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EXTREMAL CUTS OF SPARSE RANDOM GRAPHS

BY AMIR DEMBO1, ANDREA MONTANARI2 AND SUBHABRATA SEN3

Stanford University

For Erdős–Rényi random graphs with average degree γ , and uniformly
random γ -regular graph on n vertices, we prove that with high proba-
bility the size of both the Max-Cut and maximum bisection are n(

γ
4 +

P∗
√

γ
4 + o(

√
γ )) + o(n) while the size of the minimum bisection is n(

γ
4 −

P∗
√

γ
4 + o(

√
γ )) + o(n). Our derivation relates the free energy of the

anti-ferromagnetic Ising model on such graphs to that of the Sherrington–
Kirkpatrick model, with P∗ ≈ 0.7632 standing for the ground state energy of
the latter, expressed analytically via Parisi’s formula.

1. Introduction. Given a graph G = (V ,E), a bisection of G is a partition of
its vertex set V = V1 ∪V2 such that the two parts have the same cardinality (if |V | is
even) or differ by one vertex (if |V | is odd). The cut size of any partition is defined
as the number of edges (i, j) ∈ E such that i ∈ V1, and j ∈ V2. The minimum
(maximum) bisection of G is defined as the bisection with the smallest (largest)
size and we will denote this size by mcut(G) [respectively MCUT(G)]. The related
Max-Cut problem seeks to partition the vertices into two parts such that the cut
size is maximized. We will denote the size of the Max-Cut by MaxCut(G). The
study of these features is fundamental in combinatorics and theoretical computer
science. These properties are also critical for a number of practical applications.
For example, minimum bisection is relevant for a number of graph layout and
embedding problems [14]. For practical applications of Max-Cut, see [41]. On the
other hand, it is hard to even approximate these quantities in polynomial time (see,
for instance [16, 25, 26, 31]).

The average case analysis of these features is also of considerable interest. For
example, the study of random graph bisections is motivated by the desire to justify
and understand various graph partitioning heuristics. Problem instances are usually
chosen from the Erdős–Rényi and uniformly random regular graph ensembles. We
recall that an Erdős–Rényi random graph G(n,m) on n vertices with m edges is a
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graph formed by choosing m edges uniformly at random among all possible edges.
A γ -regular random graph on n-vertices GReg(n, γ ) is a graph drawn uniformly
from the set of all graphs on n-vertices where every vertex has degree γ (provided
γ n is even). See [6, 27, 29] for detailed analyses of these graph ensembles.

Both min-bisection and Max-Cut undergo phase transitions on the Erdős–Rényi
graph G(n, [γ n]). For γ < log 2, the largest component has less than n/2 ver-
tices and minimum bisection is O(1) asymptotically as n → ∞ while above this
threshold, the largest component has size greater than n/2 and min-bisection is
�(n) [33]. Similarly, Max-Cut exhibits a phase transition at γ = 1/2. The differ-
ence between the number of edges and Max-Cut size is �(1) for γ < 1/2, while
it is �(n) when γ > 1/2 [10]. The distribution of the Max-Cut size in the critical
scaling window was determined in [12]. In this paper, we work in the γ → ∞
regime, so that both min-bisection and Max-Cut are �(n) asymptotically.

Diverse techniques have been employed in the analysis of minimum and max-
imum bisection for random graph ensembles. For example, [5] used the Azuma–
Hoeffding inequality to establish that

γ

4
−

√
γ log 2

4
≤ 1

n
mcut

(
GReg(n, γ )

) ≤ γ

4
+

√
γ log 2

4
.

Spectral relaxation based approaches can also be used to bound these quantities.
These approaches observe that the minimum and maximum bisection problem can
be written as optimization problems over variables σi ∈ {−1,+1} associated to
the vertices of the graph. By relaxing the integrality constraint to an L2 constraint
the resulting problem can be solved through spectral methods. For instance, the
minimum bisection is bounded as follows [here �n ⊆ {−1,+1}n is the set of (±1)-
vectors with

∑n
i=1 σi = 0, assuming for simplicity n even]

mcut(G) = min
σ∈�n

{
1

4

∑
(i,j)∈E

(σi − σj )
2
}

(1.1)

= 1

2
min
σ∈�n

{
σ · (LGσ)

} ≥ 1

2
λ2(LG).

Here, LG is the Laplacian of G, with eigenvalues 0 = λ1(LG) ≤ λ2(LG) ≤
· · · ≤ λn(LG). For regular graphs, using the result of [19], this implies that
n−1mcut(GReg(n, γ )) ≥ γ

4 − √
γ − 1. However, for Erdős–Rényi graphs

λ2(LG) = o(1) vanishes with n [30] and this approach fails. A similar spectral
relaxation yields, for regular graphs, MCUT(GReg(n, γ ))/n ≤ γ

4 + √
γ − 1, but

fails for Erdős–Rényi graphs. Nontrivial spectral bounds on Erdős–Rényi graphs
can be derived, for instance, from [9, 17].

An alternative approach consists of analyzing algorithms that aim to minimize
(maximize) the cut size. This provides upper bounds on mcut(G) [respectively,
lower bounds on MCUT(G)]. For instance, [1] proved that all regular graphs have
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n−1mcut(G) ≤ γ
4 −

√
9γ

2048 for all n large enough (this method was further devel-
oped in [15]).

Similar results have been established for the max-cut problem on Erdős–Rényi
random graphs. The recent breakthrough paper [4] shows that there exists M(γ )

such that MaxCut(G(n, [γ n]))/n
p→ M(γ ) and following upon it, [21] proves that

M(γ ) ∈ [γ /2 + 0.47523
√

γ , γ /2 + 0.55909
√

γ ].
To summarize, the general flavor of these results is that if G is an Erdős–Rényi

or a random regular graph on n vertices with [γ n/2] edges, then mcut(G)/n =
γ /4 − �(

√
γ ) while MCUT(G)/n and MaxCut(G)/n behave asymptotically like

γ /4 +�(
√

γ ). In other words, the relative spread of cut widths around its average
is of order 1/

√
γ . Despite 30 years of research in combinatorics and random graph

theory, even the leading behavior of such a spread remained undetermined.
There are however detailed and intriguing predictions in statistical physics,

mainly based on the nonrigorous cavity method [35], which relate the behavior
of these features to that of mean field spin glasses. From a statistical physics per-
spective, determining the minimum (maximum) bisection is equivalent to find-
ing the ground state energy of the ferromagnetic (anti-ferromagnetic) Ising model,
constrained to have zero magnetization (see [40] and the references therein). Sim-
ilarly, the Max-Cut is naturally associated with the ground state energy of an anti-
ferromagnetic Ising model on the graph. The cavity method then suggests a sur-
prising conjecture [46] that, with high probability,

MCUT
(
GReg(n, γ )

) = MaxCut
(
GReg(n, γ )

) + o(n)

= nγ/2 − mcut
(
GReg(n, γ )

) + o(n).

The present paper bridges this gap, by partially confirming some of the physics
predictions and by providing estimates of these features which are sharp up to cor-
rections of order no(

√
γ ). Our estimates are expressed in terms of the celebrated

Parisi formula for the free-energy of the Sherrington Kirkpatrick spin glass, and
build on its recent proof by Talagrand. In a sense, these results explain the diffi-
culty encountered by classical combinatorics techniques in attacking this problem.
In doing so, we develop a new approach based on an interpolation technique from
the theory of mean field spin glasses [23, 24, 43]. So far this technique has been
used in combinatorics only to prove bounds [18]. We combine and extend these
ideas, crucially utilizing properties of both the Poisson and Gaussian distributions
to derive an asymptotically sharp estimate.

1.1. Our contribution. To state our results precisely, we proceed with a short
review of the Sherrington–Kirkpatrick (SK) model of spin glasses. This canonical
example of a mean field spin glass has been studied extensively by physicists [36],
and seen an explosion of activity in mathematics following Talagrand’s proof of
the Parisi formula, leading to better understanding of the SK model and its gener-
alizations (cf. the text [39] for an introduction to the subject).
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The SK model is a (random) probability distribution on the hyper-cube
{−1,+1}n which assigns mass proportional to exp(βH SK(σ )) to each “spin
configuration” σ ∈ {−1,+1}n. The parameter β > 0 is interpreted as the in-
verse temperature, with H SK(·) called the Hamiltonian of the model. The col-
lection {H SK(σ ) : σ ∈ {−1,+1}n} is a Gaussian process on {−1,+1}n with mean
E[H SK(σ )] = 0 and covariance E{H SK(σ )H SK(σ ′)} = 1

2n
(σ · σ ′)2. This process

is usually constructed by

H SK(σ ) = − 1√
2n

n∑
i,j=1

Jijσiσj ,(1.2)

with {Jij } being n2 independent standard Gaussian variables, and we are mostly
interested in the ground state energy of the SK model. That is, the expected (over
{Jij }) minimum (over σ ) of the Gaussian process H SK(σ ) introduced above.

DEFINITION 1.1. Let Dβ be the space of nondecreasing, right-continuous
nonnegative functions x : [0,1] → [0, β]. The Parisi functional at inverse tem-
perature β is the function Pβ : Dβ →R defined by

Pβ [x] = f (0,0;x) − 1

2

∫ 1

0
qx(q)dq,(1.3)

where f : [0,1]×R×Dβ →R, (q, y, x) 
→ f (q, y;x) is the unique weak solution
of the PDE with boundary condition

∂f

∂q
+ 1

2

∂2f

∂y2 + 1

2
x(q)

(
∂f

∂y

)2

= 0,

(1.4)
f (1, y;x) = (1/β) log

(
2 cosh(βy)

)
among all continuous functions f (q, y) such that ∂f

∂y
∈ L2([0,1] ×R).

The Parisi replica-symmetry-breaking prediction for the SK model is

P∗,β ≡ inf
{
Pβ[x] : x ∈Dβ

}
.(1.5)

We refer to [28], Proposition 7, for the uniqueness of such a solution of (1.4),
and to [3] for the strict convexity of x 
→ Pβ [x], which implies the existence of a
unique global minimizer of P∗,β . We are interested here in the zero-temperature
limit

P∗ ≡ lim
β→∞ P∗,β,(1.6)

which exists because the free energy density (and hence P∗,β , by [44]), is uni-
formly continuous in 1/β . It follows from the Parisi formula [44], that

lim
n→∞n−1

E

[
max

σ

{
H SK(σ )

}] = P∗.(1.7)
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The partial differential equation (1.4) can be solved numerically to high pre-
cision, resulting with the numerical evaluation of P∗ = 0.76321 ± 0.00003 ≈
0.763166726 [11, 42], whereas using the replica symmetric bound of [22], it is
possible to prove that P∗ ≤ √

2/π ≈ 0.797885.
We next introduce some additional notation necessary for stating our results.

Throughout the paper, O(·), o(·), and �(·) stands for the usual n → ∞ asymp-
totic, while Oγ (·), oγ (·) and �γ (·) are used to describe the γ → ∞ asymp-
totic regime. We say that a sequence of events An occurs with high probabil-
ity (w.h.p.) if P(An) → 1 as n → ∞. Finally, for random {Xn} and nonrandom
f : R+ →R

+, we say that Xn = oγ (f (γ )) w.h.p. as n → ∞ if there exists nonran-
dom g(γ ) = oγ (f (γ )) such that the sequence An = {|Xn| ≤ g(γ )} occurs w.h.p.
(as n → ∞).

Our first result provides estimates of the minimum and maximum bisection of
Erdős–Rényi random graphs in terms of the SK quantity P∗ of (1.6).

THEOREM 1.2. We have, w.h.p. as n → ∞, that

mcut(G(n, [γ n]))
n

= γ

2
− P∗

√
γ

2
+ oγ (

√
γ ),(1.8)

MCUT(G(n, [γ n]))
n

= γ

2
+ P∗

√
γ

2
+ oγ (

√
γ ).(1.9)

REMARK 1.3. Recall the Erdős–Rényi random graph GI(n,pn), where each
edge is independently included with probability pn. Since the number of edges in
GI(n,

2γ
n

) is concentrated around γ n, with fluctuations of O(n1/2+ε) w.h.p. for

any ε > 0, for the purpose of Theorem 1.2 the random graph GI(n,
2γ
n

) has the
same asymptotic behavior as G(n, [γ n]).

REMARK 1.4. The physics interpretation of Theorem 1.2 is that a zero-
magnetization constraint forces a ferromagnet on a random graph to be in a spin
glass phase. This phenomenon is expected to be generic for models on nona-
menable graphs (whose surface-to-volume ratio is bounded away from zero), in
staggering contrast with what happens on amenable graphs (e.g., regular lattices),
where such zero magnetization constraint leads to a phase separation.

We next outline the strategy for proving Theorem 1.2 (with the detailed proof
provided in Section 2). For graphs G = (V ,E), with vertex set V = [n] and n

even, we write σ ∈ �n if the assignment of binary variables σ = (σ1, . . . , σn),
σi ∈ {−1,+1} to V is such that

∑
i∈V σi = 0. We further define the Ising en-

ergy function HG(σ) = −∑
(i,j)∈E σiσj , and let U−(G) ≡ min{HG(σ) : σ ∈ �n},

U+(G) ≡ max{HG(σ) : σ ∈ �n}. It is then clear that

mcut(G) = 1
2 |E| + 1

2U−(G),
(1.10)

MCUT(G) = 1
2 |E| + 1

2U+(G).



EXTREMAL CUTS OF SPARSE RANDOM GRAPHS 1195

In statistical mechanics σ is referred to as a “spin configuration” and U−(G) [resp.,
U+(G)], its “ferromagnetic (anti-ferromagnetic) ground state energy.”

The expected cut size of a random partition is taken care of by the term 1
2 |E|,

whereas standard concentration inequalities imply that U+(G) and U−(G) are
tightly concentrated around their expectation when G is a sparse Erdős–Rényi
random graph. Therefore, it suffices to prove that as n → ∞ all limit points of
n−1

E[U±(G)] are within oγ (
√

γ ) of ±P∗
√

2γ . Doing so is the heart of the whole
argument, and it is achieved through the interpolation technique of [23, 24]. Intu-
itively, we replace the graph G by a complete graph with random edge weights
Jij /

√
n for Jij independent standard normal random variables, and prove that

the error induced on U±(G) by this replacement is bounded (in expectation) by
noγ (

√
γ ). Finally, we show that the maximum and minimum cut-width of such

weighted complete graph do not change much when optimizing over all partitions
σ ∈ {−1,+1}n instead of only over the balanced partitions σ ∈ �n. Now that the
equi-partition constraint has been relaxed, the problem has become equivalent to
determining the ground state energy of the SK spin glass model, which is solved
by taking the “zero temperature” limit of the Parisi formula (from [44]).

The next result extends Theorem 1.2 to γ -regular random graphs.

THEOREM 1.5. We have, w.h.p. as n → ∞, that

mcut(GReg(n, γ ))

n
= γ

4
− P∗

√
γ

4
+ oγ (

√
γ ),(1.11)

MCUT(GReg(n, γ ))

n
= γ

4
+ P∗

√
γ

4
+ oγ (

√
γ ).(1.12)

The average degree in an Erdős–Rényi graph G(n, [γ n]) is 2γ so Theorems 1.2
and 1.5 take the same form in terms of average degree. However, moving from
Erdős–Rényi graphs to regular random graphs having the same number of edges
is nontrivial, since the fluctuation of the degree of a typical vertex in an Erdős–
Rényi graph is �γ (

√
γ ). Hence, any coupling of these two graph models yield

about n
√

γ different edges, and merely bounding the difference in cut-size by the
number of different edges, results in the too large

√
γ spread. Instead, as detailed in

Section 3, our proof of Theorem 1.5 relies on a delicate construction, similar to that
in [20], which “embeds” an Erdős–Rényi graph of average degree slightly smaller
than γ , into a γ -regular random graph while establishing that the fluctuations in
the contribution of the additional edges is only noγ (

√
γ ). Our construction starts

with the γ -regular graph G1 and produces an Erdős–Rényi graph G2, “most” of
which is embedded within G1, whereas [20] go in the converse direction, starting
with G2 and producing G1 out of it.

Our next result, whose proof is provided in Section 4, shows that up to the first
order, the asymptotic of the Max-Cut matches that of the Max bisection for both
Erdős–Rényi and random regular graphs.
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THEOREM 1.6. (a) W.h.p. as n → ∞, we have

MaxCut(G(n, [γ n]))
n

= γ

2
+ P∗

√
γ

2
+ oγ (

√
γ ).

(b) W.h.p. as n → ∞, we have

MaxCut(GReg(n, γ ))

n
= γ

4
+ P∗

√
γ

4
+ oγ (

√
γ ).

1.2. Application to community detection. As a simple illustration of the po-
tential applications of our results, we consider the problem of detecting commu-
nities within the so-called “planted partition model,” or stochastic block model.
Given parameters a > b > 0 and even n, we denote by GI(n, a/n, b/n) the ran-
dom graph over vertex set [n], such that given a uniformly random balanced
partition [n] = V1 ∪ V2, edges (i, j) are independently present with probabil-
ity a/n when either both i, j ∈ V1 or both i, j ∈ V2, or alternatively present
with probability b/n if either i ∈ V1 and j ∈ V2, or vice versa. Given a random
graph G, the community detection problem requires us to determine whether the
null hypothesis H0 : G ∼ GI(n, (a + b)/(2n)) holds, or the alternative hypothesis
H1 : G ∼ GI(n, a/n, b/n) holds.

Under the alternative hypothesis, the cut size of the balanced partition (V1,V2)

concentrates tightly around nb/4. This suggests the optimization-based hypothesis
testing

Tcut(G; θ) =
{

0, if mcut(G) ≤ θ ,
1, otherwise,

(1.13)

and we have the following immediate consequence of Theorem 1.2.

COROLLARY 1.7. Let θn = (b/4) + εn with εn

√
n → ∞. Then, the test

Tcut(·; θn) succeeds w.h.p. as n → ∞, provided (a − b)2 ≥ 8P2∗(a + b)+ o(a + b).

Let us stress that we did not provide an efficient algorithm for computing Tcut

(but see [37] for related work that uses polynomially computable convex relax-
ations). By contrast, there exist polynomially computable tests that succeed w.h.p.
whenever (a − b)2 > 2(a + b) and no test can succeed below this threshold (see
[13, 34, 38]). Nevertheless, the test Tcut is so natural that its analysis is of indepen-
dent interest, and Corollary 1.7 implies that Tcut is sub-optimal by a factor of at
most 4P2∗ ≈ 2.33.

2. Interpolation: Proof of Theorem 1.2. The Erdős–Rényi random graph
G(n,m) considers a uniformly chosen element from among all simple (i.e., hav-
ing no loops or double edges), graphs of n vertices and m edges. For m = [γ n]
and γ bounded, such simple graph differs in only O(1) edges from the corre-
sponding multi-graph which makes a uniform choice while allowing for loops and
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multiple edges. Hence, the two models are equivalent for our purpose, and letting
G(n, [γ n]) denote hereafter the latter multi-graph, we note that it can be con-
structed also by sequentially introducing the [γ n] edges and independently sam-
pling their end-points from the uniform distribution on {1, . . . , n}. We further let
GPoiss

n,γ denote the Poissonized random multi-graph G(n,Nn) having the random
number of edges Nn ∼ Pois(γ n), independently of the choice of edges. Alterna-
tively, one constructs GPoiss

n,γ by generating for 1 ≤ i, j ≤ n the i.i.d. zij ∼ Pois(γ
n
)

and forms the multi-graph on n vertices by taking (zij + zji) as the multiplic-
ity of each edge (i, j), i �= j [ending with multiplicity z(i,j) ∼ Pois(2γ

n
) for edge

(i, j), i �= j and the multiplicity z(i,i) ∼ Pois(γ
n
) for each loop (i, i), where

{z(i,j), i < j, z(i,i)} are mutually independent]. By the tight concentration of the
Pois(γ n) law, it suffices to prove Theorem 1.2 for GPoiss

n,γ , and in this section we

always take for Gn a random multi-graph distributed as GPoiss
n,γ .

2.1. Spin models and free energy. A spin model is defined by the (possibly
random) Hamiltonian H : {−1,+1}n → R and in this paper we often consider
spin models constrained to have zero empirical magnetization, namely from the
set �n = {σ ∈ {−1,+1}n : ∑n

i=1 σi = 0}. The constrained partition function is then
Zn(β) = ∑

σ∈�n
e−βH(σ) with the corresponding constrained free energy density

φn(β) ≡ 1

n
E

[
logZn(β)

] = 1

n
E

[
log

{ ∑
σ∈�n

e−βH(σ)

}]
.(2.1)

The expectation in (2.1) is over the distribution of the function H(·) [i.e., over the
collection of random variables {H(σ)}]. Depending on the model under consider-
ation, the Hamiltonian (or the free energy) might depend on additional parameters
which we will indicate, with a slight abuse of notation, as additional arguments of
φn(·).

For such spin models, we also consider the expected ground state energy density

en = 1

n
E

[
min
σ∈�n

H(σ)
]
,(2.2)

which determines the large-β behavior of the free energy density. That is, φn(β) =
−βen + o(β). We analogously define the maximum energy

ên = 1

n
E

[
max
σ∈�n

H(σ)
]
,(2.3)

which governs the behavior of the free energy density as β → −∞. That is,
φn(β) = −βên + o(β) (in statistical mechanics it is more customary to change the
sign of the Hamiltonian in such a way that β is kept positive). The corresponding
Boltzmann measure on �n is

μβ,n(σ ) = 1

Zn(β)
exp

{−βH(σ)
}
.(2.4)
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A very important example of a spin model, that is crucial for our analysis is the SK
model having the Hamiltonian H SK(·) of (1.2) on {−1,+1}n and we also consider
that model constrained to �n (i.e., subject to zero magnetization constraint).

The second model we consider is the “dilute” ferromagnetic Ising model on
GPoiss

n,γ = (V ,E), corresponding to the Hamiltonian

HD
γ (σ ) = − ∑

(i,j)∈E

σiσj ,(2.5)

again restricted to σ ∈ �n. We use superscripts to indicate the model to which
various quantities refer. For instance φSK

n (β) denotes the constrained free energy
of the SK model, φD

n (β;γ ) is the constrained free energy of the Ising model on
GPoiss

n,γ , with analogous notations used for the ground state energies eSK
n and eD

n (γ ).
The first step in proving Theorem 1.2 is to show that mcut(Gn) and MCUT(Gn)

are concentrated around their expectations.

LEMMA 2.1. Fixing ε > 0, we have that

P
[∣∣mcut(Gn) −E

[
mcut(Gn)

]∣∣ > nε
] = O(1/n),

P
[∣∣MCUT(Gn) −E

[
MCUT(Gn)

]∣∣ > nε
] = O(1/n).

PROOF. Recall (1.10) that mcut(Gn) = 1
2 |En| + 1

2U−(Gn), with |En| = Nn ∼
Pois([γ n]). Therefore,

P
[∣∣mcut(Gn) −E

[
mcut(Gn)

]∣∣ > nε
]

≤ P
[∣∣U−(Gn) −E

[
U−(Gn)

]∣∣ > nε
] + P

[|Nn −ENn| > nε
]

≤ Var(U−(Gn))

n2ε2 + Var(Nn)

n2ε2

= Var(U−(Gn))

n2ε2 + O(1/n).

We complete the proof for mcut(Gn) by showing that Var(U−(Gn)) ≤ nγ . Indeed,
writing U−(Gn) = f (z) for z = {zij ,1 ≤ i, j ≤ n} and i.i.d. zij ∼ Pois(γ /n), we
let z(i,j) denote the vector formed when replacing zij in z by an i.i.d. copy z′

ij .

Clearly, |f (z) − f (z(i,j))| ≤ |zij − z′
ij |. Hence, by the Efron–Stein inequality [7],

Theorem 3.1,

Var
(
U−(Gn)

) ≤ 1

2

∑
i,j

E
[(

f (z) − f
(
z(i,j)))2] ≤ 1

2

∑
i,j

E
[(

zij − z′
ij

)2]
,

yielding the required bound [and the proof for MCUT(Gn) = 1
2Nn + 1

2U+(Gn)

proceeds along the same line of reasoning]. �
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Next, recall that eD
n = n−1

E[U−(Gn)] and êD
n = n−1

E[U+(Gn)] [see (2.2) and
(2.3), resp.], whereas |En| ∼ Pois(γ n) has expectation γ n. Hence, from the repre-
sentation (1.10) of mcut(Gn) and MCUT(Gn), we conclude that

1

n
E

[
mcut(Gn)

] = γ

2
+ 1

2
eD
n (γ ),

(2.6)
1

n
E

[
MCUT(Gn)

] = γ

2
+ 1

2
êD
n (γ ).

Combining (2.6) with Lemma 2.1, we establish Theorem 1.2, once we show that
as n → ∞,

eD
n (γ ) = −

√
2γ P∗ + oγ (

√
γ ) + o(1),(2.7)

êD
n (γ ) = +

√
2γ P∗ + oγ (

√
γ ) + o(1).(2.8)

Establishing (2.7) and (2.8) is the main step in proving Theorem 1.2, and the key
to it is the following proposition of independent interest.

PROPOSITION 2.2. There exist constants A1,A2 < ∞ independent of n, β

and γ such that ∣∣∣∣φD
n

(
β√
2γ

, γ

)
− φSK

n (β)

∣∣∣∣ ≤ A1
|β|3√

γ
+ A2

β4

γ
.(2.9)

We defer the proof of Proposition 2.2 to Section 2.2, where we also apply it
to deduce the next lemma, comparing the ground state energy of a dilute Ising
ferromagnet to that of the SK model, after both spin models have been constrained
to have zero magnetization.

LEMMA 2.3. There exist A = A(γ0) finite, such that for all γ ≥ γ0 and any n,∣∣∣∣eD
n (γ )√

2γ
− eSK

n

∣∣∣∣ ≤ Aγ −1/6,

∣∣∣∣ êD
n (γ )√

2γ
+ eSK

n

∣∣∣∣ ≤ Aγ −1/6.(2.10)

In view of Lemma 2.3, we get both (2.7) and (2.8) once we control the difference
between the ground state energies of the unconstrained and constrained to have
zero magnetization SK models. This is essentially established by the following
lemma (whose proof is provided in Section 2.3).

LEMMA 2.4. For any δ > 0, w.h.p. 0 ≤ USK
n − U

SK
n ≤ n1/2+δ , where

U
SK
n = min

σ∈{−1,+1}n
{
H SK(σ )

}
, USK

n = min
σ∈�n

{
H SK(σ )

}
.(2.11)



1200 A. DEMBO, A. MONTANARI AND S. SEN

Indeed, applying Borel’s concentration inequality for the maxima of Gaussian
random vectors (see [7], proof of Theorem 5.8), we have that for some c > 0, all n

and δ > 0,

P
[∣∣USK

n −E
[
U

SK
n

]∣∣ > nδ
] ≤ 2e−cnδ2

,(2.12)

P
[∣∣USK

n −E
[
USK

n

]∣∣ > nδ
] ≤ 2e−cnδ2

.(2.13)

Recall that eSK
n = n−1

E[USK
n ], whereas n−1

E[USK
n ] → −P∗ by (1.7). Conse-

quently, the bounds of (2.12), (2.13) coupled with Lemma 2.4 imply that eSK
n →

−P∗ as n → ∞. This, combined with Lemma 2.3 and (2.6), completes the proof
of Theorem 1.2.

2.2. The interpolation argument. We first deduce Lemma 2.3 out of Proposi-
tion 2.2. To this end, we use the inequalities of Lemma 2.5 relating the free energy
of a spin model to its ground state energy (these are special cases of general bounds
for models with at most cn configurations, but for the sake of completeness we in-
clude their proof).

LEMMA 2.5. The following inequalities hold for any n, β,γ > 0:∣∣∣∣eD
n (γ ) + 1

β
φD

n (β, γ )

∣∣∣∣ ≤ log 2

β
,

∣∣∣∣eSK
n + 1

β
φSK

n (β)

∣∣∣∣ ≤ log 2

β
.(2.14)

Further, for any n, β < 0, γ > 0,∣∣∣∣̂eD
n (γ ) + 1

β
φD

n (β, γ )

∣∣∣∣ ≤ log 2

|β| ,

∣∣∣∣̂eSK
n + 1

β
φSK

n (β)

∣∣∣∣ ≤ log 2

|β| .(2.15)

PROOF. Let Hn(σ) be a generic Hamiltonian for σ ∈ �n. One then easily
verifies that

∂

∂β

(
φn(β)

β

)
= − 1

nβ2E
[
S(μβ,n)

] ∈
[
− log 2

β2 ,0
]
,

for the Boltzman measure (2.4) and the nonnegative entropy functional S(μ) =
−∑

σ∈�n
μ(σ) logμ(σ) which is at most log |�n|. Further, comparing (2.1) and

(2.2) we see that β−1φn(β) → −en when β → ∞ (while n is fixed). Consequently,
for any β > 0, ∣∣∣∣en + φn(β)

β

∣∣∣∣ =
∣∣∣∣∫ ∞

β

∂

∂u

(
φn(u)

u

)
du

∣∣∣∣ ≤ log 2

β
.

We apply this inequality separately to the SK model and the diluted Ising model to
get the bounds of (2.14). We similarly deduce the bounds of (2.15) upon observing
that β−1φn(β) → −ên when β → −∞. �
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PROOF OF LEMMA 2.3. Clearly, for any n, β > 0 and γ > 0,∣∣∣∣eD
n (γ )√

2γ
− eSK

n

∣∣∣∣ ≤
∣∣∣∣ 1√

2γ
eD
n (γ ) + 1

β
φD

n

(
β√
2γ

, γ

)∣∣∣∣
+

∣∣∣∣ 1

β
φSK

n (β) − 1

β
φD

n

(
β√
2γ

, γ

)∣∣∣∣
+

∣∣∣∣eSK
n + 1

β
φSK

n (β)

∣∣∣∣.
In view of (2.14), the first and last terms on the RHS are bounded by (log 2)/β .
Setting β = γ 1/6, we deduce from Proposition 2.2 that the middle term on the
RHS is bounded by A1γ

−1/6 + A2γ
−1/2, yielding the first (left) bound in (2.10)

(for A = log 2 + A1 + A2γ
−1/3
0 ). In case β < 0, starting from∣∣∣∣ êD

n (γ )√
2γ

+ eSK
n

∣∣∣∣ ≤
∣∣∣∣ 1√

2γ
êD
n (γ ) + 1

β
φD

n

(
β√
2γ

, γ

)∣∣∣∣
+

∣∣∣∣ 1

β
φSK

n (β) − 1

β
φD

n

(
β√
2γ

, γ

)∣∣∣∣
+

∣∣∣∣eSK
n − 1

β
φSK

n (β)

∣∣∣∣,
and using (2.15), yields the other (right) bound in (2.10), recalling that with
{H SK

n (σ )} a zero mean Gaussian process, necessarily êSK
n = −eSK

n . �

PROOF OF PROPOSITION 2.2. For t ∈ [0,1] we consider the interpolating
Hamiltonian on �n

Hn(γ, t, σ ) := 1√
2γ

HD
γ (1−t)(σ ) + √

tH SK(σ ),(2.16)

denoting by Zn(β, γ, t), φn(β, γ, t) and μβ,n(·;γ, t), the partition function, free
energy density, and Boltzmann measure, respectively, for this interpolating Hamil-
tonian. Clearly, φn(β, γ,0) = φD

n (
β√
2γ

, γ ) and φn(β, γ,1) = φSK
n (β). Hence,∣∣∣∣φD

n

(
β√
2γ

, γ

)
− φSK

n (β)

∣∣∣∣ ≤
∫ 1

0

∣∣∣∣∂φn

∂t
(β, γ, t)

∣∣∣∣ dt

and it suffices to show that | ∂φn

∂t
| is bounded, uniformly over t ∈ [0,1] and n, by

the RHS of (2.9). To this end, associate with i.i.d. configurations {σ j , j ≥ 1} from
μβ,n(·;γ, t) and � ≥ 1, the multi-replica overlaps

Q� ≡ 1

n

n∑
i=1

(
�∏

j=1

σ
j
i

)
.
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Then, denoting by 〈·〉t the expectation over such i.i.d. configurations {σ j , j ≥ 1},
and setting b := β/

√
2γ , it is a simple exercise in spin glass theory (see e.g., [18]),

to explicitly express the relevant derivatives as

∂φn

∂t
(β, γ, t) =

(
∂φn

∂t

)
SK

+
(

∂φn

∂t

)
D
,

(
∂φn

∂t

)
SK

= β2

4

(
1 −E

[〈
Q2

2
〉
t

])
,(2.17)

(
∂φn

∂t

)
D

= −γ log(coshb) + γ

∞∑
�=1

(−1)�

�
(tanhb)�E

[〈
Q2

�

〉
t

]
.(2.18)

For the reader’s convenience, we detail the derivation of (2.17) and (2.18) in Sec-
tion 2.4, and note in passing that the expressions on their RHS resemble the deriva-
tives of the interpolating free energies obtained in the Gaussian and dilute spin
glass models, respectively (see [23, 24]).

Now observe that |Q�| ≤ 1 for all � ≥ 2 and Q1 = 0 on �n, hence∣∣∣∣∂φn

∂t
(β, γ, t)

∣∣∣∣ ≤ γ
∣∣log(coshb) − b2∣∣ + γ

2

∣∣(tanhb)2 − b2∣∣
+ γ

∞∑
�=3

1

�
| tanhb|�.

The required uniform bound on | ∂φn

∂t
| is thus a direct consequence of the elemen-

tary inequalities ∣∣log coshx − 1
2x2∣∣ ≤ C1x

4,
∣∣y2 − x2∣∣ ≤ C2x

4,∣∣− log(1 − y) − y − 1
2y2∣∣ ≤ C3|x|3,

which hold for some finite C1, C2, C3 and any y = | tanhx|. �

2.3. Proof of Lemma 2.4. Recall that H SK(σ ) = − 1
2
√

n
σT J̃σ where J̃ =

{J̃ij = (Jij + Jji)/
√

2 : 1 ≤ i, j ≤ n} is a GOE matrix. Since {J̃ii} do not af-

fect USK
n − U

SK
n , we further set all diagonal entries of J̃ to zero. By symme-

try of the Hamiltonian H SK(·), the configuration σ� that achieves the uncon-

strained ground state energy H SK(σ �) = U
SK
n is uniformly random in {−1,+1}n.

Therefore, S�
n := 1

2
∑n

i=1 σ�
i is a centered Bin(n,1/2) random variable, and by the

LIL the events Bn = {|S�
n| ≤ bn} hold w.h.p. for bn := √

n logn. By definition

U
SK
n ≥ −n

2λmax(̃J/
√

n), hence the events Cn = {USK
n ≥ −2n} also hold w.h.p. by

the a.s. convergence of the largest eigenvalue λmax(·) for Wigner matrices (see [2],
Theorem 2.1.22). Consequently, hereafter our analysis is carried out on the event
{Bn ∩ Cn} and without loss of generality we can and shall further assume that
S�

n > 0 is integer (since n is even).
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Since σ� is a global minimizer of the quadratic form H SK(σ ) over the hyper-
cube {−1,1}n, necessarily σ�

i = sign(f �
i ) for

f �
i := 1

2
√

n

n∑
j=1

J̃ij σ
�
j .

Consequently, under the event Cn,

−2n ≤ U
SK
n = H SK(

σ�) = −
n∑

i=1

σ�
i f �

i = −
n∑

i=1

∣∣f �
i

∣∣,
hence R� := {i ∈ [n] : |f �

i | ≤ 6} is of size at least (2/3)n. Thus, for n ≥ 6bn, under
the event Bn ∩ Cn we can find a collection W� ⊆ {i ∈ R� : σ�

i = +1} of size S�
n

and let σ̃ ∈ �n be the configuration obtained by setting σ̃i = −σ�
i = −1 whenever

i ∈ W� while otherwise σ̃i = σ�
i . We obviously have then that

U
SK
n = H SK(

σ�) ≤ USK
n ≤ H SK(σ̃ ).(2.19)

Further, by our choices of σ̃ and W� ⊆ R�, also

H SK(σ̃ ) − H SK(
σ�) = 2√

n

∑
i∈W�

∑
j∈[n]\W�

J̃ij σ
�
j

(2.20)

≤ 4
∑

i∈W�

∣∣f �
i

∣∣ + 4√
n
�

(
W�) ≤ 24S�

n + 4√
n
�

(
W�),

where we define, for W ⊆ [n] the corresponding partial sum

�(W) := ∑
i,j∈W,i<j

|J̃ij |,

of
(|W |

2

)
i.i.d. variables J̃ij . Under the event Bn we have that S�

n ≤ bn ≤ yn :=
1

32n1/2+δ , so by (2.19) and (2.20) it suffices to show that w.h.p. {�(W�) ≤ xn} for
xn = √

nyn. To this end, note that by Markov’s inequality, for some c > 0, all n

and any fixed W of size |W | ≤ bn,

P
(
�(W) ≥ xn

) ≤ e−xnE
[
e|J̃ |]b2

n ≤ e−cxn .

With at most 2n such W ⊆ [n], we conclude that

P
(
sup

{
�(W) : W ⊂ [n], |W | ≤ bn

} ≤ xn

) → 1,

and in particular w.h.p. {�(W�) ≤ xn} (under Bn = {S�
n ≤ bn}).
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2.4. The interpolation derivatives. Recall the Hamiltonian Hn(γ, t, σ ) of
(2.16), the corresponding partition function Zn(β, γ, t) and free energy density
φn(β, γ, t). We view n−1 logZn(β, γ, t) := ψn(t, z,J), as a (complicated) func-
tion of the Gaussian couplings J = {Jij : 1 ≤ i, j ≤ n} and the Poisson multiplic-
ities z = {zij : 1 ≤ i, j ≤ n}. Denoting by p(t, ·) the Pois(γ (1 − t)/n) probability
mass function (PMF) of zij , yields the joint PMF p(t, z) = ∏

1≤i,j≤n p(t, zij ), and
the expression

φn(β, γ, t) = E
[
ψn(t, z,J)

] =
∫

ψn(t, z,J)p(t, z)dμ(z,J),(2.21)

where μ = (νN)n
2 ⊗ (νR)n

2
for the counting measure νN on N and the standard

Gaussian measure νR on R. Thus,

∂φn

∂t
(β, γ, t) =

∫
∂ψn

∂t
(t, z,J)p(t, z)dμ(z,J)

+
∫

ψn(t, z,J)
∂p
∂t

(t, z)dμ(z,J)(2.22)

:=
(

∂φn

∂t

)
SK

+
(

∂φn

∂t

)
D
.

Proceeding to verify (2.17), here ∂Hn

∂t
= 1

2
√

t
H SK [since HD

γ (1−t)(·) depends on t

only through the PMF of z]. Hence,

∂

∂t

[
logZn(β, γ, t)

] = −β

〈
∂Hn

∂t
(γ, t, σ )

〉
t

= − β

2
√

t

〈
H SK(σ )

〉
t ,

resulting with (
∂φn

∂t

)
SK

= −1

n

β

2
√

t
Ez

(
EJ

[〈
H SK(σ )

〉
t

])
.

Applying the Gaussian integration by parts (E[Jf (J ) − f ′(J )] = 0), we arrive at

EJ
[〈
H SK(σ )

〉
t

] = − 1√
2n

∑
i,j

EJ
[〈Jijσiσj 〉t ]

= − 1√
2n

∑
i,j

EJ

[
d〈σiσj 〉t

dJij

]

= −β
√

t

2n

∑
i,j

EJ
[〈
σ 2

i σ 2
j

〉
t − 〈σiσj 〉2

t

]
,

and we get (2.17) from 〈Q2
2〉t = n−2 ∑

i,j 〈σiσj 〉2
t (cf. [39], Lemma 1.1).
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Next, to establish (2.18) let hij (zij ) := E[ψn(t, z,J)|zij ], and note that the prod-
uct form of p(t, z) and μ(z,J), results with(

∂φn

∂t

)
D

=
n∑

i=1

n∑
j=1

∫
hij (z)

∂p

∂t
(t, z)dνN(z).(2.23)

The ij th integral on the RHS of (2.23) is merely the value of (−γ /n)g′(λ), where
g(λ) = E[f (z)] for f = hij and z ∼ Pois(λ) at λ = γ (1 − t)/n. Differentiating
the Pois(λ) PMF one has the identity g′(λ) = E[f (z + 1) − f (z)] (under mild
regularity conditions on f ). This crucial observation transforms (2.23) into(

∂φn

∂t

)
D

= −γ

n

n∑
i=1

n∑
j=1

E
[
hij (zij + 1) − hij (zij )

]
.(2.24)

Here, ψn(t, ·, ·) = n−1 logZn(β, γ, t) and adding one to zij corresponds to an extra
copy of the edge (i, j) in the dilute Ising model of Hamiltonian 1√

2γ
HD

γ (1−t)(σ ).

Consequently, setting b := β√
2γ

,

hij (zij + 1) − hij (zij )

= 1

n
E

[
log

〈
ebσiσj

〉
t |zij

]
(2.25)

= 1

n
E

[
log

{
cosh(b)

[
1 + tanh(b)〈σiσj 〉t ]}|zij

]
,

since eby = cosh(b)[1 + tanh(b)y] for the {−1,+1}-valued y = σiσj . Combining
(2.24) and (2.25), we obtain by the Taylor series for − log(1+x) (when −1 < x <

1), that(
∂φn

∂t

)
D

= − γ

n2

n∑
i=1

n∑
j=1

E
[
log

{
cosh(b)

[
1 + tanh(b)〈σiσj 〉t ]}]

= −γ log cosh(b) + γ

∞∑
�=1

(−1)�

�

(
tanh(b)

)�
E

[
1

n2

n∑
i,j=1

(〈σiσj 〉t )�
]

= −γ log cosh(b) + γ

∞∑
�=1

(−1)�

�

(
tanh(b)

)�
E

[〈
Q2

�

〉
t

]
,

as stated in (2.18).

3. Graph comparison: Proof of Theorem 1.5. The notion of uniform ran-
dom γ -regular graph refers to drawing such graph uniformly from among all γ -
regular simple graphs on n-vertices, provided, as we assume throughout, that nγ

is even. We instead denote by GReg(n, γ ) the more tractable configuration model,
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where each vertex is equipped with γ half-edges and a multi-graph (of possible
self-loops and multiple edges) is formed by a uniform random matching of the col-
lection of all γ n half-edges. Indeed, as mentioned in the context of Erdős–Rényi
graphs (see the start of Section 2), for γ bounded the matching in GReg(n, γ ) pro-
duces a simple graph with probability bounded away from zero, and conditional
on being simple this graph is uniformly random. Consequently, any property that
holds w.h.p. for the configuration model multi-graph GReg(n, γ ) must also hold
w.h.p. for the simple uniform random γ -regular graph.

Our strategy for proving Theorem 1.5 is to start from the random regular multi-
graph G1 ∼ GReg(n, γ ), deleting some edges and “rewiring” some of the existing
ones to obtain a new graph G2 which is approximately an Erdős–Rényi random
graph of nγ−/2 edges, where γ− := γ − √

γ logγ . Then, with Theorem 1.2 pro-
viding us with the typical behavior of extreme bisections of G2, the main challenge
is to control the effect of our edge transformations well enough to handle the min-
imum and maximum bisections of G1.

Specifically, drawing i.i.d. Xi ∼ Pois(γ−), we let Zi := (γ − Xi)+ and color
Zi of the γ half-edges of each vertex i ∈ [n] by BLUE (B). All other half-edges
are colored RED (R). Matching the half-edges uniformly, without regard to their
colors, we obtain a graph G1 ∼ GReg(n, γ ). Our coloring decomposes G1 to the
sub-graph GRR consisting of all the RR edges and GRB ∪ GBB having all other
edges, which we in turn decompose to the sub-graph GBB consisting of the BB
edges and GRB having all the multi-color edges (i.e., RB and BR). To transform
G1 to G2, we first delete all edges of GBB, disconnect all the multi-colored RB
edges and delete all the B half-edges that as a result became unmatched. We then
form a new sub-graph G̃RR by uniformly re-matching all the free R half-edges (in
case there is an odd number of such half-edges we leave one of them free as a
self-loop). The graph G2 has the vertex set [n] and E(G2) = E(GRR) ∪ E(G̃RR).

We represent by �n the collection of all bisections for a graph G having n

vertices, denoting by cutG(σ) the cut size for the partition between {i ∈ [n] : σi =
−1} and its complement. Then, for any σ ∈ �n we have

cutG1(σ ) = cutG2(σ ) − cutG̃RR
(σ ) + cutGRB∪GBB(σ ).(3.1)

We control the LHS of (3.1) by three key lemmas, starting with the following
consequence of Theorem 1.2, proved in Section 3.1 that gives sharp estimates on
the dominant part, namely cutG2(σ ).

LEMMA 3.1. We have, w.h.p. as n → ∞,

mcut(G2)

n
= γ−

4
− P∗

√
γ

4
+ oγ (

√
γ ),(3.2)

MCUT(G2)

n
= γ−

4
+ P∗

√
γ

4
+ oγ (

√
γ ).(3.3)
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Our next lemma, proved in Section 3.2, shows that while both the B half-edge
deletions and the R half-edge re-matching that follows, may affect the cut size, on
the average (with respect to our random matching), at the scale of interest to us
they cancel out each other.

LEMMA 3.2. Uniformly over all σ ∈ �n,

E
[
cutGRB(σ )

] = n

(√
γ logγ

2
+ Oγ (1)

)
+ o(n),(3.4)

E
[
cutG̃RR

(σ )
] = n

(√
γ logγ

4
+ Oγ (1)

)
+ o(n),(3.5)

E
[
cutGBB(σ )

] = n

(
(logγ )2

4
+ oγ (1)

)
+ o(n).(3.6)

The last result we need, is the following uniform bound on the fluctuations,
proved in Section 3.3, that allows us to control the effect of the edge rewiring on
the extremal bisections.

LEMMA 3.3. There exists C sufficiently large, independent of n and γ , such
that

P

[
sup

σ∈�n

∣∣cutA(σ ) −E
[
cutA(σ )

]∣∣ > Cnγ 1/4
√

logγ
]
= o(1),(3.7)

where A may be distributed as GRB ∪ GBB or G̃RR.

Turning to prove Theorem 1.5, we have from (3.1) and Lemma 3.3 that w.h.p.
as n → ∞,

sup
σ∈�n

∣∣cutG1(σ ) − cutG2(σ ) +E
[
cutG̃RR

(σ )
] −E

[
cutGRB∪GBB(σ )

]∣∣
(3.8)

= noγ (
√

γ ).

In view of Lemma 3.2, we deduce from (3.8) that w.h.p. as n → ∞,

sup
σ∈�n

∣∣∣∣cutG1(σ ) − cutG2(σ ) − n

√
γ logγ

4

∣∣∣∣ = noγ (
√

γ ) + o(n).

This in turn implies that w.h.p.

mcut(G1) = mcut(G2) + n

√
γ logγ

4
+ noγ (

√
γ ) + o(n),

MCUT(G1) = MCUT(G2) + n

√
γ logγ

4
+ noγ (

√
γ ) + o(n),

and Theorem 1.5 thus follows from Lemma 3.1 (recall that γ = γ− + √
γ logγ ).
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3.1. Proof of Lemma 3.1. Let Gint
n be the random graph generated from the

configuration model with i.i.d. Xi ∼ Pois(γ−) degrees. We denote by Gclon(n, γ−)

the sub-graph obtained by independently deleting each half-edge of Gint
n with

probability 1/n, before matching them. By the thinning property of the Pois law,
Gclon(n, γ−) has the law of the Poisson–Cloning model, where one first generates
i.i.d. ζi ∼ Pois(n−1

n
γ−), then draws a random graph from the configuration model

with ζi half-edges at vertex i. Recall [32] that the GI(n,
γ−
n

) and Gclon(n, γ−) mod-
els are mutually contiguous. Further, γ−/γ → 1, and so by Theorem 1.2, w.h.p.

mcut(Gclon(n, γ−))

n
= γ−

4
− P∗

√
γ

4
+ oγ (

√
γ ),(3.9)

MCUT(Gclon(n, γ−))

n
= γ−

4
+ P∗

√
γ

4
+ oγ (

√
γ ).(3.10)

Next, note that for any two graphs G1,G2 on n vertices,∣∣MCUT(G1) − MCUT(G2)
∣∣ ≤ ∣∣E(G1)�E(G2)

∣∣,∣∣mcut(G1) − mcut(G2)
∣∣ ≤ ∣∣E(G1)�E(G2)

∣∣.
W.h.p. our coupling has

∑
i (Xi − ζi) = O(1) half-edges from Gint

n not also in
Gclon(n, γ−). Hence, |E(Gint

n )�E(Gclon(n, γ−))| = O(1) and (3.9)–(3.10) extend
to mcut(Gint

n ) and MCUT(Gint
n ), respectively.

We proceed to couple Gint
n and G2 such that |E(Gint

n )�E(G2)| ≤ noγ (
√

γ )

w.h.p. thereby yielding the desired conclusion. To this end, G2 could have al-
ternatively been generated by one uniform random matching of only the X′

i :=
min{Xi, γ } RED half-edges that each vertex i has in G1 (for completeness, we
prove this statement in Lemma 3.4). We can thus couple G2 and Gint

n by first form-
ing Gint

n , then independently for i = 1, . . . , n color in RED uniformly at random X′
i

of the Xi half-edges of vertex i, with all remaining half-edges colored BROWN.
Now, to get G2 we delete all BB edges, disconnect all RB edges and delete the
resulting B half-edges, then uniformly re-match all the free R half edges (for
Lemma 3.4 applies again in this setting). The claimed bound on |E(Gint

n )�E(G2)|
follows since the total number of B half-edges in Gint

n is w.h.p. at most

2nE
(
X1 − X′

1
) = 2nE

[
(X1 − γ )+

] = nOγ (1),(3.11)

where the RHS follows by normal approximation to Pois(γ−) and our choice of
γ− = γ − √

γ logγ .

3.2. Proof of Lemma 3.2. We first prove (3.4), utilizing the fact that the distri-
bution of cutGRB(σ ) is the same for all σ ∈ �n. Hence,

E
[
cutGRB(σ )

] = E
[
Eσ�

[
cutGRB

(
σ�)]](3.12)

for σ� chosen uniformly from �n. Given the graph G1, we have

Eσ�

[
cutGRB

(
σ�)] = |ERB|

2(1 − 1/n)
,(3.13)
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where ERB denotes the set of RB edges in G1 excluding self-loops. Next, not-

ing that the expected number of edges in G1 excluding self-loops is n(n−1)γ 2

2(nγ−1)

and the probability that an edge connecting two distinct vertices is colored RB
is 2E[Z1]

γ
(1 − E[Z1]

γ
), we have

E
[|ERB|] = n(n − 1)γ 2

nγ − 1

E[Z1]
γ

(
1 − E[Z1]

γ

)
,(3.14)

where Z1 ∼ (γ − X1)+ and X1 ∼ Pois(γ−). We get (3.4) out of (3.12) and (3.14)
upon observing that

E[Z1] = γ −E[X1] +E
[
(γ − X1)−

]
(3.15)

= γ − γ− +E
[
(X1 − γ )+

] = √
γ logγ + Oγ (1)

[see (3.11) for the right-most identity]. By an analogous calculation, we find that
for all σ ∈ �n,

E
[
cutGBB(σ )

] = n(n − 1)γ 2

2(nγ − 1)

(
E[Z1]

γ

)2 1

2(1 − 1/n)

= n

[
1

4
(logγ )2 + oγ (1)

]
+ o(n).

Turning to (3.5), the same argument as in (3.12) implies that

E
[
cutG̃RR

(σ )
] = E

[
Eσ�

[
cutG̃RR

(
σ�)]],

for σ� chosen uniformly from �n. Further, similarly to (3.13) we find that given
the graph G̃RR,

Eσ�

[
cutG̃RR

(
σ�)] = |E2|

2(1 − 1/n)
,(3.16)

where E2 denotes the set of edges in G̃RR excluding self-loops and 1/(2(1−1/n))

is the probability that σ� induces different signs on the end points of a fixed edge.
Recall that |E(GRB)| − |ERB| and 1

2 |E(GRB)| − |E2| count the number of self-
loops in GRB and G̃RR, respectively. The expected number of such self-loops is
O(1) as n → ∞, hence E[|E2|] = 1

2E[|ERB|] + O(1), which upon comparing
(3.13) to (3.16) yields the required expression of (3.5).

3.3. Proof of Lemma 3.3. Starting with A = GRB ∪ GBB, clearly for any
xn > 0,

P

[
sup

σ∈�n

∣∣cutA(σ ) −E
[
cutA(σ )

]∣∣ ≥ 2xn

]
≤ p1(n) + p2(n),(3.17)
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where Z = (Z1, . . . ,Zn) count the number of BLUE half-edges at each vertex of
G1 and

p1(n) = P

[
sup

σ∈�n

∣∣cutA(σ ) − c(σ ,Z)
∣∣ ≥ xn

]
,(3.18)

p2(n) = P

[
sup

σ∈�n

∣∣c(σ ,Z) −E
[
cutA(σ )

]∣∣ ≥ xn

]
,(3.19)

for c(σ ,Z) := E[cutA(σ )|Z]. Letting Sn(Z) = ∑n
i=1 Zi , note that w.h.p. Z ∈ En

for En = {z : |Sn(z) − nE[Z1]| ≤ bn} and bn = √
n logn. Hence, by a union bound

over σ ∈ �n we get that

p1(n) ≤ 2n max
z∈En

max
σ∈�n

P
[∣∣cutA(σ ) − c(σ ,Z)

∣∣ ≥ xn|Z = z
] + o(1).(3.20)

We next apply Azuma–Hoeffding inequality to control the RHS of (3.20). To this
end, fixing z ∈ En and half-edge colors such that {Z = z}, we form G1 by sequen-
tially pairing a candidate half-edge to uniformly chosen second half-edge, using
first BLUE half-edges as candidates for the pairing (until all of them are exhausted).
Then, fixing σ ∈ �n, we consider Doob’s martingale Mk = E[cutA(σ )|Fk], for
the sigma-algebra Fk generated by all half-edge colors and the first k ≥ 0 edges
to have been paired. This martingale starts at M0 = c(σ ,Z), has differences
|Mk − Mk−1| uniformly bounded by some universal finite nonrandom constant
κ (independent on n, σ and z), while M� = cutA(σ ) for all � ≥ Sn(z) [since the
sub-graph A = GRB ∪ GBB is completely formed within our sequential matching
first Sn(z) steps]. The bounded difference property of Mk follows easily from the
“switching” argument in [45], Theorem 2.19. Thus, from Azuma–Hoeffding in-
equality we get that for z ∈ En,

P
[∣∣cutA(σ ) − c(σ ,Z)

∣∣ ≥ xn|Z = z
]

≤ 2 exp
(
− x2

n

8κ2Sn(z)

)
(3.21)

≤ 2 exp
(
− x2

n

8κ2(nE[Z1] + bn)

)
.

Recall (3.15) that E[Z1] = √
γ logγ + Oγ (1), hence upon choosing xn =

Cnγ 1/4√logγ for some C2 > 8κ2 log 3, we find that the RHS of (3.20) decays
to zero as n → ∞.

Turning to control p2(n), for i ∈ [n] and 1 ≤ j ≤ Zi , let Iij (σ ) = 1 if the j th B
half-edge of vertex i is matched to some half-edge from the opposite side of the
partition induced by σ , and Iij (σ ) = 0 otherwise. Then

cutA(σ ) =
n∑

i=1

Zi∑
j=1

Iij (σ ) − cutGBB(σ ).(3.22)
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For i such that σi = 1 and 1 ≤ j ≤ Zi we similarly set I ′
ij (σ ) = 1 if the j th B half-

edge of vertex i is matched to a B half-edge of a vertex from the opposite side, and
I ′
ij = 0 otherwise. Clearly, then

cutGBB(σ ) = ∑
{i:σi=1}

Zi∑
j=1

I ′
ij (σ ),

so setting S+
n (σ ,Z) := ∑

{i:σi=1} Zi , we have from (3.22) that

c(σ ,Z) =
n∑

i=1

Zi∑
j=1

P
[
Iij (σ ) = 1|Z] − ∑

{i:σi=1}

Zi∑
j=1

P
[
I ′
ij (σ ) = 1|Z]

(3.23)

= Sn(Z)
(nγ )/2

nγ − 1
− S+

n (σ ,Z)
Sn(Z) − S+

n (σ ,Z)

nγ − 1
.

Considering the extreme values of the RHS of (3.23) yields that for all σ ∈ �n,

1

2
Sn(Z)

(
1 − Sn(Z)

2nγ

)
≤ c(σ ,Z)

(
1 − 1

nγ

)
≤ 1

2
Sn(Z),

from which we deduce that

n
E[Z1]

2

(
1 − E[Z1]

2γ

)
+ o(n)

≤ inf
Z∈En

inf
σ∈�n

{
c(σ ,Z)

}
(3.24)

≤ sup
Z∈En

sup
σ∈�n

{
c(σ ,Z)

} ≤ n
E[Z1]

2
+ o(n).

Further, while proving Lemma 3.2 we have shown that

E
[
cutA(σ )

] = n
E[Z1]

2

nγ

(nγ − 1)

(
1 − E[Z1]

2γ

)
,

hence from (3.24) and (3.15) it follows that

sup
Z∈En

sup
σ∈�n

∣∣c(σ ,Z) −E
[
cutA(σ )

]∣∣ ≤ n
E[Z1]2

4γ
+ o(n) ≤ n(logγ )2 + o(n),

and since w.h.p. Z ∈ En, we conclude that p2(n) = o(1).
Next, we consider the graph A = G̃RR and proceeding in a similar manner we

have the decomposition (3.17), except for replacing in this case Z in (3.18)–(3.19)
by the count Y = (Y1, Y2, . . . , Yn) of the number of R half-edges at each vertex
at the initiation of the second step in forming G̃RR. The total number Sn(Y) of R
half-edges to be matched in that second step is less than the initial number Sn(Z) of
B half-edges. Consequently, if Z ∈ En then Y ∈ E+

n := {y : Sn(y) ≤ nE[Z1] + bn},
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and we have again a bound of the type (3.20) on p1(n), just taking here the maxi-
mum over y ∈ E+

n instead of z ∈ En. Further, we repeat the martingale construction
that resulted with the RHS of (3.21). Specifically, here F0 is the sigma-algebra of
Y, namely knowing the degrees of vertices in G̃RR, and we expose in Fk the first
k edges to have been paired en-route to the uniform matching that forms G̃RR.
As before the Doob’s martingale Mk = E[cutG̃RR

(σ )|Fk] has uniformly bounded
differences, starting at M0 = c(σ ,Y) and with the same choice of xn the desired
bound on p1(n) follows upon observing that M� = cutG̃RR

(σ ) for all � ≥ Sn(y),
and in particular when � = nE[Z1] + bn. Turning to deal with p2(n) in this con-
text, by the same reasoning that led to (3.23) we find that for S = Sn(y) ≥ 2 and
S+(σ ) = S+

n (σ ,y),

c(σ ,y) = E
[
cutG̃RR

(σ )|Y = y
]

(3.25)

= S+(σ )(S − S+(σ ))

S − 1
= S2 − (2S+(σ ) − S)2

4(S − 1)
.

While proving Lemma 3.2, we have shown that

cn := 4E
[
cutG̃RR

(σ )
] = n

[
E[Z1] + Oγ (1)

] + o(n)

and that cn is constant over σ ∈ �n. As cn ≥ 6xn for n and γ large, while |S2/(S −
1) − S| is uniformly bounded, we deduce from (3.25) that for any yn ≤ xn,{∣∣2S+(σ ) − S′∣∣ < xn

} ∩ {∣∣S − S′∣∣ < yn

} ∩ {∣∣S′ − cn

∣∣ < xn

}
�⇒ {∣∣4c(σ ,y) − cn

∣∣ < 4xn

}
.

Now, w.h.p. S′ = Sn(Z) is in In := [nE[Z1]−bn,nE[Z1]+bn] with |S′−cn| < xn,
and taking the union over σ ∈ �n, we get similarly to the derivation of (3.20) that

p2(n) ≤ 2n max
sn∈In

max
σ∈�n

P
[∣∣2S+(σ ) − sn

∣∣ ≥ xn, S > sn − yn|S′ = sn
]

+ max
sn∈In

P
(
S ≤ sn − yn|S′ = sn

) + o(1)(3.26)

=: p3(n) + p4(n) + o(1).

Starting with 2N = nγ half-edges of G1 of whom S′ = sn colored B (while all
others are colored R), the nonnegative number S′ − S of half-edges in GBB is
stochastically dominated by a Bin(sn, sn/(2N − sn)) random variable. For sn ∈ In

the latter Binomial has mean nE[Z1]2/(γ −E[Z1])+o(n), hence in view of (3.15),
p4(n) = o(1) provided yn ≥ 3n(logγ )2. For bounding p3(n), we assume w.l.o.g.
that σi = 1 iff i ≤ n/2, with S+(σ ) the total number of R half-edges for vertices i ≤
n/2, which are matched to B half-edges by the uniform matching in the first step
of forming G̃RR. Fixing the total number sn of B half-edges in G1, clearly S+(σ )

is stochastically decreasing in the number S′+ = ∑n/2
i=1 Zi of B half-edges among

vertices i ≤ n/2. Thus, it suffices to bound p3(n) in the extreme cases, of S′+ = 0,
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and of S′+ = sn. The uniform matching of the first step induces a sampling without
replacement with S+(σ ) denoting the number of marked balls when drawing a
sample of (random) size S ∈ (sn − yn, sn], uniformly without replacement from an
urn containing 2N − sn balls, of which either N or N − sn balls are marked. By
stochastic monotonicity, it suffices to consider the relevant tails of S+(σ ) − sn/2
only in the extreme cases of S = sn −yn and S = sn. As 2N/n = γ , sn/n � γ and
yn � xn, standard tail bounds for the hyper-geometric distribution [8] imply that
p3(n) = o(1) for γ sufficiently large, thereby completing the proof.

3.4. A pairing lemma. We include here, for completeness, the formal proof of
the fidelity of the two stage pairing procedure (which was used in our preceding
arguments).

LEMMA 3.4. Given 2� labeled balls of color R and 2m labeled balls of color
B for some m ≤ �, we get a uniform random pairing of the R balls by the following
two-step procedure:

(a) First match the 2(m + �) balls uniformly at random to obtain some RR, RB
and BB pairs.

(b) Remove all B balls and uniformly re-match the R balls which were left un-
matched due to the removal of the B balls.

PROOF. We use the notation (2k − 1)!! = (2k − 1)(2k − 3) · · ·1 and [m]k =
m(m − 1) · · · (m − k + 1) and let P denote the random pairing of the 2� R balls
by our two-step procedure [which first generated 2s pairs of type RB, (m − s) of
type BB and (� − s) of type RR]. We then have that for any fixed final pairing P

of the R balls,

P[P = P ] =
m∑

s=0

(
�

s

) [2m]2s(2(m − s) − 1)!!
(2m + 2� − 1)!!(2s − 1)!!

= �!(2m)!2�

(2m + 2�)!
m∑

s=0

22s

(
m + �

m − s, � − s,2s

)
= 1

(2� − 1)!! ,

where the last identity follows upon observing that
∑m

s=0 22s
( m+�
m−s,�−s,2s

) =(2(m+�)
2�

)
. �

4. From bisection to cut: Proof of Theorem 1.6. Let I±(σ ) := {i : σi =
±1} be the partition of [n] induced by σ and m(σ) := 1

2
∑n

i=1 σi the difference in
size of its two sides. Note that by the invariance of cutG(σ) under the symmetry
σ → −σ , it suffices to compare the cuts in S+

n = {σ ∈ {−1,+1}n : m(σ) ≥ 0} to
those in �n. To this end, define the map T : S+

n → �n where we flip the spins at
the subset V (σ) of smallest m(σ) indices within I+(σ ), thereby moving all those
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indices to I−(T (σ )). Let X(σ), Y(σ ) and Z(σ) count the number of edges from
V (σ) to I−(σ ), I−(T (σ )) and I+(T (σ )) = I+(σ ) \ V (σ), respectively. Fixing
0 < δ < 1/4, let

S� = {
σ ∈ S+

n : m(σ) ≤ γ −δn
}
.(4.1)

Then, for σ� ∈ S+
n such that MaxCut(Gn) = cutGn(σ

�) we have

MaxCut(Gn) = cutGn

(
T

(
σ�)) + X

(
σ�) − Z

(
σ�)

≤ MCUT(Gn) + Y
(
σ�) − Z

(
σ�).

Considering the union over σ ∈ S�, we get that

P
[
MaxCut(Gn) > MCUT(Gn) + �n

]
≤ 2n max

σ∈S�
P

[
Y(σ ) − Z(σ) > �n

] + P
[
σ� /∈ S�](4.2)

=: q1(n) + q2(n).

In proving part (a) of Theorem 1.6, we consider w.l.o.g. the Erdős–Rényi ran-
dom graphs Gn ∼ GI(n,

γ
n
) as in Remark 1.3. For fixed σ ∈ S+

n the independent
variables Y(σ) and Z(σ) are Bin(N ′, γ /n) and Bin(N,γ /n), respectively, for
N ′ ≤ N [specifically, N ′ = m(σ)(n − m(σ) − 1)/2 and N = m(σ)(n/2)]. Thus,
Y(σ) − Z(σ) is stochastically dominated by Z′(σ ) − Z(σ) and computing the
m.g.f. of the latter variable we get by Markov’s inequality that for any θ > 0,

P
[
Y(σ) − Z(σ) > �n

] ≤ e−2θ�n

[
1 + 4γ

n
sinh2(θ)

]N

.

Setting �n = nγ ψ/2 for some ψ ∈ (1 − δ,1) fixed and the maximal N = 1
2n2γ −δ

for σ ∈ S�, we deduce that

lim sup
n→∞

n−1 logP
[
Y(σ ) − Z(σ) > �n

]
(4.3)

≤ −2
[
θγ ψ/2 − γ 1−δ sinh2(θ)

] =: −J.

Since ψ > 1 − δ, we have that γ 1−δ sinh2(γ −ψ/2) → 0, so taking θ = γ −ψ/2 re-
sults with J > 1 for all γ large enough, in which case q1(n) = o(1) [see (4.2)]. As
for controlling q2(n), recall Theorem 1.2 that w.h.p. MaxCut(Gn) ≥ MCUT(Gn) ≥
nγ/4. Hence, considering the union over σ /∈ S� we have that

q2(n) ≤ 2n max
σ /∈S�

P

(
cutGn(σ ) ≥ nγ

4

)
.

For our Erdős–Rényi graphs cutGn(σ ) ∼ Rk := Bin(k(n − k),
γ
n
) with k = n

2 −
m(σ). Taking the maximal k� := n

2 − nγ −δ for σ /∈ S� and computing the relevant
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m.g.f. yields, similarly to (4.3), that for f1(θ) = eθ − 1, f2(θ) = eθ − θ − 1 and
any θ > 0,

lim sup
n→∞

n−1 logP
(
Rk� ≥ nγ

4

)
≤ γ

4
f2(θ) − γ 1−2δf1(θ) := −J ′.(4.4)

Since γf2(γ
−1/2) is uniformly bounded while γ 1−2δf1(γ

−1/2) = Oγ (γ 1/2−2δ)

diverges (due to our choice of δ < 1/4), it follows that for θ = γ −1/2 and γ large
enough, J ′ ≥ 1 hence q2(n) = o(1), thereby completing the proof.

The Erdős–Rényi nature of the graph Gn is only used for deriving the large
deviation bounds (4.3) and (4.4). While slightly more complicated, similar com-
putations apply also for GReg(n, γ ). Indeed, in this case Y(σ )−Z(σ) corresponds
to the sum of spins in a random sample of size γm(σ) taken without replacement
from a balanced population of γ n spins [so by standard tail estimates for the hyper-
geometric law, here too the LHS of (4.3) is at most −1 for any γ large enough].
Similarly, now Rk� counts the pairs formed by uniform matching of γ n items, be-
tween a fixed set of γ k� items and its complement [so by arguments similar to
those we used when proving Lemma 3.3, the LHS of (4.4) is again at most −1 for
large γ ]. With the rest of the proof unchanged, we omit its details.

Acknowledgment. We thank the anonymous referee for pointing out refer-
ence [20] and numerous comments, which helped improve the presentation of the
paper.
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