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MIXING TIMES FOR A CONSTRAINED ISING PROCESS ON
THE TORUS AT LOW DENSITY

BY NATESH S. PILLAI1 AND AARON SMITH2

Harvard University and University of Ottawa

We study a kinetically constrained Ising process (KCIP) associated with
a graph G and density parameter p; this process is an interacting particle
system with state space {0,1}G, the location of the particles. The number of
particles at stationarity follows the Binomial(|G|,p) distribution, conditioned
on having at least one particle. The “constraint” in the name of the process
refers to the rule that a vertex cannot change its state unless it has at least one
neighbour in state “1”. The KCIP has been proposed by statistical physicists
as a model for the glass transition, and more recently as a simple algorithm
for data storage in computer networks. In this note, we study the mixing time
of this process on the torus G = Z

d
L, d ≥ 3, in the low-density regime p = c

|G|
for arbitrary 0 < c < ∞; this regime is the subject of a conjecture of Aldous
and is natural in the context of computer networks. Our results provide a
counterexample to Aldous’ conjecture, suggest a natural modification of the
conjecture, and show that this modification is correct up to logarithmic fac-
tors. The methods developed in this paper also provide a strategy for tackling
Aldous’ conjecture for other graphs.
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1. Introduction. The kinetically constrained Ising process (KCIP) refers to a
class of interacting particle systems introduced by physicists in [13, 14] to study
the glass transition. Versions of this process have accrued other names since then,
including the kinetically constrained spin model, the east model [2] and the north-
east model [31]. These models have attracted a great deal of interest recently, in-
cluding applications to combinatorics, computer science and other areas; [6, 7]
have useful surveys of places that the KCIP has appeared outside of the physics
literature. Recent mathematical progress has included new bounds on the mixing
properties of the KCIP in various regimes [3–7, 21, 24]. For a more complete re-
view of recent progress on KCIP within the physics community, see the survey
[16] and the references therein.

In this note, we study a simple discrete-time version of this process, though
our main result applies, after suitable time scaling, to standard continuous-time
analogues as well. Fix a graph G = (V ,E) and a density parameter 0 < p < 1. For
a set S, we denote by Unif(S) the uniform distribution on S. Define a reversible
Markov chain {Xt }t∈N on the set of {0,1}-labellings of G as follows. To update
the chain Xt , choose

vt ∼ Unif(V ),
(1.1)

pt ∼ Unif
([0,1]).

If there exists u ∈ V such that (u, vt ) ∈ E and Xt [u] = 1, set Xt+1[vt ] = 1 if pt ≤
p and set Xt+1[vt ] = 0 if pt > p. If no such u ∈ V exists, set Xt+1[vt ] = Xt [vt ].
In either case, set Xt+1[w] = Xt [w] for all w ∈ V \ {vt }.

The state space for the KCIP {Xt }t∈N on a graph G is � = {0,1}G. Set |V | = n;
for general points x ∈ {0,1,2, . . .}G, write |x| =∑

v∈G 1x[v]�=0. Let π denote the
stationary distribution of {Xt }t∈N. For y ∈ �, this is given by

π(y) = 1

ZKCIP
p|y|(1 − p)n−|y|1|y|>0,(1.2)

where ZKCIP = 1 − (1 − p)n is the normalising constant [see formulas (4.1) and
(4.2) below]. Thus, π(y) is proportional to the Binomial(n,p) distribution on the
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number of nonzero labels in y ∈ �, conditional on having at least one nonzero
entry.

In this paper, we study a conjecture stated by David Aldous in [1] about the
mixing time of this process. To state Aldous’ conjecture, we recall some standard
notation that will be used throughout the paper. For sequences x = x(n), y = y(n)

indexed by N, we write y = O(x) for supn
|y(n)|
|x(n)| ≤ C < ∞ and y = o(x) for

lim supn→∞
|y(n)|
|x(n)| = 0.

We denote by L(X) the distribution of a random variable X. Recall that for
distributions μ,ν on a common measure space (�,A), the total variation distance
between μ and ν is given by

‖μ − ν‖TV = sup
A∈A

(
μ(A) − ν(A)

)
.

The mixing profile for the KCIP Markov chain {Xt }t∈N on � with stationary dis-
tribution π is given by

τ(ε) = inf
{
t > 0 : sup

X0=x∈�

∥∥L(Xt) − π
∥∥

TV < ε
}

for 0 < ε < 1. As usual, the mixing time is defined as τmix = τ(1
4). Aldous’ con-

jecture is [1].

CONJECTURE 1 (Aldous). The mixing time τmix of the constrained Ising pro-
cess with parameter p on graph G is O(p−1|E|τRW

mix ), where τRW
mix is the mixing

time of the 1
2 -lazy simple random walk on the graph G.

Although Conjecture 1 is quite general, it was made in the context of studying
the KCIP on a sequence of graphs {Gn}n∈N with associated density p = pn = c

|Gn|
for some fixed 0 < c < ∞ [1]. This scaling regime for pn is natural for studying
the low-temperature limit of the physical process and has been referred to as the
natural equilibrium scale [23]; however, its motivation in [1] is as a model for
data storage in computer networks rather than as a model for physical processes.
We point out that, although this conjecture seems to be supported in the high-
temperature (i.e., pn = p is constant) regime, substantial evidence (both theoretical
and numerical) has been collected since 2002 that the conjecture is not correct in
the low-temperature regime that we study. For instance, the qualitative results of
[19] suggest that this conjecture is not correct, though the authors in [19] do not
give a proof of this statement.

For a positive integer L ∈ N, let �(L,d) denote the d-dimensional torus with
n = Ld points; this is a Cayley graph with vertex set, generating set and edge set
given by

V = Z
d
L,

Gen = {
(1,0,0, . . . ,0), (0,1,0, . . . ,0), . . . , (0,0,0, . . . ,1)

}
,

E = {
(u, v) ∈ V × V : u − v ∈ ±Gen

}
.
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Set

n = ∣∣�(L,d)
∣∣= Ld.

In this paper, we study the KCIP on a sequence of graphs {�(L,d)}L∈N with
density

p = pn = c

n
(1.3)

for some fixed constant 0 < c < ∞ and fixed dimension d ≥ 3; see Section 9 for
a brief explanation of how our method applies when d and c are allowed to vary
with L.

The mixing time of the simple random walk on G = �(L,d) is known to be

τRW
mix ≈ n

2
d (see, e.g., Theorem 5.5 of [22]). Thus, Aldous’ conjecture for G =

�(L,d) suggests a mixing time of τmix = O(n2+ 2
d ). This is correct for d = 1, but

we show in Theorem 2 below that this conjecture is incorrect for d ≥ 3.
The following is our main result, in which we prove a modified version of Con-

jecture 1 for the torus.

THEOREM 2 (Mixing of the constrained Ising process on the torus). Fix 0 <

c < ∞ and d ≥ 3. For p = pn defined in (1.3), the mixing time of the KCIP on
�(L,d) satisfies

C1n
3 ≤ τmix ≤ C2n

3 log(n)

for some constants C1,C2 that may depend on c, d but are independent of n.

REMARK 1.1. We conjecture that the lower bound is tight, that is, τmix ≈ n3

for d ≥ 3. We also conjecture that τmix ≈ n3 log(n) for d = 2. These different
predictions come from the same source: in all dimensions, the main obstacle to
mixing in the KCIP can be viewed as the time it takes for “many” particles to
“collide” with each other. We make this intuition formal in Section 6 by relating
the KCIP to coalescing random walks. This formalization suggests that the number
of steps required for “many collisions” to occur in the KCIP should be very similar
to the consensus time for the voter model. After appropriate rescaling, the main
results in [9] say that this consensus time scales like n3 for d ≥ 3 but at the slightly
faster rate of n3 log(n) for d = 2.

In the statement of Theorem 2 and throughout the paper, we assume that both
the quantities 0 < c < ∞ and 3 ≤ d ∈ N are fixed; only n grows. In particular, in
Theorem 2 and all other calculations, bounds that are “uniform” are implied to be
uniform only in n and other explicitly mentioned variables; they will generally not
be uniform in c or d . Throughout the paper, we will denote by C a generic constant,
whose value may change from one occurrence to the next, but is independent of n.
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1.1. Relationship to previous work. Although the KCIP we study was intro-
duced in the physics literature [13, 14] and discussed in later work such as [1],
most recent mathematical work on mixing bounds for KCIPs has focused on dif-
ferent local constraints, which give rise to qualitatively different behaviour. Thus,
even if we studied the same regime, our results would not imply (or be implied
by) recent work in this area. However, our primary contribution to the literature
is the fact that our work is in a new regime: we obtain good mixing bounds on a
KCIP that apply in the regime of high dimension d ≥ 3, low density pn ≈ n−1,
and under the strong metric ‖ · ‖TV. All three of these distinctions can make the
problem harder than working in dimension d = 1, at high density pn = p, or in a
weaker metric.

We briefly review some recent work on the mixing properties of related con-
strained Ising processes [3–7, 21, 24], contrasting our work with specific papers.
Many previous results, such as [5, 7], deal primarily with the regime in which p is
a constant, independently of n. In this regime, many KCIPs mix relatively quickly
and the obstacles to mixing are quite different. Other results, such as [2, 15], study
the small-p regime, but only in one dimension. In particular, the methods em-
ployed in [2] completely break down for d > 1 and thus are not applicable to our
setting. The recent paper [6] seems most similar to ours. In [6], the authors study
the mixing of a related KCIP on �(L,d) at density p ≈ 1

n
and obtain results in

greater generality than ours; these results are also qualitatively similar. However,
the authors of [6] focus on bounding the relaxation time of the process, rather than
the mixing time; the bounds obtained in [6] cannot be used to obtain sharp esti-
mates on the mixing time. We call additional attention to [19]. Like our paper and
[6], the authors in [19] study the properties of the KCIP at density p ≈ 1

n
. Fur-

thermore, as in our paper, a key step of the analysis in [19] is the construction of
a mapping between the KCIP and a coalescent process. However, the details of
their proofs are quite different (they use a different coalescent process, and con-
struct an exact mapping between generators rather than an approximate coupling
of processes), as are their final results.

1.2. Outline for the paper. This paper is largely devoted to the proof of The-
orem 2. In Section 2, we set up notation and give a proof sketch. In Section 3, we
give a general upper bound on the mixing properties of Markov chains on finite
state spaces; the rest of the proof of the upper bound in Theorem 2 consists of esti-
mating the constants in this general bound. In Section 4, we prove the lower bound
in Theorem 2. Sections 5 to 7 contain most of the work required to prove the up-
per bound in Theorem 2. In Section 5, we study the behaviour of the KCIP at low
density by comparing it to the simple exclusion process. In Sections 6 and 7, we
detail the behaviour of the KCIP at high density by comparing it to the coalescent
process. In Section 8, we combine the results obtained in earlier sections and give
the proof of Theorem 2. Finally, in Section 9 we discuss related problems and the
extent to which our methods apply to them.
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2. A roadmap for the proof. We first explain the heuristic arguments that
make Conjecture 1 plausible and point out the key time scales involved. For the
reader’s convenience, we also give a proof sketch highlighting all the major steps
involved in the proof of Theorem 2.

2.1. Heuristics and key time scales. We discuss heuristics for the time scales
on which important changes to the KCIP occur.

1. If the initial state X0 has a large number of particles, the number of particles
remaining will generally be cut in half every O(n3) steps. This observation
is crucial to our proof. We show this bound using closely related bounds on
the “coalescence time” of a collection of random walkers on a graph (see [9]).
This bound implies that, after an initial transient period of at most O(n3 log(n))

steps, the number of particles in the KCIP will be O(1). This is the only place
we obtain an extra logn factor in our proof of the upper bound of Theorem 2.
We suspect that, in fact, this transient period is only of total length O(n3).

2. After the initial transient period, the KCIP generally has O(1) well-separated
particles. Every O(n2) steps, a particle will spawn a neighbour; one of these
neighbouring particles will be removed in O(n) steps. Ignoring the times at
which any particle has a neighbour, the O(1) well-separated particles will ap-
pear to be evolving according to an independent random walk on �(L,d),
slowed down by a factor of roughly n2; see Figure 1. Since all particles have
no neighbours at most times under the stationary measure, ignoring the times
at which any particle has a neighbour does not greatly influence one’s view of
the process.

3. After the initial transient period, and again ignoring the times at which any
particle has a neighbour, it often takes O(n3) steps to decrease the number of
particles by 1. To see this, note that the number of particles can only decrease
when two existing particles “collide.” Recall that the expected collision time for
two random walkers on the torus is O(n). By the above heuristic, the particles
in the KCIP are undergoing simple random walk that is slowed down by a
factor of n2; thus, the expected time to a collision is O(n3). It also turns out
that collisions “often” result in the number of particles being decreased.

FIG. 1. Simple Random Walk Heuristic: The middle configuration lasts for a very short time com-
pared to the outer configurations; ignoring the middle “transient” configuration, the KCIP particle
seems to be undergoing simple random walk.
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FIG. 2. Particle Creation Heuristic: The most common sequence of configurations leading from a
single particle to a pair of nonadjacent particles.

4. After the initial transient period, and again ignoring the times at which any
particle has a neighbour, it takes O(n3) steps to increase the number of particles
by 1. Indeed, increasing the number of nonadjacent particles by 1 requires an
intermediate time at which three particles are “touching” in �(L,d), where two
of them share the same neighbour. It takes O(n2) steps for a particle to spawn a
neighbouring particle, and whenever two particles are adjacent, the probability
of one of these two particles being removed before a third “touching” particle
is added is 1 − O(n−1). Thus, it takes O(n3) steps to obtain three “touching”
particles; see Figure 2 for a generic illustration of how this happens. It is easy
to check that a configuration with three “touching” particles often degenerates
into one with two nonadjacent particles after O(n) steps.

The basis of Conjecture 1 is heuristic (2) above: individual particles at distance
greater than one in the KCIP on �(L,d) tend to behave like independent random
walkers on �(L,d), slowed down by a factor of roughly n2. Thus, for density
p = c

n
, we might expect the KCIP to have roughly c particles during most times

and to behave quite similarly to the simple exclusion process (SEP) with c particles
(see [8, 17] for an introduction). Heuristics (1) and (4) explain why Conjecture 1
is not telling the whole story: heuristic (1) points out that it takes a long time to
go from n particles to O(1) particles, while heuristic (4) points out that it takes a
long time to go from 1 particle to 2 well-separated particles. The lower bound in
Theorem 2 is obtained by making heuristic (4) rigorous.

An obvious modification to Conjecture 1 is that the mixing time of the KCIP is
at most the maximum of these three time scales, and this is the approach we take in
this paper. There are essentially three obstacles to making this approach rigorous.
The first is to deal with the fact that we would like to compare a single KCIP
to many different SEPs—the SEP with c particles, but also the SEP with c − 1
particles, c + 1 particles, etc. Breaking apart the KCIP in this way is the subject
of Step 1 and Step 4 in the proof sketch below. The second is to complete the
comparison of the SEP to a suitably tamed version of the KCIP. This is the subject
of Step 2 below. The third is to ensure that a KCIP started with a large number
(�c) particles quickly enters a state with roughly c particles. This corresponds to
Step 3 below.
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2.2. Proof sketch. Our methods in some of the steps in the following out-
line are applicable for a generic graph G, and the others are specific to the torus
�(L,d). For 1 ≤ k ≤ n

2 , let �k ⊂ � be configurations of k particles for which no
two particles are adjacent, that is,

�k =
{
X ∈ {0,1}G : ∑

v∈V

X[v] = k,
∑

(u,v)∈E

X[u]X[v] = 0
}
.(2.1)

Also set �′ = � \⋃ n
2
k=1 �k . For each k ≤ n

2 , we will denote by τ
(k)
mix the mixing

time of Xt “restricted to” �k (our notion of “restriction” is defined more carefully
in Section 5). Define the quantity

Occk(ε,N) = sup
x∈�

inf

{
T ≥ 1 : X0 = x,P

(
T∑

s=0

1Xs∈�k
> N

)
> 1 − ε

}
.

For a fixed N and small ε, Occk(ε,N) denotes the first (random) time at which
the occupation measure of Xt in �k exceeds N with high (1 − ε) probability. For
x ∈ �k , define the exit time:

Lk(x) = inf
{
t : X0 = x,Xt ∈ ⋃

j �=k

�j

}
.(2.2)

Our proof strategy for the upper bound in Theorem 2 entails the following steps.

Step 1. We show that for a universal constant kmax = kmax(G, c) depending only
on the local structure of the graph G and the constant c from (1.3),

τmix = O

(
sup

1≤k≤kmax

τ
(k)
mix + sup

1≤k≤kmax

Occk

(
1

8kmax
,Cτ

(k)
mix

))
.

This is an immediate consequence of Lemma 3.1.
Step 2. By a comparison argument using the simple exclusion process, we show

that τ
(k)
mix = O((αSE

n,k)
−1n logn) uniformly in 1 ≤ k ≤ kmax, where αSE

n,k is the
log-Sobolev constant of the simple exclusion process on G with k particles.

For G = �(L,d), it is known that (αSE
n,k)

−1 = O(n1+ 2
d ) (see [32]), and thus

τ
(k)
mix = O(n2+ 2

d logn) uniformly in 1 ≤ k ≤ kmax for the KCIP on �(L,d). See
Lemma 5.1.

Step 3. For G = �(L,d), by coupling the KCIP to a “colored” version of the
coalescence process over short time periods, we show that the process

Vt = ∑
v∈V

Xt [v](2.3)

satisfies the “drift condition”

E[Vt+εn3 − Vt |Xt ] ≤ −δVt + C

for some C < ∞ and ε, δ > 0, all independent of n. See Theorem 6.1.
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Step 4. For G = �(L,d), by direct calculation and further comparison to a coa-
lescence process, we show that

inf
x∈�k

P
[
Lk(x) > C1n

3]> ε > 0

and

sup
x∈�k

P
[
Lk(x) < C2n

3]> ε > 0

for some constants C1,C2, ε > 0 independent of n. See Lemmas 7.3 and 7.6.
Step 5. Conclude from Step 3 and Step 4 that sup1≤k≤kmax

Occk(
1

8kmax
,Cτ

(k)
mix) =

O(n3 log(n)). See Lemma 8.1.

The lower bound is obtained in Theorem 2 by a direct computation of the ex-
pected time for the KCIP {Xt }t≥0 on �(L,d) to first have two nonadjacent parti-
cles when started from a single particle. Some of the steps above that are specific
to the torus �(L,d) can be extended for other graphs as well, as discussed in
Section 9.

3. General mixing bounds for decomposable Markov chains. In this sec-
tion, we give a general bound on the mixing time of decomposable Markov chains.
This result will be later applied to the KCIP Markov chain to achieve Step 1 in the
proof of Theorem 2. The bounds in this section apply to Markov chains other than
the KCIP, and thus are of independent interest; they are developed further and
applied to other examples in a companion paper [29].

Consider an aperiodic, irreducible and reversible Markov chain {Zt }t∈N with
transition matrix K and stationary distribution π̃ on a finite state space �. Our goal
is to bound the mixing time of {Zt }t∈N in terms of the mixing times of various re-
stricted and projected chains; these L1 mixing bounds are loosely analogous to the
L2 bounds in [20]. We begin by fixing n and writing the partition � =⊔n

k=1 �k .
For 1 ≤ k ≤ n, set ηk(0) = 0 and for s ∈ N, recursively define the sequences of
times

ηk(s) = inf
{
t > ηk(s − 1) : Zt ∈ �k

}
,

(3.1)
κk(s) = sup

{
u : ηk(u) ≤ s

}
.

The quantity κk can also be written as

κk(T ) =
T∑

t=1

1Zt∈�k
.(3.2)

Both η, κ depend on the initial condition Z1. We also define the associated re-
stricted processes {Z(k)

t }t∈N by

Z
(k)
t = Zηk(t).(3.3)
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This process is called the trace of {Zt }t∈N on �k . Since {Zt }t∈N is recurrent, we
have for all t ∈ N that ηk(t) < ∞ almost surely, and so Z

(k)
t is almost surely well-

defined for all t ∈ N. The process {Z(k)
t }t∈N is a Markov chain on �k ; denote by

Kk the associated transition kernel on �k . The kernel Kk inherits aperiodicity,
irreducibility and reversibility from K and its stationary distribution is given by
π̃k(A) = π̃(A)

π̃(�k)
for all A ⊂ �k . We denote by ϕk the mixing time of the kernel Kk .

Say that the chain {Zt }t≥0 is sufficiently lazy if either of the following two con-
ditions hold:

1. minx∈� K[x, x] ≥ 1
2 , or

2. there exists a set S ⊂ � and δ < 1
24 satisfying:

π(S) ≥ 1 − δ, min
x∈S

K[x, x] ≥ 1 − δ,

max
x /∈S

∑
y∈S

K[x, y] ≤ δ.

For 0 < a < 1
2 , define the universal constants ca and c′

a as in Theorem 1.1 of
[28]. The following simple bound on the mixing time of K combines Lemmas
3.1 and A.2 of [29].

LEMMA 3.1 (Basic mixing bound). Fix 0 < a < 1
2 and 1 − a < β < 1. Define

γ = min(1
2 ,

a+β−1
β

) > 0 and fix a collection of indices I ⊂ {1,2, . . . , n} satisfying∑
k∈I

π̃(�k) > β.

Set

T ≡ inf
{
T : inf

0<t<T
sup
k∈I

(
c′
γ ϕk

t
+ sup

z∈�

Pz

[
κk(T ) < t

])
<

1

4

}
.

Then the mixing time τZ
mix of any sufficiently lazy chain {Zt }t∈N satisfies

τZ
mix

ca

≤ 4

3
caT .

Thus, Lemma 3.1 relates the mixing time of a Markov chain to the mixing times
of its traces on subsets of the state space with reasonably large stationary measure
and the corresponding occupation times on those subsets. This is possible due to
the remarkable results obtained in [25, 28], where the authors obtain a bound on
the mixing times of reversible Markov chains in terms of hitting times.

REMARK 3.2. Since our mixing bounds in Section 5 below are obtained by
a bound on the log-Sobolev constant of various restricted chains, and our bound
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on occupation measure can easily be translated into a bound on the spectral gap
of an associated projected chain, the reader may ask why we do not use the well
developed theory in [20] for decomposable Markov chains to bound the mixing
of a Markov chain in terms of restricted and projected chains. One reason is con-
venience: unlike the bounds in [20], Lemma 3.1 requires only a bound on ϕk for
some k, not all k. Since the bounds in Section 5 apply only for k small, Lemma 3.1
allows us to avoid doing the substantial extra work of finding bounds on ϕk for k

large. The second, and more important, reason is that it is impossible to get an up-
per bound on the mixing time that is smaller than O(n4 log(n)) using bounds from
[20] and any partition of � similar to the partition that we use. The extra factor
of n comes primarily from the fact that the probability of moving from �k+1 to
�k within O(n2) steps is very far from uniform over starting points x ∈ �k+1. See
[29] for more examples illustrating this point.

4. Lower bound for the mixing time of KCIP on �(L,d). In this section,
we give a direct computation that leads to a lower bound on the mixing time of
the KCIP on any m-regular graph G = (V ,E) that contains no triangles. The torus
�(L,d) is 2d-regular and triangle-free, and this bound will immediately give the
lower bound in Theorem 2. Before proceeding, we verify that the stationary dis-
tribution of the KCIP is given by formula (1.2). If P[Xt+1 = y|Xt = x] > 0, then
either

P[Xt+1 = y|Xt = x] = p

1 − p
P[Xt+1 = x|Xt = y]

(4.1)

= π(y)

π(x)
P[Xt+1 = x|Xt = y]

or

P[Xt+1 = y|Xt = x] = 1 − p

p
P[Xt+1 = x|Xt = x]

(4.2)

= π(y)

π(x)
P[Xt+1 = x|Xt = y],

depending on whether
∑

v∈G x[v] <
∑

v∈G y[v] or not. Thus, the Markov chain
{Xt }t∈N satisfies the detailed balance equation with respect to π , and thus has π

as its stationary distribution.
We continue by setting notation that will be used throughout the remainder of

the paper. For u, v ∈ �(L,d), denote by |u − v| the smallest number of edges
needed to traverse from u to v via a connected path; this is the usual graph distance.
Let

B�(v) = {
w ∈ �(L,d) : |v − w| ≤ �

}
(4.3)

be the ball of radius � around v in the graph distance. For t ∈ N, let Gt be the
subgraph of G induced by the vertices {v ∈ G : Xt [v] = 1}, with vertices V (Gt)
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and edges E(Gt). For a vertex u ∈ �(L,d), define Compt (u) to be the collection
of vertices contained in the same connected component as u in Gt , define Compt to
be the collection of distinct connected components in Gt , and let Yt = |Compt | be
the number of connected components in Gt . Recall that Vt =∑

v∈G Xt [v] = |Gt |
is the number of vertices having state 1. For a KCIP started at time 0 with V0 = 1,
define the associated triple time by

ζtriple = inf{t : Vt ≥ 3}.(4.4)

LEMMA 4.1 (Component growth). Let G be an m-regular graph (m > 1) with
no triangles. Fix ε > 0 and assume that V0 = 1. Then

P

[
ζtriple < ε

n3

3c2m(m − 1)

]
= O(ε),(4.5)

where the implied constant is uniform over 0 < ε < ε0 sufficiently small and does
not depend on G or c.

PROOF. Define the matrix

K =

⎛⎜⎜⎜⎜⎝
1 − cm

n2

cm

n2 0

2

n

(
1 − c

n

)
1 − c(2m − 2)

n2 − 2

n

(
1 − c

n

)
c(2m − 2)

n2

0 0 1

⎞⎟⎟⎟⎟⎠ .(4.6)

It is straightforward to check that, for 0 ≤ s < ζtriple and a ∈ {1,2,3},
P[Vs+1 = a|Xs] = K[Vs, a].(4.7)

Most significantly, Xs appears on the right-hand side only through Vs . We jus-
tify this by considering the various cases. If Vs = 1, the transition probabili-
ties P[Vs+1 = i|Xs] depend only on the number of vertices labelled 1 at time s

(this is 1) and the number of vertices adjacent to this vertex (since our graph is
m-regular, this is m). If Vs = 2, the transition probabilities P[Vs+1 = i|Xs] depend
only on the number of vertices labelled 1 at time s (this is 2), the number of vertices
labelled 1 adjacent to other vertices labelled 1 (this is also 2) and the number of
vertices labelled 0 adjacent to vertices labelled 1 (since our graph is both m-regular
and triangle-free, this is 2m − 2).

By direct computation,

E1[ζtriple] = n2

cm
+E2[ζtriple],(

2

n

(
1 − c

n

)
+ c(2m − 2)

n2

)
E2[ζtriple] = 1 + 2

n

(
1 − c

n

)
E1[ζtriple],
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and so we obtain

E1[ζtriple] = n3

c2m(m − 1)
+ O

(
n2).(4.8)

Next, observe that for any T ∈ N,

P[ζtriple > 2T ] = P[ζtriple > 2T |ζtriple > T ]P[ζtriple > T ]
= E

[
P[ζtriple > 2T |ζtriple > T ]|XT , ζtriple > T

]
P[ζtriple > T ]

≤ P[ζtriple > T ]2.

By the same calculation, we have for any k,T ∈N that

P[ζtriple > kT ] ≤ P[ζtriple > T ]k.
It is also clear that P[ζtriple > t] is a monotonely decreasing function of t .

We now prove our result by contradiction. If we assume that P[ζtriple <

ε n3

3c2m(m−1)
] > 10ε for some n ∈ N, we would have

E[ζtriple] ≤
∞∑

k=0

P

[
ζtriple > k

⌈
ε

n3

3c2m(m − 1)

⌉]⌈
ε

n3

3c2m(m − 1)

⌉

≤
⌈
ε

n3

3c2m(m − 1)

⌉ ∞∑
k=0

P

[
ζtriple >

⌈
ε

n3

3c2m(m − 1)

⌉]k

≤
⌈
ε

n3

3c2m(m − 1)

⌉ ∞∑
k=0

(1 − 10ε)k

=
⌈
ε

n3

3c2m(m − 1)

⌉
1

10ε
.

Combining this with inequality (4.8), we have

n3

c2m(m − 1)
+ O

(
n2)≤ ⌈ε n3

3c2m(m − 1)

⌉
1

10ε
.

This inequality is clearly false for all sufficiently large n, and so the assumption
that P[ζtriple < ε n3

3c2m(m−1)
] > 10ε must also be false for all sufficiently large n.

This completes the proof. �

We now conclude with the lower bound in Theorem 2.

THEOREM 3 (Lower bound on mixing time). Fix an m-regular (m > 1) graph
G with no triangles. Then the KCIP on G with success probability p = c

n
has

mixing time satisfying

τmix ≥ C
1

Zc

n3

m(m − 1)
,
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where C does not depend on c or G and

Zc = 3c2 max(1,− log2((c + c2

2 ) e−c

1−e−c ))

(c + c2

2 ) e−c

1−e−c

> 0.

PROOF. Fix ε > 0, let T = �ε n3

3c2m(m−1)
� and define the set A = {x ∈ � :∑

v∈G x[v] ≤ 2}. Let X0 be such that V0 = 1. From Lemma 4.1 and equation (1.2)
for the stationary distribution π , we calculate:∥∥L(XT ) − π

∥∥
TV ≥ π

(
Ac)− P

[
XT ∈ Ac]

≥ π
(
Ac)− P[ζtriple < T ]

= 1 − n
c

n

(
1 − c

n

)n−1 1

1 − (1 − c
n
)n

− n(n − 1)

2

c2

n2

(
1 − c

n

)n−2 1

1 − (1 − c
n
)n

+ O(ε)

=
(
c + c2

2

)
e−c

1 − e−c

(
1 + o(1)

)+ O(ε).

Thus, for ε � 1
4(c + c2

2 ) e−c

1−e−c sufficiently small,

∥∥L(XT ) − π
∥∥

TV ≥ 1

2

(
c + c2

2

)
e−c

1 − e−c
> 0

uniformly in n > N(ε) sufficiently large. Since the mixing profile satisfies

τ

(
1

2

(
c + c2

2

)
e−c

1 − e−c

)
≤ max

(
1,− log2

(
2
(
c + c2

2

)
e−c

1 − e−c

))
τmix,

by Lemmas 4.11 and 4.12 of [22], this implies

τmix ≥ T

max(1,− log2(2(c + c2

2 ) e−c

1−e−c ))

for ε sufficiently small. This completes the proof. �

5. Mixing times of the trace of KCIP on �k . For the remainder of the paper,
we restrict our attention to the partition of the partition of the state space � for the

KCIP into the states {�k}�
n
2 �

k=1 defined in equation (2.1) and the remainder term

�′ = � \⋃� n
2 �

k=1 �k . In this section, we obtain bounds on the mixing times of the
trace of the KCIP on �k . As these trace walks mix substantially more quickly than
the KCIP Markov chain Xt on �, we do not need these mixing time bounds to be
tight.
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Fix 1 ≤ k ≤ n
2 , and let Qn,k be the kernel of the trace of {Xt }t∈N on �k [recall

that the trace of a Markov chain on a subset of its state space is defined in for-
mula (3.3)]. Denote by τn,k the mixing time of Qn,k . The key result of this section
is the following.

LEMMA 5.1 (Mixing time of restricted walks). With the notation as above,

τn,k ≤ Cn2+ 2
d log(n)

for some constant C = C(c, k, d) that does not depend on n.

We proceed by using comparison theory, a tool developed for proving mixing
bounds for a Markov chain by comparing its transition rates to a similar and better-
understood chain (see, e.g., [10] or [12] for an introduction to this method). We will
use the simple exclusion process (SE) on �(L,d) as the basis of our comparison
argument (see [8, 17] for an introduction to the simple exclusion process).

DEFINITION 5.2 (Simple exclusion process on �(L,d)). The simple exclu-
sion process {Zt }t∈N is a Markov chain on the finite state space

�SE
n,k ≡

{
Z ∈ {0,1}n :∑

i

Z[i] = k

}
.(5.1)

To update Zt , choose two adjacent vertices ut , vt ∈ �(L,d) uniformly at random
and set

Zt+1[ut ] = Zt [vt ],
Zt+1[vt ] = Zt [ut ]

and Zt+1[w] = Zt [w] for w /∈ {ut , vt }.

The approach in this section is to first note that the simple exclusion process
with k particles has good mixing properties (we use the results in [32], though
others would suffice for our purposes) and then use a comparison argument to
show that the mixing properties of the trace of the KCIP on �k cannot be much
worse. We use the simple exclusion process because it makes both parts of this
argument easy: it has already been carefully analyzed, and it is similar enough to
the trace of the KCIP that the comparison argument is short and involves only soft
arguments. It is likely that the conclusions we need can be achieved by comparison
to other processes on the torus.

5.1. Comparison of Markov chains using Dirichlet forms. Before stating the
main result of this section carefully, for the reader’s convenience, we recall some
relevant results for comparing Dirichlet forms. We use the bounds in [30], rather
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than the similar and simpler results from [10, 12], because we will compare chains
(KCIP and SE) with different state spaces; the bounds in [10, 12] cannot be used
in this situation.

DEFINITION 5.3 (Norms, forms and related functions). For a general Markov
chain on a finite state space X with kernel P and unique stationary distribution π ,
and any function f : X →R that is not identically 0, we respectively define the L2
norm, variance, Dirichlet form and entropy form as

‖f ‖2
2,π = ∑

x∈X

∣∣f (x)
∣∣2π(x),

Vπ(f ) = 1

2

∑
x,y∈X

∣∣f (x) − f (y)
∣∣2π(x)π(y),

(5.2)

EP (f,f ) = 1

2

∑
x,y∈X

∣∣f (x) − f (y)
∣∣2P(x, y)π(x),

Lπ(f ) = ∑
x∈X

∣∣f (x)
∣∣2 log

(
f (x)2

‖f ‖2
2,π

)
π(x).

Recall that the log-Sobolev constant of a Markov transition matrix P is given by

α(P ) = inf
f �=0

EP (f,f )

Lπ(f )
.(5.3)

DEFINITION 5.4 (Extensions). Let K,Q be the kernels of two 1
2 -lazy, aperi-

odic, irreducible, reversible Markov chains. Assume that K has stationary measure
μ on a state space �̂ while Q has stationary measure ν on a state space � ⊂ �̂.
Denote by f a function on �, and call a function f̂ on �̂ an extension of f if
f̂ (x) = f (x) for all x ∈ �.

Next, fix a family of probability measures {Px[y]}x∈�̂ on � that satisfy Px(·) =
δx(·) for x ∈ �. We will use only extensions of the form

f̂ (x) = ∑
y∈�

Px[y]f (y).(5.4)

We call extensions of the form (5.4) linear extensions.
Fix a linear extension. For each pair (x, y) ∈ �̂ with K(x,y) > 0, fix a joint

probability distribution Px,y on �×� satisfying
∑

a Px,y[a, b] = Py[b] for all b ∈
� and

∑
b Px,y[a, b] = Px[a] for all a ∈ �. This is a coupling of the distributions

Px,Py .

DEFINITION 5.5 (Paths, flows). Finally, for each a, b ∈ � with∑
x,y∈�̂ Px,y[a, b] > 0, we define a flow in � from a to b. To do so, call a se-

quence of vertices γ = [a = v0,a,b, v1,a,b, . . . , vk[γ ],a,b = b] a path from a to b if
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Q(vi,a,b, vi+1,a,b) > 0 for all 0 ≤ i < k[γ ]. Then let �a,b be the collection of all
paths from a to b. Call a function F from paths to [0,1] a flow if

∑
γ∈�a,b

F [γ ] = 1
for all a, b. For a path γ ∈ �a,b, we will label its initial and final vertices by
i(γ ) = a, o(γ ) = b.

The purpose of these definitions is to provide a way to compare the functionals
described in formula (5.2). If there exists a family of measures {Px}x∈�̂ so that the
associated linear extensions given by formula (5.4) satisfy

Lν(f ) ≤ CLLμ(f̂ ),

EK(f̂ , f̂ ) ≤ CEEQ(f,f ),

then the variational characterization of α given in formula (5.3) implies

α(Q) ≥ 1

CLCE
α(K).(5.5)

This is the motivation for Theorem 4 and Lemma 2 of [30]. Theorem 4 of [30]
may be restated as the following.

THEOREM 4 (Comparison of Dirichlet forms for general chains). Let K,Q be
the kernels of two reversible Markov chains. Assume that K has stationary mea-
sure μ on state space �̂ while Q has stationary measure ν on state space � ⊂ �̂.
Fix flow F , distributions Px and couplings Px,y as in the notation in Definition 5.5
above. Then for any function f on � and the linear extension f̂ of f on �̂ given
by formula (5.4),

EK(f̂ , f̂ ) ≤ AEQ(f,f ),

where

A = sup
Q(q,r)>0

1

Q(q, r)ν(q)

( ∑
γ�(q,r)

F [γ ]k[γ ]K(i(γ ), o(γ )
)
μ
(
i(γ )

)
+ 2

∑
γ�(q,r)

k[γ ]F [γ ] ∑
y∈�̂\�

Py

[
o(γ )

]
K
(
i(γ ), y

)
μ
(
i(γ )

)

+ ∑
γ�(q,r)

k[γ ]F [γ ] ∑
x,y∈�̂\�:K(x,y)>0

Px,y

[
i(γ ), o(γ )

]
K(x,y)μ(x)

)
.

Lemma 2 of [30] may be restated as the following.

LEMMA 5.6 (Comparison of variance and log-Sobolev constants). Let μ be a
measure on �̂ and ν be a measure on � ⊂ �̂. Let C̃ = supy∈�

ν(y)
μ(y)

. Then for any

function f on � and linear extension f̂ of f on �̂,

Vν(f ) ≤ C̃Vμ(f̂ ),

Lν(f ) ≤ C̃Lμ(f̂ ).
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5.2. Bounds on KCIP. Next, we prove our results. Fix 1 ≤ k ≤ n
2 and denote

by αn,k the log-Sobolev constant of Qn,k . Denote by QSE
n,k and αSE

n,k the kernel and
log-Sobolev constant associated with the simple exclusion process with k particles
on �(L,d). We then have the following.

LEMMA 5.7 (Comparison of log-Sobolev constants). There exist N =
N(c, k, d) < ∞ and 0 < C = C(c, k, d) < ∞ so that n > N implies

αn,k ≥ C
1

n
αSE

n,k.(5.6)

PROOF. Our proof consists of comparing a sequence of very similar Markov
chains, beginning with the trace of the KCIP and ending with the simple exclusion
process. The bulk of our argument goes through repeated application of Theo-
rem 4, Lemma 5.6 and inequality (5.5).

Recall that the state space of Qn,k is �n,k = �k as defined in formula (2.1),
while the state space of QSE

n,k is �SE
n,k as defined in formula (5.1). By the standard

“birthday problem” computation,

k∏
i=1

(
1 − (i − 1)

(2d + 1)

n

)
≤ |�n,k|

|�SE
n,k|

≤ 1.

Thus, for any fixed k ∈ N,

1 − o(1) ≤ |�n,k|
|�SE

n,k|
≤ 1(5.7)

as n goes to infinity. Since the stationary distributions πn,k and πSE
n,k of Qn,k and

QSE
n,k , respectively, are uniform on �n,k and �SE

n,k , respectively, inequality (5.7)
implies that

1 ≤ πn,k(x)

πSE
n,k(x)

≤ 1 + o(1)(5.8)

uniformly in x ∈ �n,k ⊂ �SE
n,k .

Next, we define a less-lazy version of Qn,k . Note that

Qn,k(x, x) ≥ 1 − 2cdk

n2 ,

and so for n sufficiently large we can define a less-lazy version QNL
n,k of Qn,k by

Qn,k =
(

1 − c

n

)
Id + c

n
QNL

n,k,
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where Id is the identity kernel and QNL
n,k is at least 1

2 -lazy itself. Since QNL
n,k is

simply a less lazy version of Qn,k , it is immediate that the associated Dirichlet
forms EQNL

n,k
and EQn,k

satisfy

EQn,k
(f, f ) ≥ c

n
EQNL

n,k
(f, f )

for all f : �n,k → R. Applying Lemma 5.6 to inequality (5.5), this bound implies
the following inequality for the log-Sobolev constant αNL

n,k of QNL
n,k :

αn,k ≥ c

n
αNL

n,k.(5.9)

Thus, to prove inequality (5.6) it is sufficient to relate QNL
n,k and QSE

n,k .

Next, we define QMH–SE
n,k to be the Metropolis–Hasting chain with proposal

chain equal to QSE
n,k and target measure πn,k = Unif(�n,k). If x �= y ∈ �n,k satisfy

QMH–SE
n,k (x, y) > 0, then x and y differ at exactly two vertices u, v, with x[v] =

y[u] = 0, x[u] = y[v] = 1. Let φ0 = 0 and inductively let φi+1 = inf{t > φi : Xt �=
Xφi

} be the successive times at which the KCIP changes; we calculate

QNL
n,k(x, y) ≥ n

c
Qn,k(x, y)

≥ n

c
P
[
Xφ1[v] = 1|X0 = x

]
P
[
Xφ2[u] = 0|X0 = x,Xφ1[v] = 1

]
≥ n

c

c

n2

1
n
(1 − c

n
)

1
n
(1 − c

n
) + 2cd(k+1)

n2

(5.10)

= 1

n

(
n − c

n − c + 2cd(k + 1)

)

≥ 1

2

(
n − c

n − c + 2cd(k + 1)

)
QMH–SE

n,k (x, y).

To see the second and third lines, consider starting at KCIP at X0 and calculating
the probability that Xφ1 is obtained from X0 by changing the label of v from 0 to
1, and that Xφ2 is obtained from Xφ1 by changing the label of u from 1 to 0; these

probabilities are at least c
n2 and

1
n
(1− c

n
)

1
n
(1− c

n
)+ 2cd(k+1)

n2
respectively. By the same short

argument immediately preceding inequality (5.9), inequality (5.10) implies that
for all n sufficiently large the log-Sobolev constant αMH–SE

n,k of QMH–SE
n,k satisfies

αNL
n,k ≥ 1

4
αMH–SE

n,k .(5.11)

In light of this inequality and inequality (5.9), to prove inequality (5.6) it is enough
to relate QMH–SE

n,k and QSE
n,k .
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We now give the main comparison argument, using Theorem 4. Using the nota-
tion of Theorem 4, we will compare kernels Q = QMH–SE

n,k and K = QSE
n,k on state

spaces � = �n,k and �̂ = �SE
n,k . Both of these kernels have stationary distributions

that are uniform on their respective state spaces. To define the flows, distributions
and couplings required by Theorem 4, we need slightly more notation. Define the
graphs GMH–SE

n,k and GSE
n,k to have vertices

V
(
GMH–SE

n,k

)= �n,k,

V
(
GSE

n,k

)= �SE
n,k

and edges

E
(
GMH–SE

n,k

)= {
(x, y) ∈ GMH–SE

n,k : QMH–SE
n,k (x, y) > 0

}
,

E
(
GSE

n,k

)= {
(x, y) ∈ GSE

n,k : QSE
n,k(x, y) > 0

}
.

We denote by dMH–SE and dSE the usual graph distances on GMH–SE
n,k and GSE

n,k ,
respectively. Next, define the distributions {Px}x∈�SE

n,k
on �n,k by Px[·] = δx(·) if

x ∈ �n,k , and

Px[·] = Unif
({

y ∈ �n,k : dSE(x, y) = min
z∈�n,k

dSE(x, z)
})

otherwise. We define the couplings {Px,y}x,y∈�SE
n,k,Q

SE
n,k(x,y)>0 to be the inde-

pendent couplings Px,y[a, b] = Px[a]Py[b]. Finally, for pairs (a, b) satisfying∑
x,y∈�SE

n,k,Q
SE
n,k(x,y)>0 Px,y[a, b] > 0, we define the flow F on �a,b to be uniform

on all minimum-length paths in GMH–SE from a to b.
We now show that the constant A in Theorem 4 that the above choices yield is

uniformly bounded in n. Recall that |�|
|�̂| = 1 + o(1) and QMH–SE(x1,y1)

QSE(x2,y2)
is either 0

or 1 when it is defined, and so the constant A can be bounded by

A = (
1 + o(1)

)
sup

Q(q,r)>0

( ∑
γ�(q,r)

F [γ ]k[γ ] + 2
∑

γ�(q,r)

k[γ ]F [γ ] ∑
y∈�̂\�

Py

[
o(γ )

]

+ ∑
γ�(q,r)

k[γ ]F [γ ] ∑
x,y∈�̂\�:K(x,y)>0

Px,y

[
i(γ ), o(γ )

])
.

To show that A is uniformly bounded in n, it is enough to check that all of the
probabilities, couplings and paths that we have defined are local in the sense that
any particular probability, coupling or path involve only points that are a bounded
distance from each other, uniformly in n. Since the details of the bounds are not
important to us, we give very loose bounds.
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Px is concentrated on points y with dSE(x, y) ≤ 2k2. Px,y is defined only on
pairs (x, y) satisfying dSE(x, y) = 1, and thus is supported on pairs (a, b) satisfy-
ing

dSE(a, b) ≤ 4k2 + 1.(5.12)

For x, y ∈ �n,k , let

Cx,y = max
{|u − v| : u, v ∈ �(L,d), x[u] + y[u] ≥ 1, x[v] + y[v] ≥ 1

}
be the maximum distance between any particles in x or y. For any 0 < C < ∞, let

RC,n = max
{
dMH–SE(x, y) : Cx,y ≤ C

}
.

Since GMH–SE is vertex-transitive and is connected for n sufficiently large, we
have for all n > N(C,k, d) sufficiently large that

RC,n ≤ RC

for some constant RC that does not depend on n. Thus, for all n > N(C,k, d)

sufficiently large and all x, y with Cx,y ≤ C,

dMH–SE(x, y) ≤ RC.(5.13)

If dSE(x, y) ≤ C, then there exist k vertices v1, . . . , vk ∈ �(L,d) that cover the
particles of x and y in the following sense:

{
v ∈ �(L,d) : x[v] + y[v] ≥ 1

}⊂
k⋃

i=1

B2C(vi).

By taking larger balls, this can be turned into a disjoint cover: there exist 1 ≤ m ≤ k

vertices u1, . . . , um so that

{
v ∈ �(L,d) : x[v] + y[v] ≥ 1

}⊂
m⋃

i=1

B3k(C+RC)(ui)

with B3k(C+RC)(ui) ∩ B3k(C+RC)(uj ) = ∅ for all i �= j . By the definition of
RC , no minimal-length path from x to y can have any particles outside of the
cover

⋃m
i=1 B3k(C+RC)(ui); thus, by inequality (5.13), for all x, y ∈ �n,k with

dSE(x, y) ≤ C we have that

dMH–SE(x, y) ≤ R3k(C+RC).

Combining this bound with inequality (5.12), we conclude that all paths γ with
F(γ ) > 0 have at most R3k(4k2+1+R4k2+1)

points. Since balls of radius � in the

graph �(L,d) have at most (2�+1)d vertices in them, balls of radius � in GMH–SE
n,k

have at most (2� + k)kd vertices in them. Thus, at most (2R3k(4k2+1+R4k2+1)
+

k)kd + k paths in GMH–SE
n,k with positive support can pass through any given edge.
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Most importantly, all of these bounds depend only on k and d; they are uniform in
n sufficiently large. Combining this observation with inequality (5.8) and applying
Theorem 4, this implies

EQSE
n,k

(f̂ , f̂ ) ≤ Ak,dEQMH–SE
n,k

(f, f )(5.14)

for some constant Ak,d that depends only on k and d . Thus, applying inequal-
ity (5.7) and Lemma 5.6 to inequality (5.5), we conclude that there exists some
constant C′

k,d so that

αMH–SE
n,k ≥ C′

k,dαSE
n,k.

Combining this bound with inequalities (5.9) and (5.11) completes the proof of
inequality (5.6). �

Finally, we prove Lemma 5.1:

PROOF OF LEMMA 5.1. Translating the main result of [32] into our discrete-
time setting, we have

αSE
n,k ≥ Cdn−1− 2

d ,

for some constant Cd that depends only on d . By Lemma 5.7, this implies

αn,k ≥ Cn−2− 2
d

for some constant C = C(c, d, k) that does not depend on n. Applying inequal-
ity (3.3) of [11] yields the conclusion. �

6. Drift condition for Vt . Recall the process Vt =∑
v∈�(L,d) Xt [v] from for-

mula (2.3). The graph Gt is the subgraph of G = �(L,d) induced by the vertices
{v ∈ �(L,d) : Xt [v] = 1}, with vertices V (Gt) and edges E(Gt). Let Ft denote
the σ -algebra generated by the random variables {Xs}s≤t . The key result in this
section is the following drift condition on {Vs}s≥t .

THEOREM 6.1. There exists some constant 0 < ε0 = ε0(c, d) independent of
n so that for all 0 < ε < ε0, there exist constants CG = CG(ε, c, d) < ∞, α =
α(ε, c, d) and N = N(ε, c, d) so that, for all k ∈ N and all n > N ,

E[Vt+kεn3 |Ft ] ≤ (1 − α)kVt + CG.(6.1)

Besides a small number of definitions that are explicitly recalled, Theorem 6.1
is the only part of Section 6 used in the remaining sections. As the proof of Theo-
rem 6.1 is somewhat long, we give an outline:

1. We show that the number of particles Vt is generally close to the number of
connected components in Gt , and so it is enough to bound the latter quantity
(see Lemma 6.2).
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2. By embedding a coalescent process into the KCIP, we show that the number
of “collisions” between components of the KCIP over the time interval {t, t +
1, . . . , t + εn3} is on the order of the number of connected components in Gt

(see Lemma 6.15).
3. By direct computation, we show that collisions involving components of size

1 will decrease a certain biased count of the number of connected components
Gt (see Definition 6.3 and Lemma 6.6) while other collisions will not increase
this observable by much (see Lemma 6.8).

4. By an argument based on bounding the influence of faraway points, we show
that a substantial fraction of collisions occur between components of size 1 (see
Lemma 6.9).

5. Steps (2)–(4) above will yield that a positive fraction of connected components
of Gt will be involved in a “good” collision over a reasonable time scale, and
this leads to a contraction estimate on a biased count of the number of compo-
nents (see Lemma 6.11). By the observation made in (1) above, this leads to
our final contraction estimate on Vt .

Recall from Section 4 that for a vertex u, Compt (u) is the collection of vertices
contained in the same connected component as u in Gt . Recall also that Yt denotes
the number of connected components in Gt . Define the number of excess particles

δs = Vs − Ys.(6.2)

The next lemma compares the number of particles to the number of components.

LEMMA 6.2. For n > 2c and for all s, t ≥ 0

E[δt+s |Ft ] ≤
(

1 − 1

2n

)s

δt + 4cd.(6.3)

PROOF. We first show that, for k ∈N,

E[δt+s1supt≤i≤t+s Vi≤k|Ft ] ≤
(

1 − 1

n

(
1 − c

n

))s

δt + 2cdk

n

1

1 − c
n

.(6.4)

Indeed, for v ∈ �(L,d), let N
adj
s (v) be the number of components of Gs that are

adjacent to v. Define

As = {
v ∈ �(L,d) : Xs[v] = 1,

∣∣Comps(v)
∣∣> 1

}
,

Bs = {
v ∈ �(L,d) : Xs[v] = 0,Nadj

s (v) > 0
}
,

Ds = �(L,d) \ (As ∪ Bs).

Then we have

E[δs+1|Fs] = E[δs+1|Fs, vs ∈ As]P[vs ∈ As |Fs]
+E[δs+1|Fs, vs ∈ Bs]P[vs ∈ Bs |Fs]
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+E[δs+1|Fs, vs ∈ Ds]P[vs ∈ Ds |Fs]
≤
(
δs −

(
1 − c

n

))
P[vs ∈ As |Fs]

(6.5)

+
(
δs + c

n

)
P[vs ∈ Bs |Fs] + δsP[vs ∈ Ds |Fs]

= δsP[vs ∈ As ∪ Bs ∪ Ds |Fs]
−
(

1 − c

n

)
P[vs ∈ As |Fs] + c

n
P[vs ∈ Bs |Fs]

≤ δs − δs

n

(
1 − c

n

)
+ 2cdVs

n2 .

This can be iterated to give:

E
[
(δt+s)1supt≤i≤t+s Vi≤k|Ft

]
= E

[
E
[
(δt+s)1supt≤i≤t+s Vi≤k|Ft+s−1

]|Ft

]
≤ E

[((
1 − 1

n

(
1 − c

n

))
δt+s−1 + 2cdVt+s−1

n2

)
1supt≤i≤t+s Vi≤k

∣∣∣Ft

]
≤ E

[((
1 − 1

n

(
1 − c

n

))
δt+s−1 + 2cdk

n2

)
1supt≤i≤t+s Vi≤k

∣∣∣Ft

]
≤ · · ·
≤
(

1 − 1

n

(
1 − c

n

))s

δt + 2cdk

n

1

1 − c
n

,

which is inequality (6.4). Since Vs ≤ n, this implies inequality (6.3) for n > 2c and
the proof is completed. �

6.1. Corrected number of components. Our next goal is to obtain a bound
on E[Yt+s |Ft ] in terms of Yt over certain time intervals. To this end, we digress
briefly and introduce a new object called the “corrected number of components”
of a graph.

DEFINITION 6.3. For a graph H , we define a Markov chain {Hi}i≥0 with
absorbing states as follows. Set H0 = H . For i ≥ 0, if all components of Hi are
size 1, set Hi+1 = Hi . Otherwise, select uniformly at random a vertex vi in Hi

that also has at least one neighbour in Hi and set Hi+1 = Hi \ {vi}. We then de-
fine NH = E[limi→∞ |Hi |]. Since Hi+1 = Hi for all i > |H |, this (random) limit
always exists. See Figure 3 for an illustration of the evolution of Ht for an initial
graph H0 with five vertices.

DEFINITION 6.4. For k ∈N, set

Nk = sup
{
NH : H ⊂ �(L,d),H connected, |H | ≤ k

}
.
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FIG. 3. Evolution of the component sizes of Ht : These are the transition probabilities associated
with the {Ht }t∈N process, with H0 a 5-vertex graph.

We make some initial observations. By simple case checking, we can show that
N1 = N2 = 1,N3 = 4

3 ,N4 = 7
4 . We clearly also have

Nk ≤ k − 1.(6.6)

Next, we show that NH can never be too small.

LEMMA 6.5. For any subgraph H ⊂ �(L,d), we have

NH ≥ |H |
2d + 1

.

PROOF. Let {Hi}i≥0 be the Markov process given in Definition 6.3, and let
H∞ be its limit. We have

NH = E

[∑
v∈H

1v∈H∞

]
= ∑

v∈H

P[v ∈ H∞].(6.7)

However, for any particular vertex v ∈ H , v ∈ H∞ as long as it is the last vertex
among its neighbours to be selected as an update vertex vi . Since v has at most 2d

neighbours in H ,

P[v ∈ H∞] ≥ 1

2d + 1
.

Combining this with formula (6.7),

NH ≥ |H |
2d + 1

,

completing the proof. �

For 1 ≤ k ≤ 2d , let H(k) be the star graph with k leaves (see Figure 4 for a star
graph with d = 2, k = 4).

FIG. 4. Star graph.
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For the purposes of the following lemma, we denote the vertex set of this graph
by V (H(k)) = {1,2, . . . , k + 1} and the edge set by E(V (k)) = {(i, k + 1) : 1 ≤
i ≤ k}. We give basic bounds on how NH(k) depends on small changes to the
subgraph H .

LEMMA 6.6 (Shrinking star graphs). For NH as in Definition 6.3,

NH(k) = k

2
+ 1

k + 1
.(6.8)

PROOF. It is easy to check that NH(1) = 1 and NH(2) = N3 = 4
3 . Let {Hi}i∈N

be the Markov chain described in Definition (6.3), and let {vi}i∈N be the associated
sequence of vertices. The quantity NH(k) satisfies the recurrence:

NH(k) = kP[v0 = k + 1] + P[v0 �= k + 1]NH(k−1)
(6.9)

= k

k + 1
+ k

k + 1
NH(k−1).

Iterating, for all 0 ≤ q ≤ k − 3 we have

NH(k) = 1

k + 1

(
k + (k − 1) + · · · + (k − q)

)+ k − q

k + 1
NH(k−q−1).

Setting q = k − 3 gives formula (6.8). �

More generally, we have the following.

LEMMA 6.7. For any graph G and all subgraphs H ⊂ G and all vertices
v ∈ G,

NH∪{v} ≤ NH + 1.

This bound holds regardless of whether or not H is connected, and regardless of
whether or not v is adjacent to any vertex in H .

PROOF. We prove this by induction on m = |H |. For |H | ∈ {1,2} this is clear
by direct computation. Assume that NH∪{v} ≤ NH + 1 holds for all |H | ≤ m.
Fix H with |H | = m + 1, define N(H) to be the vertices of H with at least one
neighbour in H and, by the same argument as in recurrence (6.9),

NH∪{v} = 1

|N(H ∪ {v})|
∑

u∈N(H∪{v})
NH∪{v}\{u}

≤ 1

|N(H ∪ {v})|NH 1v∈N(H∪{v})

+ 1

|N(H ∪ {v})|
∑

u∈N(H∪{v})\{v}
(NH\{u} + 1)

≤ NH + 1,
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where the induction hypothesis is used in the second line. �

6.2. A corrected version of of Yt . In order to bound Ys − Yt , we introduce the
process

Ỹs = ∑
H∈Comps

NH .(6.10)

We think of {Ỹs}s≥t as a “corrected” version of {Ys}s≥t . In general, {Ỹs}s≥t is easier
to work with than {Ys}s≥t . One reason is the martingale-like property

E
[
(Ỹt+1 − Ỹt )1pt>

c
n
|Ft

]= 0,

which does not hold for {Ys}s≥t [here pt is as defined in (1.1)]. In addition, {Ỹs}s≥t

is much better-behaved than {Ys}s≥t over short time intervals, especially when the
KCIP is far from equilibrium. Using (6.6), it can be verified that

Ys ≤ Ỹs ≤ Ys + δs.(6.11)

Since δs is often small (see Lemma 6.2), Ỹs is a good proxy for the quantity Ys .
Next, we show that the corrected number of components {Ỹs}s≥t does not grow

too quickly over a moderate time period.

LEMMA 6.8. Fix 0 < ε ≤ 1
96c2(d+1)3 . Then for all 0 ≤ s ≤ εn3 and all t ∈ N,

E[Ỹt+s |Ft ] ≤ Ỹt

(
1 + 96c2(d + 1)3

n3

(
8n

(
1 − 1

8n

)s

+ s

))
+ 24cd

n
δt

(6.12)

+
(

1 − 1

8n

)s

δt .

PROOF. Assume without loss of generality that t = 0 and define

f (x) = 3cd

n2

x∑
u=0

E[δu|F0].

By Lemma 6.7, E[Ỹs+1|Fs] ≤ Ỹs + 1 for any time s. Inequality (6.6) provides fur-
ther necessary (but not sufficient) conditions for Ỹs+1 > Ỹs to hold when the update
variable ps in representation (1.1) satisfies ps < c

n
: the vertex vs in representation

(1.1) must be adjacent to a component of size at least two in Gs , and furthermore
we must have Xs[vs] = 0. At time s, there are at most 3dδs vertices satisfying this
necessary condition, and so for 0 ≤ s ≤ εn3,

E[Ỹs |F0] = E
[
E[Ỹs |Fs−1]|F0

]
= E

[
E

[
Ỹs

∣∣Fs−1,

{
ps−1 ≤ c

n

}]
P

[
ps−1 ≤ c

n

∣∣∣Fs−1

]
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+E

[
Ỹs

∣∣Fs−1,

{
ps−1 >

c

n

}]
P

[
ps−1 >

c

n

∣∣Fs−1

]∣∣∣F0

]
≤ E

[(
Ỹs−1 + 3dδs−1

n

)
P

[
ps−1 ≤ c

n

∣∣∣Fs−1

]
(6.13)

+ Ỹs−1P

[
ps−1 >

c

n

∣∣Fs−1

]∣∣∣F0

]
≤ E[Ỹs−1|F0] + 3cd

n2 E[δs−1|F0]
≤ · · ·

≤ Ỹ0 + 3cd

n2

s−1∑
u=0

E[δu|F0].

Lemma 6.5 implies

Ỹs ≥ Vs

2d + 1
.(6.14)

Using this fact, and then inequality (6.5) followed by inequality (6.13), we find
that for all n sufficiently large,

f (s) ≡ 3cd

n2

s∑
u=0

E[δu|F0]

= 3cd

n2

(
δ0 +

s∑
u=1

E
[
E[δu|Fu−1]|F0

])

≤ 3cd

n2

(
δ0 +

s∑
u=1

E

[(
1 − 1

4n

)
δu−1 + 2cdVu−1

n2

∣∣∣F0

])

≤ 3cd

n2

(
δ0 +

(
1 − 1

4n

) s−1∑
u=0

E[δu|F0] + 4c(d + 1)2

n2

s−1∑
u=0

E[Ỹu|F0]
)

(6.15)

≤ 3cd

n2

(
δ0 +

(
1 − 1

4n

) s−1∑
u=0

E[δu|F0] + 4c(d + 1)2

n2 (s − 1)Ỹ0

+ 12c2(d + 1)3

n4

s−2∑
u=0

uE[δu|F0]
)

≤ 3cd

n2 δ0 + 12c2(d + 1)3

n4 (s − 1)Ỹ0 + 3cd

n2

(
1 − 1

8n

) s−1∑
u=0

E[δu|F0]

= 3cd

n2 δ0 + 12c2(d + 1)3

n4 (s − 1)Ỹ0 +
(

1 − 1

8n

)
f (s − 1).
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Inequality (6.13) is used in the fifth step of this bound and we use the hypothesis
that ε ≤ 1

96c2(d+1)3 in the sixth step. Using this calculation with the last line of
inequality (6.13), we have

E[Ỹs |F0] ≤ Ỹ0 + f (s − 1)

≤ Ỹ0

(
1 + 12c2(d + 1)3

n4 (s − 1)

)
+ 3cd

n2 δ0 +
(

1 − 1

8n

)
f (s − 2)

≤ · · ·

≤ Ỹ0

(
1 +

s−q∑
x=0

12c2(d + 1)3

n4 x

(
1 − 1

8n

)s−x
)

+ 3cd

n2 δ0

s−q∑
x=0

(
1 − 1

8n

)x

+
(

1 − 1

8n

)s−q

f (q)

(6.16)
≤ · · ·

≤ Ỹ0

(
1 +

s∑
x=0

12c2(d + 1)3

n4 x

(
1 − 1

8n

)s−x
)

+ 3cd

n2 δ0

s∑
x=0

(
1 − 1

8n

)x

+
(

1 − 1

8n

)s

f (0)

≤ Ỹ0

(
1 + 96c2(d + 1)3

n3

(
8n

(
1 − 1

8n

)s

+ s

))
+ 24cd

n
δ0 +

(
1 − 1

8n

)s

δ0.

This completes the proof of inequality (6.12), and thus the lemma. �

6.3. Typical component size involved in collisions. In this subsection, we
study the behaviour of a “typical” collision in the KCIP by looking at the behaviour
of the KCIP only for vertices and times close to the collision. This approach of
“zooming in” on a neighbourhood of a collision is illustrated in Figure 5.

Fix t > 0. Define the number of collisions of the KCIP to be

Cs = ∣∣{t ≤ u < s : Yu+1 < Yu}
∣∣,(6.17)

and define the set of collision times

Tcol(s) = {t ≤ u ≤ t + s : Yu+1 < Yu}.
Recall the definition of the update variable vs used in formula (1.1). For u ∈
Tcol(s), we define

Mcol(u) = sup
{∣∣Compu(w)

∣∣ : (vu,w) ∈ E
}
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FIG. 5. We study the KCIP dynamics in a small neighbourhood of a collision. The behaviour of
the KCIP process outside of this neighbourhood has a bounded influence on the behaviour of the
collision, effectively allowing us to ignore complicated configurations outside of the neighbourhood.

to be the largest component involved in a collision; for u /∈ Tcol(s) we set
Mcol(u) = 0. We first show that, given u ∈ Tcol(s), Mcol(u) is often equal to 1.

LEMMA 6.9 (Typical component size). There exists δ = δ(c, d) > 0 indepen-
dent of n so that for any ε > 0

E
[∣∣{t + n log(n)4 ≤ u ≤ t + εn3 : Mcol(u) = 1

}∣∣|Ft

]
(6.18)

≥ (δ − o
(
n−1))

E
[∣∣{t + n log(n)4 ≤ u ≤ t + εn3 : Mcol(u) �= 0

}∣∣|Ft

]
uniformly in the initial configuration Xt .

REMARK 6.10. We briefly discuss why the conclusion obtained in Lemma 6.9
is plausible. Fix a time t and consider any vertex v and any neighbourhood B(v)

whose size does not grow with n. It is easy to check that over any time interval
of length T , with n � T � n2, it is very likely that all vertices in B(v) have been
updated and also that no particles have been added to B(v). On that very likely
event, all components of Gt+T ∩B(v) are of size 1. In other words, after a burn-in
time of length O(n), most vertices are not close to any components of size greater
than 1. The proof largely consists of checking that conditioning on a collision
occurring at vertex v at times in the interval (t + T , t + εn3) does not affect this
conclusion too much.
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PROOF OF LEMMA 6.9. Set T = n log(n)4. Let {ps}s∈N, {vs}s∈N be the update
variables used to define the dynamics of the KCIP as given in formula (1.1). For
fixed v ∈ �(L,d) and t + T ≤ r ≤ t + εn3, define the event

A(coll)
v,r = {

r ∈ Tcol
(
εn3), vr = v

}
.

Thus, A(coll)
v,r denotes the event that a collision occurs at time r and vertex v. We

will show that, for any v ∈ �(L,d), uniformly in t + T ≤ r ≤ t + εn3,

P
[
Mcol(r) = 1|Ft ,A(coll)

v,r

]≥ (δ − o
(
n−1))(6.19)

for some δ > 0. Inequality (6.19) will immediately yield (6.18). To see this, (6.19)
implies that

E
[∣∣{t + T ≤ u ≤ t + εn3 : Mcol(u) = 1

}∣∣|Ft

]
= ∑

v∈�(L,d)

t+εn3∑
r=t+T

P
[
Mcol(r) = 1

∣∣Ft ,A(coll)
v,r

]
P
[
A(coll)

v,r

∣∣Ft

]

≥ (δ − o
(
n−1)) ∑

v∈�(L,d)

t+εn3∑
r=t+T

P
[
A(coll)

v,r |Ft

]
= (

δ − o
(
n−1))

E
[∣∣{t + T ≤ u ≤ t + εn3 : Mcol(u) �= 0

}∣∣|Ft

]
,

yielding inequality (6.18). Thus, it suffices to show (6.19).
We begin with a simple bound on the probability that the number of particles

in a small region ever goes up by more than a small number over any small time
interval. For n ∈ N and 0 ≤ q ≤ 1, denote by Binomial(n,q) a binomial random
variable with n trials and success probability q . For any fixed t ≤ r ≤ t + εn3,
v ∈ �(L,d) and �, k ∈ N, we have for n >

√
c(2� + 1)d ,

P

[
r+T∑

s=r+1

1vs∈B�(v)1ps<
c
n

≥ k

]
≤ P

[
Binomial

(
T ,

c(2� + 1)d

n2

)
≥ k

]

≤ P

[
Binomial

(
T ,

c(2� + 1)d

n2

)
≥ 1

]k
(6.20)

≤
(

c(2� + 1)d log(n)4

n

)k

,

where the first inequality uses the simple bound |B�(v)| ≤ (2� + 1)d .
For v ∈ �(L,d), � ∈ N, and t + T ≤ r ≤ t + εn3, define the event

A(sparse)
v,r,� =

{
r−1∑

s=r−T

1vs∈B�(v)1ps<
c
n

< 8

}
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and let A(sparse) = ⋂
t+T ≤r≤t+εn3,v∈�(L,d)A

(sparse)
v,r,100 . By inequality (6.20) and a

union bound,

P
[
A(sparse)|Ft

]≥ 1 − O

(
n4 log(n)32

n8

)
= 1 − o

(
n−3).(6.21)

From (6.21), we thus have

P
[
Mcol(r) = 1|Ft ,A(coll)

v,r

]
≥ P

[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100

]
P
[
A(sparse)

v,r,100 |Ft

]
(6.22)

≥ P
[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100

](
1 − o

(
n−3)).

In light of (6.22), to show (6.19), it is enough to show

P
[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100

]≥ (δ − o
(
n−1)).(6.23)

To this end, we proceed by defining two events of interest. For v ∈ �(L,d), t +
T ≤ r ≤ t + εn3, and some constant B1 to be determined later, define the event

A(gap)
v,r =

{
r∑

u=r−B1n

1pu< c
n
1vu∈B100(v) = 0

}

that no vertices are added near v in the (short) time interval of length B1n imme-
diately before the collision. Finally, for k ∈ N and t + T ≤ r ≤ t + εn3, define the
event

A(regular)
v,r,k =

{
r∑

u=r−T

1vu∈B100(v) ≤ k

}

that at most k vertices are updated in a ball around v in the interval of length T

before the collision.
Fix the constant C1 = 25(201)d . For any t + T ≤ r ≤ t + εn3, we have

P
[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100

]
≥ P

[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100 ,A(gap)

v,r

]
× P

[
A(gap)

v,r |Ft ,A(coll)
v,r ,A(sparse)

v,r,100

]
≥ P

[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100 ,A(gap)

v,r

]
(6.24)

× P
[
A(gap)

v,r |Ft ,A(coll)
v,r ,A(sparse)

v,r,100 ,A(regular)
v,r,C1 log(n)4

]
× P

[
A(regular)

v,r,C1 log(n)4 |Ft ,A(coll)
v,r ,A(sparse)

v,r,100

]
≡ T1 × T2 × T3.
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The remainder of the proof consists of obtaining a lower bound for each of the
three factors T1,T2 and T3 in inequality (6.24). We begin by bounding T3. For a
subgraph H ⊂ �(L,d) and a configuration X ∈ {0,1}�(L,d), denote by X|H the
restriction of X to H ; that is, X|H ∈ {0,1}H and satisfies X|H [w] = X[w] for all
w ∈ H . Let

ψH = {
ψH(0),ψH (1), . . .

}≡ {s ≥ t : Xs |H �= Xs+1|H }
be the ordered sequence of times at which the restriction of {Xs}s∈N to H

changes. Finally, let Gv,r be the σ -algebra generated by the random variables
{Xs |B100(v)}s∈ψB100(v)∩{r−T ,...,r−1} and ψB100(v). For notational convenience, let St

be shorthand for Ft ,A(coll)
v,r ,A(sparse)

v,r,100 and denote by ψc
B100(v) the complement of the

set ψB100(v). We have

1 − T3 = 1 −E
[
P
[
A(regular)

v,r,C1 log(n)4 |St ,Gv,r

]|St

]
(6.25)

≤ 1

C1 log(n)4E

[
E

[
r−1∑

s=r−T

1vs∈B100(v)

∣∣∣St ,Gv,r

]∣∣∣St

]

≤ 1

C1 log(n)4E

[
(201)d + 16

(6.26)

+E

[ ∑
s∈{r−T ≤u≤r−1:vu∈B100(v)}∩ψc

B100(v)

1vs∈B100(v)

∣∣∣St ,Gv,r

]∣∣∣St

]
.

Inequality (6.25) is simply an application of Markov’s inequality. To obtain (6.26),
we split {s : vs ∈ B100(v)} ∩ {r − T , r − T + 1, . . . , r − 1} into two sets: {r −
T , . . . , r − 1} ∩ ψB100(v) and everything else. Inequality (6.26) then follows from
noting that the number |{r − T , . . . , r − 1} ∩ ψB100(v)| of times that a particle is
added to or removed from B100(v) between times r − T and r − 1 is, at most,
the number of particles in that set at time r − T plus twice the number that have
been added between times r − T and r − 1. Thus, conditional on Asparse, we have
|{r − T , . . . , r − 1} ∩ ψB100(v)| ≤ (201)d + 16.

Fix s ∈ {r − T , . . . , r − 1} ∩ ψc
B100(v). We claim that if w1,w2 ∈ �(L,d) \

B108(v), then

P[vs = w1|St ,Gv,r ]
P[vs = w2|St ,Gv,r ] = 1,(6.27)

since updates to these two vertices cannot influence anything in B100(v) before
time r . More formally, for any update sequence {(vu,pu)}r−1

u=r−T with vs = w1,

define the update sequence {(v′
u,pu)}r−1

u=r−T by v′
u = vu for u �= s and v′

s = w2.
This map is a bijection between the update sequences allowed by the conditions in
the numerator of equation (6.27) and the update sequences allowed by the condi-
tions in the denominator of equation (6.27); the existence of this bijection proves
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equation (6.27). We similarly observe that if w1 ∈ B100(v) and w2 ∈ G \ B108(v),
then

P[vs = w1|St ,Gv,r ]
P[vs = w2|St ,Gv,r ] ≤ 1,(6.28)

since certain updates within B100(v) may be forbidden by the conditioning Gv,r .
This can be made formal in essentially the same way as the argument for equation
(6.27). Inequalities (6.27) and (6.28) imply

P
[
vs ∈ B100(v)|St ,Gv,r

]≤ |B100(v)|
n − |B108(v)|

≤ (201)d

n
+ o

(
n−1),

where the second line follows from noting that |B�(v)| ≤ (2� + 1)d . Combining
this with inequality (6.26),

T3 = P
[
A(regular)

v,r,C1 log(n)4 |St

]≥ 1 − (201)d + (201)d log(n)4

C1 log(n)4 + o
(
n−1).

Since C1 = 25(201)d , for n sufficiently large,

T3 ≥ 23

25
.(6.29)

Next, we bound T2. For H ⊂ �(L,d), let φH = {φH (0), φH (1), . . .} = {s ≥ t :
vs ∈ H } be the ordered list of times at which the update vertex vs falls in H . Then
let Hv,r be the σ -algebra generated by the random variables {vs : s ∈ φB100(v) ∩
{r − T , . . . , r − 1}}. Unlike Gv,r , the update times φB100(v) are not included in this
σ -algebra, only the update locations vs .

For notational convenience, let S ′
t = {Ft ,A(coll)

v,r ,A(sparse)
v,r,100 ,A(regular)

v,r,C1 log(n)4}. The

gap condition A(gap)
v,r is fulfilled if there are no updates to the region B100(v) in the

time interval {r − B1n, . . . , r − 1}, and so

T2 = P
[
A(gap)

v,r |S ′
t

]
(6.30)

≥ E
[
P
[
ψB100(v) ∩ {r − B1n, . . . , r − 1} = ∅|S ′

t ,Hv,r

]|S ′
t

]
.

The indices φB100(v) ∩ {r − T , . . . , r − 1} are, conditional on Hv,r , a uniformly-
generated size-|φB100(v) ∩ {r − T , . . . , r − 1}| subset of {r − T , . . . , r − 1}. Since

|φB100(v) ∩{r −T , . . . , r −1}| ≤ C1 log(n)4 by the condition A(regular)
v,r,C1 log(n)4 , we have

for n sufficiently large

P
[
ψB100(v) ∩ {r − B1n, . . . , r − 1} = ∅|S ′

t ,Hv,r

]
= ∑

0≤k≤C1 log(n)4

(T −B1n
k

)(T
k

) P
[∣∣φB100(v) ∩ {r − T , . . . , r − 1}∣∣= k|S ′

t ,Hv,r

]
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= ∑
0≤k≤C1 log(n)4

B1n−1∏
i=0

T − k − i

T − i

× P
[∣∣φB100(v) ∩ {r − T , . . . , r − 1}∣∣= k|S ′

t ,Hv,r

]
≥ ∑

0≤k≤C1 log(n)4

B1n−1∏
i=0

(
1 − 2k

T

)

× P
[∣∣φB100(v) ∩ {r − T , . . . , r − 1}∣∣= k|S ′

t ,Hv,r

]
≥

B1n−1∏
i=0

(
1 − 2C1 log(n)4

n log(n)4

)
≥ e−4B1C1 .

Combining this with inequality (6.30) gives

T2 ≥ e−4B1C1 .(6.31)

Finally, we bound the term T1. Let

A(cover)
v,r =

{
B100(v) ⊂ ⋃

r−B1n≤s≤r−1

{vs}
}

be the event that every element of B100(v) is updated during the time interval {r −
B1n, . . . , r − 1}. Roughly speaking, for any fixed configuration X ∈ {0,1}�(L,d),
we will denote by E (coll–up)

v,r,X all of the updates “allowed” by A(sparse)
v,r,100 ,A(gap)

v,r and

A(coll)
v,r . More precisely, E (coll–up)

v,r,X is the set of updates {(vs,ps)}r−B1n≤s≤r−1 that
have the properties:

• If ps ≤ c
n

, then vs /∈ B100(v).
• If Xr−B1n = X and this KCIP process is updated using the dynamics (1.1) with

update variables {(vs,ps)}r−B1n≤s≤r−1, then Xr−1[v] = 0 and also there exist
two neighbours w1,w2 of v that are in distinct components of Gr−1 and satisfy
Xr−1[w1] = Xr−1[w2] = 1.

Similarly, we will denote by E (cov–up)
v,r,X the set of updates “allowed” by A(sparse)

v,r,100 ,

A(gap)
v,r and A(cover)

v,r . More precisely, this is the set of updates {(vs,ps)}r−B1n≤s≤r−1
that have the properties:

• If ps ≤ c
n

, then vs /∈ B100(v).

• B100(v) ⊂⋃r−1
s=r−B1n

{vs}.
We claim that if v, r,X are such that |E (coll–up)

v,r,X ∩ E (cov–up)
v,r,X | ≥ 1, then in fact

|E (coll–up)
v,r,X ∩ E (cov–up)

v,r,X |
|E (cov–up)

v,r,X |
≥ (2d + 1)−2d .(6.32)
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To see this, denote by {wi}2d
i=1 the neighbours of v and by {wi,j }2d

j=1 the neighbours

of wi . Call an element of E (cov–up)
v,r,X good, if for all 1 ≤ i ≤ 2d ,

inf{s : s ≥ r − B1n, vs = wi} ≥ inf
1≤j≤2d

inf{s : s ≥ r − B1n, vs = wi,j }.
In other words, a sequence is good if vertex wi is not updated until after all of
the vertices {wi,j }2d

j=1 have been updated at least once. A good sequence will not
ever remove a particle from a neighbour of v, and the configuration Xr−1|B100(v)

resulting from a good sequence will have only singletons. Thus, any good sequence
will also be in E (coll–up)

v,r,X if E (coll–up)
v,r,X is not empty. Since at least one out of every

(2d +1)2d elements of E (cov–up)
v,r,X is good, this observation implies inequality (6.32).

Inequality (6.32) can be expressed as

P
[
A(coll)

v,r |Ft ,A(sparse)
v,r,100 ,A(gap)

v,r ,A(cover)
v,r

]
≥ (2d + 1)−(2d+1)

P
[
A(coll)

v,r |Ft ,A(sparse)
v,r,100 ,A(gap)

v,r

]
.

We thus have

T1 = P
[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100 ,A(gap)

v,r

]
≥ P

[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100 ,A(gap)

v,r ,A(cover)
v,r

]
× P

[
A(cover)

v,r |Ft ,A(coll)
v,r ,A(sparse)

v,r,100 ,A(gap)
v,r

]
= 1 × P

[
A(cover)

v,r |Ft ,A(coll)
v,r ,A(sparse)

v,r,100 ,A(gap)
v,r

]
(6.33)

= P
[
A(coll)

v,r |Ft ,A(sparse)
v,r,100 ,A(gap)

v,r ,A(cover)
v,r

]P[A(cover)
v,r |Ft ,A(sparse)

v,r,100 ,A(gap)
v,r ]

P[A(coll)
v,r |Ft ,A(sparse)

v,r,100 ,A(gap)
v,r ]

≥ (2d + 1)−2d
P
[
A(coll)

v,r |Ft ,A(sparse)
v,r,100 ,A(gap)

v,r

]P[A(cover)
v,r |Ft ,A(sparse)

v,r,100 ,A(gap)
v,r ]

P[A(coll)
v,r |Ft ,A(sparse)

v,r,100 ,A(gap)
v,r ]

= (2d + 1)−2d
P
[
A(cover)

v,r |Ft ,A(sparse)
v,r,100 ,A(gap)

v,r

]
.

By a monotonicity argument essentially identical to that used to prove equation
(6.27) followed by the standard “coupon-collector” bound, there exists some 0 <

B = B(c, d) < ∞ so that

P
[
A(cover)

v,r |Ft ,A(sparse)
v,r,100 ,A(gap)

v,r

]≥ 1

2
(6.34)

for all B1 > B and all n > N(B1) sufficiently large. Choosing B1 = B + 1, and
combining equality (6.24) with inequalities (6.29), (6.31), (6.33) and (6.34) gives
the bound

P
[
Mcol(r) = 1|Ft ,A(coll)

v,r ,A(sparse)
v,r,100

]≥ 23

50
e−4(B+1)C1(2d + 1)−2d + o

(
n−1).
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Combining this with inequality (6.22), we have

P
[
Mcol(r) = 1|Ft ,A(coll)

v,r

]≥ δ + o
(
n−1)

with δ = 23
50e−4(B+1)C1(2d + 1)−2d , verifying (6.23). By the observations made in

(6.19) and (6.22), the conclusion in (6.18) follows immediately and the proof is
completed. �

Recall the definition of the number of collisions Cs from formula (6.17). We
will use Lemma 6.9 to bound the expected change Ỹt+εn3 − Ỹt in terms of Cεn3 :

LEMMA 6.11 (Comparison of number of components to number of collisions).
Fix δ = δ(c, d) > 0 as given by Lemma 6.9. Then for all 0 < ε < ε(c, d) sufficiently
small,

E[Ỹt+εn3 − Ỹt |Ft ] ≤ −2δ

3
E
[∣∣{t ≤ u ≤ t + εn3 : Mcol(u) �= 0

}∣∣|Ft

]
+ Ỹt

128c2(d + 1)3ε

3

(
1 + o(1)

)+ O(1),

where the implied constants do not depend on ε or n.

PROOF. Throughout the proof of this lemma, we use “update variables”
{ps}s∈N, {vs}s∈N from formula (1.1). We have

E[Ỹt+εn3 − Ỹt |Ft ] = E

[ ∑
t≤u≤t+εn3:Mcol(u)=1

(Ỹu+1 − Ỹu)
∣∣∣Ft

]

+E

[ ∑
t≤u≤t+εn3:Mcol(u) �=1

(Ỹu+1 − Ỹu)
∣∣∣Ft

]
(6.35)

≡ T1 + T2.

We first estimate the term T2. From Definition 6.3, we have that E[(Ỹu+1 −
Ỹu)|pu > c

n
,Fu] = 0, and so

T2 = E

[ ∑
t≤u≤t+εn3:Mcol(u) �=1

(Ỹu+1 − Ỹu)1Mcol(u) �=11pu≤ c
n

∣∣∣Ft

]
.(6.36)

By Lemma 6.7, the corrected component count Ỹu cannot increase by more than
one when vertices are added:

(Ỹu+1 − Ỹu)1pu≤ c
n

≤ 1.

Finally, if |H | ≤ 2, then NH = 1. In particular, adding a vertex to Xu can only
increase Ỹu if it connects two components or if it is added to a component that
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already has at least two vertices. Since there are at most 4dδu vertices adjacent to
such a component,

E
[
(Ỹu+1 − Ỹu)1Mcol(u) �=11pu≤ c

n
|Ft

]≤ 4cd

n2 E[δu|Ft ].
Combining this bound with inequality (6.36),

T2 ≤ 4cd

n2 E

[
t+εn3∑
u=t

δu

∣∣∣Ft

]
.(6.37)

By inequality (6.15) and the calculation in inequality (6.16), we have

4cd

n2 E

[
t+εn3∑
u=t

δu|Ft

]
≤ Ỹt

128c2(d + 1)3

n3

(
8n

(
1 − 1

8n

)εn3

+ εn3
)

+ 32cd

n
δt + 4

3

(
1 − 1

8n

)εn3

δt .

Combining this with inequality (6.37), this implies

T2 ≤ Ỹt

128c2(d + 1)3

3n3

(
8n

(
1 − 1

8n

)εn3

+ εn3
)

+ 32cd

n
δt +

(
1 − 1

8n

)εn3

δt(6.38)

≤ Ỹt

128c2(d + 1)3ε

3

(
1 + o(1)

)+ O(1).

Next, we turn to bounding T1. By Lemma 6.6, it follows that

T1 = E

[ ∑
t≤u≤t+εn3:Mcol(u)=1

(Ỹu+1 − Ỹu)
∣∣∣Ft

]

≤ −2

3
E
[∣∣{t ≤ u ≤ t + εn3 : Mcol(u) = 1

}∣∣|Ft

]+ 0.

By Lemma 6.9, this implies

T1 ≤ −2δ

3
E
[∣∣{t + n log(n)4 ≤ u ≤ t + εn3 : Mcol(u) �= 0

}∣∣|Ft

]
(6.39)

+ o
(
n−1).

Thus,

E
[∣∣Tcol

(
εn3)∩ {t, t + 1, . . . , t + n log(n)4}∣∣|Ft

]
≤ E

[∣∣{t ≤ u ≤ t + n log(n)4 : Vu+1 > Vu

}∣∣|Ft

]
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≤ 2cd

n2 E

[t+n log(n)4∑
u=t

Vu|Ft

]

≤ 4cd(d + 1)

n2 E

[t+n log(n)4∑
u=t

Ỹu

∣∣∣Ft

]
(6.40)

≤ 4cd(d + 1)

n2

n log(n)4∑
v=0

(
Ỹt

(
1 + 96c2(d + 1)3

n3

(
8n

(
1 − 1

8n

)v

+ v

))

+ 24cd

n
δt +

(
1 − 1

8n

)v

δt

)

≤ Ỹt

(
1 + o(1)

) log(n)4

n
+ O(1),

where the third inequality is due to inequality (6.14) and the fourth inequality is
due to Lemma 6.8. Combining inequalities (6.39) and (6.40), we have

T1 ≤ −2δ

3
E
[∣∣{t ≤ u ≤ t + εn3 : Mcol(u) �= 0

}∣∣|Ft

]
+ 2δ

3
Ỹt

(
1 + o(1)

) log(n)4

n
+ O(1).

Combining this inequality with inequalities (6.38) and (6.35), we have

E[Ỹt+εn3 − Ỹt |Ft ]

≤ −2δ

3
E
[∣∣{t ≤ u ≤ t + εn3 : Mcol(u) �= 0

}∣∣|Ft

]
+ 2δ

3
Ỹt

(
1 + o(1)

) log(n)4

n
+ Ỹt

128c2(d + 1)3ε

3

(
1 + o(1)

)+ O(1)

= −2δ

3
E
[∣∣{t ≤ u ≤ t + εn3 : Mcol(u) �= 0

}∣∣|Ft

]
+ Ỹt

128c2(d + 1)3ε

3

(
1 + o(1)

)+ O(1),

and the proof is completed. �

6.4. Colored constrained Ising process. Our next goal is to prove a lower
bound on the expected number of collisions. To this end, we define a “colored”
version of the KCIP on a general finite graph G, which allows us to make rigorous
the notion of a single particle moving and branching over time.

DEFINITION 6.12 (Colored constrained Ising process). Fix t ∈ N, 1 ≤ k ≤ n

and x ∈ {0,1}G so that the subgraph of G induced by the vertices {v ∈ G : x[v] =
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1} has exactly k connected components. We define a Markov chain {X̂s}s≥t on the
state space {0,1, . . . , k}n that is closely coupled to the KCIP {Xs}s≥t started at
Xt = x; in fact, we will have Xs[v] = 1X̂s [v]�=0 for all v ∈ G and s ≥ t . We begin
by setting the initial condition X̂t . For a fixed v ∈ G, if Xt [v] = 0, we also set
X̂t [v] = 0. Fix an ordering of the k connected components ct [1], . . . , ct [k] of Gt ,
and set X̂t [v] = i for all v ∈ ct [i] and X̂t [v] = 0 for all v /∈⋃k

i=1 ct [i]. Note that
this arbitrary ordering and labelling of the components is done once, at time t . We
do not reorder components at times s > t , and we will always have X̂s[v] in the
set of labels {0,1, . . . , k}, even if the number of components at time s is not equal
to k. Indeed, it will turn out that with probability one there exists a (random) index
i ∈ {1,2, . . . , k} and time S ≥ t so that X̂s[v] ∈ {0, i} for all s > S.

To evolve X̂s , recall that {Xs}s≥t evolves by selecting at every time s a vertex vs

to update, and sometimes changing the label of that vertex. Whenever the labelling
of a vertex v is changed from 1 to 0 in Xs , the labelling of v should also be changed
to 0 in X̂s . Whenever the labelling of a vertex v is changed from 0 to 1 at time s

in Xs , choose a vertex us ∼ Unif{w : (w, v) ∈ E,Xs[w] = 1} uniformly at random
from the neighbours of v that have a nonzero label in X̂s , set X̂s+1[v] = X̂s[us],
and then set X̂s+1[w] = X̂s[us] for all w ∈ Comps+1(us). All other labels of X̂s+1

should be the same as that of X̂s . Since entire components can “flip” colors, the
process {X̂s}s≥t may have many labels change at once.

Recall that a collision occurs at time r and vertex u in the original KCIP {Xt }t≥0

if vr = u and Yr+1 < Yr . Analogously, we say that color i is involved in a collision
at time r and vertex u if a collision occurs at time r and vertex u, and furthermore
there exists (u, v) ∈ E s.t. X̂r [v] = i. Note that several colors can be involved in
one collision.

We now give some definitions related to the colored KCIP. For all s ≥ t de-
fine Comp(i)

s to be the connected components of Gs containing only vertices u

satisfying X̂s[u] = i. Define the number of vertices with color i by

V (i)
s = ∑

u∈�(L,d)

1X̂s [u]=i

and the associated interference time by

ζ
(i)
int = inf

{
s > t : {∣∣V (i)

s − V
(i)
s−1

∣∣> 1
}∪ {∣∣∣∣Comp(i)

s

∣∣− ∣∣Comp(i)
s−1

∣∣∣∣> 0
}}

.

We also provide a generalization of the definition of the triple time in for-
mula (4.4):

ζ
(i)
triple = inf

{
s > t : V (i)

s ≥ 3
}
.(6.41)

This allows us to state the following corollary of Lemma 4.1.
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COROLLARY 5. Fix i, t ∈ N and ε > 0 and assume that V
(i)
t = 1. Then

P

[
ζ

(i)
triple − t < min

(
ε

n3

6c2d(2d − 1)
, ζ

(i)
int

)]
= O(ε).(6.42)

PROOF. We reduce this to the case of Lemma 4.1. Let v ∈ �(L,d) be the
unique vertex with X̂t [v] = i. If

∑
u∈�(L,d) Xt [u] = 1, we are exactly in the case

of Lemma 4.1. If
∑

u∈�(L,d) Xt [u] > 1, we will couple {Xs}s≥t to a second KCIP
{X′

s}s≥t as follows. We set the initial condition X′
t [u] = 1u=v . We then couple

{X′
s}s≥t to {Xs}s≥t by using the same update sequence ps, vs , as described in rep-

resentation (1.1).
Observe that, if there exists some time s > t at which |{v : X′

s[v] = i}| ≥ 3, it
must be the case that either ζ

(i)
triple ≤ s or the color i is involved in a collision at

some time t < r ≤ s. Thus, for any constant 0 < C < ∞, if ζ
(i)
triple < min(C, ζ

(i)
int )

holds for the process {Xs}s≥t , it must also hold for the process {X′
s}s≥t . Thus, for

the purposes of proving inequality (6.42), it is enough to prove it in the case that
Xt [u] = 1u=v ; but in that case, the conclusion follows by Lemma 4.1. �

We next recall the coalescent process [8, 17].

DEFINITION 6.13 (Coalescent process). Fix a graph G and parameters k ∈ N,
q ∈ [0, 1

k
]. A coalescent process on graph G with k initial particles and mov-

ing rate q is a Markov chain {Zs}s∈N on Gk . Let Os = {v ∈ G : ∃1 ≤ i ≤
k such that Zs[i] = v} be the occupied sites of Zs . To evolve Zs , we first choose
us ∼ Unif([0,1]), vs ∼ Unif([Os]) and uw ∼ Unif([B1(vs) \ {vs}]) and set Is =
{i : Zs[i] = vs}. If us ≤ q|Os |, then set Zs+1[i] = uw for all i ∈ Is and set
Zs+1[j ] = Zs[j ] for all j /∈ Is ; otherwise, set Zs+1[j ] = Zs[j ] for all j .

REMARK 6.14. The coalescent process has many other names and descrip-
tions. The construction of the coalescent process as the “dual” to the voter process
is well known (see [17]). Informally, we can view the coalescent process with k

initial particles as k random walkers that take turns making independent simple
random walk steps until a collision occurs, at which point the colliding particles
“merge” into a single particle. After this collision, the coalescent process resumes
with k − 1 particles.

6.5. Coupling KCIP with coalescent process. Next, we couple a colored KCIP
{X̂s}s≥t with a collection of lazy random walks {Qs[i]} and a coalescent process
{Rs}s≥t+n2.5 to obtain the following lower bound on the number of collisions Cs

[see formula (6.17)], which is the only result from this section that we will need.
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LEMMA 6.15. With notation as above, there exist constants κ = κ(ε, c, d) > 0
and C = C(ε, c, d) < ∞ that do not depend on n so that, for any initial configu-
ration Xt ∈ �,

E[Ct+εn3 |Ft ] ≥ κYt − C.

The idea behind the proof of Lemma 6.15 is to show the following four bounds:

1. With high probability, we have Qs[i] ∈ {v : X̂s[v] = i} and Qs[i] ∈ {v :
Rs[v] = 1} for “many” i ∈ {1,2, . . . , Yt } over a “large” interval s ∈ {t +n2.5, t +
n2.5 + 1, . . . , T (i)} (see Lemma 6.17).

2. The expected number of “near-collisions” in the KCIP is at least some fixed
fraction of the expected number of collisions involving the coalescent process
{Rs}s≥t+n2.5 (see Proposition 6.19). This occurs because, per (1) above, the
particles in the coalescent process are often “covered” by the particles in the
KCIP. See Figure 6 for an illustration of the relationship between X̂s and Rs .

3. Theorem 5 of [9] implies that the expected number of collisions in the coales-
cent process between time t and t + εn3 is “almost” as large as Yt .

4. The expected number of collisions in the KCIP is at least some fixed fraction
of the expected number of near-collisions (see Lemma 6.20).

Before beginning the proof, we construct our couplings and give some relevant
definitions. Almost all of these constructions are used only in this section.

6.5.1. Coupling KCIP to a collection of (lazy) simple random walks. Assume
n > c and fix an index 1 ≤ i ≤ Yt . Let

τ
(i)
start = inf

{
s ≥ t : ∀w1,w2 ∈ �(L,d),{

X̂s[w1] = X̂s[w2] = i
} =⇒ {

(w1,w2) /∈ E
}}

FIG. 6. Embedded Coalescent Process: The colored KCIP with k = 7 remaining colors is indicated
by the colored circles; the coupled coalescent process is indicated by the X’s. As is typical early in
the coupling, most X’s lie on vertices covered by the colored KCIP.
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be the first time that no two particles colored i are adjacent. We now construct
a coupling of processes {Qs[i]}1≤i≤Yt ,s≥τ

(i)
start

on �(L,d) to {X̂s}s≥t as follows.

These processes will each evolve as (1 − cd
n2 )-lazy simple random walks on

�(L,d).
Define the lifetime �s[v] of a particle at v with X̂s[v] = i to be

�s[v] = sup{T ≥ s : ∀s < u ≤ T , vu �= v};
the right-hand side is positive with probability 1. Fix 1 ≤ i ≤ Yt . If the set {v :
X̂

τ
(i)
start

[v] = i} is nonempty, choose a vertex v uniformly at random from that set and
let Q

τ
(i)
start

[i] = v. If that set is empty, choose a vertex v uniformly at random from

�(L,d) and let Q
τ

(i)
start

[i] = v. For s ≥ τ
(i)
start, we evolve Qs[i] by always setting

Qs+1[i] = argmax
v∈vs,Qs [i]

�s[v].(6.43)

For our purposes, we are not interested in the process Qs[i] for all s ≥ τ
(i)
start but

only until a “decoupling time.” To this end, define the random time

τ
(i)
triple = inf

{
s > τ

(i)
start : the component of Gs containing Qs[i]

has at least three elements.
}
.

Next, define the decoupling time of color i to be the minimum of the first time that
the particle at Qs[i] does not have color i and the first time that there is a size-three
component of color i:

τ
(i)
decoupling = min

(
τ

(i)
triple, inf

{
s ≥ τ

(i)
start : X̂s

[
Qs[i]] �= i

})
.(6.44)

LEMMA 6.16. For any fixed 1 ≤ i ≤ Yt , the process {Qs[i]}s≥τ
(i)
start

has the

distribution of a (1 − cd
n2 )-lazy random walk on �(L,d).

PROOF. Let {(vs,ps)}s≥t be the update variables used for the KCIP, as in
equation (1.1). It is a direct computation that for s ≥ τ

(i)
start and vertices u �= v satis-

fying |u − v| = 1,

P
[
Qs+1[i] = v|Qs[i] = u

]
= P

[
{vs = v} ∩

{
ps ≤ c

n

}
∩ {�s(v) > �s(u)

}]
= P[vs = v]P

[
ps ≤ c

n

]
P

[
�s(v) > �s(u)|vs = v,ps ≤ c

n

]
= 1

n

c

n

1

2
= c

2n2 .

It is immediate that P[Qs+1[i] = u|Qs[i] = u] = 1 − cd
n2 . These two inequalities

prove the result. �
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6.5.2. Near collisions. Define the “near-collision” time associated with color
i to be the first time at which a vertex that has color i is exactly distance 2 from
another particle in the KCIP:

τ (i)
near = inf

{
s ≥ τ

(i)
start : ∃u, v ∈ �(L,d)

s.t. |u − v| = 2 and Xs[u] = 1 and X̂s[v] = i
}
.

Similarly, say that color 1 ≤ i ≤ Yt has a near-collision between times t1 and
t2 if there exists a time t1 ≤ s ≤ t2 and a pair of vertices u, v so that X̂s[u] = i

and Xs[v] = 1, so that u, v are not in the same component of Gs , and so that
|u − v| = 2.

Define

Qs = {
t ≤ r ≤ s : ∃u, v ∈ �(L,d)

(6.45)
s.t.|u − v| = 2 and Xr [u] = Xr [v] = 1 and u /∈ Compr (v)

}
to be the set of times at which a near-collision occurs and let

N near
s = |Qs |(6.46)

be the total number of near-collisions between times t and s.
We have the following lemma.

LEMMA 6.17. For 1 ≤ i ≤ Yt ,

τ
(i)
decoupling ≥ min

(
τ

(i)
triple, τ

(i)
near
)
.(6.47)

PROOF. To prove inequality (6.47), observe that it can only be violated if the
particle Qs[i] becomes “uncovered” before τ

(i)
triple or τ

(i)
near:

τ
(i)
uncovered ≡ inf

{
s ≥ τ

(i)
start : X̂s

[
Qs[i]] �= i

}
< min

(
τ

(i)
triple, τ

(i)
near
)
.(6.48)

By the construction (6.43), we can only have τ
(i)
uncovered < τ

(i)
triple if there is a col-

lision involving color i at time τ
(i)
uncovered. However, any collision involving color

i must be preceded by a near-collision—more precisely, if there is a collision in-
volving color i at time τ

(i)
uncovered, there must be some time r < τuncovered at which

there exist u, v ∈ �(L,d) such that

|u − v| = 2 and Xs[u] = 1 and X̂s[v] = i.

But this means exactly that{
τ

(i)
uncovered < τ

(i)
triple

}⇒ {there is a collision involving color i at time τuncovered}
⇒ {

τuncovered > τ(i)
near
}
.

Combining this implication with inequality (6.48) completes the proof of inequal-
ity (6.47). �
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6.5.3. Coupling Qs to a coalescent process. Having defined the Qs pro-
cesses, we couple them to a coalescent process {Rs}s≥t+n2.5 with Yt initial par-

ticles. We begin by setting the initial conditions Rt+n2.5 . If τ
(i)
start ≤ n2.5, we set

Rt+n2.5[i] = Qt+n2.5[i]. Otherwise, choose Rt+n2.5[i] uniformly at random from
among all vertices in �(L,d) \⋃i{Qt+n2.5[i]}.

We now describe the evolution of {Rs}s≥t+n2.5 . Let D ⊂ {1,2, . . . , Yt } × {t, t +
1, . . .} denote the pairs of indices (i, s) that satisfy

τ
(i)
start ≤ t + n2.5 ≤ s ≤ min

(
τ

(i)
triple, τ

(i)
near
)
.(6.49)

For (i, s) ∈ D, we set Rs[i] = Qs[i]. For (i, s) /∈D, we choose Rs+1[i] conditional
on Rs and {Rs+1[j ]}(j,s)∈D and independently of all other random variables being
discussed.

This defines the evolution of Rs[i] for s, i ∈ D. Note that the times τ
(i)
start, τ

(i)
triple,

and τ
(i)
near that determine the boundaries of D are all stopping times with respect

to the joint evolution of {Rs, X̂s}. Thus, by standard arguments, it is possible to
extend our construction of the coalescent process {Rs[i]} from pairs s, i ∈ D to all
pairs 1 ≤ i ≤ Yt , t + n2.5 ≤ s.

REMARK 6.18. The coupling given in Section 6.5.1 has the critical property
that X̂s[Rs[i]] = i for any 1 ≤ i ≤ Yt and t + n2.5 ≤ s < τ

(i)
decoupling.

We make some further observations about the above construction. Say that color
i has coalesced by time t1 if Rs[i] = Rs[j ] for some j �= i and s ≤ t1. Define the
events:

1. A(i)
1,u: τ

(i)
start > t + u and color i has no near-collisions between time t and t + u.

2. A(i)
2 : τ

(i)
start ≤ t + n2.5 but color i has not coalesced by time t + εn3.

3. A(i)
3 : τ

(i)
triple < min(τ

(i)
near, εn

3).

4. A(i)
4 : Denote by J ⊂ {1,2, . . . , Yt } the set of all colors j s.t. for some t ≤ s ≤

εn3, we have Rs[i] = Rs[j ]. A(i)
4 is the event that τ

(i)
start ≤ t + n2.5 and color i

has coalesced, but for all j ∈ J , we also have τ
(j)
decoupling < τ

(i)
near.

We have the following.

PROPOSITION 6.19. The color i has a near-collision between times t and
t + εn3 unless at least one of the events A(i)

1 ≡ A(i)

1,n2.5 , A(i)
2 , A(i)

3 or A(i)
4 occurs.

PROOF. Fix 1 ≤ i ≤ Yt and denote by B(i) the event that color i has a near-
collision between times t and t +εn3. We assume that none of the events {A(i)

j }4
j=1

nor B(i) occur, and will derive a contradiction.



1048 N. S. PILLAI AND A. SMITH

Since A(i)
1 does not occur, we have either X̂s[Rs[i]] = i for all

t + n2.5 ≤ s < τ
(i)
decoupling(6.50)

or that color i has a near-collision by time n2.5. Since we have assumed that B(i)

does not occur, this implies by inequality (6.47) that X̂s[Rs[i]] = i for all

t + n2.5 ≤ s < min
(
τ

(i)
triple, τ

(i)
near
)
.(6.51)

Since B(i) does not occur, we have τ
(i)
near ≥ εn3, and so by inequality (6.51) we have

X̂s[Rs[i]] = i for all

t + n2.5 ≤ s < min
(
τ

(i)
triple, εn

3).(6.52)

Since neither A(i)
3 nor B(i) occur, we have that τ

(i)
triple ≥ εn3. Thus, by inequality

(6.52) we have that X̂s[Rs[i]] = i for all

t + n2.5 ≤ s < εn3.(6.53)

However, since A(i)
2 does not occur, we have that color i has coalesced at some

time t + n2.5 ≤ s ≤ εn3. Since particles must be nearby before they can coalesce,
this means that there is some set J ⊂ {1,2, . . . , Yt }, some times {rj }j∈J satisfying
t + n2.5 ≤ rj < s ≤ εn3, and some vertex {vj }j∈J ⊂ �(L,d) so that

Rrj [j ] = vj ,
∣∣vj − Rrj [i]

∣∣= 2.

Since B(i) does not occur, this implies that τ
(j)
decoupling ≥ rj for all j ∈ J . How-

ever, this contradicts our assumption that A(i)
4 does not occur. This completes the

proof of the proposition. �

We must relate the number of near-collisions N near
t+εn3 to the number of colli-

sions Ct+εn3 .

PROPOSITION 6.20. Fix ε > 0. There exists κ = κ(c, d) > 0 so that for all n

sufficiently large,

E[Ct+εn3+4n2.5] ≥ κE
[
N near

t+εn3

]
.

PROOF. It is enough to check that, once two components C1,C2 of Gs have
vertices w1 ∈ C1,w2 ∈ C2 with |w1 − w2| = 2, there is a positive probability that
all three of the following events occur:

• The particles at wi survive longer than any of their neighbours.
• A particle is added to the common neighbour v of w1,w2 before any other

particle is added to the set B1(w1) ∪B1(w2).
• Some particle is added to the set B1(w1) ∪B1(w2) before time t + 4n2.5.
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We note that the first two events are purely local [i.e., they depend only on the
order that events occur within some bounded region of the graph �(L,d) that does
not depend on n], and the last occurs with probability at least 1 − (1 − c

n2 )n
2.5 ≈

1 − e−c
√

n. For this reason, it seems clear that this conclusion should hold with
some constant; as such we give only a brief formal proof.

Fix a time t ≤ s ≤ t + εn3 at which a near-collision occurs. Then there exists
a triplet of vertices u, v,w ∈ G so that Xs[u] = Xs[w] = 1, u,w are in different
components of Gs , and u,w are both adjacent to v. Let

φu = inf
{
r ≥ s : ∑

x∈B1(u)

Xr [x] = 1 or Xr [u] = 0
}

be the first time after s that u is an isolated vertex or is empty, and let

φ′
u = inf

{
r ≥ φu : Xr |B1(u)[x] �= 1x=u

}
be the first time after φu that it is not an isolated vertex. Define φw,φ′

w analogously.
Finally, let φbad = inf{t > s : Xt [u]Xt [w] = 0} and let ηv = inf{t > s : Xt [v] = 1}.
Let Ev = {ηv < min(s + 4n2.5, φbad)}. We have:

P[Ev] ≥ P
[
ηv < min

(
s + 4n2.5, φbad

)|φu,φw < min
(
s + n2.5, φbad

)]
× P

[
φu,φw < min

(
s + n2.5, φbad

)]
≥ P

[
ηv ≤ φ′

u,φ
′
v < min

(
s + 4n2.5, φbad

)|φu,φw < min
(
s + n2.5, φbad

)]
× P

[
φu,φw < min

(
s + n2.5, φbad

)]
(6.54)

≥
(

1

4d2 − P
[
max

(
φ′

u − φu,φ
′
w − φw

)
> 3n2.5])

×
(

1

4d2 − P
[
max(φu,φw) − s > n2.5])

≥
(

1

4d2 − ec
√

n

)(
1

4d2 − 4de−(1−c)n
√

n

)
.

We now apply this calculation. Recall from equation (6.45) that Qεn3 is the set
of near-collision times. If s ∈ Qεn3 , there exist two components C1,C2 of Gs and
vertices u ∈ C1,w ∈ C2, v /∈ C1 ∪C2 with v = B1(u)∩B1(w); for s ∈ Qεn3 , define
f (s) = v. When Ef (s) holds, define g(s) = inf{r > s : vr = f (s),pr ≤ c

n
} to be the

time at which the near-collision started at time s is completed to a collision. Noting
from the definition of Ev that |{s : g(s) = r}| ≤ 2d − 1 for any r ∈ N, inequality
(6.54) then gives

E[Ct+εn3+4n2.5] ≥ E

[
1

2d − 1

∑
s∈Q

εn3

1Ef (s)

]

≥ 1

2d − 1

(
1

4d2 − ec
√

n

)(
1

4d2 − 4de−(1−c)n
√

n

)
E[Nεn3].
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This completes the proof. �

We now prove the main result of this section.

PROOF OF LEMMA 6.15. We will bound the probabilities of the four events
{A(i)

j }4
j=1 from the statement of Proposition 6.19. Noting that color i has a near-

collision if there are ever two components of color i (since the two components
must be at distance exactly 2 when they are first separated), we have by essentially
the same calculation as inequality (6.5):

E
[
V

(i)
t+s+11A(i)

1,s+1
|Ft+s

]≤ V
(i)
t+s+1 − V

(i)
t+s

n

(
1 − c

n

)
+ 2dV

(i)
t+s

n

c

n

≤ V
(i)
t+s

(
1 − 1

n

(
1 − c(2d + 1)

n

))
.

Thus, for n > 2c(2d + 1), we iterate and find

E
[
V

(i)

t+n2.51A(i)

1,n2.5
|Ft

]≤ ne−n.

Since V
(i)
t+s is at least 1 for all t + s ≤ τ

(i)
near, applying Markov’s inequality gives

P
[
A(i)

1,n2.5 |Ft

]≤ E
[
V

(i)

t+n2.51A(i)

1,n2.5
|Ft

]≤ ne−n.(6.55)

Next, by Theorem 5 of [9], there exists a constant C = C(ε, c, d) that does not
depend on n so that

E

[∑
i

1A(i)
2

]
≤ C(6.56)

for all n sufficiently large. By Corollary 5,

E

[∑
i

1A(i)
3

]
= O(ε)Yt .(6.57)

To bound A(i)
4 , we consider the collection of colors J that are given in the defi-

nition of A(i)
4 . We say that these colors are involved in an “unrecorded collision,”

as the collisions described in event A(i)
4 do not contribute to our count of the to-

tal number of near-collisions of the KCIP. Observe that any particle Rs[j ] with
j ∈ J that is involved in such an unrecorded collision at time s necessarily co-
alesces with another particle Rs[j ′] during the course of the collision, and also
must have τ

(j)
decoupling ≤ s. Thus, each decoupled particle can be involved in only

one unrecorded collision before being merged with another particle, and so∑
i

1A(i)
4

≤ 2
(∑

i

1A(i)

1,n2.5
+∑

i

1A(i)
2

+∑
i

1A(i)
3

)
.(6.58)
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Recall from equation (6.46) that N near
s is the total number of near-collisions be-

tween times t and s. Combining inequalities (6.55), (6.56), (6.57) and (6.58), we
have that

E
[
N near

t+εn3

]≥ Yt

(
1 − O(ε)

)− O(1).(6.59)

Combining Proposition 6.20 with inequality (6.59), and noting that n2.5 =
o(n3), completes the proof. �

Now, we are finally ready to give the proof of Theorem 6.1, establishing a drift
condition for Vt .

PROOF OF THEOREM 6.1. Recall the definitions of δ > 0 from Lemma 6.11
and κ > 0 from Lemma 6.15. Then

E[Vt+εn3 |Ft ]
= E[Vt+εn3 − Yt+εn3 |Ft ] +E[Yt+εn3 − Ỹt+εn3] +E[Ỹt+εn3 − Ỹt |Ft ] + Ỹt

≤ 4cd
(
1 + o(1)

)+E[Yt+εn3 − Ỹt+εn3 |Ft ] +E[Ỹt+εn3 − Ỹt |Ft ] + Ỹt

≤ 8cd
(
1 + o(1)

)+E[Ỹt+εn3 − Ỹt |Ft ] + Ỹt

≤ −2δ

3
E[Ct+εn3 |Ft ] + O(εỸt ) + O(1) + Yt

≤
(

1 − 2δκ

3

)
Yt + O(εỸt ) + O(1)

≤
(

1 − 2δκ

3
+ O(ε)

)
Vt + O(1),

where the first inequality comes from Lemma 6.2, the second inequality comes
from inequality (6.11) and a second application of Lemma 6.2, the third in-
equality comes from Lemma 6.11, the bound in the fourth inequality comes
from Lemma 6.15, and the final inequality comes from the bound Ys ≤ Ỹs ≤ Vs

[see (6.11)].
Fixing ε > 0 sufficiently small, then, there exists some constant C > 0 so that

E[Vt+εn3 |Ft ] ≤
(

1 − δκ

2

)
Vt + C.

Write α = δκ
2 . Iterating, we have

E[Vt+kεn3] ≤ E
[
E
[· · ·E[Vt+kεn3 |Ft+(k−1)εn3] · · · |Ft+εn3

]|Ft

]
≤ E

[
E
[· · ·E[(1 − α)Vt+(k−1)εn3 + C|t + (k − 2)εn3] · · · |t + εn3]|Ft

]
≤ (1 − α)kVt + CG

for some constant CG and the proof is complete. �
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7. Excursion lengths of KCIP. Fix ε0 small enough so that Theorem 6.1 ap-
plies and set

kmax = 4
CG

α
,(7.1)

where CG,α are as defined in inequality (6.1) of Theorem 6.1. In this section, the
drift condition for Vt obtained in Theorem 6.1 will be used to show:

1. The distribution of the first hitting time of
⋃

1≤k≤kmax
�k is O(n3 log(n)), uni-

formly in the starting point X0 [see inequality (7.3)].
2. T � n3 log(n) implies that∑

t≤T

1Xt∈⋃1≤k≤kmax �k
� n3 log(n)

with high probability, uniformly in the starting point X0 (see Corollary 6).

Items (1) and (2) above thus provide strong bounds for the occupation times of
KCIP on �k , uniformly in k ≤ kmax. We start with the following lemma (see
Lemma 6.3 of [29] for a proof).

LEMMA 7.1. Fix 0 < β < 1 and 0 < γ < ∞. Consider a stochastic process
{Jt }t∈N on N with associated filtration Jt that satisfies the drift condition

E[Js+1|Js] ≤ (1 − β)Js + γ

for all s ∈ N. Let Z1,Z2, . . . be an i.i.d. sequence of random variables with geo-
metric distribution and mean 2

β
. If J0 ≤ 4γ

β
, for all T ∈N we have

P

[
T∑

s=0

1
Js<

4γ
β

< C

]
≤ P

[
C∑

i=1

Zi > T

]
.

Define the set

K =
{
x ∈ {0,1}�(L,d) : ∑

v∈�(L,d)

x[v] ≤ kmax

}
.(7.2)

We apply Lemma 7.1 to the KCIP on �(L,d) �εn3� times, with J
(i)
s = Vs�εn3�+i

and Js =Fs�εn3�+i for 0 ≤ i ≤ �εn3�, to obtain the following corollary.

COROLLARY 6. Fix ε sufficiently small so that Theorem 6.1 applies, and let
α,CG be as in Theorem 6.1. For fixed C2 and C1 > 16

α
C2 sufficiently large, all

n > N(c, d) sufficiently large, and any starting point X0 ∈ �,

P

[C1n
3 log(n)∑
t=0

1Xt∈K < C2n
3 log(n)

]
= O

(
n−5).
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PROOF. Let τstart = inf{t > 0 : Xt ∈K} and fix k ∈N. By Theorem 6.1,

E[Vkεn31τstart>kεn3] ≤
(

1 − 1

2
α

)k

V0,

and so by Markov’s inequality and the trivial bound that Vt ≤ n for all t ,

P
[
τstart > kεn3]≤ P[Vkεn31τstart>kεn3 > 1]

(7.3)

≤ n

(
1 − 1

2
α

)k

.

Fix T ∈ N and let {Zi}i∈N be an i.i.d. sequence of random variables with geometric
distribution and mean 2

α
. By inequality (7.3), the Markov property and Lemma 7.1,

P

[C1n
3 log(n)∑
t=0

1Xt∈K > C2n
3 log(n)

]

≥ P

[C1n
3 log(n)∑
t=0

1Xt∈K > C2n
3 log(n)

∣∣∣τstart < T

]
P[τstart < T ]

= P[τstart < T ]
T∑

t=0

P

[C1n
3 log(n)∑
t=0

1Xt∈K > C2n
3 log(n)

∣∣∣τstart = t

]
× P[τstart = t |τstart ≤ T ]

≥
(

1 − n

(
1 − 1

2
α

)� T

εn3 �)
P

[C1n
3 log(n)∑
t=T

1Xt∈K > C2n
3 log(n)

∣∣∣τstart ≤ T

]

≥
(

1 − n

(
1 − 1

2
α

)� T

εn3 �)(
1 − ⌈εn3⌉

P

[C2 log(n)∑
j=1

Zj ≤ C1 log(n) − T

εn3

])
.

Choosing T = �C1
2 n3 log(n)�, we have for C1 sufficiently large that

P

[C2 log(n)∑
j=1

Zj ≤ C1 log(n) − T

εn3

]
= o

(
n−8).

This completes the proof. �

7.1. Bounds for the collision times of coalescent process. Recall kmax from
equation (7.1) and the set �k from formula (2.1). In this section, we obtain esti-
mates for the collision times for a coalescent process (see Definition 6.13) started
in �k . All of our bounds are based on soft arguments and are immediate conse-
quences of results from [9]. These bounds will be used for obtaining estimates of
occupation times of KCIP in �k in the next section.
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Let {Zt }t∈N be a coalescent process on �(L,d) with kmax particles and moving
rate q = cd

n2 . Define the process Wt on {0,1}�(L,d):

Wt [v] = 1∃i:Zt [i]=v.(7.4)

Wt will often be referred to as “the” coalescent process, as it is a Markov chain
and {Zt }t∈N can be reconstructed (up to permutation of labels) from {Wt }t∈N. We
give some notation related to the “skeletons” of our processes of interest. Define
the sequence of times φ0 = 0 and

φi+1 = inf{t > φi : Wt �= Wφi
}.(7.5)

These are the times that {Wt }t∈N changes.

REMARK 7.2. Let {φ′
i}i≥0 be a sequence of i.i.d. geometric random variables

with mean 4 and define {W ′
t }t≥0 by

W ′
t = Wφi

for t satisfying
∑i

j=0 φ′
j ≤ t <

∑i+1
j=0 φ′

j . The process {W ′
t }t≥0 is still a coalescent

process in the sense of [9]. Furthermore,

{Wφi
}i∈N D= {

W ′
φ′

i

}
i∈N(7.6)

and

E[φ1] = n2

4kmaxcd
E
[
φ′

1
]
.

Define the first collision time for the coalescent process as

τcol = inf
{
t : |Wt | < |W0|}.(7.7)

For the remainder of this section, define for ζ > 0:

G(n)
ζ =

{
w ∈ {0,1}�(L,d) : inf

u,v:w[u]=w[v]=1
|u − v| > ζ

}
.(7.8)

We show that, for ζ sufficiently large, collision times are not “too small” when
started from G(n)

ζ ∩ �k .

LEMMA 7.3. Let {Zt }t∈N be a coalescent process with 1 < k ≤ kmax ini-
tial particles on graph G = �(L,d) and let {Wt }t∈N be defined as in formula
(7.4). Then, for all 0 < δ < 1, there exist ε = ε(c, d, kmax, δ) > 0 and C =
C(c, d, kmax, δ) so that, for all n > N(c, d, kmax, δ),

P
[
τcol < εn3|W0 = w

]
< 1 − δ,

(7.9)
P[τcol < φεn|W0 = w] < 1 − δ

uniformly in 1 < k ≤ kmax and w ∈ G(n)
C ∩ �k .
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PROOF. We begin by proving the first half of inequality (7.9). By Theorem 5
of [9], for any fixed ε > 0, any sequence αn satisfying limn→∞ αn = ∞, and any
sequence w(n) ∈ G(n)

αn , we have

lim
n→∞P

[
τcol < εn3|W0 = w(n)]= f (ε, c, d, k) < 1

for some explicit function f that satisfies limε→0 f (ε, c, d, k) = 0 for d ≥ 3 and
all c, k. Defining f (ε, c, d) = max2≤k≤kmax f (ε, c, d, k), this implies

lim
n→∞P

[
τcol < εn3|W0 = w(n)]≤ f (ε, c, d) < 1(7.10)

and that limε→0 f (ε, c, d) = 0 for all d ≥ 3 and all c.
The remainder of the argument is a proof by contradiction. Fix δ > 0 and choose

ε > 0 so that f (ε, c, d) ≤ 1−δ
2 . Assume that inequality (7.9) is false. Then for all

C > 0, there exists a strictly increasing sequence of integers {ni = ni(C)}i∈N so
that

sup
w(ni )∈G(ni )

C

P
[
τcol < εn3

i |W0 = w(ni)
]≥ 1 − δ.

Let {Cj }j∈N be a sequence satisfying limj→∞ Cj = ∞, and for each j let the
increasing sequence of integers {ni,j = ni(Cj )}i∈N satisfy

sup
w

(ni,j )∈G(ni,j )

Cj

P
[
τcol < εn3

i,j |W0 = w(ni,j )]≥ 1 − δ.

Then the diagonal sequence ni,i satisfies

liminf
i→∞ sup

w
(ni,i )∈G(ni,i )

Ci

P
[
τcol < εn3

i,i |W0 = w(ni,i )
]≥ 1 − δ.

Since f (ε, c, d) ≤ 1−δ
2 by assumption, this contradicts equality (7.10), completing

the proof of the first half of inequality (7.9). The proof of the second half of in-
equality (7.9) is essentially identical; simply follow the same steps for the sped-up
process {W ′

t }t∈N described in Remark 7.2 and use formula (7.6) to relate this back
to {Wt }t∈N. �

Lemma 7.3 has the following strengthening as an immediate corollary.

COROLLARY 7. There exist ε = ε(c, d, kmax) > 0 and δ = δ(c, d, kmax) > 0
so that, for all n sufficiently large,

P
[
τcol < εn3|W0 = w

]≤ 1 − δ,
(7.11)

P[τcol < φεn|W0 = w] ≤ 1 − δ

uniformly in 1 < k ≤ kmax and w ∈ �k .



1056 N. S. PILLAI AND A. SMITH

FIG. 7. A path from a configuration with particles at distance 1 to a configuration with particles at
distance 3. This path would require 2 particles to move 2 steps each.

PROOF. Define the directed graph X to have vertex and directed edge sets

V (X ) = K,
(7.12)

E(X ) = {
(x, y) : x, y ∈ K,P[W1 = y|W0 = x] > 0

}
.

Our key observation here is that it is possible to change any initial configuration
w ∈ K into a configuration w′ ∈ G(n)

C by making some number of moves along the
edges of X , where the number of moves required is uniformly bounded in n (but
may depend on C,d or kmax). Since each move takes O(n2) steps in the coalescent
process, and each move has probability bounded from below; this allows us to
apply Lemma 7.3 to any initial configuration.

More formally, we begin by proving the first half of inequality (7.11). Fix w ∈
�k , any 0 < γ < 1 and let ε = ε(c, d, kmax, γ ),C = C(c, d, kmax, γ ) be constants
given by Lemma 7.3. Overloading notation slightly, if x, y ∈ X , we denote by
|x − y| the length of the shortest path from x to y in X ; see Figure 7 for an
example of such a path when d = 2 and C = 2.

Set

w′ = argmin
{
w − u| : u ∈ G(n)

C ∩ �k

}
.

Let � = (w0 = w,w1, . . . ,w|w−w′| = w′) be a path from w to w′ satisfying |wi −
wi+1| = 1 for all i. We have

P
[
(Wφ0,Wφ1, . . . ,Wφ|w−w′|) = �|W0 = w

]≥ (2dkmax)
−|w−w′|

(7.13)
≥ (2dkmax)

−k2
max(C+1).

Thus, applying Lemma 7.3,

P
[
τcol > εn3|W0 = w

]≥ P
[
τcol > εn3|W0 = w′ ∈ G(n)

C

]
(2dkmax)

−k2
max(C+1)

≥ γ (2dkmax)
−k2

max(C+1).

This completes the proof of the first half of inequality (7.11), with δ =
γ (2dkmax)

−k2
max(C+1). As with Lemma 7.3, the proof of the second half is es-

sentially identical. �
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We further strengthen this to bound the probability that particles are close to
colliding after a small number of steps. Let

τnear,i = inf
{
t : inf

u,v:Wt [u]=Wt [v]=1
|u − v| ≤ i

}
be the first time that two particles in the coalescent process are within distance i.

LEMMA 7.4. For all i ∈ N and all 0 < γ < 1, there exist ε = ε(c, d, kmax,

γ, i) > 0 and C = C(c, d, kmax, γ, i) < ∞ so that, for all n > N(c, d, kmax, γ, i)

sufficiently large,

P
[
τnear,i < εn3|W0 = w

]≤ 1 − γ,
(7.14)

P[τnear,i < φεn|W0 = w] ≤ 1 − γ

uniformly in 1 < k ≤ kmax and w ∈ G(n)
C .

PROOF. We begin by proving the first half of inequality (7.14). Fix 0 < γ <

1, let δ = 1 − γ

(4dkmax)i
, let C,ε be the constants associated with δ as given by

Lemma 7.3, and let w ∈ G(n)
C . By the definition of τnear,i , there is a sequence � =

(w0 ≡ Wτnear,i ,w1, . . . ,wi) so that |wj+1 − wj | = 1 and so that a collision occurs
during the transition from wi−1 to wi . Let I ∈ N be such that φI = τnear,i . As in
inequality (7.13),

P
[
(WφI

,WφI+1, . . . ,WφI+i
) = �|WφI

= w0
]≥ (2dkmax)

−i .

Since

P
[
φI+i − φI ≥ n2 log(n)

]= o(1),

this implies

P
[
τcol < τnear,i + n2 log(n)

]≥ 1

(2dkmax)i

(
1 − o(1)

)
uniformly in starting position W0. Thus, for all ε > 0 and w ∈ G(n)

C ,

γ

(4dkmax)i
≥ P

[
τcol < εn3|W0 = w

]
≥ P

[
τcol < εn3, τnear,i <

ε

2
n3
∣∣∣W0 = w

]
≥ (1 − o(1)

)
(2dkmax)

−i
P

[
τnear,i <

ε

2
n3
∣∣∣W0 = w

]
.

We conclude that

P

[
τnear,i <

ε

2
n3
∣∣∣W0 = w

]
≤ γ

2

(
1 + o(1)

)
,
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completing the proof of the first half of inequality (7.14). As with Lemma 7.3, the
proof of the second half is essentially identical. �

We then have the following Corollary to Lemma 7.4.

COROLLARY 8. Fix i ∈ N. There exist ε = ε(c, d, kmax, i) > 0 and δ =
δ(c, d, kmax, i) > 0 so that, for all n sufficiently large,

P
[
τnear,i < εn3|W0 = w

]≤ 1 − δ,

P[τnear,i < φεn|W0 = w] ≤ 1 − δ

uniformly in 1 < k ≤ kmax and w ∈ �k ∩ G(n)
i .

PROOF. This follows from Lemma 7.4 in essentially the same way that Corol-
lary 7 followed from Lemma 7.3. �

7.2. Comparing KCIP with the coalescent process. Recall kmax from formula
(7.1), the set �k from formula (2.1) and the sets G(n)

ζ from formula (7.8). In this
section, we obtain bounds on the occupation measure of Xt in �k , uniformly in
k≤kmax. Recall the definition of the exit times Lk(x) from equation (2.2). Our
intermediate steps are to show, uniformly in 1 ≤ k ≤ kmax:

1. Uniformly in x ∈ �k , P[Lk(x) < εn3] < 1 − δ < 1 for some ε = ε(c, d, kmax)

and δ = δ(c, d, kmax).
2. Uniformly in x ∈ �k , P[Lk(x) > ε−1n3] < 1 − δ.

3. Uniformly in x ∈ �k , P[∑εn3

t=0 1Xt∈�k
< 1

2εn3] < 1 − δ.
4. Uniformly in x ∈ �k , P[XLk(X0) ∈ �k−1|X0 = x] > δ,P[XLk(X0) ∈ �k+1|X0 =

x] > δ.

We begin by proving item (4).

LEMMA 7.5. There exist ε = ε(c, d, kmax) > 0, δ = δ(c, d, kmax) > 0 and α =
α(c, d, kmax) > 0 so that, uniformly in 1 ≤ k ≤ kmax and x ∈ �k , we have

P

[
εn3∑
t=0

1Xt∈�k
≥ αn3

∣∣∣X0 = x

]
≥ δ.

PROOF. Assume first that x ∈ �k ∩ G(n)
2 . We couple {Xt }t∈N to a coalescent

process {Zt }t∈N using the same coupling as in Section 6.5.3 and define {Wt }t∈N
as in formula (7.4); since X0 ∈ �k , we have τ

(i)
start = 0 for all 1 ≤ i ≤ k. Recalling

the definition of {φi}i∈N from formula (7.5), we fix T ∈ N and consider the two
events:

1. A1,T : The coalescent process has τnear,2 < φT .
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2. A2,T : The KCIP has inf{t : δt > 1} < φT .

By Lemma 7.4, there exists some ε1, γ > 0 so that

P[A1,εn] ≤ 1 − γ + o(1)(7.15)

for 0 < ε < ε1. By Corollary 5, there exists some ε2 so that for 0 < ε < ε2,

P[A2,εn] ≤ γ

2
+ o(1).(7.16)

Choose ε = 1
2 min(ε1, ε2) and fix α,β > 0. Set Aεn = A1,εn ∪A2,εn. By inequali-

ties (7.15) and (7.16),

P

[βn3∑
t=0

1Xt∈�k
≥ αn3

∣∣∣X0 = x

]
≥ P

[βn3∑
t=0

1Xt∈�k
≥ αn3

∣∣∣X0 = x,Ac
εn

]
P
[
Ac

εn

]

≥ γ

2
P

[βn3∑
t=0

1Xt∈�k
≥ αn3

∣∣∣X0 = x,Ac
εn

]
+ o(1).

Conditionally on Wφi
, φi+1 − φi has geometric distribution with mean between

n2

cdkmax
and n2

cd
. Thus, for all β sufficiently large,

P
[
β−1n3 ≤ φεn ≤ βn3]= 1 − o(1).(7.17)

Since P[Ac
εn] ≥ γ

4 + o(1) is bounded away from 0, this implies that, for β suffi-
ciently large,

P

[βn3∑
t=0

1Xt∈�k
≥ αn3

∣∣∣X0 = x

]
(7.18)

≥ γ

4
P

[φεn∑
t=0

1Xt∈�k
≥ αn3

∣∣∣X0 = x,Ac
εn

]
+ o(1).

By checking allowed sequences of update variables {vs,ps}s∈N, if Vt ≤ kmax and
δt = 0, we have

P
[
δt+1 = 1|δt = 0,Vt ≤ kmax, t ≤ φεn,Ac

εn

]
≤ P[δt+1 = 1|δt = 0,Vt ≤ kmax](7.19)

≤ 2cdkmax

n2 ,

while if Vt ≤ kmax + 1 and δt = 1,

P
[
δt+1 = 0|δt = 1,Vt ≤ kmax + 1, t ≤ φεn,Ac

εn

]
≥ P[δt+1 = 0|δt = 1,Vt ≤ kmax + 1](7.20)

≥ 1

2n

(
1 + o(1)

)
.
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Since the lower bound in inequality (7.20) is �(n) times larger than the upper
bound in inequality (7.19), we have

P

[φεn∑
t=0

1Xt∈�k
≥ αφεn

∣∣∣X0 = x,Ac
εn

]
= 1 + o(1)

for all α−1 sufficiently large. Combining this with inequalities (7.17) and (7.18),
we have for β,α−1 sufficiently large that

P

[βn3∑
t=0

1Xt∈�k
≥ αβ−1n3

∣∣∣X0 = x

]
≥ γ

8
+ o(1).

This completes the proof of the lemma when x ∈ �k ∩ G(n)
2 .

We give a short argument reducing the case x ∈ �k to the case x ∈ �k ∩G(n)
2 ; it

is essentially the same argument given in Corollary 7. Fix x ∈ �k \G(n)
2 . There ex-

ists x′ ∈ �k ∩ G(n)
2 and a sequence of configurations � = (x = x0, x1, . . . , x� = x′)

so that |xi+1 − xi | ≤ 1 and � ≤ 16k2
max. The same argument as given in inequality

(7.13) implies that there exists some γ ′ = γ ′(c, d, kmax) > 0 so that

P
[
inf
{
t : Xt = x′}< n2 log(n)|X0 = x

]
> γ ′.

This bound reduces the case x ∈ �k to the case x ∈ �k ∩ G(n)
2 , at the cost only

of replacing γ with γ γ ′ and replacing εn3 with εn3 + n2 log(n) = (1 + o(1))εn3.
This completes the proof. �

Define

ρk = inf{t : Xt ∈ �k}.(7.21)

LEMMA 7.6. For all 1 ≤ k ≤ kmax, there exists some δ, ε > 0 so that

P
[
ρk−1 < εn3|X0 = x

]
> δ,

(7.22)
P
[
ρk+1 < εn3|X0 = x

]
> δ

holds uniformly in x ∈ �k (where the first part of the inequality obviously requires
k ≥ 2).

PROOF. As argued in Corollary 7 (and again in the last paragraph of the proof
of Lemma 7.5), we can assume without loss of generality that x ∈ �k ∩G(n)

4 , since
for any fixed ε > 0, the ratio

infx∈�k
P[ρk−1 < εn3|X0 = x]

inf
x∈�k∩G(n)

4
P[ρk−1 < εn3(1 + o(1))|X0 = x]
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is bounded away from 0 uniformly in n. Thus, it is sufficient to consider only
starting positions X0 ∈ �k ∩ G(n)

4 .

Fix 1 ≤ k ≤ kmax and X0 = x ∈ �k ∩ G(n)
4 . We now couple {Xt }t∈N to a co-

alescent process {Zt }t∈N using the same coupling as in Section 6.5.3 and define
{Wt }t∈N according to formula (7.4). Since X0 ∈ �k , we have τ

(i)
start = 0 for all

1 ≤ i ≤ k. Define the sequence of movement times {φj }j≥0 as in formula (7.5)
and the graph X as in formula (7.12). Fix ε > 0; we will define � to be the collec-
tion of paths through the graph X for which the associated coalescent process has
τnear,4 ≤ φεn. More precisely, we say that a path � = (w0,w1, . . . ,wm) through
the graph X is in � if it satisfies:

1. m ≤ εn.
2. |wi+1 − wi | = 1 for all 0 ≤ i < m, where distance is measured according to the

graph distance on X .
3. w0 = x.
4. There exist u, v ∈ G so that |u − v| = 4 and wm[u] = wm[v] = 1.
5. For all u, v ∈ G with |u − v| = 4 and all 0 ≤ i < m, we have wi[u]wi[v] = 0.

For any path � ∈ � of length m and any A > 0, we have by essentially the same
calculation as in Lemma 4.1 that

P

[
sup

0≤t≤τnear,4

δt ≤ 1|{φm > An3}, {Wφi
}mi=0 = �

]
≥ g(A) + o(1)

for some function g(A) > 0. Combining this with inequality (7.17), we have for
all A so that A

ε
is sufficiently large that

P

[{
sup

0≤t≤τnear,4

δt ≤ 1
}

∩ {φm ≤ An3}|{Wφi
}mi=0 = �

]
≥ g(A) + o(1).

In particular, there exist ε,A,B > 0 so that

P

[{
sup

0≤t≤τnear,4

δt ≤ 1
}

∩ {φm ≤ An3}|{Wφi
}mi=0 = �

]
≥ B + o(1).(7.23)

We choose such a triple ε,A,B for the remainder of the proof of the first half of
inequality (7.22). Define ρ ′

k−1 = inf{t : Yt = k − 1}. By the same argument as in
Proposition 6.20, there exists γ ′ > 0 so that

P
[
ρ′

k−1 < 4n2.5|X0 = y
]≥ γ ′(1 + o(1)

)
holds uniformly in y ∈ �k \ G(n)

2 . By the same reduction argument used in Corol-
lary 7, this implies that there exists some γ > 0 so that

P
[
ρ′

k−1 < 4n2.5|X0 = y
]≥ γ

(
1 + o(1)

)
holds uniformly in y ∈ �k \ G(n)

4 . Recall the definition of the update variables
(pt , vt ) from equation (1.1). Denote the event

χn(t) =
{
∀s : t ≤ s ≤ t + n log(n)2,ps >

c

n
or

∑
(u,vs)∈E(�(L,d))

Xs[u] = 0
}
.(7.24)
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We then have

P
[
ρk−1 < 4n2.5 + n log(n)2|X0 = y

]
≥

4n2.5∑
t=0

P
[
ρk−1 < t + n log(n)2|ρ′

k−1 = t
]
P
[
ρ′

k−1 = t
]

≥ 1

3

4n2.5∑
t=0

P

[{t+n log(n)2⋃
s=t

{vs} = �(L,d)

}
∩ χn(t)

∣∣∣ρ′
k−1 = t

]
P
[
ρ′

k−1 = t
]

(7.25)

≥ 1

3

(
1 + o(1)

) 4n2.5∑
t=0

P
[
ρ′

k−1 = t
]

≥ γ

3

(
1 + o(1)

)
.

Combining this with inequality (7.23) and the observation that wm ∈ �k \ G(n)
4 for

all � = (w0, . . . ,wm) ∈ � , we have

P
[
ρk−1 < An3 + n2.5 + n log(n)2|{Wφi

}mi=0 = �
]≥ Bγ

3
+ o(1).

This implies that

P
[
ρk−1 < An3 + n2.5 + n log(n)2|X0 = x

]
≥ ∑

�∈�

P
[
ρk−1 < An3 + n2.5 + n log(n)2|{Wφi

}mi=0 = �
]

× P
[{Wφi

}mi=0 = �|X0 = x
]

≥ Bγ

3

∑
�∈�

P
[{Wφi

}mi=0 = �|X0 = x
]+ o(1)

= Bγ

3
P[τnear,4 ≤ φεn|X0 = x] + o(1)

≥ Bγ

3
P[τcol ≤ φεn|W0 = x] + o(1).

The last quantity, P[τcol ≤ φεn|W0 = x], is bounded away from 0 by Theorem 5 of
[9]. This completes the proof of the first half of inequality (7.22).

We now prove the second half of inequality (7.22). Fix x ∈ G(n)
4 and ε > 0. We

consider a new collection of paths � on X . Roughly speaking, these will be the
paths for which there are no near-collisions for many steps. More precisely, we say
that � = (x = w0,w1, . . . ,wm) is in � if:

• m ≥ 1
2εn.

• |wi+1 − wi | = 1 for all 0 ≤ i < m.
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• w0 = x.
• For all u, v ∈ G with |u − v| ≤ 4 and all 0 ≤ i ≤ m, we have wi[u]wi[v] = 0.

Recall that τ
(j)
decoupling is defined in formula (6.44) and ζ

(j)
triple is defined in formula

(6.41). If {Wφi
}mi=0 = � ∈ � , then no near-collisions of Wt have occurred by time

φm, and so conditioned on this event we have

min
1≤j≤k

τ
(j)
decoupling ≥ min

(
φm, min

1≤j≤k
ζ

(j)
triple

)
.(7.26)

Also, for any t ∈ N and any starting point X0 = x ∈ �k with δ0 = 1, we have

P

[
min

0≤s≤t
δs ≥ 1

∣∣X0 = x
]
≥
(

1 − 2

n

)t

.(7.27)

In particular, the indicator function of the event {min0≤s≤t δs ≥ 1} is stochastically
dominated by a geometric random variable with mean n

2 . Combining inequalities
(7.26) and (7.27), we have

P

[{ φm∑
t=0

1δt≥1 ≥ ε

32
n2

}
∪
{

min
1≤j≤k

ζ
(j)
triple ≤ φm

}∣∣∣{Wφi
}mi=0 = �

]
(7.28)

= 1 − o(1).

Noting that

P

[
min

1≤j≤k
ζ

(j)
triple = t + 1|{Wφi

}mi=0 = �, δt = 1, min
1≤j≤k

ζ
(j)
triple ≥ t, t ≤ φi

]
≥ c

n2 ,

we obtain

P

[
min

1≤j≤k
ζ

(j)
triple > φm|{Wφi

}mi=0 = �,

φm∑
t=0

1δt≥1 ≥ ε

32
n2

]

≤
(

1 − c

n2

) ε
32 n2

≤ e− εc
32 .

Combining this with inequality (7.28) and rearranging terms, this implies

P

[
min

1≤j≤k
ζ

(j)
triple ≤ φm|{Wφi

}mi=0 = �
]

≥ 1 − o(1) − P

[
min

1≤j≤k
ζ

(j)
triple > φm

∣∣{Wφi
}mi=0 = �,

φm∑
t=0

1δt≥1 ≥ ε

32
n2

]

≥ 1 − e− εc
32 − o(1).
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Summing over � ∈X ,

P

[
min

1≤j≤k
ζ

(j)
triple ≤ min(φm, τnear,4)

]
≥ ∑

�∈X
P

[
min

1≤j≤k
ζ

(j)
triple ≤ φm

∣∣{Wφi
}mi=0 = �

]
P
[{Wφi

}mi=0 = �
]

≥ (1 − e− εc
32 − o(1)

) ∑
�∈X

P
[{Wφi

}mi=0 = �
]

≥ (1 − e− εc
32 − o(1)

)
P[τnear,4 ≥ φε

2
].

Write ζ
(min)
triple = min1≤j≤k ζ

(j)
triple. By Corollary 8, we conclude that there exists some

γ > 0 so that

P
[
ζ

(min)
triple ≤ min(φm, τnear,4)

]≥ γ + o(1).

Combining this with the calculation in inequality (7.25),

P
[
ρk+1 < φεn

2
+ n log(n)2|X0 = y

]

≥ P

[{ζ
(min)
triple +n log(n)2⋃

s=ζ
(min)
triple

{vs} = �(L,d)

}

∩ χn

(
ζ

(min)
triple

)|ζ (min)
triple ≤ min(φ ε

2 n, τnear,4),X0 = y

]

× P
[
ζ

(min)
triple ≤ min(φ ε

2 n, τnear,4)|X0 = y
]

≥ (1 − o(1)
)(

γ − o(1)
)
.

Combining this with inequality (7.17) completes the proof. �

8. Proof of Theorem 2. In this section, we find bounds on the occupation
times of �k and use these bounds to finish the proof of Theorem 2. Recall from
(3.2) that the quantity κk applied to Xt is

κk(T ) =
T∑

t=0

1Xt∈�k
.

LEMMA 8.1 (Bound on occupation measures). There exists 0 < γ < ∞ so
that, for all A sufficiently large and all B > 0,

P
[
κk

(
An3 log(n)

)
< Bn3 log(n)

]≤ γ
B

A
+ o(1)

uniformly in X0 = x ∈ � and 1 ≤ k ≤ kmax.
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PROOF. Recall the set K from (7.2) and kmax from (7.1). By Corollary 6, there
exists c1 > 0 so that for all A sufficiently large,

P

[An3 log(n)∑
t=0

1Xt∈K > c1An3 log(n)
∣∣∣X0 = x ∈ �

]
= 1 + o(1).(8.1)

Recall the definition of the update variables (pt , vt ) from formula (1.1) and χn ≡
χn(0) from formula (7.24). For any x ∈ K, we have that

P

[
inf
{
t > 0 : Xt ∈K ∩⋃

k

�k

}
< n log(n)2

∣∣∣X0 = x ∈K
]

≥ P

[{n log(n)2⋃
s=0

{vs} = �(L,d)

}
∩ χn

∣∣∣X0 = x ∈ K
]

(8.2)

= 1 + o(1).

Combining inequalities (8.1) and (8.2) with Lemma 7.5, there exists some c2 > 0
and 1 ≤ k′ ≤ kmax so that, for all A sufficiently large,

P

[An3 log(n)∑
t=0

1Xt∈�k′ > c2An3 log(n)
∣∣∣X0 = x ∈ �

]
= 1 + o(1).(8.3)

Inequality (8.3) implies the existence of some c3 > 0 so that, for any X0 = x ∈ �,

E

[An3 log(n)∑
t=0

1Xt∈�k′

]
≥ c3An3 log(n)(8.4)

for all A sufficiently large. We claim that inequality (8.4) also holds with k′ re-
placed by k′ + 1 and also (if k′ ≥ 2) with k′ − 1. By Lemmas 7.6 and 7.5, there
exists some c4 > 0 so that

E

[An3 log(n)∑
t=0

1Xt∈�k′+1

]
≥ c4E

[An3 log(n)∑
t=0

1Xt∈�k′

]
≥ c4c3An3 log(n),

(8.5)

E

[An3 log(n)∑
t=0

1Xt∈�k′−1

]
≥ c4E

[An3 log(n)∑
t=0

1Xt∈�k′

]
≥ c4c3An3 log(n).

This is exactly inequality (8.4) with k′ replaced by k′ + 1 and k′ − 1, respectively.
Since the set {1,2, . . . , kmax} is finite, the argument between inequalities (8.4) and
(8.5) implies that there exists some c5 > 0 so that

E

[An3 log(n)∑
t=0

1Xt∈�j

]
≥ c5An3 log(n)(8.6)
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for all 1 ≤ j ≤ kmax. Since κk(T ) =∑T
t=0 1Xt∈�k

, the result now follows from an
application of Markov’s inequality to inequality (8.6). �

Finally, we prove our main result.

PROOF OF THEOREM 2. The lower bound in Theorem 2 is given in Theo-
rem 3. We now show the proof of the upper bound in Theorem 2 by applying the
bounds in Lemma 5.1 and Lemma 8.1 to Lemma 3.1.

Lemma 8.1 implies that there exist constants 0 < A,B < ∞, and a function
N = N(A,B, c, d) so that for all k ≤ kmax [see formula (7.1)] and all n > N ,

sup
x∈�

P
[
κk

(
An3 log(n)

)
< Bn3 log(n)|X0 = x

]≤ 1

16
.(8.7)

Similarly, Lemma 5.1 implies that there exists a constant 0 < C1 < ∞ so that

max
1≤k≤kmax

τn,k ≤ C1n
2+ 2

d log(n).(8.8)

In the notation of Lemma 3.1, let K be the kernel of the KCIP, let � = �, let

�k = �k for 1 ≤ k ≤ n
2 and let �n

2 +1 = �\⋃ n
2
k=1 �k . Also set I = {1,2, . . . , kmax}

and S =⋃�log(n)�
i=1 �k . We note that

π(S) = 1 − o(1),

min
x∈S

K[x, x] = 1 − o(1),

max
x /∈S

∑
y∈S

K[x, y] = 1 − o(1),

and so our chain is sufficiently lazy for all n > N0(c, d) large.
By Theorem 6.1, if the KCIP is started at the stationary distribution π , there

exists 0 < α,ε < 1 so that

E[V0] = E[Vεn3] ≤ (1 − α)E(V0) + CG.

Thus, we get E(V0) ≤ CG

α
= kmax

4 . Markov’s inequality yields that

P[V0 ≤ kmax] ≥ 3

4
.

Since V0 is distributed according to π , this immediately yields

π

(⋃
k∈I

�k

)
≥ 3

4
− o(1).
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Thus, in the notation of Lemma 3.1, we can fix for all n > N = N(c, d,A,B)

sufficiently large,

a = 3

8
, β = 11

16
, γ = 1

11
,

t = 16c′
γ C1n

2+ 2
d log(n) ≤ Bn3 log(n),

T = ⌈
An3 log(n)

⌉
,

where C1 is the constant from (8.8). By (8.8), we have

max
1≤k≤kmax

τn,kc
′
γ

t
≤ 1

16
.(8.9)

By (8.7), we have that for 1 ≤ k ≤ kmax,

sup
x∈�

P
[
κk(T ) < t |X0 = x

]≤ 1

16
.(8.10)

Combining inequalities (8.9) and (8.10) immediately implies that, in the notation
of Lemma 3.1, T ≤ T = O(n3 log(n)). Thus, by Lemma 3.1 we have that τmix =
O(n3 log(n)) and the proof of Theorem 2 is complete. �

9. Conclusion and future work. We have resolved only some special cases
in Aldous’ conjecture. In particular, we do not have any results for:

• Graphs other than the torus.
• Density regimes other than p = c

n
.

In this section, we give conjectures for other graphs and regimes, and mention
cases for which our methods work well. Before doing so, there is the question as to
whether the adjustment to Aldous’ conjecture required by Theorem 3 is essentially
the only required correction. If so, this would suggest the conjecture.

CONJECTURE 9. Fix d ∈ N and let G be a d-regular graph. The mixing time
τmix of the KCIP with parameter p on graph G is O(p−1d|G|τRW

mix + |G|
d3p2 ) as |G|

goes to infinity, where τRW
mix is the mixing time of the 1

2 -lazy simple random walk on
the graph G.

We believe that this gives the correct answer for the torus in dimension d ≥ 3
[i.e., we conjecture that the correct mixing time for the process described in The-
orem 2 is O(n3)]. However, we do not believe that Conjecture 9 is true in general.
In particular, define the coalescence time τCoal of a graph to be the expected time
for the coalescent process on G to go from |G| particles to 1 particle. We suspect
that the mixing time of the KCIP is bounded from below by the coalescence time
of the associated coalescent process on the same graph. By [9], this suggests that
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the mixing time for the torus in dimension d = 2 is at least n3 log(n), while Con-
jectures 1 and 9 both suggest the mixing time is O(n3). In general, we conjecture
the following.

CONJECTURE 10. Fix d ∈ N and let G be a d-regular graph. The mixing
time τmix of the KCIP with parameter p on graph G is O(p−1d|G|τRW

mix + |G|
d3p2 +

p−1d|G|τCoal) as |G| goes to infinity, where τRW
mix is the mixing time of the 1

2 -
lazy simple random walk on the graph G and τCoal is the coalescence time of the
graph G.

Next, we discuss when our strategy outlined in Section 2.2 may be applicable for
proving Conjecture 10. When restricted to densities in the regime p = c

n
, our proof

strategies are likely to work well for many other sequences of bounded-degree
graphs. In particular, for random triangle-free d-regular graphs, our argument goes
through with only two major changes. The first change is to replace all bounds
on the coalescent process from [9] with analogous bounds from [26] and [27].
These bounds are substantially looser, but strong enough for our arguments to
go through. Next, random d-regular graphs are expanders with high probability
(see, e.g., [18]), and in particular have spectral gaps that are uniformly bounded
below in n and mixing times that grow like log(n). This allows us to make the
second change, replacing the bound on the log-Sobolev constant from [32] with a
bound on the spectral gap from [18]. Besides the invocation of [32], all comparison
arguments for the log-Sobolev constant of �(L,d) given in Section 5 also apply
as written to bounding the spectral gap of general d-regular graphs. These graphs
have such large spectral gaps that the bounds obtained this way are sufficient.
Beyond expanders, we generally expect our strategy to succeed for families of
bounded-degree graphs with

max
(
τCoal, τ

RW
mix
)= O

(
n3).(9.1)

In particular, a similar approach works for the lattice in d ≥ 3 dimensions. When
(9.1) fails to hold, as with �(L,d) in dimension d = 2, the arguments in Section 6
must be substantially changed.

For sequences of m = m(n)-regular graphs [with m(n) very slowly growing
with n], our strategy could be refined to give nontrivial bounds, but our results are
not very useful as written. For graphs with very large degrees d ≈ n, a straightfor-
ward comparison argument to the KCIP on the complete graph analogous to that
given in [10] for the simple exclusion process gives useful bounds.

Our strategies are unlikely to work well for p = pn � c
n

, as the arguments
this paper rely quite strongly on the stationary measure of the constrained Ising
process being concentrated on configurations with few particle. Despite technical

difficulties, we believe that the O(n3) bound will hold up to pn ≈ n− 1
2 − 1

d . Again,
for p sufficiently large, a straightforward comparison argument to the constrained
Ising process on the complete graph analogous to that given in [10] for the simple
exclusion process gives useful bounds.
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