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A LOWER BOUND FOR DISCONNECTION BY SIMPLE
RANDOM WALK

BY XINYI LI

ETH Zürich

We consider simple random walk on Z
d , d ≥ 3. Motivated by the work

of A.-S. Sznitman and the author in [Probab. Theory Related Fields 161
(2015) 309–350] and [Electron. J. Probab. 19 (2014) 1–26], we investigate
the asymptotic behavior of the probability that a large body gets disconnected
from infinity by the set of points visited by a simple random walk. We de-
rive asymptotic lower bounds that bring into play random interlacements.
Although open at the moment, some of the lower bounds we obtain possi-
bly match the asymptotic upper bounds recently obtained in [Disconnection,
random walks, and random interlacements (2014)]. This potentially yields
special significance to the tilted walks that we use in this work, and to the
strategy that we employ to implement disconnection.
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0. Introduction. How hard is it to disconnect a macroscopic body from infin-
ity by the trace of a simple random walk in Z

d , when d ≥ 3? In this work, we par-
tially answer this question, motivated by [23] and [22], by deriving an asymptotic
lower bound on the probability of such a disconnection. Remarkably, our bounds
bring into play random interlacements as well as a suitable strategy to implement
disconnection. Although open at the moment, some of the lower bounds we obtain
in this work may be sharp, and match the recent upper bounds from [29].

We now describe the model and our results in a more precise fashion. We refer to
Section 1 for precise definitions. We consider the continuous-time simple random
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walk on Z
d , d ≥ 3, and we denote by P0 the (canonical) law of the walk starting

from the origin. We denote by V = Z
d \X[0,∞) the complement of the set of points

visited by the walk.
We consider K , a non-empty compact subset of Rd and for N ≥ 1 its discrete

blow-up:

KN = {
x ∈ Z

d;d∞(x,NK) ≤ 1
}
,(0.1)

where NK , a non-empty compact subset of Rd , stands for the set homothetic to K

with ratio N , and

d∞(z,NK) = inf
y∈NK

|z − y|∞(0.2)

stands for the sup-norm distance of z to NK . Of central interest for us is the event
specifying that KN is not connected to infinity in V , which we denote by

{KN
V
� ∞}.(0.3)

Our main result brings into play the model of random interlacements. Infor-
mally, random interlacements in Z

d are a Poissonian cloud of doubly-infinite
nearest-neighbor paths, with a positive parameter u, which is a multiplicative fac-
tor of the intensity of the cloud (we refer to [6] and [9] for further details and
references). We denote by Iu the trace of random interlacements of level u on
Z

d , and by Vu = Z
d \ Iu the corresponding vacant set. It is known that there is

a critical value u∗∗ ∈ (0,∞), which can be characterized as the infimum of the
levels u > 0 for which the probability that the vacant cluster at the origin reaches
distance N from the origin has a stretched exponential decay in N ; see [28] or [9].

The main result of this article is the following asymptotic lower bound, which
confirms the conjecture proposed in Remark 5.1(2) of [22].

THEOREM 0.1.

lim inf
N→∞

1

Nd−2 log
(
P0[KN

V
� ∞]) ≥ −u∗∗

d
capRd (K),(0.4)

where capRd (K) stands for the Brownian capacity of K .

Actually, the proof of Theorem 0.1 (after minor changes) also shows that for
any M > 1,

lim inf
N→∞

1

Nd−2 log
(
P0[BN

V
� SN ]) ≥ −u∗∗

d
capRd

([−1,1]d),(0.5)

where BN = {x ∈ Z
d; |x|∞ ≤ N} and SN = {x ∈ Z

d; |x|∞ = [MN]} with [MN ]
the integer part of MN ; see Remark 6.1.
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On the other hand, the recent article [29] improves on [33], and shows that for
any M > 1, the following asymptotic upper bound holds:

lim sup
N→∞

1

Nd−2 log
(
P0[BN

V
� SN ]) ≤ −u

d
capRd

([−1,1]d),(0.6)

where u is a certain critical level introduced in [29], such that 0 < u < u cor-
responds to the strongly percolative regime of Vu. Precisely, one knows that
0 < u ≤ u∗ ≤ u∗∗ < ∞, where u∗ stands for the critical level for the percola-
tion of Vu (the positivity of u, for all d ≥ 3, actually stems from [10] as explained
in Section 2 of [29]). It is plausible, but unproven at the moment, that actually
u = u∗ = u∗∗. If this is the case, the asymptotic lower bound (0.5) from the present
article matches the asymptotic upper bound (0.6) from [29].

In the case of (0.4), one can also wonder whether one actually has the following
asymptotics (possibly with some regularity assumption on K)

lim
N→∞

1

Nd−2 log
(
P0[KN

V
�∞]) = −u∗

d
capRd (K).(0.7)

Our proof of Theorem 0.1 [and of (0.5)] relies on the change of probability
method. The feature that the asymptotic lower bounds, which we derive in this
article, are potentially sharp, yields special significance to the strategy that we
employ to implement disconnection.

Let us give some comments about the strategy and the proof. We construct
through fine-tuned Radon–Nikodym derivatives new measures P̃N , correspond-
ing to the “tilted walks”. In essence, these walks evolve as recurrent walks with
generator L̃g(x) = 1

2d

∑
|x′−x|=1

hN(x′)
hN (x)

(g(x′) − g(x)), up to a deterministic time
TN , and then as the simple random walk afterward, with hN(x) = h( x

N
), where h

is the solution of (assuming that K is regular){
�h = 0, on R

d \ K,

h = 1, on K, and h tends to 0 at ∞,
(0.8)

and TN is chosen so that the expected time spent by the tilted walk up to TN at any
x in KN is u∗∗h2

N(x) = u∗∗ (by the choice of h). Informally, P̃N achieves this at
a “low entropic cost”. Quite remarkably, this constraint on the time spent at points
and low entropic cost induces a local behavior of the trace of the tilted walk which
geometrically behaves as random interlacements with a slowly space-modulated
parameter u∗∗h2

N(x), at least close to KN . This creates a “fence” around KN ,
where the vacant set left by the tilted walk is locally in a strongly non-percolative
mode, so that

lim
N→∞ P̃N [KN

V
� ∞] = 1.(0.9)

On the other hand, we show that

l̃im
1

Nd−2 H(P̃N |P0) ≤ u∗∗
d

capRd (K),(0.10)
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where l̃im refers to a certain limiting procedure, in which N goes first to infin-
ity, and H(P̃N |P0) stands for the relative entropy of P̃N with respect to P0 [see
(1.15)]. The main claim (0.4), or (0.5) then quickly follow by a classical inequal-
ity; see (1.16).

The above lines are of course mainly heuristic, and the actual proof involves
several mollifications of the above strategy: K is slightly enlarged, h is replaced
by a compactly supported function smoothed near K , we work with u∗∗(1 + ε)

in place of u∗∗, and the tilted walk lives in a ball of radius RN up to time TN ,
. . . . These various mollifications naturally enter the limiting procedure alluded to
above in (0.10).

Clearly, a substantial part of this work is to make sense of the above heuristics.
Observe that unlike what happened in [22], where an asymptotic lower bound was
derived for the disconnection of a macroscopic body by random interlacements,
in the present set-up, we only have one single trajectory at our disposal. So the
titled walk behaves as a recurrent walk up to time TN in order to implement dis-
connection. This makes the extraction of the necessary independence implicit to
comparison with random interlacements more delicate. This is achieved by several
sorts of analysis on the mesoscopic level. More precisely, on all mesoscopic boxes
Ax

1 with the center x varying in a “fence” around KN , we bound from above the
tilted probability that there is a path in V that connects x to the (inner) boundary
of Ax

1 by the probability that there is such a path in the vacant set of random in-
terlacements with level slightly higher than u∗∗ (which is itself small due to the
strong non-percolative character of Vu when u > u∗∗) and a correction term:

P̃N

[
x

V←→ ∂iA
x
1
] ≤ P

[
x

Vu∗∗(1+ε/8)←→ ∂iA
x
1
]+ e−c log2 N ≤ e−c′ log2 N,(0.11)

where P stands for the law of random interlacements, and ∂iA
x
1 for the inner

boundary of the box Ax
1 . To prove the above claim, we conduct a local compar-

ison at mesoscopic scale between the trace of the tilted walk, and the occupied
set of random interlacements, with a level slightly exceeding u∗∗, via a chain of
couplings.

There are two crucial steps in this “chain of couplings,” namely Propositions 5.2
and 5.7. In Proposition 5.2, we call upon the estimates on hitting times proved in
Section 3 and on the results concerning the quasi-stationary measure from Sec-
tion 4. We construct a coupling between the trace in A1 of excursions of the con-
fined walk up to time TN , and the trace in A1 of the excursions of many inde-
pendent confined walks from A1 to the boundary of a larger mesoscopic box. This
proposition enables us to cut the confined walk into “almost” independent sections,
and compare it to the trace of a suitable Poisson point process of excursions. On
the other hand, Proposition 5.7 uses a result proved in [4], coupling the above men-
tioned Poisson point process of excursions and the trace of random interlacements.
Some of the arguments used in this work are similar to those in [34]. However, in
our set-up, special care is needed due to the fact that the stationary measure of the
tilted walk is massively non-uniform.
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We will now explain how this article is organized. In Section 1, we introduce
notation and make a brief review of results concerning continuous-time random
walk, continuous-time random interlacements, Markov chains, as well as other
useful facts and tools. Section 2 is devoted to the construction of the tilted random
walk and the confined walk, as well as the proof of various properties concerning
them. Most important are a lower bound of the spectral gap of the confined walk in
Proposition 2.12, and an asymptotic upper bound on the relative entropy between
the tilted walk and the simple random walk, in Proposition 2.14. In Section 3, we
prove some estimates on the hitting times of some mesoscopic objects, namely
Propositions 3.5 and 3.7 that will be useful in Section 5. In Section 4, we prove
some controls (namely Proposition 4.7) on the quasi-stationary measure that will
be crucial for the construction of couplings in Section 5. In Section 5, we develop
the chain of couplings and prove that the tilted disconnection probability P̃N [AN ]
tends to 1, as N tends to infinity. In the short Section 6, we assemble the various
pieces and prove the main Theorem 0.1.

Finally, we explain the convention we use concerning constants. We denote by c,
c′, c′′, c̄, . . . positive constants with values changing from place to place. Through-
out the article, the constants depend on the dimension d . Dependence on additional
constants is stated at the beginning of each section.

1. Some useful facts. Throughout the article, we assume d ≥ 3 unless oth-
erwise stated. In this section, we will introduce further notation and recall useful
facts concerning continuous-time random walk on Z

d and its potential theory. We
also recall the definition of and some results about continuous-time random inter-
lacements. At the end of the section, we state an inequality on relative entropy and
review various results about Markov chains.

We start with some notation. We let Z+ = {0,1, . . .} stand for the set of positive
integers. We write | · | and | · |∞ for the Euclidean and l∞-norms on R

d . We denote
by B(x, r) = {y ∈ Z

d; |x −y| ≤ r} the closed Euclidean ball of center x and radius
r ≥ 0 intersected with Z

d and by B∞(x, r) = {y ∈ Z
d, |x − y|∞ ≤ r} the closed

l∞-ball of center x and radius r intersected with Z
d . When U is a subset of Zd , we

write |U | for the cardinality of U , and U ⊂⊂ Z
d means that U is a finite subset of

Z
d . We denote by ∂U (resp., ∂iU ) the boundary (resp., internal boundary) of U ,

and by U its “closure”

∂U = {
x ∈ Uc; ∃y ∈ U, |x − y| = 1

}
,

(1.1)
∂iU = {

y ∈ U ; ∃Uc, |x − y| = 1
}

and U = U ∪ ∂U.

When U ⊂ R
d , and δ > 0, we write Uδ = {z ∈ R

d;d(z,U) ≤ δ} for the closed
δ-neighborhood of U , where d(x,A) = infy∈A |x − y| is the Euclidean distance
of x to A. We define d∞(x,A) in a similar fashion, with | · |∞ in place of | · |. To
distinguish balls in R

d from balls in Z
d , we write BRd (x, r) = {z ∈ R

d; |x−z| ≤ r}
for the closed Euclidean ball of center x and radius r in R

d and B◦
Rd (x, r) = {z ∈
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R
d; |x − z| < r} for the corresponding open Euclidean ball. We also write the N -

discrete blow-up of U ⊆R
d as

UN = {
x ∈ Z

d;d∞(x,NU) ≤ 1
}
,(1.2)

where we denote by NU = {Nz; z ∈ U} ⊂ R
d the set homothetic to U with ra-

tio N .
We will now collect some notation concerning connectivity properties. We write

x ∼ y if for x, y ∈ Z
d , |x − y| = 1. We call π : {1, . . . , n} → Z

d , with n ≥ 1, a
nearest-neighbor path, when π(i) ∼ π(i −1) for 1 < i ≤ n. Given K,L,U subsets

of Z
d , we say that K and L are connected by U and write K

U←→ L, if there
exists a finite nearest-neighbor path π in Z

d such that π(1) belongs to K and π(n)

belongs to L, and for all k ∈ {1, . . . , n}, π(k) belongs to U . Otherwise, we say that

K and L are not connected by U , and write K
U
� L. Similarly, we say that K is

connected to infinity by U , if for K,U subsets of Zd , K
U←→ B(0,N)c for all N ,

and write K
U←→ ∞. Otherwise, we say K is not connected to infinity by U , and

write K
U
� ∞.

We now turn to the definition of some path spaces and of the continuous-time
simple random walk. We consider Ŵ+ the spaces of infinite (Zd) × (0,∞)-valued
sequences such that the first coordinate of the sequence forms an infinite nearest
neighbor path in Z

d , spending finite time in any finite set of Zd , and the sequence
of the second coordinate has an infinite sum. The second coordinate describes the
duration at each step corresponding to the first coordinate. We denote by Ŵ+ the
respective σ -algebra generated by the coordinate maps, Zn, ζn, n ≥ 0 [where Zn

is Z
d -valued and ζn is (0,∞)-valued]. We denote by Px the law on Ŵ+ under

which Zn, n ≥ 0, has the law of the simple random walk on Z
d , starting from

x, and ζn, n ≥ 0, are i.i.d. exponential variables with parameter 1, independent
from Zn, n ≥ 0. We denote by Ex the corresponding expectation. Moreover, if α

is a measure on Z
d , we denote by Pα and Eα the measure

∑
x∈Zd α(x)Px (not

necessarily a probability measure) and its corresponding “expectation” (i.e., the
integral with respect to the measure Pα).

We attach to ŵ ∈ Ŵ+ a continuous-time process (Xt)t≥0 and call it the random
walk on Z

d with constant jump rate 1 under Px , through the following relations:

Xt(ŵ) = Zk(ŵ) for t ≥ 0, when τk ≤ t < τk+1,(1.3)

where for l in Z
+, we set (if l = 0, the right sum term is understood as 0),

τl =
l−1∑
i=0

ζi.(1.4)

We also introduce the filtration

Ft = σ(Xs, s ≤ t).(1.5)
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For I a Borel subset of R+, we record the set of points visited by (Xt)t≥0 during
the time set I as XI . Importantly, we denote by V the vacant set, namely the
complement of the entire trace X[0,∞) of X.

Given a subset U of Zd , and ŵ ∈ Ŵ+, we write HU(ŵ) = inf{t ≥ 0;Xt(ŵ) ∈ U}
and TU = inf{t ≥ 0;Xt(ŵ) /∈ U} for the entrance time in U and exit time from
U . Moreover, we write H̃U = inf{s ≥ ζ1;Xs ∈ U} for the hitting time of U . If
U = {x}, we then write Hx , Tx and H̃x .

Given a subset U of Zd , we write �(U) for the space of all right-continuous,
piecewise constant functions from [0,∞) to U , with finitely many jumps on any
compact interval. We will also denote by (Xt)t≥0 the canonical coordinate process
on �(U), and when an ambiguity arises, we will specify on which space we are
working. For γ ∈ �(U), we denote by Range(γ ) the trace of γ .

Now, we recall some facts concerning equilibrium measure and capacity, and
refer to Section 2, Chapter 2 of [19] for more details. Given M ⊂⊂ Z

d , we write
eM for the equilibrium measure of M :

eM(x) = Px[H̃M = ∞]1M(x), x ∈ Z
d,(1.6)

and cap(M) for the capacity of M , which is the total mass of eM :

cap(M) = ∑
x∈M

eM(x).(1.7)

We denote the normalized equilibrium measure of M by

ẽM(x) = eM(x)

cap(M)
.(1.8)

There is also an equivalent definition of capacity through the Dirichlet form:

cap(M) = inf
f
EZd (f, f ),(1.9)

where f : Zd →R is finitely supported and f ≥ 1 on M , and

EZd (f, f ) = 1

2

∑
|x−y|=1

1

2d

(
f (y) − f (x)

)2(1.10)

is the discrete Dirichlet form for simple random walk.
It is well known that (see, e.g., Section 2.2, pages 52–55 of [19])

cNd−2 ≤ cap
(
B∞(0,N)

) ≤ c′Nd−2,(1.11)

and that

eB∞(0,N)(x) ≥ c1N
−1(1.12)

for x on the inner boundary of B∞(0,N).
Now, we turn to random interlacements. We refer to [6, 9, 30] and [31] for more

details. Random interlacements are random subsets of Z
d , governed by a non-
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negative parameter u (referred to as the “level”), and denoted by Iu. We write P

for the law of Iu. Although the construction of random interlacements is involved,
the law of Iu can be simply characterized by the following relation:

P
[
Iu ∩ K = ∅

] = e−ucap(K) for all K ⊂⊂ Z
d .(1.13)

We denote by Vu = Z
d \ Iu the vacant set of random interlacements at level u.

The connectivity function of the vacant set of random interlacements is known
to have a stretched-exponential decay when the level exceeds a certain critical
value (see Theorem 4.1 of [32], Theorem 0.1 of [28], or Theorem 3.1 of [24] for
recent developments). Namely, there exists a u∗∗ ∈ (0,∞) which, for our purpose
in this article, can be characterized as the smallest positive number such that for
all u > u∗∗,

P
[
0

Vu←→ ∂B∞(0,N)
] ≤ c(u)e−c′(u)Nc′(u)

for all N ≥ 0,(1.14)

(actually, the exponent of N can be chosen as 1, when d ≥ 4, and as an arbitrary
number in (0,1) when d = 3, see [24]).

We also wish to recall a classical result about relative entropy, which is helpful
in Section 2. For P̃ absolutely continuous with respect to P , the relative entropy
of P̃ with respect to P is defined as

H(P̃ |P) = EP̃

[
log

dP̃

dP

]
= EP

[
dP̃

dP
log

dP̃

dP

]
∈ [0,∞].(1.15)

For an event A with positive P̃ -probability, we have the following inequality (see
page 76 of [8]):

P [A] ≥ P̃ [A]e−(H(P̃ |P)+1/e)/P̃ [A].(1.16)

We end this section with some results regarding continuous-time reversible fi-
nite Markov chains.

Let L be the generator for an irreducible, reversible continuous-time Markov
chain on a finite set V , with jump rates at each state possibly non-constant. Let π

be the stationary measure of this Markov chain. Then −L is self-adjoint in l2(π)

and has nonnegative eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λ|V |. We denote by λ = λ2
its spectral gap. For any real function f on V , we define its variance with respect
to π as Varπ(f ). Then the semigroup Ht = etL satisfies∥∥Htf − π(f )

∥∥
2 ≤ e−λt

√
Varπ(f ).(1.17)

One can further show that, for all x and y in V ,

∣∣Px(Xt = y) − π(y)
∣∣ ≤ √

π(y)

π(x)
e−λt ,(1.18)

see pages 326–328 of [27] for more detail.
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We also introduce the so-called “canonical path method” to give a lower bound
on the spectral gap λ. We denote by E the edge set{{x, y};x, y ∈ V,Lx,y > 0

}
,(1.19)

where Lx,y is the matrix coefficient of L. We investigate the following quantity A

A = max
e∈E

{
1

W(e)

∑
x,y,γ (x,y)�e

leng
(
γ (x, y)

)
π(x)π(y)

}
,(1.20)

where γ is a map, which sends ordered pairs of vertices (x, y) ∈ V × V to a finite
path γ (x, y) between x and y, leng(γ ) denotes the length of γ , and

W(e) = π(x)Lx,y = π(y)Ly,x = (1x,L1y)l2(π) = (L1x,1y)l2(π)(1.21)

is the edge-weight of e = {x, y} ∈ E. Then the proof of Theorem 3.2.1, page 369
of [27] is also valid (note that actually e in [27] is an oriented edge) in the present
set-up of possibly nonconstant jump rates and shows that

λ ≥ 1

A
.(1.22)

2. The tilted random walk. In this section, we construct the main protago-
nists of this work: a time nonhomogenous Markov chain on Z

d , which we will
refer to as the tilted walk, as well as a continuous-time homogenous Markov chain
on a (macroscopic) finite subset of Zd , which we will refer to as the confined walk.
The tilted walk coincides with the confined walk up to a certain finite time, which
is of order Nd , and then evolves as a simple random walk. We derive a lower bound
on the spectral gap of the confined walk in Proposition 2.12. In Proposition 2.14,
we prove that with a suitable limiting procedure, the relative entropy between the
tilted random walk and the simple random walk has an asymptotic upper bound
given by a quantity involving the Brownian capacity of K that appears in Theo-
rem 0.1. In this section, the constants tacitly depend on δ, η, ε and R [see (2.2)
and (2.3)].

We recall that K is a compact subset of Rd as above (0.1). We assume, without
loss of generality, that

0 ∈ K.(2.1)

Otherwise, as we now explain, we can replace K by K̃ = K ∪{0}: on the one hand,
by the monotonicity and subadditivity of Brownian capacity (see, e.g., Proposi-
tion 1.12, page 60 of [25]), one has capRd (K) = capRd (K̃); on the other hand,
since K ⊆ K̃ , it is more difficult to disconnect K̃N than to disconnect KN , hence

P0[KN
V
� ∞] ≥ P0[K̃N

V
� ∞]. This means that the lower bound (0.4) with K

replaced by K̃ implies (0.4), justifying our claim. From now on, for the sake of
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simplicity, for any r > 0 we write B(r) for the open ball B◦
Rd (0, r) and Br for the

closed ball BRd (0, r). We introduce the three parameters

0 < δ,η, ε < 1,(2.2)

where δ will be used as a smoothing radius for K , see (2.4), η will be used as a
parameter in the construction of h̃, the smoothed potential function [see (2.6)] and
ε will be used as a parameter in the definition of TN , the time length of “tilting”;
see (2.16). We let R > 400 be a large integer (see Remark 2.4 for explanations on
why we take R to be an integer) such that

K ⊂ BR/100.(2.3)

By definition of R, we always have

K2δ ⊂ BR/50.(2.4)

In the next lemma, we show the existence of a function h̃ that satisfies various
properties (among which the most important is an inequality relating its Dirichlet
form to the relative Brownian capacity of K2δ), which, as we will later show, make
it the right candidate for the main ingredient in the construction of the tilted walk.

We denote by ERd (f, f ) = 1
2

∫
Rd |∇f (x)|2 dx for f ∈ H 1(Rd) the usual Dirich-

let form on R
d (see Example 4.2.1, page 167 and (1.2.12), page 11 of [14]). For

F and G, respectively, closed and open subsets of Rd such that F ⊂ G, we define
the relative Brownian capacity of F with respect to G by

capRd ,G(F ) = inf
{
ERd (f, f )

}
,(2.5)

where the infimum runs over all f ∈ H 1(Rd) which are supported in G and satisfy
that f ≥ 1 on F . We write C∞(BR) for the set of functions having all derivatives
of every order continuous in B(R), which all have continuous extensions to BR (see
page 10 of [15] for more details).

LEMMA 2.1. There exists a continuous function h̃ : Rd → R, satisfying the
following properties:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. h̃ is a C∞(BR) function when restricted to BR,

and harmonic on B(R) \ BR/2;
2. 0 ≤ h̃(z) ≤ 1 for all z ∈ R

d, h̃ = 1 on K2δ,

and h̃(z) = 0 outside B(R);
3. ERd (h̃, h̃) ≤ (1 + η)2capRd ,B(R)

(K2δ);
4. cw1 ≤ h̃ ≤ c′w2 where w1,w2 are defined

respectively in (2.11) and (2.12);
5. h̃(z1) ≥ ch̃(z2) for all z1, z2 ∈ R

d such that |z1| ≤ |z2| ≤ R.

(2.6)
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PROOF. We now construct h̃. We define, with δ as in (2.2),

h(z) = Wz[HK2δ < TB(R)
] ∀z ∈ R

d,(2.7)

the Brownian relative equilibrium potential function, where Wz stands for the
Wiener measure starting from z ∈ R

d , and HK2δ and TB(R)
, respectively, stand

for the entrance time of the canonical Brownian motion in K2δ and its exit time
from B(R).

We let ψ : R → R be a smooth, nondecreasing and concave function such that
0 ≤ (ψ)′(z) ≤ 1 for all z ∈ R, ψ(z) = z for z ∈ (−∞, 1

2 ], and ψ(z) = 1 for z ∈
[1 + η

2 ,∞). We consider

h̃ = ψ ◦ (
(1 + η)h

)
.(2.8)

Now we prove the claims.
We first prove claim 1 in (2.6). It is classical that h is C∞ on B(R) \ K2δ . In

addition, h is continuous, equal to 1 on K2δ and to 0 outside B(R) (note that every
point in K2δ is regular for K2δ). In particular, (1 + η)h ≥ 1 + η/2 on an open
neighborhood of K2δ , which implies that h̃ is identically equal to 1 on this neigh-
borhood. It follows that h̃ is C∞ on B(R). Now we show that h̃ is C∞ on BR . To
prove this, it suffices to prove that h is C∞ on BR \ BR−c for some c > 0, where h

coincides with h̃. We then represent h as GB(R)μ, where we denote by GB(R) and
μ, respectively, the killed Green function for B(R) and the (Brownian) equilibrium
measure of K2δ relative to B(R). Since μ is supported on K2δ and GB(R)(x, y) is
C∞ for all x ∈ BR \ B(R−c) and y ∈ K2δ ⊂ BR/50 [by the explicit formula of the
killed Green function for a ball (see, e.g., (41) in Section 2.2, page 40 of [13])],
we know that h is C∞ on BR \ BR−c, which implies that h̃ is C∞ on BR . This
completes the proof of claim 1.

Claim 2 follows directly from the definition of h̃: for all z ∈ R
d , (1 + η)h(z) ∈

[0,1 + η], hence by the definition of ψ , h̃(z) ∈ [0,1]; h̃ = 1 on K2δ is already
shown in claim 1 of (2.6); moreover, by (2.7), outside B(R), h = 0, hence h̃ = 0.

We now prove claim 3. By (E .4)′′, page 5 of [14], an equivalent characterization
of Markovian Dirichlet form, one knows that since ψ is a normal contraction,

ERd (h̃, h̃) ≤ ERd

(
(1 + η)h, (1 + η)h

) = (1 + η)2ERd (h,h)
(2.9)

= (1 + η)2capRd ,B(R)

(
K2δ),

where the last equality follows from [14], pages 152 and 71.
We now turn to claim 4. Because Bδ ⊂ K2δ ⊂ BR/50 by (2.1), we know that

w1 ≤ h ≤ w2 on BR,(2.10)

where

w1(z) = Wz[HBδ < TB(R)
] =

⎧⎪⎪⎨⎪⎪⎩
1, |z| ∈ [0, δ),

|z|2−d − R2−d

δ2−d − R2−d
, |z| ∈ [δ,R),

0, |z| ∈ [R,∞)

(2.11)
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and

w2(z) = Wz[HBR/50 < TB(R)
]

(2.12)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, |z| ∈ [0,R/50),

|z|2−d − R2−d

(R/50)2−d − R2−d
, |z| ∈ [R/50,R),

0, |z| ∈ [R,∞)

are respectively the Brownian relative equilibrium potential functions of Bδ and
BR/50 (see (4) in Section 1.7, page 29 of [11] for the explicit formula of w1 and
w2). By the definition of ψ , we also know that, cr ≤ ψ(r) ≤ c′r for 0 ≤ r ≤ 1 + η.
Hence by the definition of h̃, we find that

c̃w1
(2.10)≤ ch ≤ h̃ ≤ c′h

(2.10)≤ c̃′w2.(2.13)

Claim 4 hence follows.
Finally, claim 5 follows by claim 4 and the observation from the explicit formula

of w1 and w2 that w1 ≥ cw2 uniformly for some positive c on BR and both w1 and
w2 are radially symmetric and radially nonincreasing:

h̃(z1) ≥ cw1(z1) ≥ c′w2(z1) ≥ c′w2(z2) ≥ c′′h̃(z2)
(2.14)

for z1, z2 s.t. |z1| ≤ |z2| ≤ R. �

We then introduce the restriction to Z
d of the blow-up of h̃ and its l2(Zd)-

normalization as

hN(x) = h̃

(
x

N

)
for x ∈ Z

d and f (x) = hN(x)

‖hN‖2
,(2.15)

and also set [see (2.2) for the definition of ε]

TN = u∗∗(1 + ε)‖hN‖2
2,(2.16)

[recall that u∗∗ is the threshold of random interlacements defined above (1.14)].
We define TN in a way such that the quantity TNf 2 is bigger than u∗∗ on Kδ

N ,
which, roughly speaking, makes the occupational time profile of the tilted random
walk (which we will later define) at time TN on Kδ

N bigger than that of the random
interlacement with intensity u∗∗. We also set

UN = B(NR) ∩Z
d .(2.17)

This will be the state space of the confined random walk that we will later define.
In the following lemma, we record some basic properties of f . Intuitively speak-

ing, f is a volcano-shaped function, with maximal value on Kδ
N that vanishes out-

side UN . Note that f tacitly depends on δ, η and R.
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LEMMA 2.2. For large N , one has⎧⎪⎨⎪⎩
1. f is supported on UN and f > 0 on UN ;
2. f 2 is a probability measure on Z

d supported on UN ;
3. TNf 2(·) = u∗∗(1 + ε) on Kδ

N.

(2.18)

PROOF. Claims 1 and 2 follow by the definition of f [see (2.15)] and UN

[see (2.17)], note that by (2.17) x ∈ UN implies x
N

belongs to the open ball B(R).
Claim 3 follows from the definition of TN [see (2.16)] and the fact that hN = 1 on
Kδ

N for large N . �

We introduce a subset of UN (which will be used in Lemma 2.11)

ON = {
UN \ (

∂iU
N ∪ BNR/2

)}
(2.19)

∪ {
x ∈ ∂iU

N ; |y| = NR for all y ∼ x, y /∈ UN}
(note that both N and R are integers). Intuitively speaking, ON denotes the set
of points in UN which have distance at least NR/2 from 0 such that all their
neighbors outside UN (if there exists any) are on the sphere ∂BNR . In the next
lemma we collect some properties of hN and TN for later use, in particular in the
proofs of Lemmas 2.10, 2.11 and Propositions 2.13, 2.14.

LEMMA 2.3. For large N , one has⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1. cN−2 ≤ hN(x) ≤ 1 for all x ∈ UN ;
2. hN(x) ≤ cN−1 for all x ∈ ∂iU

N ;
3. hN(x) ≥ c′N−1 for all x ∈ ON ;
4. c′Nd ≤ ‖hN‖2

2 ≤ c′′Nd;
5. cNd ≤ TN ≤ c′Nd.

(2.20)

PROOF. We first prove claim 1. The right-hand side inequality follows by the
definition of hN [see (2.15)] and h̃ [see (2.8)]. We now turn to the left-hand side
inequality of claim 1. For all x ∈ UN , one has |x|2 < (NR)2 by the definition of
UN [see (2.17)]. Since x has integer coordinates, this implies |x| ≤ √

(NR)2 − 1,
hence for all x ∈ UN ,

|x| ≤ NR − cN−1.(2.21)

Thus, by claim 4 of (2.6) and (2.11) one has

h̃(z) ≥ c′N−2 for all |z| ≤ R − c

N2 .(2.22)

This implies that for large N , for all x ∈ UN ,

hN(x) = h̃

(
x

N

)
≥ c′′N−2.(2.23)
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Similarly, to prove claims 2, and 3, again by claim 4 of (2.6) and respectively
(2.12) and (2.11), it suffices to prove that

|x| ≥ NR − 1 ∀x ∈ ∂iU
N(2.24)

and that

|x| ≤ NR − c′ ∀x ∈ ON.(2.25)

To prove (2.24), we observe that, if x ∈ ∂iU
N , there exists y /∈ UN , such that x ∼

y. Since |y| ≥ NR and |x − y| = 1, the claim (2.24) follows by triangle inequality.
Now we prove (2.25). We consider x = (a1, . . . , ad) ∈ ON . By definition of ON

[see (2.19)], a2
1 + · · ·+ a2

d ≥ c(NR)2, hence without loss of generality, we assume
that |a1| ≥ cNR. By the definition of ON , we also know that (|a1| + 1)2 + a2

2 +
· · ·+a2

d ≤ (NR)2, which implies that |x| =
√

a2
1 + · · · + a2

d ≤ NR(1−c′/N)1/2 ≤
NR − c′′, and hence (2.25).

Claim 4 follows by the observation that by claim 2 of (2.6), on the one hand
hN ≤ 1 on Z

d and hN is supported on UN , and on the other hand hN = 1 on
(NKδ) ∩Z

d .
Claim 5 follows as a consequence of claim 4 and the definition of TN ; see (2.16).

�

REMARK 2.4. With Lemma 2.3 we reveal the reason for choosing R to be an
integer: because we wish that the lattice points are not too close to the boundary
of BNR [see (2.21)]. This enables us to show, for example, that hN is not too small
on UN , as in claim 1 of (2.20).

Now, we introduce a nonnegative martingale that plays an important role in our
construction of the tilted random walk. Given a real-valued function g on Z

d , we
denote its discrete Laplacian by

�disg(x) = 1

2d

∑
|e|=1

g(x + e) − g(x).(2.26)

For the finitely supported nonnegative f defined in (2.15), for all x in UN , we
introduce under the measure Px the stochastic process

Mt = f (Xt∧T
UN

)

f (x)
e
∫ t∧T

UN

0 v(Xs) ds, t ≥ 0,Px-a.s.,(2.27)

where

v = −�disf

f
.(2.28)

We define for all T ≥ 0, a nonnegative measure P̂x,T (on Ŵ+) with density MT

with respect to Px ,

P̂x,T = MT Px.(2.29)
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In the next lemma, we show that P̂x,T is the law of a Markov chain and identify
its infinitesimal generator.

LEMMA 2.5. For all x ∈ UN , one has

P̂x,T is the probability measure for a Markov chain up to time T on UN.(2.30)

Its semi-group (acting on the finite dimensional space of functions on UN ) admits
a generator given by the bounded operator:

L̃g(x) = 1

2d

∑
y∈UN,y∼x

f (y)

f (x)

(
g(y) − g(x)

)
.(2.31)

PROOF. To prove the claims (2.30) and (2.31), we first prove that

Mt is an (Ft )-martingale under Px.(2.32)

For ζ ∈ (0,1), we define f (ζ ) = f + ζ and v(ζ ) = −�disf
(ζ )

f (ζ ) = −�disf

f (ζ ) . We denote

by M
(ζ)
t , t ≥ 0, the stochastic process similarly defined as Mt in (2.27) by

M
(ζ)
t = f (ζ )(Xt∧T

UN
)

f (ζ )(x)
e
∫ t∧T

UN

0 v(ζ )(Xs) ds t ≥ 0,Px-a.s.(2.33)

By Lemma 3.2 in Chapter 4, page 174 of [12], M
(ζ)
t is an (Ft )-martingale under

Px . Since N is fixed, f (ζ ) is uniformly for ζ ∈ (0,1) bounded from above and
below on UN , v(ζ ) is uniformly in ζ bounded on UN as well. Hence, for all t ≥ 0,
M

(ζ)
t is bounded above uniformly for all ζ ∈ (0,1). Therefore, the claim (2.32)

follows from the dominated convergence theorem since for all x ∈ UN , Px -a.s.,
limζ→0 M

(ζ)
t = Mt . To prove the claim (2.30), we just note that

Ex[MT ] = M0 = 1.(2.34)

Moreover, for all x in UN by claim 1 of (2.18)

f (XT
UN

) = 0,(2.35)

thus P̂x,T vanishes on all paths which exit UN before T . Then the claim (2.31)
follows by Theorem 2.5, page 61 of [7]. �

REMARK 2.6. When we apply the lemma from [12] mentioned in the proof
above, we need that inf

x∈UN f (x) > 0. However, by claim 1 of (2.18), we know
that f (x) = 0 for all x ∈ ∂UN . To cope with this problem, we introduce a per-
turbation term ζ , and apply the lemma to the perturbated objects instead of the
original ones.
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We then denote the law of the “tilted random walk” by

P̃N = P̂0,TN
.(2.36)

REMARK 2.7. Intuitively speaking, P̃N is the law of a tilted random walk,
which restrains itself up to time TN from exiting UN and then, after the determin-
istic time TN , continues as the simple random walk. It is absolutely continuous
with respect to P0.

It is convenient for us to define {P x}x∈UN , a family of finite-space Markov
chains on UN , with generator L̃ defined in (2.31). We will call this Markov chain
“the confined walk,” since it is supported on �(UN) [see below (1.5) for the defi-
nition]. We will also tacitly regard it as a Markov chain on Z

d , when no ambiguity
rises. We denote by Ex the expectation with respect to P x , for all x ∈ UN .

Thus, the following corollary is immediate.

COROLLARY 2.8.

Up to time TN, P̃N coincides with P 0.(2.37)

PROOF. It suffices to identify the finite time marginals of the two measures
with the help of the Markov property and (2.31). �

REMARK 2.9. Since the confined walk is time-homogenous, in Sections 3, 4
and 5 we will actually perform the analysis on the confined walk instead of the
tilted walk, and transfer the result concerning the time period [0, TN) back to the
tilted walk thanks to the above corollary. See, for instance, (5.20).

We now state and prove some basic estimates about the confined walk.

LEMMA 2.10. One has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. The measure π(x) = f 2(x), x ∈ UN, is a reversible
measure for the (irreducible) confined walk {P x}x∈UN ;

2. The Dirichlet form associated with {P x}x∈UN and π is

E(g, g) = (−L̃g, g)l2(π) = 1
2
∑

x,y∈UN,x∼y
f (x)f (y)

2d
(g(x) − g(y))2

with g : UN →R
+;

3. If x, y ∈ UN, |x| ≤ |y|, then one has hN(x) ≥ chN(y)

and π(x) ≥ c′π(y);
4. For all x ∈ UN, cN−d−4 ≤ π(x) = f 2(x) ≤ c′N−d .

(2.38)

PROOF. Claim 1 follows from claims 1 and 2 of (2.18) and the observation
that by (2.31) L̃ is self-adjoint in l2(π). Claim 2 follows from claim 1 and (2.31).
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Claim 3 follows from (2.15) and claim 5 of (2.6). Claim 4 follows from claims 1
and 4 of (2.20) and the definition of f [see (2.15)]. �

In the next lemma, we control the fluctuation of v with a rough lower bound and
a more refined upper bound.

LEMMA 2.11. One has [recall v is defined in (2.28)], for all x in UN ,

−cN2 ≤ v(x) ≤ c′N−2.(2.39)

PROOF. We first record an identity for later use:

v(x)
(2.28)= −�disf (x)

f (x)

(2.15)= −�dishN(x)

hN(x)
.(2.40)

The inequality on the left-hand side of (2.39) is very rough and follows from

v
(2.40)≥
hN≥0

−maxx∈UN hN(x)

minx∈UN hN(x)

(2.20)1.≥ −cN2.(2.41)

Next, we prove the inequality on the right-hand side of (2.39). We split UN into
three parts and call them by IN , ON and SN , respectively. Before we go into detail,
we describe roughly the division, and what it entails. The region IN = BNR/2 ∩Z

d

is the “inner part” of UN ; the region ON that already appears in (2.19) is the “outer
part” of UN that does not feel the push of the “hard” boundary, that is, all neighbors
of its points belong to BNR ; the region SN = ∂iU

N \ ON is a subset of the inner
boundary of UN , where all points have a least one neighbor outside BNR ∩Z

d , and
thus “feel the hard push” from outside UN . As we will later see, in the microscopic
region that corresponds to IN , h̃ is a smooth function; in the region ON , hN is at
least of order N−1 and |�dishN | is at most of order N−3; in the region SN , one
has �dishN > 0.

We first record an estimate. Using a Taylor formula at second order with
Lagrange remainder (see Theorem 5.16, pages 110–111 of [26]), since for all
x ∈ UN \ SN , all y adjacent to x belongs to BNR , we know from (2.15) that

�dishN(x) ≥ 1

N2

(
1

2d
�h̃

(
x

N

)
− cN−1

)
for all x ∈ UN \ SN.(2.42)

We first treat points in IN = BNR/2 ∩ Z
d . On BR/2, we know that h̃ ≥ c and h̃

is C∞ by claim 1 of (2.6). We thus obtain that for all x in IN ,

−�dishN(x)

hN(x)

(2.15)≤
(2.42)

−�h̃( x
N

) − cN−1

h̃( x
N

)N2
≤ cN−2.(2.43)

We then recall that ON = {UN \ (∂iU
N ∪ BNR/2)} ∪ {x ∈ ∂iU

N ; |y| =
NR for all y ∼ x, y /∈ UN }, as defined in (2.19). By claim 1 of (2.6), we know
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that for all x ∈ ON , �h̃( x
N

) = 0. Hence, we find that

v(x)
(2.42)≤ −�h̃(x/N) − cN−1

hN(x)N2

(2.20)3.≤ cN−1

c′N−1 · N2 = c′′N−2

(2.44)
for all x ∈ ON.

We finally treat points in SN = ∂iU
N \ ON . By Lemma 6.37, page 136 of [15],

h̃ can be extended to a C3 function w on B(R+1) such that w = h̃ in BR and all
the derivatives of w up to order three are uniformly bounded in B(R+1). Hence, we
have for all x ∈ SN ,

−�dishN(x) =
(
w

(
x

N

)
− 1

2d

∑
y∼x

w

(
y

N

))
(2.45)

+ 1

2d

∑
y∼x,y /∈UN

(
w

(
y

N

)
− h̃

(
y

N

))
= I + II.

On the one hand, by a second-order Taylor expansion with Lagrange remainder,
and since �w = 0 in BR \ BR/2, we have

I ≤ 1

N2

(
1

2d
�w

(
x

N

)
+ c

N

)
= c′

N3 for x ∈ SN.(2.46)

On the other hand, we know that by claim 2 of (2.6)

h̃

(
y

N

)
= 0 for all y /∈ UN.(2.47)

Moreover, by definition of SN , there exists a point y in Z
d , adjacent to x, such that

NR < |y| ≤ NR + 1. This implies that

(NR + 1)2 ≥ |y|2 ≥ (NR)2 + 1 and hence
(2.48)

R + 1

N
≥ |y|

N
≥ R + c′N−2.

By claim 4 of (2.6), since h̃ is bounded from above and below by two functions
having (constant) negative outer normal derivatives on ∂BR , we find that

∂h̃

∂n
(z) < −c uniformly for all z ∈ ∂BR,(2.49)

where ∂h̃
∂n

denotes the outer normal derivative of h̃. Thus, we find that for large N ,

w

(
y

N

)
≤ −cN−2.(2.50)

This implies that

II
(2.47)= 1

2d

∑
y∼x,y /∈UN

w

(
y

N

)
≤ −c′′N−2.(2.51)



A LOWER BOUND FOR DISCONNECTION BY SRW 897

Combining (2.46) and (2.51), it follows that for large N and all x ∈ SN ,

v(x)
(2.40)= −�dishN(x)

hN(x)

(2.45),(2.46)≤
(2.51)

cN−3 − c′′N−2

hN(x)
< 0.(2.52)

Since IN , ON and SN form a partition of UN , the inequality in the right-hand
side of (2.39) follows by collecting (2.43), (2.44) and (2.52). �

We will now derive a lower bound for the spectral gap of the confined walk,
which we denote by λ. We use the method introduced at the end of Section 1 and
derive an upper bound for the quantity A [recall that A is defined in (1.20)]. How-
ever, we first need to specify our choice of paths γ . For x = (x1, . . . , xd), y =
(y1, . . . , yd) ∈ UN , we assume, without loss of generality, that for some l ∈
{0, . . . , d} we have { |xi | ≥ |yi |, for i = 1, . . . , l

|xi | < |yi |, for i = l + 1, . . . , d,
(2.53)

(l = 0 means that |xi | < |yi | for all i = 1, . . . , d , and l = d means that |xi | ≥ |yi |
for all i = 1, . . . , d). For p,q ∈ Z

d , which differ only in one coordinate, we denote
by β(p,q) the straight (and shortest) path between them. Then γ (x, y) is defined
as follows:

γ (x, y) = the concatenation of the paths

β
(
(y1, . . . , yi−1, xi, . . . , xd), (y1, . . . , yi, xi+1, . . . , xd)

)
(2.54)

as i goes from 1 to d.

Loosely speaking, γ (x, y) successively “adjusts” each coordinate of x with the
corresponding coordinate of y by first “decreasing” the coordinates where |xi | is
bigger or equal to |yi | and then “increasing” the coordinates where |yi | is bigger
than |xi |. It is easy to check that this path lies entirely in UN , since by (2.53), for
all {p,q} ∈ γ (x, y), one has

max
(|p|, |q|) ≤ max

(|x|, |y|).(2.55)

PROPOSITION 2.12. One has

λ ≥ cN−2.(2.56)

PROOF. Recall that the quantity

A = max
e∈E

{
1

W(e)

∑
x,y,γ (x,y)�e

leng
(
γ (x, y)

)
π(x)π(y)

}
is defined in (1.20). By (1.22), to prove (2.56), it suffices to prove that

A ≤ c′N2.(2.57)
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On the one hand, by (2.55) and claim 3 of (2.38) one obtains that for all {p,q} ∈
γ (x, y),

min
(
π(p),π(q)

) ≥ c min
(
π(x),π(y)

)
.(2.58)

This implies that for all {p,q} ∈ γ (x, y)

W
({p,q}) (2.31)=

(1.21)
π(p)

f (q)

2df (p)

(2.38)1.= 1

2d
f (p)f (q)

(2.59)
(2.58)= 1

2d

√
π(p)π(q) ≥ c′ min

(
π(x),π(y)

)
.

On the other hand, for any x, y ∈ UN , one has

leng
(
γ (x, y)

) ≤ cN.(2.60)

Now we estimate the maximal possible number of paths that could pass through
a certain edge. We claim that, for any edge e ∈ EN , where we denote by EN the
edge set of UN consisting of unordered pairs of neighboring vertices in UN :

EN = {{x, y};x, y ∈ UN, |x − y| = 1
}
,(2.61)

there are at most cNd+1 paths passing through e. We now prove the claim. To fix a
pair of {x, y} such that e = {(a1, . . . , ak, . . . , ad), (a1, . . . , ak +1, . . . , ad)} belongs
to γ (x, y), where k ∈ {1, . . . , d}, there are 2d coordinates to be chosen. Actually,
for i = 1, . . . , k − 1, k + 1, . . . , d the ith coordinate of either x or y must be ai .
This leaves us at most 2d−1 ways of choosing (d − 1) coordinates of x and y to
be fixed by a1, . . . , ak−1, ak+1, . . . , ad . For the other (d + 1) coordinates, we have
no more than cN choices for each of them, since both x and y must lie in UN .
This implies that there are no more that c′Nd+1 pairs of {x, y} ⊂ UN , such that
e ∈ γ (x, y) is possible.

Combining the argument in the paragraph above with (2.59) and (2.60), one has

A
(1.20)= max

e∈EN

1

W(e)

∑
x,y,γ (x,y)�e

leng
(
γ (x, y)

)
π(x)π(y)

(2.59)≤
(2.60)

max
e∈EN

∑
x,y,γ (x,y)�e

c′N · max
(
π(x),π(y)

)
(2.62)

(2.38)4.≤ c′′Nd+1 · N · N−d = c′′N2.

This proves (2.57), and hence (2.56). �

We then define for {P x}x∈UN the regeneration time

t∗ = N2 log2 N.(2.63)
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In view of above proposition, t∗ is much larger than the relaxation time 1/λ, which
is of order O(N2). Hence, for all x in UN , P x[Xt = ·] becomes very close to the
stationary distribution π , when t ≥ t∗. More precisely, by (1.18) and (2.56)

sup
x,y∈UN

∣∣P x[Xt = y] − π(y)
∣∣ ≤ sup

x,y∈UN

√
π(y)

π(x)
e−λt

(2.64)
(2.38)4.≤

(2.56),(2.63)
e−c log2 N ∀t ≥ t∗.

We now relate the relative entropy between P̃N (which tacitly depends on R, η,
δ and ε) and P0 to the Dirichlet form of hN and derive an asymptotic upper bound
for it by successively letting N → ∞, η → 0, R → ∞, δ → 0 and ε → 0 in the
following Propositions 2.13 and 2.14. The Brownian capacity of K will appear as
the limit in the above sense of the properly scaled Dirichlet form of hN .

PROPOSITION 2.13. One has

H(P̃N |P0) ≤ u∗∗(1 + ε)EZd (hN,hN) + o
(
Nd−2).(2.65)

PROOF. By definition of the relative entropy [see (1.15)], we have

H(P̃N |P0)
(1.15)= EP̃N

[
log

dP̃N

dP0

]
(2.29)=
(2.36)

EP̃N [logMTN
] (2.37)= E0[logMTN

]

(2.27)= E0

[∫ TN

0
v(Xs) ds + logf (XTN

) − logf (X0)

]

= E0

[∫ t∗

0
v(Xs) ds

]
+ E0

[∫ TN

t∗
v(Xs) ds

]
(2.66)

+ E0
[
logf (XTN

) − logf (X0)
]

= I + II + III.

For an upper bound of I, by (2.39) and the definition of t∗ [see (2.63)], we have

I ≤ t∗ max
x∈UN

v(x) ≤ c log2 N.(2.67)

For an upper bound of II, we notice that applying (2.64) for t ∈ (t∗, TN),∣∣∣∣E0

[∫ TN

t∗
v(Xt) dt

]
− (TN − t∗)

∫
v dπ

∣∣∣∣
≤ (TN − t∗) sup

t∈[t∗,TN ]
sup

y∈UN

∣∣∣∣P 0[Xt = y] −
∫

v dπ

∣∣∣∣ · max
y∈UN

∣∣v(y)
∣∣(2.68)

(2.64)≤ e−c log2 N(TN − t∗) max
y∈UN

∣∣v(y)
∣∣ (2.39)≤
(2.20)5.

e−c′ log2 N.
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Since f is supported on UN by claim 1 of (2.18), we may enlarge the range for
summation in the second equality in the following calculation without changing
the sum and see that∫

v dπ
(2.28)=

(2.38)1.

∑
x∈UN

−�disf (x)

f (x)
f 2(x)

(2.16)= u∗∗(1 + ε)

TN

∑
x∈Zd

−f (x)�disf (x)‖hN‖2
2(2.69)

(2.15)= u∗∗(1 + ε)

TN

∑
x∈Zd

−hN(x)�dishN(x).

By the discrete Green–Gauss theorem and the definition of Dirichlet form, we have∑
x∈Zd

−hN(x)�dishN(x) = 1

2

∑
x,x′∈Zd

x∼x′

1

2d

(
hN

(
x′)− hN(x)

)2

(2.70)
= EZd (hN,hN).

Hence by (2.69) and (2.70), we know that

(TN − t∗)
∫

v dπ ≤ u∗∗(1 + ε)EZd (hN,hN).(2.71)

Thus, we obtain from (2.71) and (2.68) that

II ≤ u∗∗(1 + ε)EZd (hN,hN) + e−c′ log2 N.(2.72)

For the calculation of III, we know that

E0
[
logf (XTN

) − logf (X0)
] ≤ log max

x∈UN
f (x) − log min

x∈UN
f (x)

(2.73)
(2.38)4.≤ c logN.

Combining (2.67), (2.72) and (2.73), we obtain that

H(P̃N |P0) ≤ u∗∗(1 + ε)EZd (hN,hN) + o
(
Nd−2),(2.74)

which is (2.65). �

PROPOSITION 2.14. One has

lim sup
ε→0

lim sup
δ→0

lim sup
R→∞

lim sup
η→0

lim sup
N→∞

1

Nd−2 H(P̃N |P0)

(2.75)
≤ u∗∗

d
capRd (K).
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PROOF. By (2.65), we have

lim sup
N→∞

1

Nd−2 H(P̃N |P0) ≤ u∗∗(1 + ε) lim sup
N→∞

1

Nd−2EZd (hN,hN).(2.76)

By the definition of hN , we have

1

Nd−2EZd (hN,hN)

= 1

4dNd−2

∑
x∼y∈Zd

(
hN(y) − hN(x)

)2(2.77)

(2.15)= 1

4dNd−2

∑
x∼y∈Zd

(
h̃

(
y

N

)
− h̃

(
x

N

))2

.

By claim 2 of (2.6), the summation in the right member of the second equality in
(2.77) can be reduced to x, y ∈ UN ∪ ∂UN . Then we split the sum into two parts:

∑
x∼y∈Zd

(
h̃

(
y

N

)
− h̃

(
x

N

))2

= �1 + �2,(2.78)

where

�1 = ∑
x,y∈UN,x∼y

(
h̃

(
y

N

)
− h̃

(
x

N

))2

(2.79)

contains all summands with x, y ∈ UN , and

�2 = 2
∑

x∈UN,y /∈UN,x∼y

(
hN(y) − hN(x)

)2(2.80)

contains all summands with x in UN and y in ∂UN . By claim 2 of (2.6), we find
that

lim
N→∞

1

4dNd−2 �1 = 1

2d

∫
Rd

s
∣∣∇h̃(y)

∣∣2 dy(2.81)

by a Riemann sum argument. While by claim 2 of (2.20), we obtain that

�2 ≤ c
∑

x∈∂iU
N

hN(x)2 ≤ c′Nd−1
(

c

N

)2

= c′′Nd−3.(2.82)

This implies that

lim
N→∞

1

Nd−2 �2 = 0.(2.83)
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Therefore, we have

lim sup
N→∞

1

Nd−2EZd (hN,hN) ≤ lim
N→∞

1

4dNd−2 (�1 + �2)

(2.84)

= 1

2d

∫
Rd

∣∣∇h̃(y)
∣∣2 dy = 1

d
ERd (h̃, h̃).

Therefore, by claim 3 of (2.6) we see that

lim sup
η→0

lim sup
N→∞

1

Nd−2 H(P̃N |P0)

≤ lim sup
η→0

u∗∗(1 + ε)

d
ERd (h̃, h̃)(2.85)

≤ u∗∗(1 + ε)

d
capRd ,B(R)

(
K2δ).

As R → ∞, the relative capacity converges to the usual Brownian capacity (this
follows for instance from the variational characterization of the capacity in Theo-
rem 2.1.5 on pages 71 and 72 of [14]):

capRd ,B(R)

(
K2δ) → capRd

(
K2δ) as R → ∞.(2.86)

Then, letting δ → 0, by Proposition 1.13, page 60 of [25], we have

capRd

(
K2δ) → capRd (K) as δ → 0.(2.87)

Finally, by letting ε → 0 the claim then follows. �

REMARK 2.15. In this section, guided by the heuristic strategy described be-
low (0.7), we have constructed the tilted random walk. In essence, this continuous-
time walk spends up to TN , chosen in (2.16), at each point x ∈ Kδ

N an expected
time equal to u∗∗(1+ε)h2

N(x) = u∗∗(1+ε), when started with the stationary mea-
sure π of the confined walk. The low entropic cost of the tilted walk with respect
to the simple random walk is quantified by the above Proposition 2.14. We will
now see in the subsequent sections that in the vicinity of points of Kδ

N , the geo-
metric trace left by the tilted walk by time TN stochastically dominates random
interlacements at a level “close to u∗∗(1 + ε)”.

3. Hitting time estimates. In this section, we relate the entrance time (of the
confined walk) into mesoscopic boxes inside Kδ

N to the capacity of these boxes
and TN [see (2.16)] and establish a pair of asymptotically matching bounds in the
Propositions 3.5 and 3.7. It is a key ingredient for the construction of couplings in
Section 5. The arguments in this section are similar to those in Section 3 and the
Appendix of [34]. However, in our set-up, special care is needed due to the fact
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that the stationary measure is massively non-uniform. In this section, the constants
tacitly depend on δ, η, ε and R [see (2.2) and (2.3)], r1, r2, r3, r4 and r5 [see (3.1)].

We start with the precise definition of objects of interest for the current and the
subsequent sections. We denote by �N = ∂K

δ/2
N the boundary in Z

d of the discrete
blow-up of Kδ/2 [we recall (1.2) and (1.2) for the definition of the boundary and
of the discrete blow-up]. The above �N will serve as a set “surrounding” KN . We
choose real numbers

0 < r1 < r2 < r3 < r4 < r5 < 1.(3.1)

We define for x0 in �N six boxes centered at x0 (when there is ambiguity we
add a superscript for their center x0):

Ai = B∞
(
x0,

⌊
Nri

⌋)
, 1 ≤ i ≤ 5 and A6 = B∞

(
x0,

⌊
δ

100
N

⌋)
,(3.2)

and we tacitly assume that N is sufficiently large so that for all x0 ∈ �N , the fol-
lowing inclusions hold:

A1 ⊂ A2 ⊂ A3 ⊂ A4 ⊂ A5 ⊂ A6 ⊂ Bδ
N ⊂⊂ Z

d .(3.3)

In view of (3.3) and claim 3 of (2.18) we find that, by (2.31), for large N and all x

in UN

the stopped processes X·∧TA6
under Px and P x have the same law.(3.4)

REMARK 3.1. Recall that the regeneration time t∗ is defined in (2.63) as t∗ =
N2 log2 N , and for all k = 1, . . . ,5, Ak are mesoscopic objects of size O(Nr)

where r ∈ (0,1). Informally, Propositions 3.5 and 3.7 will imply that for all x “far
away” from Ak , with a high P x -probability,

TN � HAk
� t∗.(3.5)

Given any x0 in �N , we write

D = UN \ A2,(3.6)

and let

g(x) = P x[HA1 ≤ TA2] (3.4)= Px[HA1 ≤ TA2], x ∈ UN,(3.7)

be the (tilted) potential function of A1 relative to A2. We also let

fA1(x) = 1 − Ex[HA1]
Eπ [HA1]

(3.8)

be the centered fluctuation of the scaled expected entrance time of A1 (relative to
the stationary measure).

The following lemma shows that the inverse of Eπ [HA1] is closely related to
E(g, g). (Actually we are going to prove that they are approximately equal later in
this section; see Propositions 3.7 and 3.5, as well as Remark 3.8.)
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LEMMA 3.2. One has,

E(g, g)
(
1 − 2 sup

x∈D

∣∣fA1(x)
∣∣) ≤ 1

Eπ [HA1]
≤ E(g, g)

1

π(D)2 .(3.9)

The proof is omitted due to its similarity to the proof of Lemma 3.2 in [5] (which
further calls Proposition 3.41 in [2], which is originally intended for Markov chains
with constant jump rate).

In the next lemma, we collect some properties of entrance probabilities for later
use, namely Propositions 3.5, 3.7, 4.7 and 5.1.

LEMMA 3.3. For large N , one has

P x[HA1 < t∗] ≤ N−c for all x ∈ D,(3.10)

and similarly

P x[HA2 < t∗] ≤ N−c′
for all x ∈ UN \ A3.(3.11)

Uniformly for all x ∈ ∂iA1, one has

eA1(x) ≤ Px[TA6 < H̃A1] ≤ Px[TA3 < H̃A1] ≤ Px[TA2 < H̃A1]
(3.12)

≤ eA1(x)
(
1 + N−c′′)

.

PROOF. We start with (3.10). First, we explain that to prove (3.10), it suffices
to show that

sup
x∈∂A2

P x[HA1 < t̃] ≤ sup
x∈∂A2

P x[HA1 < t̃ − t#] + N−c′

(3.13)
for all 0 ≤ t̃ ≤ t∗,

where we write t# for N2/ logN . Indeed, with (3.13), the claim (3.10) follows by
an induction argument:

sup
x∈D

P x[HA1 < t∗]

≤ sup
x∈∂A2

P x[HA1 < t∗] ≤ sup
x∈∂A2

P x[HA1 < t∗ − t#] + N−c′

(3.14)

≤ · · · ≤ sup
x∈∂A2

P x

[
HA1 < t∗ −

⌈
t∗
t#

⌉
t#

]
+

⌈
t∗
t#

⌉
N−c′

(2.63)≤ 0 + c log3 N · N−c′ ≤ N−c′′
.

Now we prove (3.13). We pick t̃ in [0, t∗]. One has

sup
x∈∂A2

P x[HA1 < t̃]
(3.15)

≤ sup
x∈∂A2

P x[HA1 < TA6] + sup
x∈∂A2

P x[TA6 < HA1 < t̃].
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On the one hand, by Proposition 1.5.10, page 36 of [19], one has

sup
x∈∂A2

P x[HA1 < TA6] (3.4)= sup
x∈∂A2

Px[HA1 < TA6] ≤ N−c.(3.16)

Now we seek an upper bound for the second term in the right member of (3.15).
We write

sup
x∈∂A2

P x[TA6 < HA1 < t̃]
(3.17)

≤ sup
x∈∂A2

P x[t# < TA6 < HA1 < t̃] + sup
x∈∂A2

P x[TA6 ≤ t#] = I + II.

To bound I, we can assume that t# < t̃ (otherwise I = 0). Applying Markov prop-
erty successively (first at time t#, then at time TA6 , and finally at time HA2 ), we
find

I ≤ sup
y∈UN

P y[TA6 < HA1 < t̃ − t#] ≤ sup
x∈∂A6

P x[HA1 < t̃ − t#]
(3.18)

≤ sup
x∈∂A2

P x[HA1 < t̃ − t#].

Hence to prove (3.13), it suffices to prove that

II ≤ N−c.(3.19)

Recalling that d∞(∂A2, ∂A6) ≥ cN , we find that

II
(3.4)= sup

x∈∂A2

Px[TA6 < t#] ≤ dP [T[−mN,mN] ≤ t0],(3.20)

where P is the probability law of a one-dimensional random walk started from 0
(and we denote by E the corresponding expectation), t0 = t#/d , and m = δ/200.
We know that

P [T[−mN,mN] ≤ t0] = P
[

max
0≤t≤t0

|Xt | ≥ mN
]
.(3.21)

By Doob’s inequality, we have for λ > 0, using symmetry

P
[

max
0≤t≤t0

|Xt | ≥ mN
]
= 2P

[
max

0≤t≤t0
exp(λXt) ≥ exp(λmN)

]
(3.22)

≤ 2E[exp(λXt0)]
exp(λmN)

.

Note that exp{λXt − t (coshλ − 1)}, t ≥ 0, is a martingale under P , so

E
[
exp(λXt0)

] = exp
{
t0(coshλ − 1)

}
.(3.23)
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Hence by taking λ = mN
2t0

= cN−1 log−1 N , we obtain that the right-hand term of
(3.22) is bounded from above by

2 exp
{
t0(coshλ − 1) − m2N2

2t0

}
≤ 2 exp

(
−c

m2N2

2t0

)
≤ N−c′

.(3.24)

This implies that

P [T[−mN,mN] ≤ t0] ≤ N−c.(3.25)

Thus, one obtains (3.19) by collecting (3.20) and (3.25). This completes the proof
of (3.13), and hence of (3.10).

The claim (3.11) follows by a similar argument.
Now we turn to (3.12). All, except the rightmost inequality of (3.12), are imme-

diate. For the rightmost inequality, we first notice that by an estimate similar to the
discussion below (3.25) of [34] we have,

Px[TA2 < H̃A1 < ∞] ≤ N−ceA1(x) for all x ∈ ∂iA1.(3.26)

And hence we get that for all x ∈ ∂iA1,

Px[TA2 < H̃A1] = Px[H̃A1 = ∞] + Py[TA2 < H̃A1 < ∞]
(3.27)

≤ (
1 + N−c)eA1(x).

This completes the proof of (3.12), and hence of Lemma 3.3. �

Now we make a further calculation of the tilted Dirichlet form of g defined
in (3.7).

PROPOSITION 3.4. For large N , one has

cap(A1)

TN

u∗∗(1 + ε) ≤ E(g, g) ≤ (
1 + N−c)cap(A1)

TN

u∗∗(1 + ε).(3.28)

PROOF. Combining the fact that π = f 2 [from claim 1 of (2.38)], and the
observation that g is discrete harmonic in A2 \ A1, g = 1 on A1 and g = 0 outside
A2, one has [recall that Z1 is the first step of the discrete chain attached to Xt ,
t ≥ 0, see (1.3)]

E(g, g) = (g,−L̃g)l2(π) = u∗∗(1 + ε)

TN

∑
y∈∂iA1

g(y)

(
g(y) − ∑

x∼y

1

2d
g(x)

)
(3.7)= u∗∗(1 + ε)

TN

∑
y∈∂iA1

(
1 − ∑

x∼y

Py[Z1 = x]Px[HA1 < TA2]
)

(3.29)

Markov= u∗∗(1 + ε)

TN

∑
y∈∂iA1

Py[TA2 < H̃A1].
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On the one hand, by the rightmost inequality in (3.12), one has∑
y∈∂iA1

Py[TA2 < H̃A1] ≤ (
1 + N−c) ∑

y∈∂iA1

eA1(y) = (
1 + N−c)cap(A1).(3.30)

On the other hand, one also knows that

cap(A1) = ∑
y∈∂iA1

eA1(y)
(3.12)≤ ∑

y∈∂iA1

Py[TA2 < H̃A1].(3.31)

Thus, the claim (3.28) follows by collecting (3.29), (3.30) and (3.31). �

Next, we prove the first half of the main estimate of this section, namely the
upper bound on 1/Eπ [HA1]. Let us mention that this upper bound will actually be
needed in the proof of Lemma 3.6.

PROPOSITION 3.5. For large N , one has

1

Eπ [HA1]
≤ (

1 + N−c)cap(A1)

TN

u∗∗(1 + ε).(3.32)

As a consequence, one has

Eπ [HA1] ≥ cN2+c′
.(3.33)

PROOF. We first prove (3.32). We apply the right-hand inequality in (3.28) to
the right-hand estimate in (3.9). Note that

π(D) = 1 − π(A2) ≥ 1 − cN(r2−1)d for large N,(3.34)

for large N , with the help of (3.28) we thus find that

1

Eπ [HA1]
(3.9)≤ E(g, g)

π(D)2

(3.34)≤ (
1 − cN(r2−1)d)−2E(g, g)

(3.35)
(3.28)≤ (

1 + N−c)cap(A1)

TN

u∗∗(1 + ε).

This yields (3.32). Then the claim (3.33) follows by observing (1.11) and claim 5
of (2.20). �

In the following Lemma 3.6 and Proposition 3.7, we build a corresponding
lower bound by controlling the fluctuation function fA1 defined in (3.8).

LEMMA 3.6. For large N , one has

fA1(x) ≥ −N−c for all x ∈ UN.(3.36)

and in the notation of (3.6)

Ex[HA1] ≥ Eπ [HA1] − e−c′ log2 N − P x[HA1 ≤ t∗](t∗ + Eπ [HA1]
)

(3.37)
for all x ∈ D.
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PROOF. As we now explain, to prove (3.36), it suffices to show that∣∣Ex

[
EXt∗ [HA1]

]− Eπ [HA1]
∣∣ ≤ e−c′ log2 N for all x ∈ UN.(3.38)

Indeed, since HA1 ≤ t∗ + HA1 ◦ θt∗ , the simple Markov property applied at time t∗
and (3.38) imply that

sup
x∈UN

Ex[HA1] ≤ t∗ + e−c log2 N + Eπ [HA1].(3.39)

It then follows that

supx∈UN Ex[HA1]
Eπ [HA1]

− 1

(3.39)≤
(3.32)

(
t∗ + e−c log2 N )

c′ cap(A1)

TN

(3.40)

(1.11)≤
(2.16)

(
t∗ + e−c log2 N )

c′′N(d−2)r1−d
(2.63)≤
(3.1)

N−c̃.

This proves (3.36). We now prove (3.38). Let us consider the expectation of
HA1 when started from Xt∗ . We first note that for all x ∈ UN ,∣∣Ex

[
EXt∗ [HA1]

]− Eπ [HA1]
∣∣

(3.41)
≤ ∑

y∈UN

∣∣P x[Xt∗ = y] − π(y)
∣∣ sup
y∈UN

Ey[HA1].

By the relaxation to equilibrium estimate (2.64), one has∑
y∈UN

∣∣P x[Xt∗ = y] − π(y)
∣∣ ≤ e−c log2 N for all x ∈ UN.(3.42)

Thus, to prove (3.38) it suffices to obtain a very crude upper bound for the supre-
mum of the expected entrance time in A1 as the starting point varies in UN :

Ey[HA1] ≤ cN5+d for all y ∈ UN.(3.43)

This follows, for example, by a corollary of the commute time identity (see Corol-
lary 4.28, page 59 of [3]):

Ey[HA1] ≤ reff(y,A1)π
(
UN )

for all y ∈ UN,(3.44)

where reff(y,A1) stands for the effective resistance between y and A1. On the one
hand, by the third equality of (2.59) and claim 4 of (2.38), for all x, y ∈ UN such
that x ∼ y, we know that

W(x,y) = 1

2d

√
π(x)π(y) ∈ (

cN−(4+d),1
]
,(3.45)



A LOWER BOUND FOR DISCONNECTION BY SRW 909

hence the resistance on {p,q} does not exceed cN4+d . We know that for any y

in UN , for some x ∈ ∂iA1, the effective resistance between y and x [which we
denote by reff(y, x)] is less or equal to the effective resistance between y and x on
the path γ (y, x) [which we denote by r

γ
eff(y, x)] defined above Proposition 2.12

[note that γ (y, x) is a subgraph of UN ]. Since by (2.60) γ (y, x) is of length no
more than cN , r

γ
eff(y, x) does not exceed c′N5+d by (3.45). Hence, we obtain that

reff(y,A1) ≤ reff(y, x) ≤ r
γ
eff(y, x) ≤ cN5+d .(3.46)

On the other hand, one has π(UN) = 1 [by claim 1 of (2.38)]. Thus, (3.44) and
(3.46) yield that

sup
y∈UN

Ey[HA1] ≤ cN5+d .(3.47)

This completes the proof of (3.43), and hence of (3.36).
We now turn to (3.37). We consider any x ∈ D. By the simple Markov property

applied at time t∗, we find that

Ex[HA1]
≥ Ex

[
1{HA1>t∗}EXt∗ [HA1]

]
= Ex

[
EXt∗ [HA1]

]− Ex

[
1{HA1≤t∗}EXt∗ [HA1]

]
(3.48)

(3.38)≥ Eπ [HA1] − e−c log2 N − P x[HA1 ≤ t∗] sup
y∈UN

Ey[HA1]

(3.39)≥ Eπ [HA1] − e−c′ log2 N − P x[HA1 ≤ t∗](t∗ + Eπ [HA1]
)
.

This proves (3.37) and finishes Lemma 3.6. �

We now prove the second main estimate.

PROPOSITION 3.7. For large N , one has that

1

Eπ [HA1]
≥ (

1 − N−c)cap(A1)

TN

u∗∗(1 + ε).(3.49)

PROOF. By applying (3.28) and the left-hand inequality of (3.9), for large N ,
one has,

1

Eπ [HA1]
≥

(
1 − 2 sup

x∈D

∣∣fA1(x)
∣∣)cap(A1)

TN

u∗∗(1 + ε).(3.50)

Thus, with (3.36) in mind, to prove (3.49), it suffices to show that for large N ,

sup
x∈D

fA1(x) ≤ N−c.(3.51)
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Dividing by Eπ [HA1] on both sides of (3.37) and taking the infimum over all
x ∈ D, one obtains

inf
x∈D

Ex[HA1]
Eπ [HA1]
(2.63)≥ 1 − e−c′ log2 N

Eπ [HA1]
− sup

x∈D

P x[HA1 ≤ t∗]
(

N2 log2 N

Eπ [HA1]
+ 1

)
(3.52)

(3.33)≥
(3.10)

1 − e−c′ log2 N − N−c̃′(
c′′(logN)2N−c̃ + 1

) ≥ 1 − N−c.

Together with (3.50), this proves (3.51) as well as (3.49). �

REMARK 3.8. The combination of Propositions 3.5 and 3.7 forms a pair of
asymptotically tight bounds on Eπ [HA1], namely(

1 − N−c)cap(A1)

TN

u∗∗(1 + ε) ≤ 1

Eπ [HA1]
(3.53)

≤ (
1 + N−c)cap(A1)

TN

u∗∗(1 + ε).

4. Quasi-stationary measure. In this section, we introduce the quasi-
stationary distribution (abbreviated below as q.s.d.) induced on D [recall that D

is defined in (3.6)] and collect some of its properties. This will help us show in
the next section that carefully chopped sections of the confined random walk are
approximately independent, allowing us to bring into play excursions of random
walk and furthermore random interlacements. In Proposition 4.5, we prove that
the q.s.d. on D is an appropriate approximation of the stationary distribution of the
random walk conditioned to stay in D. In Proposition 4.7, we show that the hitting
distribution of A1 of the confined walk starting from the q.s.d. on D is very close
to the normalized equilibrium measure of A1. In this section, the constants tacitly
depend on δ, η, ε and R [see (2.2) and (2.3)], r1, r2, r3, r4 and r5 [see (3.1)].

We fix the choice of A1 and A2 as in the last section [see (3.2)]. The arguments
in Lemma 4.2, Propositions 4.3, 4.5 and 4.7 below are similar to those of Sec-
tion 3.2 and the Appendix of [34]. However, in our set-up, special care is needed
due to the fact that the stationary measure is massively non-uniform in the present
context.

We now define the q.s.d. on D(= UN \ A2). We denote by {HD
t }t≥0 the semi-

group of {P x}x∈UN killed outside D, so that for all f ∈ UN →R

HD
t f (x) = Ex

[
f (Xt),HA2 > t

]
.(4.1)

We denote by LD the generator of {HD
t }t≥0. It is classical fact that for f : D →R,

LDf (x) = L̃f̃ (x) ∀x ∈ D,(4.2)
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where f̃ is the extension of f to UN vanishing outside D and L̃ [defined in (2.31)]
is the generator for the tilted walk. We denote by πD the restriction of the measure
π onto D. So, {HD

t }t≥0 and LD are self-adjoint in l2(πD) and

HD
t = etLD

.(4.3)

We then denote by λD
i , i = 1, . . . , |D|, with

0 ≤ λD
i ≤ λD

i+1, i = 1, . . . , |D| − 1,(4.4)

the eigenvalues of −LD and by fi , i = 1, . . . , |D|, an l2(πD)-orthonormal basis of
eigenfunctions associated to λi . Because D is connected, by the Perron–Frobenius
theorem, all entries of f1 are positive. The quasi-stationary distribution on D is the
probability measure on D with density with respect to πd proportional to f1, that
is,

σ(y) = (f1, δy)l2(πD)

(f1,1)l2(πD)

, x ∈ D,(4.5)

where, for y ∈ D, δy : D → R is the point mass function at y. It is known that the
q.s.d. on D is the limit distribution of the walk conditioned on never entering A2,
that is, for all x, y ∈ D, one has (see (6.6.3), page 91 of [17]),

σ(y) = lim
t→∞P x[Xt = y|HA2 > t].(4.6)

We now prove a lemma which is useful in the proof of Proposition 4.3 below.

LEMMA 4.1. For all x, y ∈ D, one has that

σ(y) ≥ N−cP y[Hx < HA2]σ(x).(4.7)

PROOF. By the l2(πD)-self-adjointness of the killed semi-group (HD
t )t≥0, we

have that for all x, y ∈ D, t > 0,

P x[Xt = y|HA2 > t] = P y[Xt = x|HA2 > t]π(y)

π(x)

P y[HA2 > t]
P x[HA2 > t] .(4.8)

On the one hand, by the strong Markov property applied at time Hx , we know that
for all x, y ∈ D,

P y[HA2 > t] ≥ P y[Hx < HA2]P x[HA2 > t],(4.9)

On the other hand, by claim 4 of (2.38), we know that for all x, y ∈ D, t > 0,

π(y)

π(x)
≥ cN−4.(4.10)

Thus, the claim (4.7) follows by taking limits in t on both sides of (4.8) and incor-
porating (4.10) and (4.9). �

The next lemma is also a preparation for Proposition 4.3.
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LEMMA 4.2. For all x ∈ D \ A4, one has

max
y∈∂A3

P y[Hx < HA2] ≥ N−c.(4.11)

PROOF. We fix an x ∈ D \ A4 in the proof. Applying the Markov property at
time TA3 under P y′ for y′ ∈ ∂A2, we see that

max
y′∈∂A2

P y′ [Hx < HA2] = max
y′∈∂A2

P y′ [TA3 < Hx < HA2]
(4.12)

≤ max
y∈∂A3

P y[Hx < HA2].
We now develop a lower bound on the left-hand side of (4.12) via effective re-
sistance estimates. We denote by U col the graph obtained by collapsing A2 into a
single vertex a in UN . With some abuse of notation, we use the same symbol for
the vertices in U col as in UN except for a. We denote by W col : U col ×U col →R

+
the induced edge-weight. Let

wa = ∑
y∈∂A2

W col(a, y) = ∑
z∈A2,y∈∂A2,z∼y

W(z, y)(4.13)

be the sum of the weights of edges that touch a in U col. We denote by {P col
z }z∈U col

the discrete-time reversible Markov chain with edge-weight W col. The reversible
measure of this Markov chain πcol is given through

πcol(z) =
⎧⎨⎩

wa, z = a,∑
y∼z

W(z, y), otherwise.(4.14)

Then we have

max
y′∈∂A2

P y′ [Hx < HA2] = max
y′∈∂A2

P col
y′ [Hx < Ha] ≥ P col

a [Hx < H̃a],(4.15)

By a classical result on electrical networks (see Proposition 3.10, page 69 of [2]),
the escape probability in the right-hand side of (4.15) equals

P col
a [Hx < H̃a] = (

war
col(a, x)

)−1
,(4.16)

where rcol(a, x) is the effective resistance between a and x on U col. We know that
rcol(a, x) is smaller or equal to the effective resistance between a and x along a
path between a and x of length no more than cN and along this path the edge-
weight is no less than N−c by (3.45). Hence, we obtain that

rcol(a, x) ≤ Nc.(4.17)

Moreover, we know that

wa = ∑
z∈A2,y∈∂A2,z∼y

W(z, y) ≤ Nc max
z∈D

W(z, y)
(3.45)≤ Nc.(4.18)
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Therefore, we conclude from (4.16), (4.17) and (4.18) that

P col
a [Hx < H̃a] ≥ N−c′

.(4.19)

The claim (4.11) follows by collecting (4.12), (4.15) and (4.19). �

The next proposition is a crucial estimate for us, showing that σ is not too
small at any point in D. This fact will be used in Proposition 4.5. In the proof, we
mainly rely on the reversibility of the confined walk, hitting probability estimates
of simple random walk, and the Harnack principle.

PROPOSITION 4.3. For large N , one has the following lower bound:

inf
x∈D

σ(x) ≥ N−c,(4.20)

and for all x ∈ D,

Nc′ ≥ f1(x) ≥ N−c′′
.(4.21)

PROOF. We first prove (4.20). The claim (4.21) will then follow. Because σ is
a probability measure, and

|D| ≤ cNd,(4.22)

there must exist some x′ in D such that

σ
(
x′) ≥ cN−d .(4.23)

By (4.7), to prove (4.20) it suffices to prove that for all x ∈ D,

P x[Hx′ < HA2] ≥ N−c′
.(4.24)

We now prove (4.24) by treating two cases according to the location of x′.
Case 1: x′ ∈ A4 \A2 [recall the definition of A4 in (3.2)]. By (3.4) and a standard

hitting estimate (see Proposition 1.5.10, page 36 of [19]) for simple random walk,
for all x in D, we have that [recall the definition of A5 in (3.2)],

P x[H∂A5 < HA2] ≥ N−c,(4.25)

(note that the left-hand side equals 1 if x /∈ A5). We write

l(x) = P x[Hx′ < HA2].(4.26)

By the strong Markov property applied at H∂A5 ,

l(x)
Markov≥ P x[H∂A5 < HA2] min

y∈∂A5
l(y)

(4.25)≥ N−c min
y∈∂A5

l(y).(4.27)

We now develop a lower bound on the right-hand side of (4.27). Let S1 =
B∞(x0,3Nr5) \ B∞(x0,

1
3Nr5) and S2 = B∞(x0,2Nr5) \ B∞(x0,

1
2Nr5), (we tac-

itly assume that N is sufficiently large that S1 ⊂ A6, and S2 ⊂ D). It is straight-
forward to see that l(x) is L̃-harmonic in D \ {x′} and that L̃ coincides with �dis
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in S1 [see (3.4)]. By the Harnack inequality (see Theorem 6.3.9, page 131 of [20]),
we know that (note that ∂A5 ⊂ S2)

min
y∈∂A5

l(y) ≥ c′ max
y∈∂A5

l(y).(4.28)

This implies by (4.27) that

min
x∈D

l(x) ≥ c′N−c max
y∈∂A5

l(y).(4.29)

We now take any point y′ ∈ ∂A5 of least distance (in the sense of l∞-norm) to
x′ on ∂A5 and sharing (d − 1) common coordinates with x′ and fix y′. We set
B = B∞(y′, |y′ − x′|∞ − 1). Our way of choosing y′ ensures that x′ ∈ ∂B . Then
by (3.4), we have

l
(
y′) = P y′ [Hx′ < HA2] ≥ P y′

[
XTB

= x′] (3.4)= Py′
[
XTB

= x′].(4.30)

By a classical estimate (see Lemma 6.3.7, pages 158–159 of [20]), we have

Py′
[
XTB

= x′] ≥ cN(1−d)r5 .(4.31)

Thus, the claim (4.24) follows by collecting (4.29), (4.30) and (4.31).
Case 2: x′ ∈ D \ A4. Since ∂A3 ⊂ A4 \ A2, if we can prove that for some y ∈

∂A3,

σ(y) ≥ N−c,(4.32)

then we are brought back to case 1 by taking the y in (4.32) as the x′ in (4.23).
Now we show that we can indeed find such y that (4.32) holds. By (4.7) and our
assumption that σ(x′) ≥ N−c, we have

σ(y)
(4.7)≥ N−cP y[Hx′ < HA2]σ

(
x′) (4.23)≥ N−c′

P y[Hx′ < HA2].(4.33)

Hence, we know that by (4.11), if we pick the y that maximizes the probability in
the left-hand side of (4.11), the claim (4.32) is indeed true.

With these two cases, we complete the proof of (4.20).
Now we prove (4.21). By the fact that f1 is a unit vector in l2(πD) we know

that

(f1, f1)l2(πD) = 1.(4.34)

To prove the first inequality of (4.21), we observe that, thanks to (4.34):

1 = (f1, f1)l2(πD) ≥ max
x∈D

f 2
1 (x)min

x∈D
πD(x)

(2.38)4.≥ N−c max
x∈D

f 2
1 (x).(4.35)

To prove the second inequality of (4.21), we observe that by (4.34)

max
x∈D

πD(x)f 2
1 (x) ≥ 1

|D| ,(4.36)
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which implies that

max
x∈D

f1(x) ≥
√

1

|D|maxx∈D πD(x)

(2.38)4.≥
(4.22)

N−c.(4.37)

This implies that for all x ∈ D,

f1(x)
(4.5)= 1

πD(x)
σ (x)(f1,1)l2(πD)

(2.38)4.≥
(4.20)

N−c max
x∈D

f1(x)min
x∈D

πD(x)

(4.38)
(2.38)4.≥
(4.37)

N−c′
.

This completes the proof of (4.21), and concludes the proof of Proposition 4.3. �

In the following proposition, we show that the spectral gap of LD is at least of
order N−2.

LEMMA 4.4. One has that for large N

λD
2 − λD

1 ≥ cN−2.(4.39)

PROOF. Recall that λ2 stand for the second smallest eigenvalue of −L̃. By the
eigenvalue interlacing inequality (see Theorem 2.1 of [16]), we have

λD
2 ≥ λ2.(4.40)

While by the paragraph below equation (12) of [1], we have

λD
1 = 1

Eσ [HA2]
.(4.41)

By Lemma 10(a) of [1], we have

Eσ [HA2] ≥ Eπ [HA2] or equivalently
1

Eσ [HA2]
≤ 1

Eπ [HA2]
.(4.42)

By an argument similar to the proof of Proposition 3.5 (by replacing A1, A2 by
A2, A3), we find that

1

Eπ [HA2]
≤ cN−d+(d−2)r2 .(4.43)

This implies by (4.41) and (4.42) that

λD
1 ≤ cN−d+(d−2)r2 .(4.44)

Hence, we obtain that for large N

λD
2 −λD

1

(4.44)≥
(4.40)

λ2 −cN−d+(d−2)r2
(2.56)≥ c′N−2. �(4.45)
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The next proposition shows, with the help of the spectral gap estimate obtained
in Lemma 4.4, that the q.s.d. on D is very close to the distribution of the confined
walk at time t∗ conditioned on not hitting A2 [see (2.63) for the definition of t∗].

PROPOSITION 4.5. One has that for large N ,

sup
x,y∈D

∣∣P x[Xt∗ = y
∣∣HA2 > t∗] − σ(y)| ≤ e−c log2 N.(4.46)

PROOF. The conditional probability in (4.46) is expressed through HD
t∗ as

Px[Xt∗ = y|HA2 > t∗] = HD
t∗ δy(x)

(HD
t∗ 1)(x)

.(4.47)

Now we calculate the numerator in the right-hand side of (4.47). We decompose
δy in the l2(πD) base {fi}i=1,...,|D|:

δy =
|D|∑
i=1

aifi

(4.48)
where ai = (δy, fi)l2(πD) = fi(y)πD(y), for 1 ≤ i ≤ |D|.

Hence, one can decompose HD
t∗ δy(x) into linear combinations of aifi(x):

HD
t∗ δy(x) = e−λD

1 t∗
(
a1f1(x) +

|D|∑
i=2

e(λD
1 −λD

i )t∗aifi(x)

)
.(4.49)

Now we show that the first term inside the brackets on the right-hand side of (4.49)
is significantly larger than the other terms. By Proposition 4.3, one has

a1f1(x)
(4.48)= πD(y)f1(y)f1(x)

(4.21)≥
(2.38)4.

N−c.(4.50)

For large N , thanks to Lemma 4.4, the reminder term inside the brackets of (4.49)
is bounded by∣∣∣∣∣

|D|∑
i=2

e(λD
1 −λD

i )t∗aifi(x)

∣∣∣∣∣ (4.4)≤
(4.48)

|D|∑
i=2

e(λD
1 −λD

2 )t∗ ∣∣πD(y)fi(y)fi(x)
∣∣

(4.39)≤
(2.63)

|D|e−c log2 N
∣∣πD(y)fi(y)fi(x)

∣∣(4.51)

(4.22)≤
(2.38)4.

e−c′′ log2 N.
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This implies that ∣∣∣∣ HD
t∗ δy(x)

e−λD
1 t∗a1f1(x)

− 1
∣∣∣∣ (4.49)–(4.51)≤ e−c log2 N.(4.52)

We now turn to the denominator of the right-hand side of (4.47). By an argument
which is very similar to that leading to (4.52), one can show that∣∣∣∣ (HD

t∗ 1)(x)

e−λD
1 t∗f1(x)(f1,1)l2(πD)

− 1
∣∣∣∣ ≤ e−c log2 N.(4.53)

Combining (4.52) and (4.53), one has that for large N and uniformly for all x, y ∈
D [remind the definition of σ(·) in (4.5)]

∣∣Px[Xt∗ = y|HA2 > t∗] − σ(y)
∣∣ (4.47)=

∣∣∣∣ HD
t∗ δy(x)

(HD
t∗ 1)(x)

− σ(y)

∣∣∣∣
(4.54)

(4.52)≤
(4.53)

e−c log2 Nσ(y) ≤ e−c log2 N,

which is exactly the claim (4.46). �

We define the stopping time V as the first time when the confined random walk
has stayed outside A2 for a consecutive duration of t∗:

V = inf{t ≥ t∗ : X[t−t∗,t] ∩ A2 = ∅}.(4.55)

The next lemma is a preparatory result for Proposition 4.7 below. This lemma
shows that the probability P x[V < H̃A1], when normalized by the sum of such
probabilities as x varies in the inner boundary of A1, is approximately equal to
ẽA1(x), the normalized equilibrium measure of A1.

LEMMA 4.6. For large N , one has that for all x ∈ D,∣∣∣∣ P x[V < H̃A1]∑
y∈∂iA1

P y[V < H̃A1 ]̃eA1(x)
− 1

∣∣∣∣ ≤ N−c.(4.56)

PROOF. For any y ∈ ∂iA1, by (3.11) and the strong Markov property applied
at time TA3 , we obtain that

P y[V < H̃A1]
Markov≥
(4.55)

P y[TA3 < H̃A1] inf
x∈UN\A3

P x[HA2 > t∗]
(4.57)

(3.11)≥
(3.4)

Py[TA3 < H̃A1]
(
1 − N−c) (3.12)≥ eA1(y)

(
1 − N−c).
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On the other hand, P y[V < H̃A1] is bounded from above by [recall that V > TA2

by definition of V , see (4.55)]

P y[V < H̃A1] ≤ P y[TA2 < H̃A1] (3.4)= Py[TA2 < H̃A1]
(4.58)

(3.12)≤ eA1(y)
(
1 + N−c).

Together with (4.57), we find that(
1 − N−c)eA1(y) ≤ P y[V < H̃A1] ≤ (

1 + N−c′)
eA1(y)

(4.59)
for any y ∈ ∂iA.

Summing over y ∈ ∂iA1 we obtain that(
1 − N−c) ∑

y∈∂iA1

P y[V < H̃A1]
(4.60)

≤ cap(A1) ≤ (
1 + N−c′) ∑

y∈∂iA1

P y[V < H̃A1].

The claim (4.56) follows by combining (4.59) and (4.60), recalling that by the
definition of normalized equilibrium measure, ẽA1(x) = eA1(x)/cap(A1). �

The following proposition shows that the hitting distribution of the confined
walk on A1 started from the q.s.d. on D is very close to the normalized equilib-
rium measure of A1. The proof of the next proposition is close to the proof of
Lemma 3.10 of [34], and can be found in the Appendix at the end of this article.

PROPOSITION 4.7. For large N and any x0 ∈ �N (recall that A1 tacitly de-
pends on x0), one has

sup
x∈∂iA1

∣∣∣∣P σ [XHA1
= x]

ẽA1(x)
− 1

∣∣∣∣ ≤ N−c.(4.61)

5. Chain coupling of excursions. In this section, we prove in Theorem 5.9
that the tilted random walk disconnects KN from infinity with a probability, which
tends to 1 as N tends to infinity. For this purpose, we show that the confined ran-
dom walk visits the mesoscopic boxes A1 centered at �N [defined in (3.2)] suf-
ficiently often so that at time TN the trace of the walk “locally” dominates (via a
chain of couplings) random interlacements with intensity higher than u∗∗. Hence, it
disconnects in each such box the center from its boundary with very high probabil-
ity. Some arguments in this section are based on Section 4 of [34], with necessary
adaptations. In this section, the constants tacitly depend on δ, η, ε and R [see (2.2)
and (2.3)], r1, r2, r3, r4 and r5 [see (3.1)].
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Throughout this section, we fix x0 ∈ �N , the center of the boxes A1 through A6,
except in Proposition 5.8 and Theorem 5.9.

We recall the definition of V in (4.55). For a path in �(UN), we denote by Rk

and Vk the successive entrance times HA1 and stopping times V :

R1 = HA1; V1 = R1 + V ◦ θR1; and for i ≥ 2,

Ri = Vi−1 + HA1 ◦ θVi−1; Vi = Ri + V ◦ θRi
.

Colloquially, we call such sections X[Ri,Vi) “long excursions” in contrast to the
“short excursions” we will later define [see above (5.16)]. We set

J = ⌊
(1 + ε/2)u∗∗cap(A1)

⌋
.(5.1)

The next proposition shows that, with high probability, the confined random walk
has already made at least J “long excursions” before time TN .

PROPOSITION 5.1. For large N , one has

P 0[RJ ≥ TN ] ≤ e−Nc

.(5.2)

The proof is deferred to the Appendix at the end of this article because it is
rather technical and similar to the proof of Lemma 4.3 of [34].

Next, we construct a chain of couplings. Simply speaking, it is a sequence of
couplings involving multiple random sets, in which the preceding set stochastically
dominate the following set with probability close (or sometimes equal) to 1.

We start with the first coupling. The following proposition shows that one can
construct a probability space where (J − 1) “long excursions” (counted from the
second excursion) coincide with high probability with (J − 1) independent “long

excursions” started from the q.s.d. We write P J
2 = ⊗J

i=2 P
i

σ for the product of
(J − 1) independent copies of P σ . We denote by Ai the random set X[Ri,Vi) ∩ A1

and set A = ⋃J
i=2 Ai .

PROPOSITION 5.2. For large N , there exists a probability space (�0,B0,Q0),
endowed with a random set A with the same law as A under P 0 and random sets
Ǎi , i = 2, . . . , J , distributed as X̌i[0,V1)

∩ A1 where for i ≥ 2, X̌i ’s are i.i.d. dis-

tributed as X under P σ , such that

Q0[A �= Ǎ] ≤ e−c′′ log2 N,(5.3)

where Ǎ = ⋃J
i=2 Ǎi .

PROOF. For each x ∈ D, we use Proposition 4.7, page 50 in [21] and Propo-
sition 4.5 to construct a coupling qx of random variables � with the law of Xt∗
under P x[·|HA2 > t∗] and � with the law of σ such that

max
x∈D

qx[� �= �] ≤ |D|e−c log2 N ≤ e−c′ log2 N.(5.4)
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We introduce L, the index of last “step” of the path in A2 before time V [see
(1.4) and the paragraph above (1.3) for the definition of τl and Zl , resp.]:

L = sup{l ≥ 0 : τl ≤ V,Zl ∈ A2}.(5.5)

We then introduce Li = L ◦ θRi
+ li , where li satisfies τli = Ri for i ≥ 1 as the last

step at which the i-th excursion is in A2.
We now construct Q0 with the help of (5.4) in a similar fashion to the proof

of Lemma 4.2 in [34]. The procedure goes inductively. We start by choosing
x+

1 ∈ ∂A2 according to P 0[ZL1+1 = ·]. For i ≥ 1, if x+
i is chosen, we choose

xi+1 and x̌i+1 points in D = UN \ A2 according to qx+
i
[� = ·,� = ·]. If xi+1

and x̌i+1 coincide (which is the typical case, that is, if the coupling is successful
at step i + 1), we choose Ai+1 = Ǎi+1 subsets of A1 and x+

i+1 = x̌+
i+1 points in

∂A2 according to P xi+1[A1 = ·,ZL1+1 = ·]. Otherwise, if xi+1 differs from x̌i+1
(which means that the coupling fails at step i + 1), then we choose independently
Ai+1, x

+
i+1 according to P xi+1[A1 = ·,ZL1+1 = ·] and Ǎi+1, x̌

+
i+1 according to

P x̌i+1[A1 = ·,ZL1+1 = ·]. In both cases, we repeat the above procedure until step

J . Then we write A= ⋃J
i=2 Ai and Ǎ = ⋃J

i=2 Ǎi .
By a procedure as in the proof of Lemma 4.2 in [34], (we replace A by A1, B

by A2, t∗ by t∗, T by UN , Xi by Zi , Yt by Xt , k by J , U1 by V1, x̄i and x̄+
i by x̌i

and x̌+
i ), we can check that Q0 is a coupling of A and Ǎ, and the probability that

the coupling fails has an upper bound

Q0[A �= Ǎ] ≤ (J − 1)max
x∈D

qx[� �= �] (5.1)≤
(5.4)

c′Nd−2e−c log2 N

(5.6)
≤ e−c′′ log2 N,

which is exactly what we want. �

On an auxiliary probability space (O1,F1,PI1 ), we denote by η1 the Poisson
point process on �(UN) with intensity (1+ε/3)u∗∗cap(A1)κ1, where κ1 is defined
as the law of the stopped process X(HA1+·)∧V1 under P σ . In other words, κ1 is
the law of “long excursions” started from σ and recorded from the first time it
enters A1. We denote by

I1 = ⋃
γ∈supp(η1)

Range(γ ) ∩ A1(5.7)

the trace of η1 on A1. In the next proposition, we construct a second coupling such
that Ǎ dominates I1 with high probability.

PROPOSITION 5.3. There exists a probability space (�1,B1,Q1), endowed
with random sets I1 with the same law as I1 under PI1 and Ǎ with the same law
as Ǎ under P J

2 , such that

Q1[Ǎ ⊇ I1] ≥ 1 − e−Nc

.(5.8)
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PROOF. We pick a Poisson random variable ξ with parameter (1 + ε/3)u∗∗ ×
cap(A1). Then we generate (independently from ξ ) an infinite sequence {X̌i}i≥1

of i.i.d. confined walks under P σ . We then let I1 ∼ ⋃ξ+1
i=2 X̌i[0,V1)

∩ A1 and Ǎ =⋃J
i=2 X̌i[0,V1)

∩A1, both having the respective required laws. Moreover {Ǎ ⊇ I1} =
{J ≥ ξ + 1}, by the definition of J [see (5.1)] and a standard estimate on the
deviation of Poisson random variables, we have

Q1[Ǎ ⊇ I1] = Q1[J ≥ ξ + 1] ≥ 1 − e−Nc

,(5.9)

which is exactly (5.8). �

Now on another auxiliary probability space (O2,F2,PI2 ), we denote by η2 the
Poisson point process on �(UN) with intensity (1 + ε/4)u∗∗cap(A1)κ2, where κ2
is defined as the law of the stopped process X·∧V1 under P ẽA1

. In other words, it
is the law of “long excursions” started from the normalized equilibrium measure
of A1 (note that, since in this case the excursions start from inside A1, we start
recording directly from time 0). We denote by

I2 = ⋃
γ∈supp(η2)

Range(γ ) ∩ A1(5.10)

the trace of η2 on A1. The next proposition and corollary construct the third cou-
pling so that I1 dominates I2 almost surely. This is shown by proving that the
intensity measure of I1 is bigger than that of I2 with the help of Proposition 4.7.

PROPOSITION 5.4. For large N , one has(
1 + ε

3

)
κ1 ≥

(
1 + ε

4

)
κ2.(5.11)

PROOF. By the definition of κ1 and κ2, and the strong Markov property ap-
plied at time HA1 , we can represent the Radon–Nikodym derivative of κ1 and κ2
through a function of the starting point of the trajectory

dκ1

dκ2
= φ(X0)

(5.12)

where φ(x) = P σ [XHA1
=x]

ẽA1 (x)
for all x ∈ ∂iA1 and 0 otherwise.

Hence we obtain, via (4.61), that for large N ,

d(κ1 − κ2)

dκ2
= φ(X0) − 1 ≥ −N−c ≥ −ε/12

(1 + ε/3)
, κ2-a.s.(5.13)

This implies (5.11) after rearrangement. �

As a consequence, we have the following corollary.
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COROLLARY 5.5. For large N , there exists a probability space (�2,B2,Q2)

endowed with random sets I1 with the same law as I1 under P I1 and I2 with the
same law as I2 under P I2 , such that

I1 ⊇ I2, Q2-a.s.(5.14)

PROOF. This follows immediately from the domination of measures. Indeed,
we first construct I2 on some probability space. Then we consider the positive
measure on �(UN)

α = (1 + ε/3)κ1 − (1 + ε/4)κ2,(5.15)

and construct (independently from I2) a Poisson point process η̂ on �(UN) with
intensity measure α. Then I1 = (

⋃
γ∈supp(η̂) Range(γ ) ∩ A1) ∪ I2 has the required

law. �

On another auxiliary probability space (O′
2,F ′

2,PI ′
2), we denote by η′

2 the law
of the Poisson point process on �(UN) with intensity (1 + ε/4)u∗∗cap(A1)

κ ′
2, where κ ′

2 is defined as the stopped process X·∧TA2
under PẽA1

, or equiva-

lently P ẽA1
. Contrary to the definition of a “long excursion,” we would like to call

X[HA1 ,TA2 ) a “short excursion,” since we stop the excursion earlier than a “long
excursion” (this is because TA2 < V1). In other words, κ ′

2 is the measure of “short
excursions” started from the normalized equilibrium measure of A1. We denote by

I ′
2 = ⋃

γ∈supp(η′
2)

Range(γ ) ∩ A1(5.16)

the trace of η′
2 in A1. Hence, we can naturally construct the fourth coupling such

that I2 dominates I ′
2 almost surely, which is stated in the corollary below.

COROLLARY 5.6. When N is large, there exists a probability space (�′
2,B′

2,

zQ′
2), endowed with random sets I ′

2 with the same law as I ′
2 under PI ′

2 , and I2
with the same law as I2 under PI2 such that

I2 ⊇ I ′
2, Q′

2-a.s.(5.17)

The fifth coupling establishes the stochastic domination of I ′
2 on the trace of

I(1+ε/8)u∗∗ in A1. It is reproduced from [4].

PROPOSITION 5.7. When N is large, there exists a probability space (�3,B3,

Q3) endowed with random sets I with the same law as Iu∗∗(1+ε/8) ∩ A1 under P
and I ′

2 with the same law as I ′
2 under P I ′

2 , such that

Q3
[
I ′

2 ⊇ I
] ≥ 1 − e−Nc

.(5.18)
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We refer the readers to Proposition 5.4 of [4] and to Section 9 of [4] for its
proof.

The next proposition links together the above couplings from Propositions 5.2,
5.3, Corollaries 5.5, 5.6, and Proposition 5.7. We prove that for any x0 in the “strip”
�N , the probability that it is connected in V [i.e., the vacant set of the random walk,
see below (1.5)] to the (inner) boundary of A

x0
1 is small.

PROPOSITION 5.8. For large N and all x0 ∈ �N , one has

P̃N

[
x0

V←→ ∂iA
x0
1

] ≤ e−c log2 N.(5.19)

PROOF. First, by Corollary 2.8, Proposition 5.1 and the first two couplings
[namely Proposition 5.2 (see ibid. for notation) and Corollary 5.3], one knows that
for large N ,

P̃N

[
x0

V←→ ∂iA
x0
1

] (2.37)≤ P 0
[
x0

(X[R2,TN ))
c

←→ ∂iA
x0
1

]
(5.2)≤
(5.3)

P J
2

[
x0

Ǎc←→ ∂iA
x0
1

]+ e−c log2 N(5.20)

(5.8)≤ P I1
[
x0

Ic
1←→ ∂iA

x0
1

]+ e−c′ log2 N.

Then, by the third, fourth and fifth couplings, namely Corollaries 5.5, 5.6 and
Proposition 5.7, and the strong super-criticality of random interlacements [see
(1.14)], for large N , one obtains the following inequalities:

PI1
[
x0

Ic
1←→ ∂iA

x0
1

] (5.14)≤ PI2
[
x0

Ic
2←→ ∂iA

x0
1

] (5.17)≤ PI ′
2
[
x0

I ′c
2←→ ∂iA

x0
1

]
(5.21)

(5.18)≤ Q3
[
x0

Ic←→ ∂iA
x0
1

]+ e−Nc (1.14)≤ e−Nc′
,

which show that the first term to the right of the last inequality in (5.20) has a
stretched exponential decay in N . The claim (5.19) hence follows by inserting
(5.21) into (5.20). �

We are ready now to state and prove the main result of this section, namely that
the tilted disconnection probability tends to 1 as N tends to infinity.

THEOREM 5.9.

lim
N→∞ P̃N [KN

V
� ∞] = 1.(5.22)

PROOF. Note that for large N , if a nearest-neighbor path connects KN and
infinity, it must go through the set �N at some point x0 [see above (3.1) for the
definition of �N ]. Hence, it connects x0 to the inner boundary of A

x0
1 , so that

{KN
V
�∞}c ⊂ ⋃

x0∈�N

{
x0

V←→ ∂iA
x0
1

}
.(5.23)
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Thus, we see that for large N ,

P̃N

[{KN
V
�∞}c] ≤ ∑

x0∈�N

P̃N

[
x0

V←→ ∂iA
x0
1

]
.(5.24)

By Proposition 5.8, we find that for large N , uniformly for each x0 ∈ �N , we can
bound each term on right-hand side of (5.24), and find

P̃N

[{KN
V
� ∞}c] ≤ ∣∣�N

∣∣e−c log2 N −→
N→∞ 0.(5.25)

This completes the proof of Theorem 5.9. �

6. Denouement and epilogue. In this section, we combine the main ingredi-
ents, namely Theorem 5.9 and Proposition 2.14 and prove Theorem 0.1.

PROOF OF THEOREM 0.1. We recall the entropy inequality [see (1.16)], and
apply it to P0 and P̃N (which is defined in Section 2). By Theorem 5.9, one has

lim
N→∞ P̃N [KN

V
� ∞] = 1,(6.1)

thus the relative entropy inequality (1.16) yields that

lim inf
N→∞

1

Nd−2 log
(
P0[KN

V
�∞]) ≥ − lim sup

N→∞
1

Nd−2 H(P̃N |P0).(6.2)

Then, as in the proof of Proposition 2.14, taking consecutively the lim sup as η →
0, R → ∞, δ → 0 and ε → 0, one has

lim sup
ε→0

lim sup
δ→0

lim sup
R→∞

lim sup
η→0

lim sup
N→∞

1

Nd−2 H(P̃N |P0) ≤ u∗∗
d

capRd (K),(6.3)

proving Theorem 0.1. �

REMARK 6.1. Assume for simplicity that the compact K is regular. Notice
that unlike what happens for d ≥ 5, when d = 3,4, the function h defined in (0.8)
is not in L2(Rd), and hN(x) = h( x

N
) is not in l2(Zd). This fact affects TN defined

in (2.16) (which diverges if R → ∞ when d = 3,4, but not when d ≥ 5). One
can wonder whether this feature reflects different qualitative behaviors of the ran-

dom walk path under the conditional measure P0[·|KN
V
� ∞] when N becomes

large.
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APPENDIX

In the appendix, we include the proof of Propositions 4.7 and 5.1.

PROOF OF PROPOSITION 4.7. We first prove that for x ∈ ∂iA1∣∣∣∣P x[V < H̃A1] − P σ [XHA1
= x] ∑

y∈∂iA1

P y[V < H̃A1]
∣∣∣∣ ≤ e−c log2 N,(A.1)

and, as we will see, the claim (4.61) will then follow. We consider in the left-hand
side of (A.2) the probability that the random walk started from x ∈ ∂iA1 stays in
D for a time interval of length t∗ before returning to A1, and then returns to A1
through some vertex other than x. By reversibility of the confined walk, and the
fact that by claim 3 of (2.18) and claim 1 of (2.38), π(y) = π(x) for all y ∈ ∂iA1,
this probability can be written as∑

y∈∂iA1\{x}
P x[V < H̃A1,XHA1

= y] = ∑
y∈∂iA1\{x}

P y[V < H̃A1,XHA1
= x].(A.2)

As in (5.5), we consider L defined by

L = sup{l : τl ≤ V,Zl ∈ A2}.(A.3)

We consider the summands from (A.2): for all x, y ∈ ∂iA1, we sum over all possi-
ble values of L and XτL

= ZL [recall the definition of τl in (1.4) and the relation
between Xτl

and Zl in (1.3)], and apply Markov property at the times τl+1 and
τl+1 + t∗:

P x[V < H̃A1,XH̃A1
= y]

= ∑
l≥0,x′∈∂iA2

P x

[
L = l,Zl = x′,V < H̃A1,XH̃A1

= y
]

= ∑
l≥0,x′∈∂iA2

P x

[
Zl = x′, τl < H̃A1 ∧ V,HA2 ◦ θτl+1 > t∗,XH̃A1

= y
]

(A.4)

= ∑
l≥0,x′′∈D

x′∈∂iA2

P x′′ [XHA1
= y]Ex

[
Zl = x′, τl < H̃A1 ∧ V,

P Zl+1[HA2 > t∗]P Zl+1

[
Xt∗ = x′′|HA2 > t∗

]]
,

[we will soon use the fact that the conditioned probability in the last expression is
close to σ(x′′) by Proposition 4.5]. Similarly, we have

P x[V < H̃A1]
(A.5)

= ∑
l≥0,x′∈∂iA2

Ex

[
Zl = x′, τl < H̃A1 ∧ V,P Zl+1[HA2 > t∗]].
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This implies that

P x[V < H̃A1]P σ [XHA1
= y]

= ∑
l≥0,x′′∈D

x′∈∂iA2

Ex

[
Zl = x′, τl < H̃A1 ∧ V,P Zl+1[HA2 > t∗]]σ (

x′′)(A.6)

× P x′′ [XHA1
= y].

Hence, by combining (A.4) and (A.6) we have∣∣P x[V < H̃A1,XH̃A1
= y] − P x[V < H̃A1]P σ [XHA1

= y]∣∣
(A.7)

(4.46)≤ e−c log2 N.

Applying this estimate in both sides in (A.2), we obtain that∣∣∣∣P x[V < H̃A1]P σ [XHA1
�= x] − ∑

y∈∂iA1\{x}
Py[V < H̃A1]P σ [XHA1

= x]
∣∣∣∣

(A.8)
≤ e−c log2 N.

Finally, by adding and subtracting P x[V < H̃A1]P σ [XHA1
= x], we obtain (A.1)

as desired.
Now we prove (4.61). By (1.12) and (4.60) one has that∑

y∈∂iA1

P y[V < H̃A1 ]̃eA1(x) ≥ N−c′
.(A.9)

Hence dividing (A.1) by the left-hand term of (A.9), one obtains∣∣∣∣ P x[V < H̃A1]∑
y∈∂iA1

P y[V < H̃A1 ]̃eA1(x)
− P σ [XHA1

= x]
ẽA1(x)

∣∣∣∣ ≤ e−c′ log2 N,(A.10)

and together with (4.56) the proof of (4.61) is complete. �

PROOF OF PROPOSITION 5.1. In this proof, we always assume that N is suf-
ficiently large. We recall the definition of TN in (2.16) and the choice of ε in (2.2).
In order to prove (5.2), we observe that, P 0-a.s.,

{RJ ≥ TN } ⊆
{
HA1 + HA1 ◦ θV1 + · · · + HA1 ◦ θVJ−1 ≥

(
1 − ε

100

)
TN

}
(A.11)

∪
{
V ◦ θR1 + · · · + V ◦ θRJ−1 ≥ ε

100
TN

}
,

that is, the (unlikely) event {RJ ≥ TN } happens only when either the sum of HA1 ’s
exceeds a quantity close to TN or the sum of shifted V ’s exceeds a small quantity
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(but still of order TN ). Now we give an upper bound to their respective probabili-
ties. We define

tN = sup
y∈UN

Ey[HA1],(A.12)

which is the maximum of the expected entrance time in A1 starting from an arbi-
trary point in UN (it is not much bigger than Eπ [HA1] by (3.40)). By the expo-
nential Chebychev inequality and the strong Markov property applied inductively
at V1, . . . , VJ−1 and R1, . . . ,RJ−1, we deduce from (A.11) that, for any θ > 0,

P 0[RJ ≥ TN ]

≤ exp
(
−θ

(
1 − ε

100

)
TN

tN

)(
sup

x∈UN

Ex

[
exp

(
θ
HA1

tN

)])J

(A.13)

+ exp
(
− ε

100

TN

tN

)(
sup
x∈A1

Ex

[
eV/tN

])J
.

We now treat the first term on the right-hand side of (A.13). Khas’minskii’s lemma
(see (4) and (6) in [18]) states that for all B subset of UN and n ≥ 1,

sup
x∈UN

Ex

[
Hn

B

] ≤ n! sup
y∈UN

Ey[HB]n.(A.14)

Hence, we have

sup
x∈UN

Ex

[
exp

(
θ
HA1

tN

)]
≤

∞∑
j=0

θj

j !tjN
sup

x∈UN

Ex

[
H

j
A1

] (A.14)≤
(A.12)

∞∑
j=0

θj = 1

1 − θ

(A.15)

for θ ∈
(

0,
1

2

)
.

Now, we derive an upper bound for supx∈A2
Ex[exp( V

tN
)] and treat the second term

on the right-hand side of (A.13). We first note that, P x-a.s. for any x ∈ A2,

V ≤ (TA3 + t∗)1{HA2◦θTA3
>t∗}

+ (TA3 + t∗ + V ◦ θHA2
◦ θTA3

)1{HA2◦θTA3
≤t∗}(A.16)

= TA3 + t∗ + V ◦ θHA2
◦ θTA3

1{HA2◦θTA3
≤t∗}.

By the strong Markov property applied at HA2 ◦ θTA3
+ TA3 and TA3 , we have

sup
x∈A2

Ex

[
eV/tN

]
(A.16)≤ sup

x∈A2

Ex

[
e(TA3+t∗)/tN ](1 + sup

y∈UN\A3

P y[HA2 ≤ t∗] sup
x∈A2

Ex

[
eV/tN

])
(A.17)

(3.11)≤ sup
x∈A2

Ex

[
e(TA3+t∗)/tN ](1 + N−c sup

x∈A2

Ex

[
eV/tN

])
.
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By Proposition 3.5, we have

1

tN

(A.12)≤ 1

Eπ [HA1]
(3.32)≤ (

1 + N−c)cap(A1)

TN

u∗∗(1 + ε)

(A.18)
(2.20)5.≤
(1.11)

cN−d+r1(d−2).

By an elementary estimate on simple random walk and the observation that the
diameter of A3 is smaller than cNr3 , we have

Ex[TA3] (3.4)= Ex[TA3] ≤ cN2r3 for all x ∈ A3,(A.19)

therefore we obtain that

supx∈A3
Ex[TA3]

tN
≤ cN−d+2r3+(d−2)r1 ≤ N−c′

.(A.20)

By an argument like (A.15), again with the help of Khasminskii’s lemma [see
(A.14)], we obtain that

sup
x∈A2

Ex

[
exp

(
TA3

tN

)]
≤ 1

1 − N−c
≤ eN−c′

for large N.(A.21)

Moreover, we obtain from (A.18) that

t∗
tN

(2.63)≤ cN−c′
.(A.22)

We apply (A.21) and (A.22) to the right-hand side of (A.17), and conclude after
rearrangement [and with an implicit truncation argument where V in (A.16) and
(A.17) is replaced by V ∧ M] that

sup
x∈A2

Ex

[
eV/tN

] ≤ eN−c

.(A.23)

We now return to (A.13). Substituting (A.15) and (A.23) into (A.13) and using
the fact that for 0 ≤ θ ≤ 1

2 ,

(1 − θ)−1 ≤ 1 + θ + 2θ2 ≤ eθ+2θ2
,(A.24)

we deduce that

P 0[RJ ≥ TN ]
≤ exp

(
−θ

(
1 − ε

100

)
TN

tN
+ (

θ + 2θ2)J)
+ exp

(
− ε

100

TN

tN
+ N−cJ

)
(A.25)

(5.1)≤
(A.24)

exp
(
−θ

(
1 − ε

100

)
TN

tN
+ (

θ + 2θ2)⌊(1 + ε/2)u∗∗cap(A1)
⌋)

+ exp
(
− ε

100

TN

tN
+ N−c⌊(1 + ε/2)u∗∗cap(A1)

⌋)
.
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Recall the definition of fA1 in (3.8). Using Lemma 3.6, we know that

Ex[HA1]
Eπ [HA1]

= 1 − fA1(x)
(3.36)≤ 1 + N−c ≤

(
1 − ε

100

)−1

(A.26)
for all x ∈ UN.

Hence, by Proposition 3.7 we obtain that

TN

tN
≥

(
1 − ε

100

)
TN

Eπ [HA1]
(3.49)≥

(
1 − ε

50

)
(1 + ε)u∗∗cap(A1).(A.27)

By choosing an appropriately small θ and applying (A.27) we know that

−θ

(
1 − ε

100

)
TN

tN
+ (

θ + 2θ2)⌊(1 + ε/2)u∗∗cap(A1)
⌋ ≤ −Nc

(A.28)
for large N,

moreover, we also know that

− ε

100

TN

tN
+ N−c⌊(1 + ε/2)u∗∗cap(A1)

⌋ ≤ −Nc′
for large N.(A.29)

Inserting (A.28) and (A.29) into (A.25), we obtain (5.2) as desired. �
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