width may not be uniquely determined, so that in the
following we need to additionally assume that we have a well-defined choice, for
example, the smallest § € A satisfying (5.2). Moreover, we write

5.3 DA =P = min pj
(33) PD.A = Pp.sy , =MD 5

for the smallest returned level. Note that unlike 8}5’ A the level pp,  is always
unique. Finally, we define ep A := €53 aon and Tp A 1= Ts¥, gon

Our first goal is to show that p}*‘)’ A achieves the rates of Corollary 4.4 for suitably
chosen A and 75 ,. We begin with a finite sample guarantee.

THEOREM 5.1. Let Assumptions A and C be satisfied, and assume that P has
a bounded [i-density h, and that the two clusters of P have separation exponent



2154 1. STEINWART

k € (0, 0o]. For a fixed finite A C (0, Sthick], andn > 1, ¢ > 1 and C > 1, we define
es.n by (5.1) and choose ts , such that t5, > 2(8) for all 5 € A. Furthermore,
assume that C*Inlnn > 2(1+ ||hllx) and €} := 5., + (T5.n/Csep) < (0™ = p™)/9
forall § € A. Then we have

P'({Dex":epn<phn—p"= min(zs,/Ceep)* + 665.)}) = 175

Moreover, if the separation exponent k is exact and k < 00, then the assumptions
above actually guarantee

P" (D : f;rgg(cltéin +&s.1) <Ppa—P = gréiil(cy({n + 685,,1)) >1—e7 %,

where c| 1= %(65561))_" and ¢y 1= Qs_elfv and similarly

Pn({D e X" ZC]‘L’B’A +éepa< pBA —p* §C2‘EBA +68D’A}) >1—e°.

Theorem 5.1 establishes the same finite sample guarantees for the estimator
Pp.a as Theorem 4.3 did for the simpler estimator p7,. Therefore, it is not surpris-
ing that for suitable choices of A, the rates of Corollary 4.4 can be recovered, too.
The next corollary shows that this can actually be achieved for candidate sets A
that are completely independent of P.

COROLLARY 5.2. Assume that Assumptions A and C are satisfied, that P has
a bounded p-density h and that the two clusters of P have separation exponent
k € (0, 00]. For n > 16, we consider the interval

[(lnn-(lnlnn)z)l/d< 1 )Ud]
I =——) ,
n Inlnn

and fix some n~V4-net A, C I, of I, with |A,| < n. Furthermore, for some fixed
C > 1 and n > 16, we write 15, := §" Inlnlnn and define €5, by (5.1) for all
8 € A, and ¢ =1nn. Then there exists a constant K such that, for all sufficiently
large n, we have

n * g Inn - (Inlnn)?\v*/@Gre+d) 1
(54) P"(D:epa, <pha, —p <K(———— b

n n

If, in addition, the separation exponent k is exact and k < 00, then there is another
constant K such that for all sufficiently large n, we have

n Inn - Inlnn\ v</@Qre+d . .
PAPE on <Pp,A, — P

<K

— <lnn : (1n1nn)2)w/<2w+d)>
n

>1——.
n
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Finally, we show that our parameter selection strategy partially recovers the
rates for estimating the clusters A* obtained in Corollary 4.8.

COROLLARY 5.3. Assume that Assumption R is satisfied with o > 9y« and
exact separation exponent k. Then, for the procedure of Corollary 5.2, there is a
K > 1 such that for n > 1 and the ordering as in (2.10), we have
Inn - (lnlnn)z)ﬂy"/ (ZVK”C‘)) 1

>1——.
- n

2
Pn<D Y w(Bi(D) & Af) < K(

i=1 n

Unfortunately, the simple parameter selection strategy (5.2) is not adaptive in
the case o < ¥y «, that is, in the case in which the estimation of p* is easier than
the estimation of the corresponding clusters. It is unclear to us whether in this case
a two-stage procedure that first estimates p* by pj, o ~as above, and then uses a
different strategy to estimate the connected components at the level PD.a, can be
made adaptive.

6. Selected proofs. In this section we present some selected proofs. All re-
maining proofs can be found in [25].

PROOF OF LEMMA 2.2. Let (x;) be an enumeration of Q N[0, 1] and I, :=
[x, —27"72,x, + 27721 N[0, 1] for n > 1. For x € [0, 1] and I; := [0, 1], we
further define

J(x) :=supnly, (x),
n>0
that is, f(x) equals the largest integer n > O (including infinity) such that x € I,,.
For ¢ > 0 specified below, we now define

c .
hx) = 2c—m, if f(x) >0,

0, else.
Then / is measurable, nonnegative and Lebesgue-integrable, and hence we can
choose ¢ such that fol h(x)dx = 1. Then & is a density of a Lebesgue-absolutely
continuous distribution P. Moreover, note that 4(x) > 2¢ — ¢/n for all x € I, and
n > 1. For a fixed p € (0,2¢) we now write n, := c/(2c — p). Then we have
2¢ —c/n > p if and only if n > n,. Consequently, the set

n>ng

satisfies A, C {h > p}. Moreover, since A, is open, we find A, C {h £ p}, and
thus

A,c{h=plCM,
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by [25], Lemma A.1.2. In addition, we have {x, :n >n,} C A,, and since the
former set is dense in [0, 1], we conclude that M, = [0, 1]. On the other hand, the
Lebesgue measure A of {h > p} can be estimated by

A({h = p}) <A({h > 0}) = (U I ) <> AUy d 27 = %
n=1 n=1

and hence we conclude that A(M, \ {h > p}) > 1/2. In other words, P is not
normal at level p. [

PROOF OF THEOREM 2.7. The monotonicity of t* is shown in [25], Theo-
rem A.4.2, and (i) follows from parts (i) of [25], Theorems A.4.2 and A.4.4.

(ii) Let us first consider the case p < p*. Since P can be clustered, we have
IC(M,)| =1, and [25], Proposition A.2.10, gives both rj{‘,[p =o0 and C(M,) =
C:(M,). By [25], Lemma A.4.1, we further find C.(M,) C C, (M;”S). Finally,
part (ii) of [25], Lemma A.4.3, yields 1 < |CI(MP_‘S)| < |C(Mp)| =1, and hence
its part (iii) gives the persistence C (Mp_‘s) EC(M,y).

In the case p > p* + &*, C;(M,) C C; (M;‘S) follows from part (ii) of [25],
Theorem A.4.2, and the equality C(M,) = C;(M,) follows from [25], Proposi-
tion A.2.10, in combination with T < r*(e*) < r*(,o 0%). By part (ii) of [25],
Theorem A.4.4, we further know C; (M o, (M, 9. Using p > p* + &* and
part (iv) of [25], Theorem A.4.2, we find |C; (M P ‘3)| = 2, and hence part (iii)
of [25], Theorem A.4.4, gives C.(M,°) T C(M,). [

PROOF OF THEOREM 2.9. (i) The first bound on pj, directly follows from
part (i) of [25], Theorem A.6.2.
To show (2.9), we observe that parts (iii) and (iv) of [25], Theorem A.6.2, imply
=1C, (M;‘S+€)| = |C(Mp2k)+£)|. Since we further have pj, + & < p* 4+ &% 4 6¢ <
p** by the first bound on p7), part (iii) of [25], Lemma A.4.3, thus shows

d(B1,By)>1— 21#7(,,{)* L0 =7 = 2cickd” > T =Y (9),
D

where B and B; are the two connected components of M phte- On the other hand,

the definition of 75, . in [25], Proposition A.2.10, together with the definition of
PpTE

7% in (2.6) gives
3t (pp —p*+¢€)=14, =d(Bi, B).
ppte

Combining both we find (2.9).
(i) Part (iii) of [25], Theorem A.6.2, shows that Algorithm 1 returns two sets.
Our next goal is to find a suitable ordering of these sets. To this end, we adopt
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the notation of [25], Theorem A.6.2. Moreover, we denote the two topologically
connected components of M+ by Ay and A,. We further write

. ) 4 .
V;T)+8 = é‘p**vp;‘)Jrs(é-p**(Ai))’ 1 = ]’ 27

for the two t-connected components of M;,{f ts Note that part (iv) of [25], The-

orem A.6.2, ensures that we can actually make this definition, and, in addition, it
shows Vﬂlz*g v * szg +er Moreover, by parts (ii) and (iii) of [25], Theorem A.6.2,
we may assume that the sets returned by Algorithm 1 are ordered in the sense of
Bi(D) = ;(v;% L), that is,

©.1) Bi(D) =¢ 0y py e ((pe(AD), =12

To simplify notation in the following calculations, we write B; := B; (D) for
i € {1,2} and p := pj},. Consequently, A }7 L and A% ¢ are the two connected com-
ponents of Mo = M .., which by Definition 2.5 can be ordered in the sense of

Ai

o+e C A7. Moreover, Vp1 4 and sz . become the two t-connected components

of Mp_fg. For i € {1, 2}, we further write W;;+€ = (A;H)_‘S. Our first goal is to
show that

(6.2) Wi CVi. ie{l2)

To this end, we fix an x € W;Jrs. Since W;H C A:)Jrs and W;H C M;jig, where
the latter follows from (A})+8)_5 C Mp_jis, we then have x € A})H and x € V'Ol+£ U
Vp2+£. Let us assume that x € Vp2+8. Then we have sz+8 N A;l)+s # . Now, the

diagram of [25], Theorem A.6.2, shows that ¢, : C; (Mp_jig) — C(M ) satisfies
§p+8n(sz+8) = A%+€, and hence we have Vgﬁ C A%Jrg. Consequently, szJrg N

A}) L¢ 7 2 implies A'QO e N A}) 1¢ # I, which is a contradiction. Therefore, we

have x € Vp1+8; that is, we have shown (6.2) for i = 1. The case i = 2 can be

shown analogously. . .
By (6.2) we find W), C V], C B;,and thus u(A} \ Bi) < u(AF\ W},,) for
i =1,2. Conversely, using u(B \ A) = u(B) — n(A N B) twice, we obtain

1(Bi\ (ATU A7) = w(B1) — u(B1 N (AT U A))
> w(B1) — n(B1 N AY) — n(By N A3)
= u(B1\ A7) — n(B1 N A3).
Since By N By = @ implies B; N A5 C A} \ B, we thus find
n(By & AT) = u(B1\ AY) + (A7 \ Bi)
< u(B1\ (AT U A3)) + (A3 \ B2) + (A7 \ B1)
< u(Bi\ {h>p*}) + w(AT\ W, ) + (A5 \ W),
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where in the last estimate we also used [25], (A.1.3). Repeating this estimate for
w(By A A%) and using BiU B, C Lp , C M;fg yields the assertion. [

PROOF OF THEOREM 3.1. Letusfixa D e X" with ||hp s —hpslleo <. By
the first estimate of [25], Theorem A.8.1, we see that the probability P” of such a
D is not smaller than 1 — ¢S . In the case of a bounded density and (3.3), the same
holds by the second estimate of [25], Theorem A.8.1, and

\/6Cpart||h”oo§ +In(2cpart) —dIné (20part§>2 n Cpart§
384n 384n 38dn

_ \/6cpart||h||oog+1n<2cpm) —dInd | 2¢puns
384n 384n

8dn

4 2Cpart(§ + ln(chart) —dIné)

384n ’
where we use In(2cpat) > dInd. Now, [25], Lemma A.8.2, shows (2.7) for all p >
0. Let us check that the remaining assumptions of Theorem 2.9 are also satisfied
if &* < (p™ — p*)/9. Clearly, we have § € (0, Sick], € € (0, ¢*] and ¥ (§) < t. To
show 7 < 7*(&*) we write
E:={' €(0,p™ —p*]: t¥(¢) > 7}

Since we assume &* < 0o, we obtain E # @ by the definition of ¢*. There thus
exists an ¢’ € E with ¢’ <inf E + ¢ < &*. Using the monotonicity of t* established
in [25], Theorem A.4.2, we then conclude that T < t*(¢) < t*(¢*), and hence all
assumptions of Theorem 2.9 are indeed satisfied. [

- \/2cpm<1 + 1All00) (s + InQpar) — dInd)

PROOF OF THEOREM 4.3. Let us begin by checking the conditions of Theo-
rem 3.1. Obviously, ¢ is chosen this way, and the definition of ¢* together with the
assumption £* < (p** — p*)/9 yields

(6.3) (T/cep) < 6% < p™ — p*,
By the assumed separation exponent «, we thus find in the case ¥ < oo that
inf{z € (0, p** — p*]: T*(8) >t} <inf{& € (0, p™ — p*] 1 ¢t /¥ = 7}
= (T/Cgep)”

Consequently, (3.4) holds in the case k < co. Moreover, in the case k¥ = oo, (6.3)
together with p™* < oo implies t < Csep- In addition, the separation exponent k =
00 ensures T*(€) > ¢, for all & > 0, and hence we obtain

e+inf{g € (0, p™ — p*]: t* (@) >t} =6 <%
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that is, (3.4) is also established in the case k = co. Now, applying Theorem 3.1, we
see that p, € [p* + 2¢, p* + &* + S¢] with probability P" not less than 1 —e™¢;
that is, (4.3) is proved. In addition, the definition of ¢* yields

pp — P* <"+ 58 < (T/cgep) + G,

and hence we obtain (4.4). Let us finally show (4.5). To this end, we first observe
that Theorem 3.1 ensures

1/2<1t—-vY(¢) < 3'5*(,0% —p"+ 5) = 3Esep(pz —p*+ 8)
< 3Esepzl/l{ (p}_k) - p*)l/K,

where in the last step, we use the already established (4.3). By some elementary
transformations we conclude that

1 T \* N N
—_— < — y
2 <6Esep) Pp—F

and combining this with 2¢ < p}, — p*, we obtain the assertion. [

1/

PROOF OF COROLLARY 4.4. We first show (4.7) for k < oo and sufficiently
large n with the help of Theorem 4.3. To this end, we define ¢, := ¢, + (1,/ gsep)"
for n > 1. Since (g,), (8,) and (7,) converge to 0, we then have &, € (0, Sick]
and &} < (p*™* — p*)/9 for all sufficiently large n. Furthermore, our definitions
ensure T, /82,/ — 00, and hence we have 1, > 6¢mickds = 2y (6,) for all suf-
ficiently large n, too. Before we can apply Theorem 4.3, it thus remains to
show (3.3) for sufficiently large n. To this end, we observe that for ¢, := Inn
and &, := 2cpart(6n + In(2cpare) — dIné;,), we have

oo |UENIE & <<1n_n>w/<2y'<+d>_
" 8dn 38dn =\ n

Using g, - (1"7”)*”"/(23”‘“1) — 00, we then see that &, > ¢, for all sufficiently
large n. Now, applying Theorem 4.3, namely (4.4), we obtain an ng > 1 and a
constant K such that (4.6) holds for all n > n(. Moreover, if « is exact, (4.5) yields
a constant K such that (4.7) holds for all n > ny.

In the case k = 00, we first observe that £, := ¢, + (Tn/cyep)" satisfies &, = ¢,
for all n with 1, < ¢, that is, for all sufficiently large n. Moreover, we have

sep’
T/ 8} — 00, and, like the case k < 00, it thus suffices to show (3.3) for sufficiently
large n. To this end, we observe that for ¢, :=Inn and 8,/1 as above, we find that,
for all sufficiently large n,
, (lnn-«/lnlnn)l/2
L, 0| ——— = én,

n
where ¢; is a suitable constant independent of n. Consequently, (4.3) and (4.4)
yield (4.7) for all sufficiently large n. [J
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LEMMA 6.1. Under the assumptions of Theorem 2.9 we have

2 2
Z/,L(Bi(D) N AY) < 2ZM(A;;;3+3 \ (Afo +s)_8)
i=1 i=1
(M2 N\ My o)+ u({p* <h < pjy+e}).

PROOF OF LEMMA 6.1. We will use inequality (2.10) established in Theo-
rem 2.9. To this end, we first observe that [25], (A.1.3), implies

R\ = ) = (M2 \ U M)<uM+2\Mp ).
p'>p*
To bound the remaining terms on the right-hand side of (2.10), we further observe

that the disjoint relation A N B*% = (AN (B*®\ B)) U (A N B) applied to B :=

X\ Ap+€ yields

w(AF\ (AL,)7)

/’L(A* (X \ Ap+e)+3)
= M(A* (X \ Ap+s)+5 n Afo—i—s) + M(A* \ Ap+8)
M(A;-l—e \ (Afo-i—s) ) + /’L(A* \ Ap-l—a)

C AY, AJNAS = & together with [25], (A.1.2) and (A.1.3), imply

Moreover, Al ote

1 2
( \ Ap+8) + /’L(AZ \ Ap+e) ((AT U A;) \ (Ap+8 U A,oJrs))
=u({p* <h<p+e}).
Combining all estimates with (2.10), we obtain the assertion. [
PROOF OF THEOREM 4.7. Since Assumption R includes the assumptions
made in Theorem 4.3, we obtain (4.3) and (4.4). Furthermore, recall that the proofs
of Theorems 4.3 and 3.1 show that the probability P" of having a dataset D € X"

satisfying the assumptions of Theorem 2.9 is not less than 1 — e~¢. For such D,
Lemma 6.1 is applicable, and hence we obtain

1w(B1(D) & AY) + 1(B2(D) & A3)
< 1M\ M) +p({p* <h < pj +e})
+2:“(A;1) 4o \ (A,}) +a) 8) +2V“(Af) 4o\ (Af; +s)_8)

= M(M:}*j—s \ Mpf)—é“) + M({O <h-— /O < pD - /0 + 8}) +4Cb0und8a,
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where in the second estimate we use that the clusters have an «-smooth boundary
by Assumption R. Moreover, the a-smooth boundaries also yield

+4 +4
M(M;)F;‘ffe \ Mp,’_‘)—s) = M((A;;‘fe) \ Mp};—s) + M((A%;;fa) \ Mp}‘)—z?)

=< M((A/l)g_g)+6 \Ap )+ M((A%B_S)H \AZ: )
< 2¢houndd”.
Finally, by (4.4) and the flatness exponent ¢+ from Assumption R, we find
1({0<h—p* <ph—p*+e}) < (craloh — 0" +¢))" < ((t/ceep) +7¢)".

Combining these three estimates, we then obtain the assertion. [J

PROOF OF COROLLARY 4.8. To apply Theorem 4.7 we check that ¢,, §,, and
7, satisfy the assumptions of Theorem 4.3 for ¢, := Inn and all sufficiently large
n. To this end, we observe that for ¢, := Inn and &, := 2cpart(gn + In(2cpart) —
dIné,,), we have

(20+09d)
i [T & 5(ln_n>g/ D iy -P /o2
osn 36¢n n

Using &, - (mT”)_Q/(ZQJrM) (Inlnn)?4/(4e+20d) 5 oo we then see that &, > e, for
all sufficiently large n. Moreover, the remaining conditions on &, §, and 1, from
Theorem 4.3 are clearly satisfied for all sufficiently large n, and hence we can
apply Theorem 4.7 for such n. This yields

M(Bl (D) A AT) + M(BZ(D) A A;) = 6Cboundazf + (Cﬂat(fn/gsep)lc + 7Cﬂalt<9n)19

with probability P" not smaller than 1 — 1/n for all sufficiently large n. Some
elementary calculations then show that there is a K with

Inn - (1n1nn)2)19g/(29+'9d)>
n

p" <D :1(B(D) & AY) + u(Ba(D) A A3) < K(

>1——
B n

for all sufficiently large n. Moreover, since we always have

w(Bi(D) & AY) + pu(Ba(D) & A%) <2u(X) < o0,
itis an easy exercise to suitably increase K such that the desired inequality actually
holds foralln > 1. O

PROOF OF THEOREM 5.1.  First observe that C2In(Inn) > 2(1 + ||A]ls0) guar-
antees that all 5, satisfy (3.3) for ¢’ := ¢ + In|A|. Consequently, Theorem 4.3,
namely (4.3) and (4.4), yields

P'({D e X" &5 < pps = P* = (1] 0/ Coep)” +685.0}) 2 1 —e7s 7
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for all 6 € A. Applying the union bound, we thus find
P (DeX": 650 <phs—p* <(T5,/Cep) + 0685 foralls e A)>=1—e"°.

Let us now consider a D € X" such that €5 , < 107),5 —p*< (rg/’n/gsep)" + 65,1
for all § € A. Then the definitions of p}‘), A and ep a [see (5.3)] imply

* * . * * . . 14 K
— = min — S (IIlll’l & , MIN(\7 C + 68 ]
Pp,A—P tain Pps — P SR ESn aeA(( s,n/_sep) S,n)

and ep.A =é&st . <Pp g — P =pp o — p"; thatis, we have shown the first
SA? 9D A 5

assertion. To show the remafning assertions, we first observe that a literal repetition
of the argument above, in which we only replace the use of (4.3) by that of (4.5),
yields

P'(DeX":ci1t5, +esn < pps— P <cats, +6ss, forallde A)=1—e"°.

Using (5.3) we then immediately obtain the second assertion, while considering
8 =87, A gives the third assertion. [

PROOF OF COROLLARY 5.2. Let us fix an n > 16. For later use we
note that this choice implies I,, C (0, 1]. Our first goal is to show that we
can apply Theorem 5.1 for sufficiently large n. To this end, we first ob-
serve that max A, = (Inlnn)~4 — 0 for n — oo, and hence we obtain A, C
(0, Snick] for all sufficiently large n. Analogously, max A, Inlnlnn — 0 implies
maxsea, (Ts,n/ gsep)" < (p** — p*)/18 for all sufficiently large n, and the definition
of 75, ensures minsea, s, > 2 (8) for all sufficiently large n. Let us now show
that eventually we also have maxseca, €50 < (0™ — p*)/18. To this end, note that
the derivative of g, : (0, c0) — R defined by

In(2cpart| Apln) — dIné
8n

gn(8) :=

is given by

d(1 4 Ineypar| A1) — d1n )
/ _ par
gn(8) - 61+dl’l )

and using cpyre > 1, we thus find that g, is monotonically decreasing on (0, 1] for
all n > 1. In addition, using |A,| < n we obtain
_ Inn - (Inlnn)2\ /4
gn(minly) = g, <— )
n
_ In(2cpart| Anln) +1Inn —Inlnn — 21nlninn
- Inn - (Inlnn)?
- 4Inn — Inlnn —2Inlnlnn
- Inn - (Inlnn)?
4
<
~ (Inlnn)?
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for all n > max{16, 2cpart}, and hence g,(min/,)Inlnn — 0 for n — oo. Since

the definition of &5, gives &5, = C,/cpart&n(8) Inlnn + %cpartgn (8), we can thus

conclude that

?eli’i gs.n < ;nax C,/cpartg&n(8) Inlnn + gnix Cpart&n (8)

< c\/cpartgn (min 1,) InIn7 + cpartgn (min 1) — 0

for n — oo. This ensures the desired maxseca, €50 < (0™ — p*)/18 for all suffi-
ciently large n. Combining this with our previous estimate, we find

max ((ts,n/Cgep) + €5.n) < (P™ = £7)/9
for all sufficiently large n, and thus we can apply Theorem 5.1 for such n.

Before we proceed, let us now fix an n > 16 and assume that without loss of gen-
erality that A, is of the form A = {61, ...,8,} with 6,1 < §; foralli =2,...,m
We write §p := min /,, and §,,,41 := max [,,. Our intermediate goal is to show that

(6.4) 8 — 81 <2n Y4, i=1,...,m+1.

To this end, we fix an i € {1, ..., m} and write § := (5 +8i—-1)/2 € I,. Since A,
is an n~/d-net of I,,, we then have §i—8<n “Vdors — $i—1<n —1/d and from
both, (6.4) follows. Moreover, to show (6.4) in the case i =m + 1, we ﬁrst observe
that there exists an 8; € A, with 8 — 8, <n~'/4 since A, is an n~"/4-net of I,.
Using our ordering of A,, we can assume without loss of generality that i = m,
which immediately implies (6.4).

We now prove the first assertion in the case x < oc. To this end, we write

* o
5 = :

<lnn . lnlnn>l/(2y"+d)
n

where we note that for sufficiently large n we have 6, € I,. In the follow-
ing we thus restrict our considerations to such n. Then there exists an index
i €fl,...,m+ 1} such that §;_1 <) < §;, and by (6.4) we conclude that
8 <8 <8+ 2n~1/4. Clearly, this yields

: K — mi YK K
8121& (cats,, +685.n) 5I21AI,11 (c28"“(Inlnlnn)“ + 6¢5.,)

< c28iyK(ln Inlnn)* + 6¢s; »
(6.5) e
< (85 420 VY (Inlninn)* + 6es,

Inn - (Inlnn)2\ 1/ Cre+d)
ot

+ 65, n
n
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K

for all sufficiently large n, where ¢ := Csep is the constant from Theorem 5.1.

Moreover, using |A,| < n and the monotonicity of g,, we further obtain

gn(8;) < gn((S,’f) _ ln(chart|An|l’l) — dlnS;j - ln(chart) +2Inn — dln(g;i:

(8;)dn - (8)4n
6.6) - 41nn
' ~ (89)dn
4 Inn 2yk/Qyk+d)
< ol —
~ (Inlnn)d/Cre+d) ( n )

for all sufficiently large n. By the relation between &5 , and g, (8), we then find

Inn-1In lnn)VK/(Zyx+d)

n

’

Inn >2yk/(2yk+d)

es;n <2C Cpart( + 3Cpart(7

and combining this estimate with (6.5) and Theorem 5.1, we obtain the first asser-
tion in the case ¥ < oc0.
Let us now consider the case k = 0. To this end, we fix an n such that

| A1/
=)
n Inlnn

satisfies (6, + 2n~ Y4 Inlnlnn < c..., and thus

sep’
(85 +2n7"Y) InInlnn/cg,)“ =0.
Since 8 € 1, there also exists anindex i € {1, ...,m+1} suchthat§; | <8* <§;,

and by (6.4) we again conclude 8* < §; < 8* 4 2n~!/9, Clearly, the latter implies

5221 ((To.n/Csep) + 6€5.0) < (8 InInlnn/cg.,) + 65,1

< (&5 +2n""9)  Inlnlnn/c,)" + 6¢s,.n
= 688,-,n

by our assumptions on n. Analogously to (6.6) we further find, for sufficiently
large n, that

3Inn —dIng, 3lnn+Inlnlnn - Inn-Inlnn
¢5dn  a(nlnn)~! ~ n ’
and by the relation between €5 , and g(8), we then find the assertion with the help
of Theorem 5.1.
Let us finally prove the second assertion. To this end we first recall that we

have already seen that for sufficiently large n, we can apply Theorem 5.1. Thus it
suffices to find a lower bound for the right-hand side of

81 (81) < gn(3y) <

6.7 min (c; T8, 4+ €s5.,) > min{l, c;}- min (=5, +&5.,),
(6.7) kAn( 175, 4 €5,n) = min{l, c1} SeAn(S’n 5.n)
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where c; is the constant appearing in Theorem 5.1. Now, for n > 16, we have

I, C (0, 1], and thus we find § € (0, 1] for all § € A,,. For sufficiently large n this
yields

min (ré‘n +&5.0)

SeN,
. 2
= min (87”‘(ln Inlnn)“ + C,/cpartgn (8) Inlnn + gcpartg,, (5))
€A,
> min (8"* + C,/ 8)Inl
= (SrglAr,l,( + Cpal’tgn( )In nn)

- min <5W . C\/cpartlnn . lnlnn>

T SeA, §dn
~ min <8VK+C cpartlnn-lnlnn>.
~ 5e(0,1] 89n

An elementary application of calculus then yields the assertion. [

PROOF OF COROLLARY 5.3. As in the proof of Corollary 4.8 it suffices to
show the assertion for sufficiently large n. Now, we have seen in the proof of
Corollary 5.2 that for sufficiently large n, Inequality (5.4) follows from the fact
that the procedure satisfies the assumptions of Theorem 5.1 for such n and ¢ :=
Inn. Consequently, for sufficiently large #, the probability P" of having a data set
D € X" satistying both (5.4) and the third inequality of Theorem 5.1 is not less
than 1 — 1/n. Let us fix such a D. Then we have

—(Inn - (Inlnn)?\V*/@Gre+d)
(68)  c1Th atEpa<pha —pF< K(f) .
Moreover, an elementary estimate yields

c1tp.a +ep,a =min{1/7, cicep) - ((Tn,a/csep)” +7eD.A),

and setting ¢ := min{1/7, c; g’s‘ep}, we hence obtain

K _1~=(Inn- (Inlnn)2\VK/@retd)
(6.9) (Tp,a/Csep)” +TeDA =cC K(f) '

In addition, for sufficiently large », inequality (6.8) implies
Inn - (1n1nn)2>1/ @yerd)

6.10) Sha<thh< (4z)l/w(6gsep)1/y( ;

Now we have already seen in the proofs of Theorem 5.1 and Corollary 5.2 that
for sufficiently large n, the assumptions on §, &5 5, s(}"’n, Tu, ¢ = Inn and n of

Theorem 4.3 are satisfied for all § € A, simultaneously. We can thus combine
(6.9) and (6.10) with Theorem 4.7 to obtain the assertion. [
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SUPPLEMENTARY MATERIAL

Supplement to “Fully adaptive density-based clustering” (DOI: 10.1214/15-
AOS1331SUPP; .pdf). We provide two appendices A and B. In Appendix A, sev-
eral auxiliary results, which are partially taken from [24], are presented, and the
assumptions made in the paper are discussed in more detail. In Appendix B, we
present a couple of two-dimensional examples that show that the assumptions im-
posed in the paper are not only met by many discontinuous densities, but also by
many continuous densities.
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