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In this paper, we provide a framework of estimates for describing 2D
scaling limits by Schramm’s SLE curves. In particular, we show that a weak
estimate on the probability of an annulus crossing implies that a random curve
arising from a statistical mechanics model will have scaling limits and those
will be well described by Loewner evolutions with random driving forces.
Interestingly, our proofs indicate that existence of a nondegenerate observ-
able with a conformally-invariant scaling limit seems sufficient to deduce the
required condition.

Our paper serves as an important step in establishing the convergence of
Ising and FK Ising interfaces to SLE curves; moreover, the setup is adapted
to branching interface trees, conjecturally describing the full interface picture
by a collection of branching SLEs.
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1. Introduction. Oded Schramm’s introduction of SLE as the only possi-
ble conformally invariant scaling limit of interfaces has led to much progress in
our understanding of 2D lattice models at criticality. For several of them, it was
shown that interfaces (domain wall boundaries) indeed converge to Schramm’s
SLE curves as the lattice mesh tends to zero [7, 22, 29, 30, 33, 34, 36, 37].

All the existing proofs start by relating some observable to a discrete harmonic
or holomorphic function with appropriate boundary values and describing its scal-
ing limit in terms of its continuous counterpart. Conformal invariance of the latter
allowed then to construct the scaling limit of the interface itself by sampling the
observable as it is drawn. The major technical problem in doing so is how to de-
duce from some weaker notions the strong convergence of interfaces, that is, the
convergence in law with respect to the topology induced by the uniform norm to
the space of continuous curves, which are only defined up to reparameterizations.
So far, two routes have been suggested: first, to prove the convergence of the driv-
ing process in Loewner characterization, and then improve it to convergence of
curves (cf. [22]); or first establish some sort of precompactness for laws of dis-
crete interfaces, and then prove that any subsequential scaling limit is in fact an
SLE; cf. [34].
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We will lay framework for both approaches, showing that a rather weak hy-
potheses is sufficient to conclude that an interface has subsequential scaling limits,
but also that they can be described almost surely by Loewner evolutions. We build
upon an earlier work of Aizenman and Burchard [2], but draw stronger conclusions
from similar conditions, and also reformulate them in several geometric as well as
conformally invariant ways.

At the end, we check this condition for a number of lattice models. In par-
ticular, this paper serves as an important step in establishing the convergence of
Ising and FK Ising interfaces [10]. Interestingly, our proofs indicate that existence
of a nondegenerate observable with a conformally invariant scaling limit seems
sufficient to deduce the required condition. So we believe that the main obstacle
to establish convergence to SLE of interfaces in various models lies in finding a
(exactly or approximately) discrete holomorphic observable. Our techniques also
apply to interfaces in massive versions of lattice models, as in [25]. In particular,
the proofs for loop-erased random walk and harmonic explorer we include below
can be modified to their massive counterparts, as those have similar martingale
observables [25].

Moreover, our setup is adapted to branching interface trees, conjecturally con-
verging to branching SLE(κ, κ − 6); cf. [31]. We exploit this in our work [18] and
a follow-up [19] of it and the present paper in the context of the critical FK Ising
model. In the percolation case, a construction was proposed in [6], also using the
Aizenman–Burchard work.

Another approach to a single interface was proposed by Sheffield and Sun [32].
They ask for milder condition on the curve, but require simultaneous convergence
of the Loewner evolution driving force when the curve is followed in two opposite
directions toward generic targets. The latter property is missing in many of the
important situations we have in mind, like convergence of the full interface tree.

The authors would like to thank the anonymous referees for their valuable com-
ments as well as Alexander Glazman and Hugo Duminil-Copin for reading through
and commenting on the preliminary versions of the paper. Their efforts to increase
the quality of this work are highly appreciated.

1.1. The setup and the assumptions. Our paper is concerned with sequences
of random planar curves and different conditions sufficient to establish their pre-
compactness.

We start with a probability measure P on the set X(C) of planar curves, having
in mind an interface (a domain wall boundary) in some lattice model of statistical
physics or a self-avoiding random trajectory on a lattice. By a planar curve, we
mean a continuous mapping γ : [0,1] → C. The resulting space X(C) is endowed
with the usual supremum metric with minimum taken over all reparameterizations,
which is therefore parameterization-independent; see Section 2.1.1. Then we con-
sider X(C) as a measurable space with Borel σ -algebra. For any domain V ⊂ C,
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let Xsimple(V ) be the set of Jordan curves γ : [0,1] → V such that γ (0,1) ⊂ V .
Note that the end points are allowed to lie on the boundary.

Typically, the random curves we want to consider connect two boundary points
a, b ∈ ∂U in a simply connected domain U . Also it is possible to assume that the
random curve is (almost surely) simple, because the curve is usually defined on
a lattice with small but finite lattice mesh without “transversal” self-intersections.
Therefore, by slightly perturbing the lattice and the curve it is possible to remove
self-intersections. The main theorem of this paper involves the Loewner equation,
and consequently the curves have to be either simple or non-self-traversing, that
is, curves that are limits of sequences of simple curves.

While we work with different domains U , we still prefer to restate our con-
clusions for a fixed domain. Thus, we encode the domain U and the curve end
points a, b ∈ ∂U by a conformal transformation φ from U onto the unit disc
D = {z ∈ C : |z| < 1}. The domain U = U(φ) is then the domain of definition
of φ and the points a and b are pre-images φ−1(−1) and φ−1(1), respectively, if
necessary define these in the sense of prime ends.

Because of the above reasons the first fundamental object in our study is a pair
(φ,P) where φ is a conformal map and P is a probability measure on curves with
the following restrictions: Given φ, we define the domain U = U(φ) to be the
domain of definition of φ and we require that φ is a conformal map from U onto
the unit disc D. Therefore, U is a simply connected domain other than C. We
require also that P is supported on (a closed subset of){

γ ∈ Xsimple(U) :
the beginning and end point of

φ(γ ) are −1 and +1, respectively

}
.(1)

The second fundamental object in our study is some collection � of pairs (φ,P)

satisfying the above restrictions.
Because the spaces involved are metrizable, when discussing convergence we

may always think of � as a sequence ((φn,Pn))n∈N. In applications, we often have
in mind a sequence of interfaces for the same lattice model but with varying lattice
mesh δn ↘ 0: then each Pn is supported on curves defined on the δn-mesh lattice.
The main reason for working with the more abstract family compared to a sequence
is to simplify the notation. If the set in (1) is nonempty, which is assumed, then
there are in fact plenty of such curves; see Corollary 2.17 in [26].

We uniformize by a disk D to work with a bounded domain. As we show later
in the paper, our conditions are conformally invariant, so the choice of a particular
uniformization domain is not important.

For any 0 < r < R and any point z0 ∈ C, denote the annulus of radii r and R

centered at z0 by A(z0, r,R):

A(z0, r,R) = {
z ∈ C : r < |z − z0| < R

}
.(2)

We call the quantity (1/2π) log(R/r) the modulus of the annulus A(z0, r,R). The
following definition makes speaking about crossing of annuli precise.
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DEFINITION 1.1. For a curve γ : [T0, T1] → C and an annulus A = A(z0, r,

R), γ is said to be a crossing of the annulus A if both γ (T0) and γ (T1) lie outside
A and they are in the different components of C \ A. A curve γ is said to make a
crossing of the annulus A if there is a subcurve which is a crossing of A. A minimal
crossing of the annulus A is a crossing which does not have genuine subcrossings.

We cannot require that crossing any fixed annulus has a small probability un-
der P: indeed, annuli centered at a or at b have to be crossed at least once. For that
reason, we introduce the following definition for a fixed simply connected domain
U and an annulus A = A(z0, r,R) which is allowed to vary. If ∂B(z0, r)∩∂U = ∅,
define Au = ∅, otherwise

Au =
{
z ∈ U ∩ A :

the connected component of z in U ∩ A

does not disconnect a from b in U

}
.(3)

This reflects the idea explained in Figure 1.

(a) (b) (c)

(d) (e)

FIG. 1. The general idea of Condition G2 is that an event of an unforced crossing has uniformly
positive probability to fail. In the Figure 1(a)–(c), the solid line is the boundary of the domain,
the dotted lines are the boundaries of the annulus and the dashed lines refer to the crossing event
we are considering. The conformally invariant version of this is Condition C2 which is formulated
using topological quadrilaterals. Figure 1(d) corresponds to the Figure 1(a) in this latter setting.
(a) Unforced crossing: the component of the annulus is not disconnecting a and b. It is possible
that the curve avoids the set. In this picture Au is the entire half-annulus. (b) Forced crossing: the
component of the annulus disconnects a and b and does it in the way, that every curve connecting a

and b has to cross the annulus at least once. In this picture, Au is empty. (c) There is an ambiguous
case which resembles more either one of the previous two cases depending on the geometry. In this
case, the component of the annulus separates a and b, but there are some curves from a to b in
U which do not cross the annulus. In this picture, Au is the small top part of the half-annulus.
(d) Unforced crossing of a topological quadrilateral (quad): the quad is not disconnecting a and b.
(e) The quads we consider have two of their sides on the boundary and two in the interior of the
domain. We usually denote the sides by S0, S2 ⊂ U and S1, S3 ⊂ ∂U . The set V is the interior of the
quad. There exists a unique number L > 0 (and a unique conformal map) such that the quad can be
mapped conformally onto the rectangle (0,L) × (0,1) so that the sides of the quad get mapped to
the sides of the rectangle and S0 gets mapped onto {0} × [0,1].
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(a) (b) (c)

FIG. 2. The assumptions of the main theorem are often easier to verify in the domain where the
curve is originally defined (a) and the slit domains appearing as we trace the curve (c). Nevertheless,
to set up the Loewner evolution we need to uniformize conformally to a fixed domain, for example,
the unit disc (b). Figure 2(c) illustrates the domain Markov property under which it is possible to
verify the simpler “time 0” condition (presented in this section) instead of its conditional versions
(see Section 2.1.3). (a) Typical setup: a random curve is defined on a lattice approximation of U

and is connecting two boundary points a and b. (b) The same random curve after a conformal
transformation to D taking a and b to −1 and +1, respectively. (c) Under the domain Markov
property the curve conditioned on its beginning part has the same law as the one in the domain with
the initial segment removed.

The main theorem is proven under a set of equivalent conditions. In this section,
two simplified versions are presented. They are so-called time 0 conditions which
imply the stronger conditional versions if our random curves satisfy the domain
Markov property; cf. Figure 2(c). It should be noted that even in physically inter-
esting situations the latter might fail, so the conditions presented in Section 2.1.3
should be taken as the true assumptions of the main theorem.

CONDITION G1. The family � is said to satisfy a geometric bound on an
unforced crossing (at time zero) if there exists C > 1 such that for any (φ,P) ∈ �

and for any annulus A = A(z0, r,R) with 0 < Cr ≤ R,

P
(
γ makes a crossing of A which is contained in Au

)≤ 1
2 .(4)

We stress already at this point that the constant 1/2 on the right-hand side of (4)
or in similar bounds is arbitrary and could be replaced by any other constant strictly
less than one. We will demonstrate this in Corollary 2.7.

A topological quadrilateral Q = (V ;Sk, k = 0,1,2,3) consists a domain V

which is homeomorphic to a square in a way that the boundary arcs Sk , k =
0,1,2,3, are in counterclockwise order and correspond to the four edges of the
square. There exists a unique positive L and a conformal map from Q onto a rect-
angle [0,L]×[0,1] mapping Sk to the four edges of the rectangle with image of S0
being {0} × [0,1]. The number L is called the modulus of (or the extremal length
the curve family joining the opposite sides of) Q and we will denote it by m(Q).
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We often consider a topological quadrilateral Q = (V ;Sk, k = 0,1,2,3) which
is lying on the boundary in the sense that S1 ∪ S3 ⊂ ∂U while S0 ∪ S2 ⊂ U—
this idea corresponds to the condition imposed when we defined Au. For this type
of topological quadrilateral, we say that a curve γ : [T0, T1] → C crosses Q in
the domain U if there is a subinterval [t0, t1] ⊂ [T0, T1] such that γ (t0, t1) ⊂ V ,
but γ [t0, t1] intersects both S0 and S2. The other notions of Definition 1.1 are ex-
tended to the topological quadrilaterals in the same way. The following is the first
conformally invariant version of our conditions, formulated in terms of topological
quadrilaterals.

CONDITION C1. The family � is said to satisfy a conformal bound on an
unforced crossing (at time zero) if there exists M > 0 such that for any (φ,P) ∈
� and for any topological quadrilateral Q with V (Q) ⊂ U , S1 ∪ S3 ⊂ ∂U and
m(Q) ≥ M

P(γ makes a crossing of Q) ≤ 1
2 .(5)

REMARK 1.2. In percolation type models of statistical physics including the
random cluster models, these types of crossing events are the most central objects
of study.

REMARK 1.3. Notice that depending on the point of view, either one of the
conditions can appear stronger than the other one. In Condition G1, we require
that the bound holds for all annuli with large modulus and simultaneously for all
components of Au, whereas in Condition C1 the bound holds for all topologi-
cal quadrilaterals with large modulus and for its single (only) component. On the
other hand, the set of topological quadrilaterals is bigger than the set of topological
quadrilaterals Q whose boundary arcs S0(Q) and S2(Q) are subsets of different
boundary components of some annulus and V (Q) is subset of that annulus. The
latter set is the set of shapes relevant in Condition G1, at least naively speaking.

1.2. Main theorem. The main results of this article will be on the tightness
of certain families of probability measures and on the convergence of probability
measures in the weak sense. Hence, let us first recall the following definitions.

DEFINITION 1.4. Let Y be a metric space and BY its Borel σ -algebra.
If �0 is a collection of probability measures on (Y,BY ), then a random variable

f : Y → R is said to be tight or stochastically bounded in �0 if and only if for
each ε > 0 there is M > 0 such that P(|f | ≤ M) ≥ 1 − ε for all P ∈ �0.

A collection �0 of probability measures on (Y,BY ) is said to be tight if for each
ε > 0 there exists a compact set K ⊂ Y so that P(K) ≥ 1 − ε for any P ∈ �0.
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For the background in the weak convergence of probability measures, the reader
should see, for example, [5]. Prohorov’s theorem states that a family of probability
measures is relatively compact if it is tight; see Theorem 5.1 in [5]. Moreover,
in a separable and complete metric space relative compactness and tightness are
equivalent.

Denote by φP the push-forward of P by φ defined by

(φP)(A) = P
(
φ−1(A)

)
(6)

for any measurable A ⊂ Xsimple(D). In other words, φP is the law of the random
curve φ(γ ). Given a family � as above, define the family of push-forward mea-
sures

�D = {
φP : (φ,P) ∈ �

}
.(7)

The family �D consist of measures on the curves Xsimple(D) connecting −1 to 1.
Fix a conformal map

�(z) = i
z + 1

1 − z
(8)

which takes D onto the upper half-plane H = {z ∈ C : Im z > 0}. Note that if γ

is distributed according to P ∈ �D, then γ̃ = �(γ ) is a simple curve in the upper
half-plane slightly extending the definition of Xsimple(H), namely, γ̃ is simple with
γ̃ (0) = 0 ∈ R, γ̃ ((0,1)) ⊂ H and |γ (t)| → ∞ as t → 1. Therefore, by the results
of Appendix A.1, if γ̃ is parametrized with the half-plane capacity, then it has a
continuous driving term W = Wγ : R+ → R. As a convention, the driving term or
process of a curve or a random curve in D means the driving term or process in H
after the transformation � and using the half-plane capacity parameterization.

The following theorem and its reformulation, Proposition 3.1, are the main re-
sults of this paper. Note that the following theorem concerns with �D. The proof
will be presented in Section 3. It is divided into three independent steps each
in its own subsection and the actual proof is then presented in Section 3.5. See
Section 2.1.3 for the exact assumptions of the theorem, namely, Condition G2.
It should be noted that when the random curve has the domain Markov property,
which is schematically defined in Figure 2(c), Condition G1 implies Condition G2,
which is merely a conditional version of Condition G1.

THEOREM 1.5. If the family � of probability measures satisfies Condi-
tion G2, then the family �D is tight and, therefore, relatively compact in the topol-
ogy of the weak convergence of probability measures on (X,BX). Furthermore if
Pn ∈ �D is converging weakly and the limit is denoted by P∗ then the following
statements hold P∗ almost surely:

(i) the point 1 is not a double point, that is, γ (t) = 1 only if t = 1,
(ii) there exists β > 0 such that γ has a Hölder continuous parameterization

for the Hölder exponent β ,
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(iii) the tip γ (t) of the curve lies on the boundary of the connected component
of D \ γ [0, t] containing 1 (having the point 1 on its boundary), for all t ,

(iv) if K̂t is the hull of �(γ [0, t]), then the capacity capH(K̂t ) → ∞ as t → 1,
(v) for any parameterization of γ the capacity t �→ capH(K̂t ) is strictly in-

creasing and if (Kt)t∈R+ is (K̂t )t∈[0,1) reparameterized with capacity, then the
corresponding gt satisfies the Loewner equation with a driving process (Wt)t∈R+
which is Hölder continuous for any exponent α < 1/2.

Furthermore, there exist constants ε > 0 and C > 0 such that

E∗[exp
(
ε max

s∈[0,t] |Ws |/
√

t
)]

≤ C(9)

for any t > 0. Here, E∗ denotes the expected value with respect to P∗.

REMARK 1.6. Note that the claims (i)–(iv) do not depend on the parameteri-
zation.

The following corollary clarifies the relation between the convergence of ran-
dom curves and the convergence of their driving processes. For instance, it shows
that if the driving processes of Loewner chains satisfying Condition G2 converge,
also the limiting Loewner chain is generated by a curve. In the statement of the
result, we assume that H is endowed with a bounded metric, for instance, the
one inherited from the Riemann sphere. Another possibility is to map H onto a
bounded domain such as D.

COROLLARY 1.7. Suppose that (W(n))n∈N is a sequence of driving processes
of random Loewner chains that are generated by simple random curves (γ (n))n∈N
in H, satisfying Condition G2. Suppose also that (γ (n))n∈N are parametrized by
capacity. Then:

• (W(n))n∈N is tight in the metrizable space of continuous functions on [0,∞)

with the topology of uniform convergence on the compact subsets of [0,∞).
• (γ (n))n∈N is tight in the space of curves X.
• (γ (n))n∈N is tight in the metrizable space of continuous functions on [0,∞) with

the topology of uniform convergence on the compact subsets of [0,∞).

Moreover, if the sequence converges in any of the topologies above it also con-
verges in the two other topologies and the limits agree in the sense that the limiting
random curve is driven by the limiting driving process.

The space C([0,∞)) is metrizable, since a metric on it is given, for example,
by

d(f, g) =
∞∑

n=0

2−n min
{
1, sup

{∣∣f (t) − g(t)
∣∣ : t ∈ [0,2n]}}.

It is understood that a = γ (n)(0) and b = ∞ in the definition of Au.
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For the next corollary let us define the space of open curves by identifying in the
set of continuous maps γ : (0,1) → C different parameterizations. The topology
will be given by the convergence on the compact subsets of (0,1). See also Sec-
tion 3.6. It is necessary to consider open curves since in rough domains nothing
guarantees that there are curves starting from a given boundary point or prime end.

We say that (Un, an, bn), n ∈ N, converges to (U,a, b) in the Carathéodory
sense if there exist conformal and onto mappings ψn : D → Un and ψ : D → U

such that they satisfy ψn(−1) = an, ψn(+1) = bn, ψ(−1) = a and ψ(+1) = b

(possibly defined as prime ends) and such that ψn converges to ψ uniformly in
the compact subsets of D as n → ∞. Note that this limit is not necessarily unique
as a sequence (Un, an, bn) can converge to different limits for different choices
of ψn. However, if we know that (Un, an, bn), n ∈ N, converges to (U,a, b),
then ψ(0) ∈ Un for large enough n and Un converges to U in the usual sense
of Carathéodory kernel convergence with respect to the point ψ(0). For the defini-
tion, see Section 1.4 of [26].

The next corollary shows that if we have a converging sequence of random
curves in the sense of Theorem 1.5 and if they are supported on domains which
converge in the Carathéodory sense, then the limiting random curve is supported
on the limiting domain. Note that the Carathéodory kernel convergence allows that
there are deep fjords in Un which are “cut off” as n → ∞. One can interpret the
following corollary to state that with high probability the random curves do not
enter any of these fjords. This is a desired property of the convergence.

COROLLARY 1.8. Suppose that the sequence (Un, an, bn) converges to
(U∗, a∗, b∗) in the Carathéodory sense (here a∗, b∗ are possibly defined as prime
ends) and suppose that (φn)n≥0 are conformal maps such that Un = U(φn), an =
a(φn), bn = b(φn) and limφn = φ∗ for which U∗ = U(φ∗), a∗ = a(φ∗), b =
b(φ∗). Let Û = U∗ \ (Va ∪ Vb) where Va and Vb are some neighborhoods of a

and b, respectively, and set Ûn = φ−1
n ◦ φ(Û). If (φn,Pn)n≥0 satisfy Condition G2

and γ (n) has the law Pn, then γ (n) restricted to Ûn has a weakly converging sub-
sequence in the topology of X, the laws for different Û are consistent so that it
is possible to define a random curve γ on the open interval (0,1) such that the
limit for γ (n) restricted to Ûn is γ restricted to the closure of Û . In particular,
almost surely the limit of γ (n) is supported on open curves of U∗ and does not
enter (lim supUn) \ U

∗
.

Here, we define lim supAn for a sequence of sets An ⊂ C to be the set{
x ∈ C : ∃ increasing nk ∈N and xk ∈ Ank

sequences s.t. lim
k→∞xk = x

}

=
∞⋂

m=1

∞⋃
n=m

An.
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1.3. The principal application of the main theorem. The results of this paper
(Corollary 1.8 and Proposition 4.3) together with [11, 37] and [9] are used in [10]
to establish the following (strong) convergence result for the Ising model inter-
faces. For the exact setting, consult Section 4.1.

THEOREM 1.9 (Chelkak–Duminil-Copin–Hongler–Kemppainen–Smirnov
[10]). Let U be a bounded simply connected domain with two distinct bound-
ary points a, b (possibly defined as prime ends).

• (Convergence of spin Ising interfaces). Consider the interface γδ in the critical
spin Ising model with Dobrushin boundary conditions on (Uδ, aδ, bδ). The law
of γδ converges weakly, as δ → 0, to the chordal Schramm–Loewner Evolution
SLE(κ) running from a to b in U with κ = 3.

• (Convergence of FK Ising interfaces). Consider the interface γδ in the critical
FK Ising model with Dobrushin boundary conditions on (Uδ, aδ, bδ). The law
of γδ converges weakly, as δ → 0, to the chordal Schramm–Loewner Evolution
SLE(κ) running from a to b in U with κ = 16/3.

The above result is based on a standard approach for proving convergence. First,
we show precompactness of the sequence so that it has subsequential limits. Then
we show that those limits are independent of the subsequence (uniqueness). It
follows that the whole sequence converges to this unique limit. The results of the
present article are sufficient to cover the entire precompactness part, but this work
also gives some required tools for the uniqueness part.

The uniqueness part is based on finding an observable which has a well-behaved
scaling limit. A typical observable is a solution of a discrete boundary value prob-
lem, for example, the observable could be a discrete harmonic function with pre-
scribed boundary values and defined on the same or related graph as the interface.
There needs to be a strong connection between the observable and the interface so
that the observable is a martingale with respect to the information generated by the
growing curve.

Unfortunately, the observables satisfying all the required properties have so far
been found in only a few cases.

In the article [10], Condition G2 is verified for the spin Ising model using the
results of [9]. In Section 4.2 below, we give its alternative derivation using only the
observable results of [11], thus giving a new proof of Theorem 1.9, independent of
[9] and using only [11] and the “martingale characterization” from [10].

Moreover, our proof indicates that in general, a nondegenerate martingale ob-
servable should suffice to verify Condition G2. Another known example of such
an approach is its verification for the harmonic observable which we sketch in
Section 4.4.
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1.4. An application to the continuity of SLE. This section is devoted to an
application of Theorem 1.5.

Consider SLE(κ), κ ∈ [0,8), for different values of κ . For an introduction to
Schramm–Loewner evolution, see Appendix A.1 below and [20]. The driving pro-
cesses of the different SLEs can be given in the same probability space in the
obvious way by using the same standard Brownian motion for all of them. A nat-
ural question is to ask whether or not SLE is as a random curve continuous in
the parameter κ . See also [17], where it is proved that SLE is continuous in κ for
small and large κ in the sense of almost sure convergence of the curves when the
driving processes are coupled in the way given above. We will prove the following
theorem using Corollary 1.7.

THEOREM 1.10. Let γ [κ](t), t ∈ [0,∞), be SLE(κ) parametrized by capac-
ity. Suppose that κ ∈ [0,8) and κn → κ as n → ∞. Then as n → ∞, the law of
γ [κn] converges weakly to the law of γ [κ] in the topology of uniform convergence
on the compact subsets of [0,∞).

We will present the proof here since it is independent of the rest of the paper
except that it relies on Corollary 1.7, Proposition 2.6 (equivalence of geometric
and conformal conditions) and Remark 2.9 (on the domain Markov property). The
reader can choose to read these parts before reading this proof.

Notice that SLE(κ) is not simple when κ > 4. Therefore, we need to slightly ex-
tend the setting of this paper to be able to use it in the proof of Theorem 1.10. The
assumption that the random curves are simple is used essentially only to guarantee
that they are Loewner chains with continuous driving processes. Also that assump-
tion makes it less cumbersome to talk about the tip of the curve and whether or not
some set separates the tip and the target points from each other, but this is not a
problem in the general case either, since we can always use conformal mappings
and resolve the question in some Jordan domain. As a consequence, no extra diffi-
culties arise and we can work with SLE(κ) as if they were simple curves.

PROOF OF THEOREM 1.10. Let κ0 ∈ [0,8). First, we verify that the family
consisting of SLE(κ)s on D, say, where κ runs over the interval [0, κ0], satis-
fies Condition G2. Since SLEκ has the conformal domain Markov property, it is
enough to verify Condition C1. More specifically, it is enough to show that there
exists M > 0 such that if Q = (V ,S0, S1, S2, S3) is a topological quadrilateral with
m(Q) ≥ M such that V ⊂ H, Sk ⊂ R+ := [0,∞) for k = 1,3 and S2 separates S0
from ∞ in H, then

P
(
SLE(κ) intersects S0

)≤ 1
2(10)

for any κ ∈ [0, κ0].
Suppose that M > 0 is large and Q satisfies m(Q) ≥ M . Let Q′ = (V ′;S′

0, S
′
2)

be the doubly connected domain where V ′ is the interior of the closure of V ∪ V ∗,



710 A. KEMPPAINEN AND S. SMIRNOV

V ∗ is the mirror image of V with respect to the real axis, and S′
0 and S′

2 are the inner
and outer boundary of V ′, respectively. Then the modulus (or extremal length) of
Q′, which is defined as the extremal length of the curve family connecting S′

0 and
S′

2 in V ′ (for the definition see Chapter 4 of [1]), is given by m(Q′) = m(Q)/2.
Let x = min(R∩S′

0) > 0 and r = max{|z−x| : z ∈ S′
0} > 0. Then Q′ is a doubly

connected domain which separates x and a point on {z : |z − x| = r} from {0,∞}.
By Theorem 4.7 of [1], of all the doubly connected domains with this property, the
complement of (−∞,0] ∪ [x, x + r] has the largest modulus. By equation (4.21)
of [1],

exp
(
2πm

(
Q′))≤ 16

(
x

r
+ 1

)
(11)

which implies that r ≤ ρx where

ρ = ( 1
16 exp(πM) − 1

)−1(12)

which can be as small as we like by choosing M large.
If SLE(κ) crosses Q, then it necessarily intersects B(x, r). By the scale invari-

ance of SLE(κ),

P
(
SLE(κ) intersects S0

)≤ P
(
SLE(κ) intersects B(1, ρ)

)
.(13)

Now by standard arguments [27], the right-hand side can be made less than 1/2
for κ ∈ [0, κ0] and 0 < ρ ≤ ρ0 where ρ0 > 0 is suitably chosen constant.

Denote the driving process of γ [κ] by W [κ]. If κn → κ ∈ [0,8), then obviously
W [κn] converges weakly to W [κ]. Hence, by Corollary 1.7 also γ [κn] converges
weakly to some γ̃ whose driving process is distributed as W [κ]. That is, γ [κn]
converges weakly to γ [κ] as n → ∞ provided that κn → κ as n → ∞. �

1.5. Structure of this paper. In Section 2, the general setup of this paper is
presented. Four conditions are stated and shown to be equivalent. Any one of them
can be taken as the main assumption for Theorem 1.5.

The proof of Theorem 1.5 is presented in Section 3. The proof consists of
three parts: the first one is the existence of regular parameterizations of the ran-
dom curves and the second and third steps are described in Figure 3. The relevant
condition is verified for a list of random curves arising from statistical mechanics
models in Section 4.

2. The space of curves and equivalence of conditions.

2.1. The space of curves and conditions.

2.1.1. The space of curves. We follow the setup of Aizenman and Burchard’s
paper [2]: planar curves are continuous mappings from [0,1] to C modulo repa-
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(a) (b)

FIG. 3. In the proof of Theorem 1.5, the regularity of random curves is established by establishing
a probability upper bound on multiple crossings and excluding two unwanted scenarios presented in
this figure. (a) When the radius of the inner circle goes to zero, the dashed line is no longer visible
from a faraway reference point. If such an event has positive probability for the limiting measure, then
the Loewner equation does not describe the whole curve. (b) Longitudinal crossing of an arbitrarily
thin tube of fixed length along the curve or the boundary violates the local growth needed for the
continuity of the Loewner driving term.

rameterizations. Let

C′ =
{
f ∈ C

([0,1],C) : either f is not constant on any subinterval of [0,1]
or f is constant on [0,1]

}
.

It is also possible to work with the whole space C([0,1],C), but the next definition
is easier for C′. Define an equivalence relation ∼ in C′ so that f1 ∼ f2 if they are
related by an increasing homeomorphism ψ : [0,1] → [0,1] with f2 = f1 ◦ψ . The
reader can check that this defines an equivalence relation. The mapping f1 ◦ ψ is
said to be a reparameterization of f1 or that f1 is reparameterized by ψ .

Note that these parameterizations are, in a sense, arbitrary and are in general
different from the Loewner parameterization which we are going to construct.

Denote the equivalence class of f by [f ]. The set of all equivalence classes

X = {[f ] : f ∈ C′}
is called the space of curves. Make X a metric space by setting

dX

([f ], [g])= inf
{‖f0 − g0‖∞ : f0 ∈ [f ], g0 ∈ [g]}.(14)

It is easy to see that this is a metric; see, for example, [2]. The space X with the
metric dX is complete and separable reflecting the same properties of C([0,1],C).
And for the same reason as C([0,1],C) is not compact neither is X.

Define two subspaces, the space Xsimple of simple curves and the space X0 of
curves with no self-crossings by

Xsimple = {[f ] : f ∈ C′, f injective
}
,

X0 = Xsimple.
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FIG. 4. In this example, options 1 and 2 are possible so that the resulting curve in the class X0.
If the curve continues along 3 it does not lie in X0, namely, there is no sequence of simple curves
converging to that curve.

Note that X0 � X since there exists γ0 ∈ X \ Xsimple with positive distance to
Xsimple. For example, such is the broken line passing through points −1,1, i and
−i which has a double point which is stable under small perturbations.

What do the curves in X0 look like? Roughly speaking, they may touch
themselves and have multiple points, but they can have no “transversal” self-
intersections. For example, the broken line through points −1,1, i,0,−1 + i, also
has a double point at 0, but it can be removed by small perturbations. Also, every
passage through the double point separates its neighborhood into two components,
and every other passage is contained in (the closure) of one of those. See also
Figure 4.

Given a domain U ⊂ C define X(U) as the closure of {[f ] : f ∈ C′, f [0,1] ⊂
U} in (X,dX). Define also X0(U) as the closure of the set of simple curves in
X(U). The notation Xsimple(U) we reserve for

Xsimple(U) = {[f ] : f ∈ C′, f
(
(0,1)

)⊂ U,f injective
}
,

so the end points of such curves may lie on the boundary. Note that the closure of
Xsimple(U) is still X0(U).

Use also notation Xsimple(U,a, b) for curves in Xsimple(U) whose end points
are γ (0) = a and γ (1) = b. We will quite often consider some reference sets as
Xsimple(D,−1,+1) and Xsimple(H,0,∞) where the latter can be understood by
extending the above definition to curves defined on the Riemann sphere, say.

We will often use the letter γ to denote elements of X, that is, a curve modulo
reparameterization. Note that topological properties of the curve (such as its end-
points or passages through annuli or its locus γ [0,1]) as well as metric ones (such
as dimension or length) are independent of parameterization. When we want to put
emphasis on the locus, we will be speaking about Jordan curves or arcs, usually
parameterized by the open unit interval (0,1).

Denote by Prob(X) the space of probability measures on X equipped with the
Borel σ -algebra BX and the weak-∗ topology induced by continuous functions
(which we will call weak for simplicity). Suppose that Pn is a sequence of mea-
sures in Prob(X).

If for each n, Pn is supported on a closed subset of Xsimple (which for discrete
curves can be assumed without loss of generality) and if Pn converges weakly to



RANDOM CURVES AND LOEWNER EVOLUTIONS 713

a probability measure P, then 1 = lim supn Pn(X0) ≤ P(X0) by general properties
of the weak convergence of probability measures [5]. Therefore, P is supported on
X0 but in general it does not have to be supported on Xsimple.

2.1.2. Comment on the probability structure. Suppose P is supported on D ⊂
X(C) which is a closed subset of Xsimple(C). Consider some measurable map χ :
D → C([0,∞),C) so that χ(γ ) is a parameterization of γ . If necessary χ can be
continued to Dc by setting χ = 0 there.

Let πt be the natural projection from C([0,∞),C) to C([0, t],C). Define a
σ -algebra

Fχ,0
t = σ(πs ◦ χ,0 ≤ s ≤ t),

and make it right continuous by setting Fχ
t =⋂

s>t F
χ,0
s .

For a moment denote by (τ, τ̂ ) for given γ, γ̂ ∈ D the maximal pair of times
such that χ(γ )|[0,τ ] is equal to χ(γ̂ )|[0,τ̂ ] in X, that is, equal modulo a reparam-
eterization. We call χ a good parameterization of the curve family D, if for each
γ, γ̂ ∈ D, τ = τ̂ and χ(γ, t) = χ(γ̂ , t) for all 0 ≤ t ≤ τ .

Each reparameterization from a good parameterization to another can be repre-
sented as stopping times Tu, u ≥ 0. From this, it follows that the set of stopping
times is the same for every good parameterization. We will use simply the notation
γ [0, t] to denote the σ -algebra Fχ

t . The choice of a good parameterization χ is
immaterial since all the events we will consider are essentially reparameterization
invariant. But to ease the notation it is useful to always have some parameterization
in mind.

Often there is a natural choice for the parameterization. For example, if we
are considering paths on a lattice, then the probability measure is supported on
polygonal curves. In particular, the curves are piecewise smooth and it is possible
to use the arc length parameterization, that is, |γ ′(t)| = 1. One of the results in this
article is that given the hypothesis, which is described next, it is possible to use the
capacity parameterization of the Loewner equation. Both the arc length and the
capacity are good parameterizations.

The following lemma is implied by the above definitions.

LEMMA 2.1. If A ⊂ C is a nonempty, closed set, then τA = inf{t ≥ 0 :
χ(γ, t) ∈ A} is a stopping time.

REMARK 2.2. The stopping times we need in the proof of the main theorem
are always explicitly of this type.

2.1.3. Four equivalent conditions. Recall the general setup: we are given a
collection (φ,P) ∈ � where the conformal map φ contains also the information
about the domain (U,a, b) = (U(φ), a(φ), b(φ)) and P is a probability measure
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on Xsimple(U,a, b). Furthermore, we assume that each γ , which is distributed ac-
cording to P, has some suitable parameterization.

For given domain U and for given simple (random) curve γ on U , we always
define Uτ = U \ γ [0, τ ] for each (random) time τ . We call Uτ as the domain at
time τ .

DEFINITION 2.3. For a fixed domain (U,a, b) and for fixed simple (random)
curve in U starting from a, define for any annulus A = A(z0, r,R) and for any
(random) time τ ∈ [0,1], Au

τ =∅ if ∂B(z0, r) ∩ ∂Uτ = ∅ and

Au
τ =

{
z ∈ Uτ ∩ A : the connected component of z in Uτ ∩ A

does not disconnect γ (τ) from b in Uτ

}
(15)

otherwise. A connected set C disconnects γ (τ) from b if it disconnects some
neighborhood of γ (τ) from some neighborhood of b in Uτ . If γ [τ,1] contains
a crossing of A which is contained in Au

τ , we say that γ makes an unforced cross-
ing of A in Uτ (or an unforced crossing of A observed at time τ ). The set Au

τ is
said to be avoidable at time τ .

REMARK 2.4. Neighborhoods are needed here only to incorporate the fact
that γ (t) and b are boundary points.

The first two of the four equivalent conditions are geometric, asking an unforced
crossing of an annulus to be unlikely uniformly in terms of the modulus.

CONDITION G2. The family � is said to satisfy a geometric bound on an un-
forced crossing if there exists C > 1 such that for any (φ,P) ∈ �, for any stopping
time 0 ≤ τ ≤ 1 and for any annulus A = A(z0, r,R) where 0 < Cr ≤ R,

P
(
γ [τ,1] makes a crossing of A which is contained in Au

τ

∣∣ γ [0, τ ])< 1
2 .(16)

CONDITION G3. The family � is said to satisfy a geometric power-law
bound on an unforced crossing if there exist K > 0 and � > 0 such that for any
(φ,P) ∈ �, for any stopping time 0 ≤ τ ≤ 1 and for any annulus A = A(z0, r,R)

where 0 < r ≤ R,

P
(
γ [τ,1] makes a crossing of A which is contained in Au

τ

∣∣ γ [0, τ ])
(17)

≤ K

(
r

R

)�

.

Let Q ⊂ Ut be a topological quadrilateral, that is, an image of the square (0,1)2

under a homeomorphism ψ . Define the “sides” ∂0Q, ∂1Q, ∂2Q, ∂3Q, as the “im-
ages” of

{0} × (0,1), (0,1) × {0}, {1} × (0,1), (0,1) × {1}
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under ψ . For example, we set

∂0Q := lim
ε→0

Clos
(
ψ
(
(0, ε) × (0,1)

))
.

We consider Q such that two opposite sides ∂1Q and ∂3Q are contained in ∂Ut .
A crossing of Q is a curve in Ut connecting two opposite sides ∂0Q and ∂2Q.
The latter without loss of generality (just perturb slightly) we assume to be smooth
curves of finite length inside Ut . Call Q avoidable if it does not disconnect γ (t)

and b inside Ut .

CONDITION C2. The family � is said to satisfy a conformal bound on an
unforced crossing if there exists a constant M > 0 such that for any (φ,P) ∈ �,
for any stopping time 0 ≤ τ ≤ 1 and any avoidable quadrilateral Q of Uτ , such
that the modulus m(Q) is larger than M

P
(
γ [τ,1] crosses Q

∣∣ γ [0, τ ])≤ 1
2 .(18)

REMARK 2.5. In the condition above, the quadrilateral Q depends on γ [0, τ ],
but this does not matter, as we consider all such quadrilaterals. A possible depen-
dence on γ [0, τ ] ambiguity can be addressed by mapping Ut to a reference domain
and choosing quadrilaterals there. See also Remark 2.10.

CONDITION C3. The family � is said to satisfy a conformal power-law
bound on an unforced crossing if there exist constants K and ε such that for any
(φ,P) ∈ �, for any stopping time 0 ≤ τ ≤ 1 and any avoidable quadrilateral Q

of Uτ

P
(
γ [τ,1] crosses Q

∣∣ γ [0, τ ])≤ K exp
(−εm(Q)

)
.(19)

PROPOSITION 2.6. The four conditions G2, G3, C2 and C3 are equivalent
and conformally invariant.

This proposition is proved below in Section 2.2. Equivalence of conditions im-
mediately implies the following.

COROLLARY 2.7. The constant 1/2 in Conditions G2 and C2 can be replaced
by any other from (0,1).

2.1.4. Remarks concerning the conditions.

REMARK 2.8. Conditions G2 and G3 could be described as being geomet-
ric since they involve crossing of fixed shape. Conditions C2 and C3 are confor-
mally invariant because they are formulated using the modulus, that is, the ex-
tremal length which is a conformally invariant quantity. The conformal invariance
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in Proposition 2.6 means, for example, that if Condition G2 holds with a constant
C > 1 for (φ,P) defined in U and if ψ : U → U ′ is conformal and onto, then Con-
dition G2 holds for (φ ◦ ψ−1,ψP) with a constant C′ > 1 which depends only on
the constant C but not on (φ,P) or ψ .

REMARK 2.9. To formulate the domain Markov property with an appropriate
set of stopping times, let us suppose that � is a collection of pairs (φU,a,b

n ,PU,a,b
n )

where n ∈ N refers to the lattice mesh δn which tends to zero as n tends to infinity,
U is a simply connected domain whose boundary is a discrete curve (broken line)
on the lattice with mesh δn and a and b are lattice points on the boundary of the
domain and as usual φU,a,b

n is a conformal map taking U,a, b onto D,−1,1. If for
any stopping time τ , such that γ (τ) is almost surely a lattice point, it holds that

PU,a,b
n

(
γ |[τ,1] ∈ · ∣∣ γ |[0,τ ]

)= PU\γ [0,τ ],γ (τ ),b
n ,

then the random curve or � is said to have the domain Markov property. This
property could be formulated more generally so that if P is a probability measure
such that (φ,P) ∈ � for some φ, then for any stopping time τ , P(γ |[τ,1] ∈ · |
γ |[0,τ ]) is equal to some probability measure P′ such that (φ′,P′) ∈ � for some φ′.

When the domain Markov property holds, the “time zero conditions” G1 and C1
are sufficient for Conditions G2 and C2, respectively.

REMARK 2.10. Our conditions impose an estimate on conditional probability,
which is hence satisfied almost surely. By taking a countable dense set of round
annuli (or of topological rectangles), we see that it does not matter whether we
require the estimate to hold separately for any given annulus almost surely; or to
hold almost surely for every annulus. The same argument applies to topological
rectangles.

REMARK 2.11. Suppose now that the random curve γ is an interface in a
statistical physics model with two possible states at each site, say, blue and red. In
that case, U will be a simply connected domain formed by entire faces of some
lattice, say, hexagonal lattice, a, b ∈ ∂U are boundary points, the faces next to the
arc ab are colored blue and next to the arc ba red and γ is the interface between
the blue cluster of ab (connected set of blue faces) and the red cluster of ba.

In this case under positive association (e.g., observing blue faces somewhere
increases the probability of observing blue sites elsewhere), the sufficient condition
implying Condition G2 is uniform upper bound for the probability of the crossing
event of an annular sector with alternating boundary conditions (red–blue–red–
blue) on the four boundary arcs (circular–radial–circular–radial) by blue faces. For
more detail, see Section 4.1.6.
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2.2. Equivalence of the geometric and conformal conditions. In this section,
we prove Proposition 2.6 about equivalence of geometric and conformal condi-
tions. We start with recalling the notion of Beurling’s extremal length and then
proceed to the proof. Note that since Condition C2 is conformally invariant, con-
formal invariance of other conditions immediately follows.

Suppose that a curve family � ⊂ X consists of curves that are regular enough
for the purposes below. A nonnegative Borel function ρ on C is called admissible
if ∫

γ
ρ d� ≥ 1(20)

for each γ ∈ �. Here d� is the arc-length measure.
The extremal length of a curve family � ⊂ X is defined as

m(�) = 1

infρ
∫

ρ2 dA
,(21)

where the infimum is taken over all the admissible functions ρ. Here, dA is the
area measure (Lebesgue measure on C). The quantity inside the infimum is called
the ρ-area and the quantity on the left-hand side of inequality (20) is called the
ρ-length of γ .

The extremal length is conformally invariant. The modulus m(Q) of a topolog-
ical quadrilateral Q = (V ,S0, S1, S2, S3) can be defined as the extremal length of
the curve family connecting the sides S0 and S2 within V . By conformal invari-
ance, this definition of the modulus agrees with the one given in the Introduction,
for instance, in Figure 1(e). Similarly, the modulus of an annulus, which was also
given above, is equal to the extremal length of the curve family connecting the two
boundary circles of the annulus.

The following basic estimate is easy to obtain.

LEMMA 2.12. Let A = A(z0, r1, r2), 0 < r1 < r2, be an annulus. Suppose that
� is a curve family with the property that each curve γ ∈ � contains a crossing
of A. Then

m(�) ≥ 1

2π
log
(

r2

r1

)
(22)

and, therefore,

r1 ≥ r2 · exp
(−2πm(�)

)
.(23)

PROOF. Let �̂ be the family of curves connecting the two boundary circles
of A. If ρ is admissible for �̂, then it is also admissible for �. Hence, m(�) ≥
m(�̂) = (2π)−1 log(r2/r1). �

Next, we present an integral estimate for the extremal length which will be
essential in the proof below. The first formulation of this lemma is classical and
the second form is the one that we use.
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LEMMA 2.13 (Integral estimates of the extremal length). Let a < b, let �

be a domain and let Ca and Cb be two subsets of �. Let � be the curve family
connecting Ca to Cb inside �. For each x ∈ (a, b), let Ix be a set separating Ca

and Cb in �.

• Suppose that Ca ⊂ � ∩ {z ∈ C : Re z < a}, Cb ⊂ � ∩ {z ∈ C : Re z > b} and
Ix ⊂ � ∩ {z ∈ C : Re z = x} for each x. Suppose also that the mapping x �→
�(Ix) is measurable where � is the length measure. The extremal length m(�)

satisfies

m(�) ≥
∫ b

a

dx

�(Ix)
.

• Let z0 ∈ C and suppose that Ca ⊂ � ∩ {z ∈ C : |z − z0| < ea}, Cb ⊂ � ∩ {z ∈
C : |z − z0| > eb} and Ix ⊂ � ∩ {z ∈C : |z − z0| = ex} for each x. Suppose also
that the mapping x �→ θ(Ix) is measurable where θ is the arc length measure
defined in radians for any subset of a circle of the form ∂B(z0, e

x). The extremal
length m(�) satisfies

m(�) ≥
∫ b

a

dx

θ(Ix)
.

PROOF. Let l = ∫ b
a

dx
�(Ix)

. The first claim follows if we choose the particular

function ρ(z) = l−11a<Re z<b�(IRe z)
−1 to give an upper bound for the infimum

in (21). The second claim follows then by conformal invariance of the extremal
length. �

We now proceed to showing the equivalence of four conditions by establishing
the following implications:

G2 ⇔ G3. Condition G2 directly follows from G3 by setting C := (2K)1/�.
In the opposite direction, an unforced crossing of the annulus A(z0, r,R) im-

plies consecutive unforced crossings of the concentric annuli Aj := A(z0,C
j−1r,

Cj r), with j ∈ {1, . . . , n}, n := �log(R/r)/ logC�, which have conditional (on the
past) probabilities of at most 1/2 by Condition G2. Trace the curve γ denoting by
τj the ends of unforced crossings of Aj−1’s (with τ1 = τ ), and estimating

P
(
γ [τ,1] crosses Au

τ

∣∣ γ [0, τ ])≤ n∏
j=1

P
(
γ [τj ,1] crosses (Aj )

u
τj

∣∣ γ [0, τj ])

≤
(

1

2

)n

≤
(

1

2

)(log(R/r)/ logC)−1

= 2
(

r

R

)log 2/ logC

.

We infer condition G3 with K := 2 and � := log 2/ logC.
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C2 ⇔ C3. This equivalence is proved similarly to the equivalence of the ge-
ometric conditions. The only difference is that instead of cutting an annulus into
concentric ones of moduli C, we start with an avoidable quadrilateral Q, and cut
from it n = [m(Q)/M] quadrilaterals Q1, . . . ,Qn of modulus M . If Q is mapped
by a conformal map φ onto the rectangle {z : 0 < Re z < m(Q),0 < Im z < 1}, we
can set Qj := φ−1{z : (j − 1)M < Re z < jM,0 < Im z < 1}. Then as we trace γ ,
all Qj ’s are avoidable for its consecutive pieces.

G2 ⇒ C2. We show that Condition G2 with constant C implies Condition C2
with M = 4(C + 1)2.

Let m ≥ M be the modulus of Q, that is, the extremal length m(�) of the family
� of curves joining ∂0Q to ∂2Q inside Q. Let �∗ be the dual family of curves
joining ∂1Q to ∂3Q inside Q, then m(�) = 1/m(�∗).

Denote by d1 the distance between ∂1Q and ∂3Q in the inner Euclidean metric
of Q, and let γ ∗ be a curve of length ≤ 2d1 joining ∂1Q to ∂3Q inside Q. Ob-
serve that any crossing γ of Q contains a subcurve which an element of � and,
therefore, it has diameter d ≥ 2Cd1. Indeed, working with the extremal length of
the family �∗, take a metric ρ equal to 1 in the d1-neighborhood of γ . Then its
area integral

∫∫
ρ2 is at most (d + 2d1)

2. But every curve from �∗ intersects γ

and runs through this neighborhood for the length of at least d1, thus having ρ-
length at least d1. Therefore, 1/m = m(�∗) ≥ (d1)

2/(d + 2d1)
2, so we conclude

that m ≤ (2 + d/d1)
2, and hence

d ≥ (
√

m − 2)d1 ≥ (2(C + 1) − 2
)
d1 = 2Cd1.(24)

Now take an annulus A centered at the middle point of γ ∗ with inner radius
d1 and outer radius R := Cd1. It is sufficient to prove that every crossing of Q

contains an unforced crossing of A.
Assume on the contrary that γ is a curve crossing Q but not A. Clearly, γ has

to intersect γ ∗, say at w. But γ ∗ is entirely contained inside the inner circle of A.
On the other hand by (24) the diameter of γ is bigger than 2R. Thus, γ intersects
both boundary circles of A, and we deduce Condition C2.

C3 ⇒ G2. Now we will show that Condition C3 with constants K and ε (equiv-
alent to Condition C2) implies Condition G2 with constant C = (2Ke2)2π/ε .

We have to show that probability of an unforced crossing of a fixed annulus
A = A(z0, r,Cr) is at most 1/2. Without loss of generality, assume that we work
with the crossings from the inner circle to the outer one.

For x ∈ [0, logC] denote by Ix the (at most countable) set of arcs I x which
compose � ∩ ∂B(z0, re

x). By |I | we will denote the length of the arc I measured
in radians (regardless of the circle radius). Given two arcs I x and I y with y < x,
we will write I y ≺ I x if any curve γ intersecting I x has to intersect I y first, and
can do so without intersecting any other arc from Iy afterward. We denote by
I y(I x) the unique arc I y ∈ Iy such that I y ≺ I x . See Figure 5.
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FIG. 5. This figure shows an example of the last arc Iy(Ix) that a path to Ix has to intersect
[Iy(Ix) and Ix are the gray lines] and the corresponding topological quadrilateral (the region
shaded with vertical lines).

By Q(Ix), we denote the topological quadrilateral which is cut from � by the
arcs I x and I 0(I x). Denote

�
(
I x)= �x

0
(
I x) := ∫ x

0

1

|I y(I x)| dy.

By the second integral estimate of Lemma 2.13,

m
(
Q
(
I x))≥ �

(
I x).(25)

Note that if γ crosses A and intersects I x , then it makes an unforced crossing of
Q(Ix), so we conclude that by Condition C3 the probability of crossing A and
intersecting I x is majorated by

K exp
(−ε�

(
I x)).(26)

Denote also |Ix | :=∑ |I x | and �(Ix) := ∫ x
0

1
|Iy | dy.

We call a collection of arcs {Ij } (possibly corresponding to different x’s) sep-
arating, if every unforced crossing γ intersects one of those. To deduce Condi-
tion G2, by (26) it is enough to find a separating collection of arcs such that

∑
j

exp
(−ε�(Ij )

)
<

1

2K
.(27)

Note that for every x the total length |Ix | ≤ 2π , and so by our choice of constant
C we have

�
(
I logC)≥ logC

2π
≥ 2

ε
,

as well as

exp
(
2 − ε�

(
I logC))≤ exp

(
2 − ε

logC

2π

)
≤ exp

(
2 − log

(
2Ke2))= 1

2K
.



RANDOM CURVES AND LOEWNER EVOLUTIONS 721

Therefore, it is enough to establish that for any w ∈ [0, logC] with �(Iw) ≥ 2
ε

there exist arcs Ij separating Iw with the following estimate:∑
j

exp
(−ε�(Ij )

)≤ exp
(
2 − ε�

(
Iw)).(28)

We will do this in an abstract setting for families of arcs. Besides properties men-
tioned above, we note that for any two arcs I and J the arcs I x(I ) and I x(J ) either
coincide or are disjoint. Also without loss of generality any arc I we consider sat-
isfies I ≺ J for some J ∈ Iw .

By a limiting argument it is enough to prove (28) for Iw of finite cardinality n,
and we will do this by induction in n.

If n = 1, then we take the only arc J in Iw as the separating one (see Figure 6),
and the estimate (28) readily follows:

exp
(−ε�(J )

)= exp
(−ε�

(
Iw))< exp

(
2 − ε�

(
Iw)).

Suppose n > 1. Denote by v the minimal number such that Iv contains more
than one arc.

If

�w
v

(
Iw) := ∫ w

v

1

|Iy | dy <
2

ε
,

then we take the only arc J in Iv−δ as the separating one. The required esti-
mate (28) then holds if δ is small enough:

exp
(−ε�(J )

)= exp
(−ε�w

0 (I) + ε�w
v−δ(I)

)
≤ exp

(
−ε�

(
Iw

0
)+ ε

2

ε

)
= exp

(−ε�(I) + 2
)
.

Now assume that, on the contrary,

�w
v

(
Iw)≥ 2

ε
.

Suppose Iv is composed of the arcs Jk . See Figure 6. For each k denote by Ix
k the

collection of arcs I ∈ Ix such that Jk ≺ I . Since

�w
v

(
Iw

k

)≥ �w
v

(
Iw)≥ 2

ε
,(29)

we can apply the induction assumption to each of those collections Iw
k on the

interval x ∈ [v,w], obtaining a set of separating arcs {Ij,k}j such that∑
j

exp
(−ε�v(Ij,k)

)≤ exp
(
2 − ε�w

v (Ik)
)
.(30)



722 A. KEMPPAINEN AND S. SMIRNOV

(a) (b)

FIG. 6. In this figure, the shading with diagonal lines represents the integral �w
v (Iw) which in the

Figure 6(a) is small and in Figure 6(b) is big. In the first case, the arc of the circle of radius ev−δ

gives the arc with desired properties. In the second case, we use the induction hypothesis to find a
set of arcs of circles with radii in the range [ev, ew]. These arcs are here illustrated by gray lines
and one of the topological quadrilaterals cut by an arc are illustrated in both subfigures by vertical
shading.

Then the desired estimate follows from∑
j,k

exp
(−ε�(Ij,k)

) ≤ exp
(−ε�v

0
(
Iv))∑

k

∑
j

exp
(−ε�v(Ij,k)

)

≤ exp
(−ε�v

0
(
Iv))∑

k

exp
(
2 − ε�w

v

(
Iw

k

))
(31) ∗≤ exp

(−ε�v
0
(
Iv)) exp

(
2 − ε�w

v

(
Iw))

= exp
(
2 − ε�

(
Iw)),

assuming we have inequality (31∗) above. To prove it, we first observe that for
x ∈ [v,w], ∑

k

∣∣Ix
k

∣∣= ∣∣Ix
∣∣.

Using Jensen’s inequality for the probability measure

dy

|Iy |�w
v (I)

,

and the convex function x−1, we write

�w
v (Ik) =

∫ w

v

1

|Iy
k | dy =

∫ w

v

( |Iy
k |

|Iy |�w
v (I)

)−1 dy

|Iy |�w
v (I)

≥
(∫ w

v

|Iy
k |

|Iy |�w
v (I)

dy

|Iy |�w
v (I)

)−1

=
(∫ w

v

|Iy
k |dy

|Iy |2�w
v (I)2

)−1

.
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Thus,

∑
k

1

�w
v (Ik)

≤∑
k

(∫ w

v

|Iy
k |dy

|Iy |2�w
v (I)2

)
=
∫ w

v

∑
k |Iy

k |dy

|Iy |2�w
v (I)2

(32)

=
∫ w

v

dy

|Iy |
1

�w
v (I)2 = �w

v (I)
1

�w
v (I)2 = 1

�w
v (I)

.

An easy differentiation shows that the function F(x) := exp(−ε/x) vanishes at 0,
is increasing and convex on the interval [0, ε/2], and so is sublinear there. Observ-
ing that the numbers 1/�w

v (Ik) as well as their sum belong to this interval by (29)
and (32), we can write∑

k

exp
(−ε�w

v (Ik)
)=∑

k

F
(
1/�w

v (Ik)
)≤ F

(∑
k

1/�w
v (Ik)

)

≤ F
(
1/�w

v (I)
)= exp

(−ε�w
v (I)

)
,

thus proving inequality (31∗) and the desired implication.
This completes the circle of implications, thus proving Proposition 2.6.

3. Proof of the main theorem. In this section, we present the proof of
Theorem 1.5. As a general strategy, we find an increasing sequence of events
En ⊂ Xsimple(D) such that

lim
n→∞ inf

P∈�D

P(En) = 1

and the curves in En have some good properties which among other things guar-
antee that the closure of En is contained in the class of Loewner chains.

The structure of this section is as follows. To use the main lemma (Lemma A.5
in the Appendix, which constructs the Loewner chain) we need to verify its three
assumptions. In Section 3.2, it is shown that with high probability the curves will
have parameterizations with uniform modulus of continuity. Similarly, the results
in Section 3.3 guarantee that the driving processes in the capacity parameterization
have uniform modulus of continuity with high probability. In Section 3.4, a uni-
form result on the visibility of the tip γ (t) is proven giving the uniform modulus
of continuity of the functions F of Lemma A.5. Finally, in the end of this section
we prove the main theorem and its corollaries.

A tool which makes many of the proofs easier is the fact that we can use always
the most suitable form of the equivalent conditions. In particular, by the results
of Section 2.2 if Condition G2 can be verified in the original domain then Con-
dition G2 (or any equivalent condition) holds in any reference domain where we
choose to map the random curve as long as the map is conformal. Furthermore,
Condition G2 holds after we observe the curve up to a fixed time or a random time
and then erase the observed initial part by conformally mapping the complement
back to reference domain.
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3.1. Reformulation of the main theorem. In this section, we reformulate the
main result so that its proof amounts to verifying four (more or less) independent
properties, which are slightly technical to formulate. The basic definitions are the
following; see Sections 3.2, 3.3 and 3.4 for more details. Assume that ρn is a de-
creasing sequence such that ρn ↘ 0 as n → ∞, that α,α′, T ,R are positive num-
bers and that ψ : [0,∞) → [0,∞) is continuous and strictly increasing function
with ψ(0) = 0. Define the following random variables

N0 = sup
{
n ≥ 2 : γ intersects ∂B(1, ρn−1)

after intersecting ∂B(1, ρn)

}
,(33)

C1,α = inf

{
C > 0 : γ can be parameterized s.t.∣∣γ (s) − γ (t)

∣∣≤ C|t − s|α ∀(t, s) ∈ [0,1]2

}
,(34)

C2,α′,T = inf
{
C > 0 : ∣∣Wγ (s) − Wγ (t)

∣∣≤ C|t − s|α′ ∀(t, s) ∈ [0, T ]2},(35)

C3,ψ,T ,R = inf
{
C > 0 : |Fγ (t, y) − γ̂ (t)

∣∣≤ Cψ(y)

∀(t, y) ∈ [0, T ] × [0,R]
}

,(36)

where γ̂ = �(γ ) and

Fγ (t, y) = g−1
t

(
Wγ (t) + iy

)
(37)

which can be called a hyperbolic geodesic ending to the tip of the curve.
We will prove the next proposition in Sections 3.2, 3.3 and 3.4. Theorem 1.5

follows from the proposition (including the results of the next three subsections)
and Lemma A.5.

PROPOSITION 3.1. If � satisfies Condition G2 and �D is as in (7), then the
following statements hold:

• The random curves γ , whose laws form the collection �D, are transient uni-
formly in the following sense: there exists a sequence ρn such that the random
variable N0 is tight in �D.

• The family of measures �D is tight in X: There exists α > 0 such that C1,α is a
tight random variable in �D.

• The family of measures �D is tight in the sense of driving process convergence:
There exists α′ > 0 such that C2,α′,T is a tight random variable in �D for each
T > 0.

• There exists ψ such that C3,ψ,T ,R is a tight random variable in �D for each
T > 0, R > 0.

3.2. Extracting weakly convergent subsequences of probability measures on
curves. In this subsection, we first review the results of [2] and then we verify
their assumption (which they call hypothesis H1) given that Condition G2 holds.
At some point in the course of the proof, we observe that it is nicer to work with a
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smooth domain such as D, hence justifying the effort needed to prove the equiva-
lence of the conditions.

Aizenman and Burchard [2] made the following assumption on a collection of
probability measures on the space of curves. They called it Hypothesis H1 and for
us it is Condition G4.

CONDITION G4. A collection of measures �0 on X(C) is said to satisfy a
power-law bound on multiple crossings if for each n, there are constants �n ≥ 0,
Kn > 0 such that

P
(
γ makes n crossings of A(z0, r,R)

)≤ Kn

(
r

R

)�n

(38)

for any annulus A(z0, r,R) and for each P ∈ �0 and that satisfy �n → ∞ as
n → ∞.

REMARK 3.2. The sequence (�n) can trivially be chosen to be non-
decreasing. Hence, it is actually enough to check that �nj

→ ∞ along a sub-
sequence nj → ∞.

Based on this assumption Aizenman and Burchard proved the following result,
see Theorems 1.1 and 2.3 in [2].

THEOREM 3.3 (Aizenman–Burchard [2]). Assume that a collection of mea-
sures �0 on X(C) satisfies Condition G4 and that γ is uniformly bounded, that is,
there exists R > 0 such that P(γ ⊂ B(0,R)) = 1 for all P ∈ �0 Then the following
statements hold:

1. The family of �0 is tight and hence any sequence in �0 contains a weakly
convergent subsequence.

2. There exists exponents α > 0 and β > 0 such that following random vari-
ables are tight on �0

Zα(γ ) = sup
{
M(γ, l) · lα : 0 < l < 1

}
,(39)

Ẑβ(γ ) = inf
γ̂

sup
{
w(γ̂ , δ) · δ−β : 0 < δ < 1

}
,(40)

where we use the following definitions. The random variable M(γ, l) is the mini-
mum of the numbers n such that there exists a partition 0 = t0 < t1 < · · · < tn = 1
of the time interval [0,1] such that diam(γ [tk−1, tk]) ≤ l for any k = 1,2, . . . , n.
The random variable w(γ̂ , δ) is the modulus of continuity of the parameterization
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γ̂ of γ , that is,

w(γ̂ , δ) = max
{∣∣γ̂ (t) − γ̂ (s)

∣∣ : (s, t) ∈ [0,1]2 s.t. |s − t | ≤ δ
}
.(41)

The infimum in Ẑβ(γ ) is over all parameterizations γ̂ of γ .

REMARK 3.4. A bound of the type Zα(γ ) ≤ K for some K > 0 and α > 0
was called tortuosity bound in [2] and similarly bound for Zβ(γ ) ≤ K for some
K > 0 and β > 0 is modulus of continuity bound. Existence of one type of bound
implies existence of the other bound, which might hint how Condition G4 is suffi-
cient assumption for this result.

REMARK 3.5. The compact subsets K ⊂ X were characterized in Lemma 4.1
in [2]. A closed set K ⊂ X is compact if and only if there exists a function ψ :
(0,1] → (0,1] such that

M(γ, l) ≤ 1

ψ(l)

for any γ ∈ K and for any 0 < l ≤ 1. And this is equivalent to the existence of
parameterization which allows a uniform bound on the modulus of continuity.

We will use the remainder of this section to show that Condition G3 implies
Condition G4 and hence the results of Theorem 3.3. Notice that we assume Con-
dition G3 in the original domain while Condition G4 is shown to hold in a smooth
and bounded reference domain which we choose to be D.

PROPOSITION 3.6. If � satisfies Condition G3, then �D satisfies Condi-
tion G4. Hence, then also the conclusions of Theorem 3.3 hold.

Let Dt = D \ γ (0, t]. Let C̃ > 1. For an annulus A = A(z0, r, C̃
3r) define

three concentric subannuli Ak = A(z0, C̃
k−1r, C̃kr), k = 1,2,3. Define the index

I (A,Dt) ∈ {0,1,2, . . .} of γ at time t with respect to A to be the minimal number
of crossings of A2 made by γ̃ where γ̃ runs over the set of all possible futures of
γ [0, t] {

γ̃ ∈ Xsimple(Dt) : γ̃ connects γ (t) to b
}
.

Consider a sequence of stopping times τ0 = 0 and

τk+1 = inf
{
t > τk : γ [τk, t] crosses A

}
,

where k = 0,1,2, . . . . Define also σ0 = 0 and

σk+1 = inf
{
t > σk : γ [σk, t] crosses A2

}
.

Since γ (τk) and γ (τk+1) lie in the different components of C \ A, the curve
γ [τk, τk+1] has to cross A2 an odd number of times. Hence, there are odd number
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of l such that τk < σl+1 < τk+1. For each l, γ [σl, σl+1] crosses A2 exactly once
and, therefore, the index changes by ±1. From this, it follows that

I (A,Dτk+1) = I (A,Dτk
) + 2n − 1

with n ∈ Z.

LEMMA 3.7. Let A = A(z0, r,R) be an annulus and let Ak, k = 1,2,3 be its
subannuli as above.

(i) If A is not on ∂D, that is, B(z0, r) ∩ ∂D = ∅, then on the event τ < 1,
I (A,Dτ ) = 1, where τ is the hitting time of B(z0, r).

(ii) If A is on ∂Ds , that is, B(z0, r) ∩ ∂Ds �= ∅, and the index increases from I

to I + 2n − 1, n ≥ 1, during a minimal crossing γ [s, t] of A then the total number
of unforced crossings of the annuli Ak , k = 1,2,3, made by γ [s, t] has to be at
least 2n − 1.

PROOF. The statement (i) can be easily verified since the point +1 can be
reached from γ (τ) in Ds while making only one crossing by following a path
close to the boundary of Ds .

Suppose now that A is on ∂Ds . Let m ≤ m′ be such that

σm−1 < s < σm and σm′ < t < σm′+1.

As we observed above, if we set yl := I (A,Dσl
)−I (A,Dσl−1), then these changes

in the index take values yl ∈ {−1,1} and they sum up to

m′∑
l=m

yl = 2n − 1,

that is, to the total change of the index during [s, t].
We claim that the following two statements hold:

• If ym′ = 1, then the last crossing γ [σm′, t] of a component of A1 or A3 has to be
unforced as observed at time σm′ .

• If yl = 1 = yl+1, then the latter crossing γ [σl, σl+1] is an unforced crossing of
A2 as observed at time σl .

To prove these claims, let h = m′ or h = l (depending on the claim, resp.) and
suppose that yh = 1. Let C0 ⊂ ∂A2 ∩ Dσh

be the boundary arc of A2 which has
the property that any curve from γ (σh) to +1 in Dσh

has to intersect C0 and C0

is not separated from γ (σh) by any other such arc. Let V0 be the component of
Dσh

\ C0 which contains (a neighborhood of) +1 and let V1 to be the component
of A2 ∩ Dσh

which has γ (σh) and C0 on its boundary. See Figure 7. Then γ (σh)
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FIG. 7. A sector of three concentric annuli with an initial segment of the interface. The boundaries
of the annuli are the dashed circular arcs (which are only partly shown in the figure). If the index
increases between times σh−1 and σh, then γ (σh) and C0 are in different circular arcs. If the next
crossing was in V1, it would decrease the index. Hence, in the scenarios in the proof of Lemma 3.7,
the crossings corresponding to arrows on grey background are not allowed. Therefore, a crossing
which corresponds to one of the arrows on white background is going to happen next and those
crossings are unforced.

can be connected to +1 in V0 ∪ C0 ∪ V1. Because we assumed that yk = 1, γ (σh)

and C0 are in the different circular boundary arcs of the annulus A2, and thus it
is clear that if V1 ⊂ A2 was crossed next, then the index would decrease by one.
Hence, the next crossing in both of the scenarios has to be in the complement of
V0 ∪ C0 ∪ V1. Since γ (σh) can be connected to +1 in V0 ∪ C0 ∪ V1, this crossing
is unforced as observed at time σh. Thus, the claims hold.

The rest of the proof is divided in two cases depending on ym′ ∈ {−1,1}. If
ym′ = −1, then

max
j=m,...,m′

j∑
l=m

yl ≥ 2n.

Therefore, there has to be at least 2n− 1 pairs (l, l + 1) so that yl = 1 = yl+1. This
can be easily proven by induction. Hence, the statement (i) holds in this case by
the second property we proved above.

If ym′ = 1, then there are at least 2n − 2 pairs (l, l + 1) so that yl = 1 = yl+1
by the same argument as in the previous case. In addition to this, the last crossing
γ [σm′, t] is unforced crossing of A1 or A3 by the first property we proved above.
Hence, the statement (i) holds also in this case. �

Now we are ready to give the proof of the main result of this section. Notice that
here we need that the domain is smooth otherwise the number n0 below would not
be bounded. There are of course many ways to bypass this: for instance, if we
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want the measures to be supported on Hölder curves (including the end points on
the boundary), then we need to assume that minimal number of crossings of annuli
A(z0, r,R) centered at z0 = a or z0 = b grows at most as a power of r as r → 0.

PROOF OF PROPOSITION 3.6. We will prove the first claim that if � satisfies
Condition G3, then �D satisfies Condition G4. The rest of the proposition follows
then from the results of [2] which we formulated above in Theorem 3.3.

First of all, we can concentrate on the case that the variables z0, r,R are
bounded. We can assume that z0 ∈ B(0,3/2), r < 1/2,R < 1. In the complemen-
tary case, either the left-hand side of (38) is zero by the fact that there are no
crossing of the annulus that stay inside the unit disc or the ratio r/R is uniformly
bounded away from zero. In the latter case, the constant Kn can be chosen so that
the right-hand side of (38) is greater than one and (38) is satisfied trivially.

Denote as usual A = A(z0, r,R). By the fact that R < 1, at most one of the
points ±1 is in A. If either ±1 is in A, denote the distance from that point to z0
by ρ. Then r < ρ < R and a trivial inequality shows that

max
{
ρ

r
,
R

ρ

}
≥
√

R

r
.

Hence, for each annulus, it is possible to choose a smaller annulus inside it so that
the points ±1 are away from that annulus and the ratio of the radii is still at least
square root of the original one. If we are able to show existence of the constants
Kn and �n for annuli A such that {−1,1} ∩ A = ∅, then constants K̂n = Kn and
�̂n = �n/2 can be used for a general annulus.

Let A be such that {−1,1} ∩ A = ∅ and set n0 and τ in the following way: if
B(z0, r) intersects the boundary, let n0 = 1 when B(z0, r) contains −1 or 1 and
n0 = 0, otherwise and let τ = 0. If B(z0, r) does not intersect the boundary, let
n0 = 2 and let τ = inf{t ∈ [0,1] : γ (t) ∈ B(z0, r)}.

By Lemma 3.7, if there is a crossing of A that increases the index, there are
unforced crossings of the annuli Ak , k = 1,2,3. We can apply this result after
time τ . If the curve does not make any unforced crossings of the annuli Ak , k =
1,2,3, then there are at most n0 crossings of A. This argument generalizes so that
if there are n > n0 crossings of A, we apply Condition G3 (n − n0)/2 times in the
annuli Ak , k = 1,2,3, to get the bound

P
(
γ makes n crossings of A(z0, r,R)

)≤ K(n−n0)/2 ·
(

r

R

)�/6(n−n0)

for any P ∈ �D. Hence, the proposition holds for �n = � · (n − 2)/12. �

3.3. Continuity of driving process and finite exponential moment. Let � :
D → H be a conformal mapping such that �(−1) = 0 and �(1) = ∞. To make
the choice unique, it is also possible to fix �(z) = 2i

1−z
+O(1) as z → 1, that is,

�(z) = i
1 + z

1 − z
.(42)
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FIG. 8. If sup{|Wu − Ws | : u ∈ [s, t]} ≥ L, then the curve u �→ gs(γ (u)) − Ws , s ≤ u ≤ t , exits the
rectangle [−L,L]×[0,2

√
t − s] from one of the sides {±L}×[0,2

√
t − s]. Consequently, the curve

has to intersect all the vertical lines and make an unforced crossing of each of the annuli centered at
the base points of those lines.

Denote by �t = � ◦ gt . We often shorten the notation by writing �γ = �(γ ).
Denote by W(·,�γ ) the driving process of �γ in the capacity parameteriza-

tion. Our primary interest is to estimate the tails of the distribution of the incre-
ments of the driving process. Let us first study what kind of events are those
when |W(t,�γ ) − W(s,�γ )| is large. Suppose that u and L are positive real
numbers such that u/L is small. Consider a hull K that is a subset of a rect-
angle RL,u = [−L,L] × [0, u]. If K ∩ [L,L + iu] �= ∅ then for any z in this
set, 0.9L ≤ gK(z) ≤ 1.1L as proved below in Lemma A.11. On the other hand if
K ∩[−L+ iu,L+ iu] �=∅, then capH(K) ≥ 1

4u2. This is proved in Lemma A.13.
Based on this observation, the following inequality holds:

P
(∣∣W (1

4u2,�γ
)∣∣≥ 2L

)≤ P
(
Re
[
(�γ )(τRL,u

)
]= ±L

)
,(43)

where τRL,u
= inf{t ∈ [0,1] : �γ (t) ∈ H ∩ ∂RL,u}. Therefore, we study the event

that the curve exits a rectangular neighborhood of the origin in the upper half-
plane through the sides of the rectangle. Notice also that the capacity t = u2/4
corresponds to the height 2

√
t = u of the rectangle in inequality (43). This is ulti-

mately the source for the exponent α < 1/2 and for the term
√

t in (9) in the main
theorem (Theorem 1.5). Figure 8 illustrates both this correspondence and the proof
of the next proposition.

PROPOSITION 3.8. If Condition G2 holds, then there are constants K > 0
and c > 0 so that

P
(
Re
[
(�γ )(τRL,u

)
]= ±L

)≤ Ke−cL/u(44)

for any 0 < u < L.

PROOF. If Condition G2 holds, then it also holds in H by the results of Sec-
tion 2.2. Let C > 1 be the constant of Condition G2 in H.

By symmetry, it is enough to consider the event E that �γ exits the rectangle
RL,u from the right-hand side {L} × [0, u]. Let n = �L/(Cu)�. Consider the lines
Jk = {Cu · k} × [0, u], k = 1,2, . . . , n. On the event E, each of the lines Jk are hit
before τRL,u

and the hitting times are ordered

0 < τJ1 < τJ2 < · · · < τJn ≤ τRL,u
< 1

See Figure 8.
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Let xk = Cu · k which is the base point of Jk . On the event E the annulus
A(x1, u,Cu) is crossed and after each τJk

the annulus A(xk+1, u,Cu) is crossed.
Hence, Condition G2 can be applied with the stopping times 0, τJ1, . . . , τJn−1

and the annuli A(x1, u,Cu), A(x2, u,Cu), . . . ,A(xn,u,Cu). This gives the upper
bound 2−n for the probability of E. Hence, inequality (44) follows with suitable
constants depending only on C. �

We can now apply the above bounds (43) and (44) to show the next proposition
which can be interpreted in the following way. The first statement shows the uni-
form transience of the curves (uniform over P ∈ �D) in the same sense as in Propo-
sition 3.1. The second statement is a sufficient technical statement for the Hölder
continuity of the driving processes and is used in the proof of Theorem 3.10. The
third statement is needed for the exponential integrability of the driving process in
Theorem 1.5.

PROPOSITION 3.9. Let υ(t) = capH(�γ [0, t])/2 for any t ∈ [0,1) and define
υ(1) = limt→1 υ(t) ∈ (0,∞]. If Condition G2 holds, then:

1. For all P ∈ �D, P(υ(1) = ∞) = 1. There exists a sequence bn ∈ R such that

P
(

sup
0≤t≤n

∣∣Wt(γ̂ )
∣∣≤ bn

)
≥ 1 − 1

n
(45)

for any P ∈ �D.
2. Fix T > 0 and 0 < α < 1

2 . Let X′ ⊂ Xsimple(D) be the set of simple curves
such that υ(1) > T . Define

Gn =
{
γ ∈ X′ : sup

j2−n≤u≤(j+1)2−n

∣∣Wu(γ̂ ) − Wj2−n(γ̂ )
∣∣≤ 2−αn

}
.(46)

Then for large enough n ≥ n0(α,T ,K, c)

P(Gn) ≥ 1 − 2−n

for any P ∈ �D.
3. There exists constants ε > 0 and C > 0 such that

EP

[
exp
(
ε max

s∈[0,t]
∣∣Ws(γ̂ )

∣∣/√t
)]

≤ C(47)

for any t > 0 and for any P ∈ �D. Here, EP is the expected value with respect to P.

PROOF. Notice first that in inequality (43) we can replace |W(u2/4,�γ )| on
the left by max0≤s≤u2/4 |W(u2/4,�γ )|. This stronger version follows from the
very same observation.
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1. Let bn = (4/c)
√

n log(Kn). Then by (43) and (44)

P
(

sup
0≤t≤n

∣∣Wt(γ̂ )
∣∣> bn

)
≤ K exp

(
−c

bn

4
√

n

)
= 1

n
.(48)

In particular, P(υ(1) = ∞) = 1.
2. Estimate the probability of the complement of Gn by the following sum:

P
(
Gc

n

)≤ 2n∑
j=0

P
(

max
u∈[T (j−1)2−n,Tj2−n]

|Wu − WT (j−1)2−n | > 2−αn
)

≤ K2ne−(c/4)T −1/22(1/2−α)n ≤ 2−n

for n large enough depending on α,T ,K, c.
3. Fix t > 0 and denote the random variable maxs∈[0,t] |Ws(γ̂ )| by Z. Let ε > 0,

which we fix in a moment, and φ(x) = exp(εx/
√

t). Then by an equality following
from Fubini’s theorem and by the bound (44):

EP

(
φ(Z)

)= φ(0) +
∫ ∞

0
φ′(x)P(Z ≥ x)dx ≤ 1 + Kε√

t

∫ ∞
0

exp
((

ε − c

4

)
x√
t

)
dx

= 1 + Kε

∫ ∞
0

exp
((

ε − c

4

)
y

)
dy,

where K,c are as in (3.8). Choose ε < c
4 . Then the constant on the right is finite.

It is also independent of t and P as claimed. �

Finally, we reformulate the above somewhat technical results into the following
cleaner theorem (implied by the previous proposition as explained above) on the
Hölder continuity of the driving processes. The theorem follows from the state-
ment 2 of Proposition 3.9 above and Lemma 7.1.6 and the proof of Theorem 7.1.5
in [14].

THEOREM 3.10. If Condition G2 holds, then for each P ∈ �D the curve γ is
a Loewner chain which has α-Hölder continuous driving process P-almost surely
for any 0 < α < 1/2 and the α-Hölder norm of the driving process restricted to
[0, T ] for T > 0 is stochastically bounded.

3.4. Continuity of the hyperbolic geodesic to the tip. In the proof of the main
theorem, we are going to apply Lemma A.5 of the Appendix. Therefore, we re-
peat here the following definition: for a simple curve γ in H, let (gt )t∈R+ and
(W(t))t∈R+ be its Loewner chain and driving function. Then we define the hyper-
bolic geodesic from ∞ to the tip γ (t) as F :R+ ×R+ → H by

F(t, y) = g−1
t

(
W(t) + iy

)
.
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The corresponding geodesic in D for the curve �−1γ is

FD(t, y) = �−1 ◦ F(t, y).(49)

Consider now the collection �D and the random curve γ in Xsimple(D,−1,+1).
Define F and FD as above for the curves �γ and γ , respectively. For ρ > 0, let τρ

be the hitting time of B(1, ρ), that is, τρ is the smallest t such that |γ (t) − 1| ≤ ρ.
The following is the main result of this subsection.

THEOREM 3.11. Suppose that � satisfies Condition G2. There exists a con-
tinuous increasing function ψ : R+ → R+ such that ψ(0) = 0 and for any ρ > 0
and ε > 0 there exists δ > 0 such that

P

⎛
⎝ sup

t∈[0,τρ ]
∣∣F (t, y′)− F(t, y)

∣∣≤ ψ
(∣∣y − y′∣∣)

∀y, y′ ∈ [0,L] s.t.
∣∣y − y′∣∣≤ δ

⎞
⎠≥ 1 − ε(50)

for each P ∈ �D.

The proof is postponed after an auxiliary result, which is interesting in its own
right. Namely, the next proposition gives a “super-universal” arms exponent, that
is, the property is uniform for basically all models of statistical physics: under
Condition G2 a certain event involving six crossings of an annulus has small prob-
ability to occur anywhere. Therefore, the corresponding six arms exponent, if it
exists, has value always greater than 2. To see this, suppose that the probability of
this six arms event in a single annulus A(z0, r,R) tends to zero as rα when r → 0.
Then we can sum over the lattice rZ2 and all annuli of the form A(z,2r,R/4)

where z is a lattice point and get upper and lower bounds of the form rα−2 for
seeing this six arms event in anywhere [in any annulus of the form A(z0, r,R)].
Hence, if this goes to zero, we must have α > 2.

Let Dt = D \ γ (0, t] and define the following event E(r,R) = Eρ(r,R) on
Xsimple(D): Define E(r,R) as the event that there exists (s, t) ∈ [0, τ ]2 with s < t

such that:

• diam(γ [s, t]) ≥ R and
• there exists a crosscut C, diam(C) ≤ r , that separates γ (s, t] from B(1, ρ) in

D \ γ (0, s].
Denote the set of such pairs (s, t) by T (r,R).

Let us first demonstrate that the event E(r,R) implies a certain six arms event
(four arms if it occurs near the boundary) occurring somewhere in D—the converse
statement is also true, although we do not need it here. If C is as in the definition
of E(r,R), then for r < min{ρ,R}/2 at least one of the end points of C has to
lie on γ (0, s]. Let T (C) ≤ s be the largest time such that γ (T (C)) ∈ C. Then
also (T (C), t) ∈ T (r,R) and we easily see that γ [T (C), t] makes a crossing of
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(A(γ (T (C)), r,R/2))uT (C) and is therefore unforced. Moreover, γ [0, T (C)] con-
tains at least three crossings of A(γ (T (C)), r,R/2), when γ (T (C)) is sufficiently
far from the boundary, or one crossing, when γ (T (C)) is close to the boundary.
Otherwise, the above crossing could not be unforced. See also Figure 3(a). Finally,
after t the curve γ has to still make at least two crossings to reach the target point
+1. Adding these numbers together, we conclude that on the event E(r,R) there
is z0 ∈ D such that A(z0, r,R/2) contains at least six crossings when |z0| < 1 − r

or four crossings when |z0| ≥ 1 − r and at least one of the crossings is unforced.
Now we know that E(r,R) is a proper sub-event of the full six arms event. By

the next result, its probability is small.

PROPOSITION 3.12. If �D satisfies Condition G2, then as r → 0

sup
{
P
(
E(r,R)

) : P ∈ �D

}= o(1).

REMARK 3.13. Since P(E(r,R)) is decreasing in R, the bound is uniform for
R ≥ R0 > 0.

The idea of the proof is the following: divide the curve γ into N arcs

Jk = γ [σk−1, σk](51)

0 = σ0 < σ1 < · · · < σN = 1 such that diam(Jk) ≤ R/4, k = 1,2, . . . ,N . Let J0 =
∂D. For the event E(r,R), first there has to exist a fjord of depth R with a mouth
formed by some pair (Jj , Jk), j < k, and the number of such pairs is less than N2.
Second, there has to be a piece of the curve which enters the fjord, hence resulting
in an unforced crossing. Hence (given N2), the probability that E(r,R) occurs is
less than const. · N2(r/R)�.

PROOF OF PROPOSITION 3.12. Suppose that 0 < r < R/20. We will specify
more carefully in the end of the proof how small r is for given R.

It is useful to do this by defining σk as stopping times by setting σk = 0, k ≤ 0,
and then recursively

σk = sup
{
t ∈ [σk−1,1] : diam

(
γ [σk−1, t])< R

4

}
.

Let Jk , k > 0, be as in (51) and let J0 = ∂D. Observe that if the curve is divided
into pieces that have diameter at most R/4 − ε, ε > 0, then none of these pieces
can contain more than one of the γ (σk). Therefore, N ≤ infε>0 M(γ,R/4 − ε) ≤
M(γ,R/8) where M is as in Theorem 3.3. By that theorem N is stochastically
bounded, which we will use below.

Define also stopping times

τj,k = inf
{
t ∈ [σk−1, σk] : dist

(
γ (t), Jj

)≤ 2r
}

(52)

for 0 ≤ j < k. If the set is empty, let us define the infimum to be equal to 1.
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Suppose that the event E(r,R) occurs. Take a crosscut C and a pair of times
0 ≤ s < t ≤ 1 as in the definition of E(r,R).

Let V ⊂ Ds be the connected component Ds \ C which is disconnected from
+1 by C in Ds . Let j < k be such that the end points of C are on Jj and Jk . Then
it holds that the stopping time τ := τj,k < 1 and we can set z1 = γ (τj,k). Let z2 be
any point on Jj such that |z1 − z2| = 2r .

Let C′ = [z1, z2] := {λz1 + (1 − λ)z2 : λ ∈ [0,1]} and

V ′ = {
z ∈ V : z is disconnected from +1 by C′ in Dτ

}
and let D′ = Ds \ V .

We claim that the event of an unforced crossing of (A(z1,2r,R/2))uτ occurs.
To prove this, notice first that ∂D′ = ∂D∪ γ [0, tC] ∪ C where tC ∈ [0,1] is the

unique time such that {γ (tC)} = C ∩ Jk , that is, the point γ (tC) is the end point of
C which lies on Jk . Therefore, ∂D′ ⊂ (∂D∪ γ [0, τ ]) ∪ (Jk ∪ C). Hence, (Jk ∪ C)

separates the set V from +1 in Dτ . Since V \ V ′ is separated from V ′ by C′ in
Dτ , we see that V \ V ′ is a subset of the union of the bounded components of
C \ (Jj ∪ Jk ∪ C ∪ C′). Consequently, V \ V ′ ⊂ B(z1,R/4 + 3r).

Now since we known that V \ V ′ ⊂ B(z1,R/4 + 3r), γ [s, t] ⊂ V and γ [s, t]
is connected, we can find [s′, t ′] ⊂ (τ, t] such that γ [s′, t ′] is a subset of V ′ and
it crosses A(z1,2r,R/2). Hence, we have shown that γ [s, t] contains an unforced
crossing of Aj,k := A(z1,2r,R/2) as observed at time τ = τj,k . Consequently, if
we define Ej,k = Ej,k(r,R) as

Ej,k =
{
γ ∈ Xsimple(D,−1,+1) : γ [τj,k,1] contains a crossing of Aj,k

which is contained in (Aj,k)
u
τj,k

}
(53)

we have shown that E(r,R) ⊂⋃∞
j=0

⋃∞
k=j+1 Ej,k .

Let ε > 0 and choose m ∈ N such that P(N > m) ≤ ε/2 for all P ∈ �D. Now

P
(
E(r,R)

)≤ P(N > m) + P

[ ⋃
0≤j<k

{N ≤ m} ∩ Ej,k

]

≤ ε

2
+ P

[ ⋃
0≤j<k≤m

{N ≤ m} ∩ Ej,k

]
(54)

≤ ε

2
+ ∑

0≤j<k≤m

P
[{N ≤ m} ∩ Ej,k

]

≤ ε

2
+ Km2

(
r

R

)�

≤ ε,

when r is smaller than r0 > 0 which depends on R and ε. Here, we used the facts
that {N ≤ m} ∩ Ej,k = ∅ when k > m and that P[{N ≤ m} ∩ Ej,k] ≤ P[Ej,k]. �
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PROOF OF THEOREM 3.11. In this proof, we work on the unit disc. Fix ρ > 0
and let τ = τρ as above. Let D′ = D\B(1, ρ). Since � and �−1 are uniformly con-
tinuous on D′ and �(D′), respectively, it is sufficient to prove the corresponding
claim for FD. Furthermore, it is sufficient to show that |FD(t, y)−γ (t)| ≤ ψ(y) for
0 < y ≤ δ, because y �→ FD(t, y), y ∈ [δ,1], is equi-continuous family by Koebe
distortion theorem.

Let Rn > 0, n ∈ N, be any sequence such that Rn ↘ 0 as n → ∞. By the previ-
ous proposition, we can choose a sequence rn, n ∈ N, such that rn < Rn and

P
(
E(rn,Rn)

)≤ 2−n(55)

for all n ∈ N and for all P ∈ �D. Therefore, the random variable N := max{n ∈ N :
γ ∈ E(rn,Rn)} is tight: for each ε > 0 there exists m ∈N such that

P(N ≤ m) ≥ 1 − ε(56)

for all P ∈ �D. Fix now ε > 0 and let m ∈ N be such that (56) holds.
Define n0(δ) to be the maximal integer such that the inequality

2π√| log δ| ≤ rn0(δ)(57)

holds. For given 0 < δ < 1, there is a δ′ ∈ [δ, δ1/2] which can depend on t and γ

such that the crosscut C := {�−1 ◦g−1
t (W(t)+ iδ′eiθ ) : θ ∈ (0, π)} has length less

than 2π/
√| log δ|; see Proposition 2.2 in [26].

Now if N > n0(δ), then there must be a path from w := �−1 ◦ g−1
t (W(t) + iδ′)

to γ (t) in Dt that has diameter less than Rn0(δ). By the Gehring–Hayman theorem
(Theorem 4.20 in [26]), the diameter of the hyperbolic geodesic y �→ FD(t, y),
0 ≤ y ≤ δ′, is of the same order as the smallest possible diameter of the curve
which connects w with γ (t) in Dt . Consequently, there is a universal constant
c > 0 such that

diam
{
FD(t, y) : y ∈ [0, δ]}≤ cRn0(δ)(58)

for all t ∈ [0, τ ], for all δ > 0 such that n0(δ) > m and for all γ such that N ≤ m.
�

3.5. Proof of the main theorem.

PROOF OF THEOREM 1.5 (MAIN THEOREM). Fix ε > 0. We will first choose
four events Ek , k = 1,2,3,4, that have large probability, namely,

P(Ek) ≥ 1 − ε/4(59)

for all P ∈ �D. Then those events have large probability occurring simultaneously
since

P

( 4⋂
k=1

Ek

)
≥ 1 − ε.(60)

Once we have defined Ek , denote E =⋂4
k=1 Ek .
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We choose E1 in such a way that the half-plane capacity of γ [0, t] goes to
infinity as t → ∞ in a tight way on �D. We use Proposition 3.9 and choose E1 the
intersection of the events in inequality (45) where n = k2 runs from k = m1 to ∞
where m1 is chosen so that (59) holds. Then we choose E2 and E3 so that E2 is the
set of simple curves which are in some parameterization Hölder continuous with
a Hölder exponent αc > 0 and a Hölder constant Kc and E3 is the set of simple
curves which have in the capacity parameterization Hölder continuous driving
process with a Hölder exponent αd > 0 and a finite Hölder norm Kd,T for any
T > 0 when the process is restricted to the time interval [0, T ]. (Here, Kd,T is
naturally increasing in T .) Using Proposition 3.6 and Theorem 3.10, the constants
are chosen so that the bound (59) is satisfied. Finally, using Theorem 3.11 we
set E4 to be the set of simple curves that have function ψρ for each ρ > 0 as
in Theorem 3.11 and δ > 0 such that the geodesic to the tip is continuous with
|F(t, y) − F(t, y′)| ≤ ψρ(|y − y′|) for |y − y′| < δ and t ∈ [0, τρ]. Also here ψ

and δ > 0 are chosen so that (59) holds.
Now by Lemma A.5 of the Appendix, the set E is relatively compact in the

convergence in the path convergence and in the driving convergence (and in the
convergence of curves in the capacity parameterization) and the closure of E is
the same in both topologies as the following argument shows: for a sequence γn ∈
E we can choose subsequence such that γn converges in X and Wn converges
uniformly on compact subsets of [0,∞) and Fn converges uniformly on compact
subsets of [0,∞) × [0,∞). Then by Lemma A.5, the limits agree in the sense
that if we parameterize limn→∞ γn by the capacity forms a Loewner chain that is
driven by limn→∞ γn.

Since E is precompact in the space of curves, we have shown that �D is a tight
family of probability measures on X, and hence by Prohorov’s theorem we can
choose for any sequence Pn ∈ �D a weakly convergent subsequence. This shows
the first claim. The claims (i)–(v) of Theorem 1.5 follow from taking the closure
of E in any of the above topologies. Any subsequent weak limit P∗ of Pn ∈ �D

satisfies P∗(E) ≥ lim supn→∞ Pn(E) ≥ 1−ε. Hence, these claims holds P∗ almost
surely.

The last claim of Theorem 1.5 on the exponential integrability of the driving
process follows similarly from the claim 3 of Proposition 3.9. �

3.6. The proofs of the corollaries of the main theorem. In this section, we will
prove Corollaries 1.7 and 1.8.

PROOF OF COROLLARY 1.7. If γ (n) satisfy Condition G2 and its law is Pn,
then by (the proof of) Theorem 1.5 for each ε > 0 we can choose an event E satis-
fying infn Pn(E) ≥ 1 − ε such that E is relatively compact in all three topologies
of the statement of Corollary 1.7. This fact follows from Lemma A.5 when for any
sequence γ̃n ∈ E we pass to a subsequence where γ̃nk

converges in X, its driving
term converges uniformly on compact intervals and the hyperbolic geodesic Fn
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converges on compact sets. By Lemma A.5, we get the convergence in the capac-
ity parameterization and, in addition, it holds that these limits agree in the sense
that the limiting curve is driven by the limiting driving term. Since E is relatively
compact, the sequence Pn is tight in the same topology.

By this tightness, we see that if the sequence of random curves γ (n) or the
sequence of driving processes W(n) converges in one of the three topologies, it
converges also in the two other topologies. The argument for this is essentially
the same as above. We pass to a subsequence where the convergence takes place
also in the other topology. Then we notice that the sequence of the laws satisfies
infn Pn(E) ≥ 1 − ε; hence, the probability for the limiting objects to agree in the
above sense is at least 1−ε. Since this holds for any ε, the law of the other limiting
object is uniquely determined. Therefore, there is no need to pass to a subsequence,
but the entire sequence converges. �

For the proof of Corollary 1.8, notice first that by the proof of C3⇒G2 in Sec-
tion 2.2 we have constants C1,C2 such that if Q ⊂ U is a simply connected do-
main, whose boundary consists of a subset of ∂U and some subsets of U which are
crosscuts S0 and S

j
2 , j = 1,2, . . . , (finite or infinite set), and if Q has the property

that it does not disconnect a from b and S0 is the “outermost” of the crosscuts
(disconnecting the others from a and b), then

P(γ crosses Q) ≤ C1 exp
(−C2m(Q)

)
,(61)

where crossing means that γ intersects one of the S
j
2 ’s and m(Q) is the extremal

length of the curve family connecting S0 to
⋃

j S
j
2 . Use the notation S0(Q) for the

outermost crosscut and S2(Q) for the collection of S
j
2 , j = 1,2, . . . .

LEMMA 3.14. Let (U,a, b,P) be a domain and a measure such that (61) with
some C1 and C2 is satisfied for all Q as above. Then for each ε > 0 and R > 0
there is δ which only depends on C1,C2, ε,R and area(U) such that the following
holds. Let Qj , j ∈ I be a collection of quadrilaterals satisfying the conditions
above such that diam(S0(Qj )) < δ for all j and the length of the shortest path
from S0(Qj ) to S2(Qj ) is at least R. Then∑

j∈I

P(γ crosses Qj) ≤ ε.(62)

PROOF. Take any δ-ball B(zj , δ) that contains the crosscut Sj := S0(Qj ). The
standard estimate of extremal length in Lemma 2.12 gives that

m(Qj) ≥ log(R/δ)

2π
.(63)

We claim also that

m(Qj) ≥ (R − δ)2

Aj

.(64)
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To prove the second inequality, fix j for the time being. Let

η(r) = {
z ∈ C : |z − zj | = r, z ∈ Qj

}
.

Define a metric ρ :C → R+ by setting ρ(z) = 1/�(η(r)), if z ∈ η(r), and ρ(z) =
0, otherwise. Here, � is again the arc length. Then for any crossing γ of Qj

lengthρ(γ ) ≥
∫ R

δ

dr

�(η(r))
,(65)

area(ρ) =
∫ r

δ
�
(
η(r)

) dr

�(η(r))2 =
∫ R

δ

dr

�(η(r))
.(66)

Now the claim follows from the Cauchy–Schwarz inequality∫ R

δ

dr

�(η(r))
Aj ≥

∫ R

δ

dr

�(η(r))

∫ R

δ
�
(
η(r)

)
dr ≥

(∫ R

δ
dr

)2

= (R − δ)2(67)

and the lower bound m(Qj) ≥ infγ lengthρ(γ )2/area(ρ).
Fix some ε > 0. Let I1 ⊂ I be the set of all j ∈ I such that Aj ≥ δC2/(4π). Then

since Qj are disjoint, the number of elements in I1 is at most area(U)δ−C2/(4π)

∑
j∈I1

P(γ crosses Qj) ≤ C1
∑
j∈I1

exp
(
−C2

log(R/δ)

2π

)

= C1area(U)R−C2/(2π)δC2/(4π) ≤ ε

2

when δ is small, more precisely, when 0 < δ < δ1 where δ1 depends on C1, C2,
area(U), R and ε only.

On the other hand, on I \ I1, Aj < δC2/(4π) and, therefore,

∑
j∈I\I1

P(γ crosses Qj) ≤ C1
∑

j∈I\I1

exp
(
−C2

(R − δ)2

Aj

)
≤ C1

∑
j∈I\I1

A2
j(68)

≤ C1δ
C2/(4π)

∑
j∈I\I1

Aj ≤ C1area(U)δC2/(4π) ≤ ε

2
(69)

for 0 < δ < δ2 where δ2 = δ2(C1,C2,R, area(U), ε). Here, we used that
exp(−C̃/x) < x2 when 0 < x < x0(C̃). �

Suppose now that (Un, an, bn) converges in the Carathéodory sense to (U,a, b).
We call a subset V of Un a (δ,R)-fjord if it is a connected component of Un \ S

for some crosscut S of Un such that diam(S) ≤ δ, S disconnects V from an and bn

and the set of points z ∈ V such that distUn(z, S) ≥ R is nonempty, where distUn

is the distance inside Un, that is, the length of the shortest path connecting the two
sets. The crosscut S is called the mouth of the fjord.
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PROOF OF COROLLARY 1.8. By the assumptions Un ⊂ B(0,M), for some
M > 0.

The precompactness of the family of measures (Pn)n∈N when restricted outside
of neighborhoods of an and bn follows from the results of Section 3.2. So it is
sufficient to establish that the subsequential measures are supported on the curves
of U (when restricted outside of the neighborhoods of a and b).

Fix 0 < δ1 < 1/2. For δ > 0 small enough and for all n there is a (unique)
connected component of the open set

φ−1
n

(
D∩ (B(−1, δ1) ∪ B(1, δ1)

))∪ {z : dist(z, ∂Un) > δ
}

(70)

which contains the corresponding neighborhoods of an and bn. Call it Û δ
n . For

R > 0 define

P(R, δ, n) = P
(∃t ∈ [0,1] s.t. distUn

(
γ (t), Û δ

n

)≥ 2R
)
.(71)

Suppose now that the event in (71) happens then γ has to enter one of the
(3δ,R)-fjords in depth R at least. By approximating the mouths of the fjords from
outside by curves in 3δ-grid (either real or imaginary part of the point on the curve
belongs to 3δZ) and by exchanging some parts of curves if they intersect, we now
define a finite collection of fjords with mouths Sj on the grid which are pair-wise
disjoint. And the event in (71) implies that γ enters one of these fjords to depth R

at least. Denote the set of points in the fjord of Sj that are at most at distance R to
Sj by Qj .

Now by Lemma 3.14, for each ε > 0 and R > 0, there exists δ0 which is inde-
pendent of n such that for each 0 < δ < δ0,

P(R, δ, n) ≤∑
j

Pn(γ crosses Qj) ≤ ε.(72)

Choose sequences εm = 2−m, Rm = 2−m and δm ↘ 0 such that this estimate is
satisfied. Then we see that the sum

∑∞
m=1 P(Rm, δm,n) is uniformly convergent

for all n. Hence, by the Borel–Cantelli lemma for any subsequent limit measure
P∗, the curve γ restricted outside δ1 neighborhoods of a and b stay in the closure
of ⋃

δ>0

lim
n→∞ Û δ

n \ φ−1
n

(
D∩ (B(−1, δ1) ∪ B(1, δ1)

))
(73)

which gives the claim. �

4. Interfaces in statistical physics and Condition G2. In this section, we
prove (or in some cases survey the proof) that the interfaces in the following mod-
els satisfy Condition G2:

• Fortuin–Kasteleyn model with the parameter value q = 2, a.k.a. FK Ising, at
criticality on the square lattice or on a isoradial graph.
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• Fortuin–Kasteleyn model with a general parameter value q ≥ 1, this result holds
conditionally on a bound for the probability of a certain crossing event in a
quadrilateral.

• Ising model at criticality on the square lattice or on a isoradial graph.
• Site percolation at criticality on the triangular lattice.
• Harmonic explorer on the hexagonal lattice.
• Loop-erased random walk on the square lattice.

We also comment why Condition G2 fails for uniform spanning tree.

4.1. Fortuin–Kasteleyn model. In Section 4.1.1, we define the FK model, also
known as random cluster model, on a general graph and state the FKG inequality
which is needed when verifying Condition G2. Then in Sections 4.1.2–4.1.5 we
define carefully the model on the square lattice. As a consequence, it is possible to
define the interface as a simple curve and the set of domains is stable under grow-
ing the curve. Neither of these properties is absolutely necessary but the former
was a part of the standard setup that we chose to work in and the latter makes the
verification of Condition G2 slightly easier. Finally, in Section 4.1.6 we prove that
Condition G2 holds for the critical FK Ising model on the square lattice.

4.1.1. FK model on a general graph. Suppose that G = (V (G),E(G)) is a
finite graph, which is allowed to be a multigraph, that is, more than one edge
can connect a pair of vertices. For any q > 0 and p ∈ (0,1), define a probability
measure on {0,1}E(G) by

μ
p,q
G (ω) = 1

Z
q,p
G

(
p

1 − p

)|ω|
qk(ω),(74)

where |ω| =∑
e∈E(G) ω(e), k(ω) is the number of connected components in the

graph (V (G),ω) and Z
p,q
G is the normalizing constant making the measure a prob-

ability measure. This random edge configuration is called the Fortuin–Kasteleyn
model (FK) or the random cluster model.

Suppose that there is a given set EW ⊂ E(G) which is called the set of wired
edges. Write EW =⋃n

i=1 E
(i)
W where (E

(i)
W )i=1,2,...,n are the connected components

of EW . Let P be a partition of {1,2, . . . , n}. In the set

�EW
= {{0,1}E(G) : ω(e) = 1 for any e ∈ EW

}
(75)

define a function kP (ω) to be the number of connected components in (V (G),ω)

counted in a way that for any π ∈ P all the connected components E
(i)
W , i ∈ π ,

are counted to be in the same connected component. The reader can think that for
each π ∈ P we add a new vertex vπ to V (G) and connect vπ to a vertex in every
E

(i)
W , i ∈ π , by an edge which we then add also to EW and hence in the new graph

there are exactly |P | connected components of the wired edges and each of those
components contain exactly one vπ . Call this new graph Ĝ and the new set of
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wired edges ÊW , which are defined once we give the triplet (G,Ew,P ). Now the
random-cluster measure with wired edges is defined on �EW

to be

μ
p,q
G,EW ,P (ω) = 1

Z
p,q
G,EW ,P

(
p

1 − p

)|ω|
qkP (ω),(76)

where we use the partition dependent kP which was defined above. It is easy to
check that if Ĝ/ÊW is defined to be the graph obtained when each component of
ÊW is contracted to a single vertex vπ (all the other edges going out of that set are
kept and now have vπ as one of their ends) then we have the identity

μ
p,q
G,EW ,P (ω) = μ

p,q

Ĝ/ÊW

(
ω′),(77)

where ω′ is the restriction of ω to E(G) \ EW . Therefore, the more complicated
measure (76) with wired edges can always be returned to the simpler one (74).
If EW is connected, then there is only one partition and we can use the notation
μ

p,q
G,EW

. Sometimes we omit some of the subscripts if they are otherwise known.

A function f : {0,1}E(G) → R is said to be increasing if f (ω) ≤ f (ω′) when-
ever ω(e) ≤ ω′(e) for each e ∈ E(G). A function f is decreasing if −f is increas-
ing. An event F ⊂ {0,1}E(G) is increasing or decreasing if its indicator function
1F is increasing or decreasing, respectively.

A fundamental property of the FK models is the following inequality.

THEOREM 4.1 (FKG inequality). Let q ≥ 1 and p ∈ (0,1) and let G =
(V (G),E(G)) be a graph. If f and g are increasing functions on {0,1}E(G), then

E(fg) ≥ E(f )E(g),(78)

where E is expected value with respect to μ
p,q
G .

REMARK 4.2. As explained above, the measure μ
p,q
G can be replaced by any

measure conditioned to have wired edges.

For the proof, see Theorem 3.8 in [15]. The edges where ω(e) = 1 are called
open and the edges where ω(e) = 0 are called closed. The property (78) is called
positive association and it means essentially that knowing that certain edges are
open increases the probability for the other edges to be open.

It is well known that the FK model with parameter q is connected to the Potts
model with parameter q . Here, we are interested in the model connected to the
Ising model, and hence we mainly focus to the case q = 2 which is called FK Ising
(model).
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(a) (b)

(c)

FIG. 9. Modified medial lattice and its admissible domain. (a) The chessboard coloring holds
within three square lattices: (Z2)even (blue dots and lines), (Z2)odd (red dots and lines) and the
medial lattice L̂ (black dots and lines). (b) The modified medial lattice L is formed when every vertex
of L̂ is replaced by a square. The dual lattice of L is called bathroom tiling for obvious reasons.
(c) An admissible domain: here c1 and c2 agree on the beginning and end and they are otherwise
avoiding each other and the domain they cut from the bathroom tiling has boundary consisting of
two monochromatic arcs.

4.1.2. Modified medial lattice. Consider the planar graph (Z2)even formed by
the set of vertices {(i, j) ∈ Z2 : i + j even} and the set of edges so that (i, j)

and (k, l) are connected by an edge if and only if |i − k| = 1 = |j − l|. Similarly,
define (Z2)odd which can be seen as a translation of (Z2)even by the vector (1,0),
say. Both (Z2)even and (Z2)odd are square lattices. Figure 9(a) shows a chessboard
coloring of the plane. In that figure, the vertices of (Z2)even are the centers of the
blue squares, say, and the vertices of (Z2)odd are the centers of the red squares,
and two vertices (of the same color) are connected by an edge if the corresponding
squares touch by corners. Note also that (Z2)even and (Z2)odd are the dual graphs
of each other.

Let L̂ = (Z + 1/2)2, that is, the graph formed by the vertices and the edges
of the colored squares in the chessboard coloring. It is called the medial lattice
of (Z2)even and its dual (Z2)odd. Note that vertices of L̂ are exactly those points
where an edge of (Z2)even and an edge of (Z2)odd intersect.
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It is useful to modify the medial lattice slightly. At each vertex of L̂ position,
a white square so that the corners are lying on the edges of L̂. The size of the
square can be chosen so that the resulting blue and red octagons are regular. See
Figure 9(b). Denote the graph formed by the vertices and the edges of the octagons
by L and call it modified medial lattice of (Z2)even [or (Z2)odd]. The dual of L, that
is, the blue and red octagons and the white squares (or rather their centers), is called
the bathroom tiling.

Similarly, it is possible to define the modified medial lattice of a general planar
graph G. For each middle point of an edge put a vertex of L̂. Go around each
vertex of G and connect any vertex of L̂ to its successor by an edge. The resulting
graph is the medial graph. Notice that each vertex has degree four, and hence it
is possible to replace each vertex by an quadrilateral. The result is the modified
medial lattice.

4.1.3. Admissible domains. Suppose that we are given two paths (cj (k)), j =
1,2, on the modified medial lattice and k runs over the values 0,1, . . . , nj , that
satisfy the following properties:

• Each cj is simple and has only blue and white faces of the bathroom tiling on
its one side and red and white faces on the other side.

• The first (directed) edges (cj (0), cj (1)) coincide and the edge is between a blue
and a red face. Denote by a the common starting point of cj , j = 1,2.

• The last edges (cj (nj − 1), cj (nj )) coincide and the edge is between a blue and
a red face. Denote by b the common ending point of cj , j = 1,2.

• The paths cj may have arbitrarily long common beginning and end parts, but
otherwise they are avoiding each other.

• The unique connected component of C \ ∪ĉj which is bounded, has a and b

on its boundary, where ĉj is the locus of the polygonal line corresponding to
vertices cj (k), 0 ≤ k ≤ nj . Denote this component by U = U(c1, c2).

Let us call a pair (c1, c2) satisfying these properties an admissible boundary and
U = U(c1, c2) is called admissible domain. Let us use a shortened notation that U

contains the information how c1 and c2 or a and b are chosen.
Suppose that (γ (k))0≤k≤l is a path on the modified medial lattice that starts

from a and possibly ends at b but is otherwise avoiding c1 and c2. Suppose also
that γ has the property that it has only blue and white faces on one side and only
red and white faces on the other side. Call this kind of path admissible path. If
γ (k), 0 ≤ k ≤ 2m < l and cj are concatenated in a natural way (they have only
one common point a) as a curve from γ (2m) to b and this curve is denoted as
cj,2m, then the pair (c1,2m, c2,2m) is an admissible boundary.

Later it will be useful to consider the following object. Define generalized ad-
missible domain with 2n marked boundary points or simply 2n-admissible domain
as the U(c1, c2, . . . , c2n) as the bounded component of C \ (ĉ1 ∪ · · · ∪ ĉ2n) where
cj are simple paths on L so that c2k−1 and c2k agree on the beginning and c2k and
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c2k+1 on the end (here use cyclic order so that c2n+1 = c1) and otherwise as above.
For example, we require the marked points c1(0), c1(n1), c3(0), c3(n3), . . . to be
on the boundary of U(c1, c2, . . . , c2n).

4.1.4. Advantages of the definitions. Now the advantages of the above defini-
tions are the following:

• It is easier to deal with simple curves on the discrete level. This is the primary
motivation of considering the modified medial lattice.

• As noted above, if we start from an admissible boundary and follow an admis-
sible curve, then the pair (c1,2m, c2,2m) stays as an admissible boundary. It is
practical to have a stable class of domains in that sense.

• Let (π(t)0≤t≤l) be the polygonal curve corresponding to (γ (k)) so that π(k) =
γ (k) and the parameterization is linear on the intervals [k, k + 1]. Then the
points of π are bounded away from the boundary ∂U = ĉ1 ∪ ĉ2 except near the
end points, that is,

d
(
π(t), ∂U

)≥ 2η when 1 ≤ t ≤ l − 1

and similarly the points on

d
(
π(t),π(s)

)≥ 2η when |t − s| ≥ 1

here η > 0 is a constant depending on the lattice. Later, we can use this to deal
with the scales smaller than η when checking the condition.

4.1.5. FK model on the square lattice. Let U = U(c1, c2) be an admissible
domain and assume that the octagons along c1 (inside U away from the common
part with c2) are blue. Denote by G = G(c1, c2) ⊂ (Z2)even the graph formed by
the centers of the blue octagons inside U and by EW the blue edges along c1. EW

is connected and it will be the set of wired edges. Let G′ be the planar dual of G,
that is, the graph formed by the centers of the red octagons inside U . Let GL be the
subgraph of L formed by the vertices in U ∪{a, b} and edges which stay inside U .

For each 0 < p < 1, q > 0, define a probability measure on � = �(c1, c2) =
{ω ∈ {0,1}E(G) : ω = 1 on EW } by

μ
p,q
U = μ

p,q
G,EW

.(79)

The setup is illustrated in Figure 10. There is a natural dual ω′ of ω defined on
E(G′) such that for each white square in U the edge going through that square
is open in ω′ if and only if the edge of E(G) going through that square is closed
in ω. The duality between ω and ω′ is shown in Figure 10(a) and (b). Which of
the two edges intersecting in a white square is open in ω or ω′ can be represented
by coloring the square with that color. The picture then looks like Figure 10(c).
The essential information of that picture is encoded in the set of interfaces, that is,
one interface starting from and ending to the boundary, because of the boundary
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(a) (b)

(c)

FIG. 10. The correspondence between the configuration on G (a), the configuration on G′ (b) and
the interfaces and the coloring of the squares (c). (a) A configuration of open edges on G satisfying
the wired boundary condition along c1. (b) The corresponding dual configuration of open edges on
G′. Note that it is wired along c2. (c) Coloring of the squares with blue and red enables to define the
collection of interfaces which separate the blue and red regions.

conditions, and several loops. These interfaces are separating open cluster of ω

from open cluster of ω′. Moreover, there is one-to-one correspondence between ω,
ω′ and the interface picture. The random curve connecting a and b in the interface
picture is denoted by γ and its law by PU when the values of p and q are otherwise
known.

It is generally known that the probability measure μ
p,q
U can be written in the

form

μ
p,q
U (ω) = 1

Z′
(

p

(1 − p)
√

q

)|ω|
(
√

q)number of loops.(80)

From this, it follows that

psd(q) =
√

q

1 + √
q

(81)
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is a self-dual value of p. When p = psd, the quantity inside the first brackets is
equal to 1, and it does not make difference whether the model was originally de-
fined in G or G′. Both give the same probability for the configuration of Fig-
ure 10(c). It turns out that the self-dual value p = psd is also the critical value at
least for q ≥ 1; see [4].

4.1.6. Verifying Condition G2 for the critical FK Ising. For each admissible
domain U (and for each choice of a and b), define a conformal and onto map φU :
U → D such that φU(a) = −1 and φU(b) = 1. In this subsection, the following
result will be proven.

PROPOSITION 4.3. Let PU be the law of the critical FK Ising interface in U ,
that is, PU is the law of γ under μ

psd,2
U . Then the collection

�FK Ising = {
(φU ,PU) : U admissible domain

}
(82)

satisfies Condition G2.

REMARK 4.4. In a typical application, a sequence Un of admissible domains
and a sequence of positive numbers hn are chosen. Then the family

� = {
δn,∗(φUn,PUn) : n ∈ N

}
(83)

also satisfies Condition G2, where δn,∗ is the push-forward map of the scaling
z �→ hnz. The scaling factors hn play no role in checking Condition G2.

We postpone the proof of Proposition 4.3 until the required tools have been
presented.

Consider a 4-admissible domain U = U(c1, c2, c3, c4) such that c1 and c3 are
wired arcs. Let the marked points be aj , j = 1,2,3,4, in counterclockwise direc-
tion and assume that a1 and a2 lie on c1 and a3 and a4 lie on c3. Then there is a
unique conformal mapping φU from U to H such that bj = φ(aj ) ∈ R satisfy

b1 < b2 < b3 < b4, b2 − b1 = b4 − b3, b2 = −1 and b3 = 1.

A sequence of domains Un is said to converge in the Carathéodory sense if the
mappings φ−1

Un
converge uniformly in the compact subsets of H.

An open path is a path of open edges of ω. For any 4-admissible domain U ,
we say that U is crossed by an open path if there is an open path which connects
the wired arcs. Denote this event by O(U). More generally, on any graph we can
talk about open crossing of a set vertices with two specified subsets, which we call
“sides.” This means that in the configuration ω there is an open path connecting
the sides within this set. Open crossings and crossings by the interface are different
but in some cases related events—this fact will be used below.
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PROPOSITION 4.5. Let Un = hnÛn be a sequence of domains such that the
sequence of reals hn ↘ 0 and Ûn is a sequence of 4-admissible domains. If the
sequence Un converges to a quadrilateral (U,a, b, c, d) in the Carathéodory sense
as n → ∞, then Pn[O(Ûn)] converges to a value s ∈ [0,1]. If (U,a, b, c, d) is non-
degenerate, then 0 < s < 1. Here, Pn is the probability measure μ

psd,2
Ûn,P

where P is

a fixed partitioning of the set {1,2}.
This proposition is proved in [11] for general isoradial graphs with an exact

formula based on discrete holomorphicity. The following is a direct consequence
of Proposition 4.5.

COROLLARY 4.6. If (U,a, b, c, d) is nondegenerate, then there are ε > 0 and
n0 > 0 so that ε < Pn[O(Ûn)] < 1 − ε for any n > n0.

Finally, before giving the proof of Proposition 4.3, we state the following con-
ditional theorem which is likely to be useful for FK models with q �= 2. The proof
is exactly the same as for Proposition 4.3. In fact, Condition G2 is verified for
1 ≤ q ≤ 4 in [12] based on this type of estimates.

PROPOSITION 4.7. Let PU be the law of the critical FK model interface in U ,
that is, PU is the law of γ under μ

psd,q
U for q ≥ 1. If the statement of Corollary 4.6

holds for the critical FK model with the parameter q , then the collection

�FK(q) = {
(φU ,PU) : U admissible domain

}
(84)

satisfies Condition G2.

We establish below one of the geometric conditions and not directly one of
the conformally invariant conditions. The reason for this is that we want to apply
Corollary 4.6 only a finite number of times. To verify the conformally invariant
condition directly, we would have to use some compactness property for the family
of quadrilaterals. This might be more or less equivalent to the proof below.

PROOF OF PROPOSITION 4.3. Let us use the continuous time parameteriza-
tion of γ with constant speed so that γ (n) is a lattice point of L if and only if n

is an integer (between 0 and l). Notice that on even time instances γ (2n) is in a
crossing “arriving” to a white square and it chooses left or right turn depending on
the color revealed on the square, in the sense of Figure 10(c). The filtration gener-
ated Ft by γ (s), s ≤ t (or the finer filtration made by adding an infinitesimal peek
to the future) remains constant on t ∈ (2n,2n+2) where n is an integer. Hence, we
can restrict to the case t = 2n, n an integer. Then Ut = U \ γ [0, t] is an admissible
domain.

This simplifies the proof a lot. Instead of considering all t = 2n, we will con-
sider t = 0 and all admissible domains. In other words, we do not have to consider
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FIG. 11. The boundary of the domain U is the black solid line and the boundary arcs c1 and c2
have the solid blue and red lines, respectively, next to them. The parts U1 and U2 of Au are colored
with slanted lines. They are the regions colored with blue and red, respectively. The boundary of U1
is wired and the boundary of U2 is dual wired. As one boundary arc P is fixed the components are
in the 2π sector starting from that curve. The angle θ is the difference of the maximum and minimum
value of the angle variable defined continuously on P .

any stopping times below, but instead we have to consider all possible admissi-
ble domains. But luckily this was the set of domains we used in the definition of
�FK Ising.

We can also assume that r > η where η is as in Section 4.1.4. In the comple-
mentary case, we notice that no disc of the form B = B(z0, r), where 0 < r ≤ η

and which intersects the boundary of the domain, can contain any lattice points
of L which are in the interior of the domain. Also choose C > 0 such that there
are no trivialities such as an edge crossing A(z0, r,R) for some z0 and r > η and
R > Cr .

Let U be an admissible domain and G(U) ⊂ (Z2)even,G
′(U) ⊂ (Z2)odd,

GL(U) ⊂ L the corresponding graphs, and let c1 and c2 be the two marked bound-
ary arcs as in Section 4.1.3. Let A = A(z0, r,R) be an annulus such that r > η.
Write μ1 = μ

psd,2
U . Write the set Au, which is defined as in (3), as a disjoint union

Au = U1 ∪ U2 where Uk is next to ck , that is, if we approach the boundary of the
domain by a sequence in Uk , we hit ck (say, in the conformal sense after mapping
to a reference domain with simple boundary). See also Figure 11.

Since γ is the interface which separates the cluster of open edges connected to
c1 from the cluster of dual open edges connected to c2

PU

(
γ crosses Au)
≤ μ1(open crossing of U1 or dual open crossing of U2)
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≤ μ1(open crossing of U1) + μ1(dual open crossing of U2)

≤ 2K,

where K is the maximum of the two terms on the preceding line. Therefore, we
have to prove that K < 1/4. By symmetry, it is enough to prove that

μ1(open crossing of U1) < 1/4.(85)

Let us define two discrete versions of the annulus A on the modified medial
lattice. The subset Ablue ⊂ A is a doubly connected domain in C. We require that
the boundary of Ablue is a path in the modified medial lattice and that the faces
of the modified medial lattice inside Ablue next to its boundary are blue or white.
We also require that Ablue is maximal such domain with respect to taking unions.
Similarly, let Ared be the maximal subdomain of the annulus A that has red and
white boundary on the modified medial lattice. In other words, Ablue and Ared
are discrete approximations of A, with correct type of boundary. Let V− and V+
be the connected components of the boundary vertices on Ablue and denote by
V− ↔ V+ the event that there is an open path between V− and V+ in the given
graph. Let G2 ⊂ G be the subgraph corresponding to the domain U1 ∩ Ablue. Let
E2 ⊂ E(G2) be the set of blue edges along the boundary. Let μ2 be the random
cluster measure on G2 such that the edges in E2 are wired and all the components
of E2 are counted to be separate. Then by considering f = 1E2⊂ω in the FKG
inequality we have that

μ1(open crossing of U1) ≤ μ2(V− ↔ V+).

Similarly, it is enough to prove there is a constant s < 1 such that

μ2(V− ↔ V+) ≤ s(86)

for a fixed ratio R/r since using this in several concentric annuli we get (85) for
a larger annulus. Yet another similar argument shows that we can consider only
annuli A(z0, r,R) where r > C′η for any fixed C′ ≥ 1. Namely, if (85) holds for
r > C′η then for η < r ≤ C′η we can ignore the part below the scale C′η and
only consider crossing between R and C′η and then we notice that R ≥ Cr >

(C/C′) · (C′η) and, therefore, by modifying the value C we get (85) for the whole
range of r . Therefore, we will prove (86) when r > C′η when C′ is suitably chosen
and R/r fixed.

Let P be one of the boundary arcs of U1 which cross A. Write the points z ∈ P

in polar coordinates z = z0 + ρeiξ so that ξ is continuous along P . Denote by θ

the difference between the maximum and the minimum value of ξ along P and
by α the minimum value of ξ . The value of α is determined only up to additive
multiple of 2π but θ is unique. Now ξ spans the interval [α,α + θ ] along P . The
rest of the proof is divided into two cases: θ ≤ 4π and θ > 4π .
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Case θ ≤ 4π : Consider the right half-plane H1 = {(ρ, ξ) : ρ > 0, ξ ∈ R} as
an infinite covering surface of C \ {z0} such that (ρ, ξ) ∈ H1 gets projected on
z0 + ρeiξ ∈ C \ {z0}. Lift the lattice L to H1 using this mapping locally in neigh-
borhoods where it is a bijection and define Sblue as the lift of Ablue, that is, as the
maximal subdomain of S = S(r,R) = {(ρ, ξ) : 0 < ρ < R,ξ ∈ R} such that the
boundary is on the medial lattice and it is a blue boundary. Let G3 be the subgraph
of the lifted (Z2)even corresponding to the domain Sblue ∩ (r,R)× (α,α + 6π) and
denote the edges along the vertical boundary as E3. Let μ3 be the random-cluster
measure on G3 where E3 is wired and the components of E3 are counted to be
separate. Now G2 can be seen as a subgraph of G3. If the wired edges of the dual
of G2 are denoted by E′

2, then applying the FKG inequality for the decreasing
event {ω : E′

2 ⊂ ω′} and for the measure μ3 shows that

μ2(V− ↔ V+) ≤ μ3(V− ↔ V+).

At this point, we have reduced the problem to the event of an open crossing of fixed
shape (independent of the domain we started with), but with variable size. Fig-
ure 12(c) illustrates how this shape looks like. Since this domain is a 4-admissible
domain, we can use Proposition 4.5 to show that there are constants C1 ≥ 1 and
s1 < 1 such that the right-hand side of the previous inequality is less than s1 uni-
formly for any r ≥ C1η and R = 3r .

The previous statement follows if we are able to show that probability of an
open crossing remains bounded away from one when we consider larger and
larger r . This follows claim from the following argument. Make a counter as-
sumption that there exists a sequence αn ∈ [0,2π ] and rn → ∞ such that if we
set mn = μ3(V− ↔ V+) in the domain U3,n with r = rn, R = 3rn and α = αn and
θ = 6π , then mn → 1 as n → ∞. By choosing a subsequence, we can assume that
αn converges. Now the sequence of domains r−1

n U3,n converges in the same sense
as in Proposition 4.5, and hence limn→∞ mn < 1.

Case θ > 4π : Similarly, as in the other case define Sred to be the lift of Ared
to S. Now note that any component of G2 (view as lifted to S) intersects the radials
α + 2π and α + 4π and any open crossing has to intersect those radial. Hence, in
the same way as above we can add blue boundary and blue wired edges to those
radials and ignore the part outside (r,R)× (α + 2π,α + 4π). Denote the resulting
graph by G4 and the measure by μ4 and denote the vertices of the lifted (Z2)even
along those two radials by V2π and V4π . Denote the dual wired edges of μ4 by
E′

4. Finally, if G5 is the graph corresponding to the domain Sred ∩ (r,R) × (α +
2π,α + 4π) and E5 are the boundary edges along the radials, then let μ5 be the
random-cluster measure on G5 with wired edges E5. In the same way as above,
we can apply the FKG inequality for μ5 and for the decreasing event {ω : E′

4 ⊂ ω′}
to get the second inequality in

μ2(V− ↔ V+) ≤ μ4(V2π ↔ V4π) ≤ μ5(V2π ↔ V4π).
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(a) (b)

(c) (d)

FIG. 12. Illustration how the FKG inequality is applied here in general and in the particular case
θ ≤ 4π . (a) The domain U1. (b) In the measure μ2 the edges along the boundaries of the annulus
are wired. (c) In the case θ ≤ 4π , the final domain to be considered is a 6π opening in the annulus
with wired edges along the boundaries if the annulus. The blue color indicates the wired edges and
the red color the dual wired edges. The crossing is between the two blue boundary components.
(d) A schematic illustration how to cover the annulus with infinitely many layers of the lattice.

Again at this point, we have reduced the problem to the event of an open crossing
of fixed shape which is now illustrated in Figure 13(c). Use again Proposition 4.5
to show that there are constants C2 ≥ 1 and s2 < 1 such that the right-hand side of
the previous inequality is less than s2 uniformly for any r ≥ C2η and R = 3r .

When we combine these separate cases, the claim follows for s = max{s1, s2}
and C′ = max{C1,C2}. �

4.2. Spin Ising model. Consider the spin Ising model at criticality on the
square lattice (or any isoradial graph) with Dobrushin boundary conditions.

In [11], a discrete holomorphic observable fδ(z) = f
Uδ,aδ,bδ
δ (z) is constructed

with a martingale property. It is shown in Theorem 5.6 that, as the mesh δ of the
lattice tends to zero, the discrete domains Uδ with marked points aδ, bδ tend to a
continuum domain (U,a, b), the observable converges to its continuous counter-
part f (z) = f U,a,b(z). The latter is given by a solution of the Riemann–Hilbert
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(a) (b)

(c)

FIG. 13. Illustration how the FKG inequality is applied in the case θ > 4π . (a) μ2. (b) μ4. (c) μ5.

boundary value problem, and can be written as f = √
� ′, where � is the confor-

mal map of U to the upper half-plane with �(a) = ∞, �(b) = 0, appropriately
normalized at b. The convergence is uniform inside the domain U , and on straight
pieces of the boundary common to U and Uδ .

Consider the interface (domain wall) joining the points aδ and bδ inside Uδ . The
results of [11] immediately imply convergence of the interface to SLE3 in the sense
of the Loewner driving functions convergence. In [10], it was shown how to use
the results of the present article together with the crossing estimates of the article
[9] to deduce the strong interface convergence (see Theorem 1.9 of the present
article), by verifying the conditions of present article.

Below we sketch an alternative way to check Condition G2, using only the ob-
servable results of [11].

4.2.1. Fermionic observable of spin Ising model. The spin Ising model is de-
fined on any finite graph G = (V ,E). The random configuration σ takes values in



754 A. KEMPPAINEN AND S. SMIRNOV

{−1,+1}V and its distribution is given by

Pβ(σ = s) = 1

Z
exp
(
β

∑
(v1,v2)∈E

sv1sv2

)
(87)

for any s ∈ {−1,+1}V . Here, the partition function Z is the constant normalizing
the measure to be a probability measure. The quantity sv is called the spin at v.
The parameter β > 0 is interpreted as the inverse temperature.

Consider the critical Ising model, β = βc, on a finite, connected subgraph of the
square lattice with mesh δ > 0. Then

Pβc(σ = s) = 1

Z̃
xn(s)
c ,(88)

where n(s) = #{(v1, v2) ∈ E : sv1 �= sv2} and xc = √
2 − 1. If we fix the spin at

one vertex, there is a one-to-one correspondence between spin configurations and
even subgraphs of the dual graph of G, given by the interfaces (domain walls)
separating +1 and −1 spins.

Let S be the collection of even subgraphs of G∗, and Sa,b be the collection of
subgraphs which are even everywhere except at a and b, where they are odd. Any
element in S ∈ Sa,b can be written as a pair S = (γ,�) such that γ and � are
edge-disjoint, γ is a non-self-intersecting path from a to b and � is an even graph.
The representation is not unique, but we will fix it uniquely by taking γ to be the
left-most such path.

For (γ,�) ∈ Sa,z denote by W(z, γ ) the winding of γ from a to z. Define an
observable

fδ(z) = f
U,a,b
δ (z) = ν

∑
S=(γ,�)∈Sa,z

x#S
c e−i/2W(z,γ )∑

S=(γ,�)∈Sa,b
x#S
c e−i/2W(b,γ )

(89)

= ν

∑
S=(γ,�)∈Sa,z

x#S
c e−i/2W(z,γ )

Za,be−i/2W(b)
,

where in the last equation we use that when a and b are boundary points, the wind-
ing to b does not depend on γ . Here, Za,b is the partition function

∑
S∈Sa,b

x#S
c ,

the quantity #S is the number of edges in S and ν is a constant. The constant ν

depends on local shape of the domain U near b, but it takes a fixed value over the
class of subdomains of U that we will consider.

THEOREM 4.8 (Chelkak–Smirnov [11]). Let U be a simply connected domain
and let b be a boundary point of U . Assume that the boundary of U is straight near
b and U contains a rectangular neighborhood R of b. Then for an appropriate
choice of the constant ν, f has both of the following properties:

(i) For any z, fδ(z) is a martingale with respect to the growing interface.
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(ii) As δ → 0, fδ converges to λ
√

� ′, uniformly on any compact subset of U

and uniformly in any straight part of ∂U , where � is a conformal map from U to
H with �(b) ∈ R and |� ′(b)| = 1 and λ is fixed constant with unit modulus.

Moreover, once b and R are fixed, the convergence of f
U,a,b
δ in (i) is uniform over

all domains U as well as points a and z, as long as a is at a finite distance from R

and z is inside R.

REMARK 4.9. Although � is only unique up to an additive constant, � ′ is
uniquely determined. The branch of the square root and the constant λ are chosen
so that λ

√
� ′ is positive at b. Denote by f = f U,a,b the function

f U,a,b = λ
√

� ′.(90)

4.2.2. Using monotonicity and the martingale observable. Consider a triplet
(U,a, b) and an annulus A = A(z0, r,R). We aim to verify Condition G2 for spin
Ising model on the domain (U,a, b) with respect to the annulus A. To that effect,
we consider the random curve γ which is the interface separating the macroscopic
+1 and −1 clusters in the domain U with Dobrushin boundary conditions which
change at a and b.

Remember that Au is defined as in (3). Let Vk , k = 1,2, . . . , n, be the connected
components of Au which can be crossed by the curve without first crossing some
other connected component of Au. We can assume that all Vk have boundary con-
ditions −1 and that any crossing of Vk has to first go from the outer circle to the
inner circle of ∂A. The +1 boundary components or the components that go from
inside to outside could be dealt with in identical manner.

Next, we observe in the same way as in the case of FK Ising model that one
of the two cases occurs: either all Vk can be lifted simultaneously to the universal
cover

F = {
(ρ, θ) ∈ [r,R] ×R

}
(91)

of A so that they are in a sector of 6π opening in F , or that each of Vk crosses a
2π sector in the angular direction. Basically, this division is possible since when
we fix an arc of ∂U that crosses A, its winding around z0 is either less than 4π or
greater than 4π . In the first case, when we take the radial line through the point of
the arc with smallest angle, then all Vk lie in the 6π sector from it. In the second
case, we can similarly find a 2π sector that all Vk cross. We will deal with the first
case here explicitly. The other case is similar.

We apply the transformation illustrated in Figure 14 to the domain (U,a, b).
We will give the details in next paragraphs.

Let Ij , j = 1,2, . . . ,m, be the boundary arcs of Vk that lie on the circle of
radius r and centered at z0, that is, on the inner boundary of A. And for each j =
1,2, . . . ,m, let Uj be the connected component of U \ Ij which is disconnected
from a and b in U by Ij .
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(a) (b)

FIG. 14. We apply a transformation to the domain which is consistent with the monotonicity of the
Ising model. The transformed domain is a simply connected subdomain of an appropriately chosen
Riemann surface. Thus, any of the hanging parts to the left of the annulus in Figure 14(b) which seem
to overlap with the part of the domain in the annulus should be considered to be on a different sheet
of the cover than the annular part. Notice that in Figure 14(b) we require that the crossing is in the
lower half. (a) The domain in “logarithmic coordinates,” that is, in order to get back to the original
domain we need to apply the covering map w �→ z0 + ew . The annulus is the vertical strip drawn
with dots. We wish to give an upper bound to the probability of the event of a connected path of +1
spins crossing the annulus (or more accurately any of its components with purely −1 boundary),
indicated by the dashed red arrow. (b) The domain after the transformation. The horizontal dotted
line is the middle radial line of the sector. By monotonicity, the upper bound is given as the probability
of having a connected path of +1 spins crossing the lower half of the sector. The fact that the crossing
is bounded away from b is useful for technical purposes when using Theorem 4.8.
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Suppose that the interface in (U,a, b) makes an unforced crossing of A. Then
in particular, there is a crossing of +1 spins from the +1 boundary arc to one of
the components Uj . By monotonicity of the Ising model, the probability of such an
event increases if we pull the “+1 boundary” closer and push the “−1 boundary”
away.

Consider the 12π sector on the universal cover to which we can lift all Vk so that
they are lifted to the “lower” half (opening of 6π ) of the 12π sector. Below we will
always consider crossings that stay in the “lower” half. Let U�

0 ⊂ F be the 12π

sector and let U#
0 ⊂ F be its discrete approximation, say, let U#

0 ⊂ F be the union
of all the faces of the lifted square lattice that are contained in U�

0 . Denote by U�

and U# the domain and its discrete approximation which we get by gluing each
Uj along the lifted arcs Ij to U�

0 and U#
0 , respectively, on appropriate Riemann

surfaces so that Uj remain disjoint from U�
0 and U#

0 . See Figure 14 for illustration.
Let a# be one of the boundary points of the dual lattice near one of the corners

of U#
0 corresponding to ρ = R and let b# be close to the other corner, but next to

a point with ρ = 9R/10. Here, ρ refers to the coordinates (91). Suppose that the
radial angle of a# is smaller than the radial angle of b#. If the boundary condition
change at a# and b# from −1 to +1 and back in this new setup, then the probability
of the +1 crossing from a#b# to any of Uj , and which stays in “lower half,” gives
an upper bound to the probability of an unforced crossing of A in (U,a, b) by
monotonicity of the Ising model (FKG inequality).

This means that the interface in the new setup will make a crossing staying in
the “lower half” of U#

0 to some Uj . The probability of this can be estimated using
the martingale property of f .

Let a� and b� be the boundary points of U� that correspond to a# and b#.
Let c# be on the same radial boundary segment of U# as b# and let c� be the

corresponding boundary point of U�. Since λ
√

� ′(b�) is positive and the bound-

ary near b is straight, also λ
√

� ′(c�) is positive as well as any f
U#

τ ,a#
τ ,b#

δ (c#) which
we consider below. We define a#

τ to be the tip of γ at the random time τ and U#
τ

to be U# \ γ [0, τ ]. The domain U�
τ is U� \ ([a�, a#] ∪ γ [0, τ ]) where [a�, a#] is

the line segment from a� to a# in the plane. Let τ be the hitting time of
⋃

j>0 Uj

by γ and U
#,−
0 be the “lower half” of U#

0 . By the martingale property,

f
U#,a#,b#

δ

(
c#)≥ E

(
1

τ<∞,γ [0,τ ]⊂U
#,−
0

f
U#

τ ,a#
τ ,b#

δ

(
c#)).(92)

Therefore, to get an estimate for P[τ < ∞, γ [0, τ ] ⊂ U
#,−
0 ] we have to estimate

the ratio

f
U#

τ ,a#
τ ,b#

δ (c#)

f
U#,a#,b#

δ (c#)
.
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By the convergence of f
U#,a#,b#

δ (c#) to f U�,a�,b�
(c�), we can choose a con-

stant δ1 > 0 such that

f
U#,a#,b#

δ

(
c#)≤ 2f U�,a�,b�(

c�)
for all 0 < δ < δ1. By the uniform convergence of f

U#
τ ,a#

τ ,b#

δ (c#) to f U�
τ ,a#

τ ,b�
(c�)

and by the fact that f U�
τ ,a#

τ ,b�
(c�) is uniformly bounded below by a positive con-

stant, we can choose a constant δ2 > 0 such that

f
U#

τ ,a#
τ ,b#

δ

(
c#)≥ 1

2f U�
τ ,a#

τ ,b�(
c�)

for all 0 < δ < δ2. Notice that we continue to denote the tip of the curve by a#
τ

since it is the tip of the discrete path γ and in fact, U�
τ is the continuum domain

slitted by the discrete path.
Set δ0 = min{δ1, δ2}. Then

f
U#

τ ,a#
τ ,b#

δ (c#)

f
U#,a#,b#

δ (c#)
≥ 1

4

f U�
τ ,a#

τ ,b�
(c�)

f U�,a�,b�
(c�)

for 0 < δ < δ0.
Let ψ be a conformal map that sends U� to H and b� to ∞ and such that its

derivative at b� has modulus equal to 1 in an appropriate sense. Then the function
� in Theorem 4.8 and in (90) can be written as � = ηψ(a�) ◦ ψ where ηα : z �→
−(z − α)−1. Notice also that f U�

τ ,a#
τ ,b�

(c�) is a constant times the square root
of the conformal map ηg(ψ(a#

τ )) ◦ g ◦ ψ where g is the conformal map sending

H \ψ([a�, a#] ∪ γ [0, τ ]) onto H and normalized hydrodynamically at ∞. Hence,

f U�
τ ,a#

τ ,b�
(c�)

f U�,a�,b�
(c�)

=
√√√√√g′(ψ(c�))η′

g(ψ(a#
τ ))

(g(ψ(c�)))

η′
ψ(a�)

(ψ(c�))

(93)

=
√

g′(ψ(c�))(ψ(c�) − ψ(a�))2

(g(ψ(c�)) − g(ψ(a#
τ )))

2 .

It remains to estimate the quantity inside the square root. We will do this in the
next section.

4.2.3. Auxiliary results on conformal maps. We will slightly simplify the no-
tation of the previous subsection.

Let 0 < r < R and θ1 < θ2 ≤ θ1 + 2πk, where k ∈ N is fixed. Let U0 be an
annular sector U0 = {(ρ, θ) ∈ (r,R) × (θ1, θ2)}, which we consider as a covering
space of A = A(z0, r,R) through the map (ρ, θ) �→ z0 + ρeiθ . Consider a domain
U which is simply connected and is obtained from U0 by gluing (disjointly) to
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FIG. 15. The setup for Lemma 4.10 and Proposition 4.11.

it along the radius r boundary a finite number of Uj ’s in an appropriate covering
space as in the previous subsection.

Consider some numbers 0 < r < rd < rc < Rb < R. Set

a = z0 + Reiθ1, b = z0 + Rbe
iθ2,

c = z0 + rce
iθ2, d = z0 + rdeiθ2,

where the proportionalities of R, rc and rd to r are specified later, but we consider
R/Rb to be a fixed number close to 1, say, equal to 9/10. That is, a, b, c, d follow
the counterclockwise order on the boundary of the annular sector and a is an outer
corner of the sector, b is close to the other corner and b, c, d lie on the same ray.
See Figure 15.

Let S be the component of the intersection of U and the line {z0 + tei(θ1+θ2)/2 :
t ∈ R} which meets the annular sector and hence ends at a point on the boundary
of the annular section.

Let ψ : U → H be conformal and onto such that b is mapped to ∞. Let CH be
the half-circle in the upper-half plane centered at ψ(a) and with the left-end point
equal to ψ(d). Set C = ψ−1(CH). Denote ψ(x) by xH where x = a, b, c, d .

Define further disjoint connected domains U± such that U = U− ∪S ∪U+ and
U− is next to a and U+ is next to b. Set also U±

0 = U0 ∩ U±.

LEMMA 4.10. There is a universal constant m > 1, such that C ⊂ U+ if rd >

mr .

PROOF. Denote the other endpoint of C by e. By considering the modulus of
the quad (U,b, d, a, e) and using the conformal invariance of the modulus as well
as the definition of CH, we see that e ∈ ∂U+ for large enough m.
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Now the path C is characterized by the property that the boundary arcs ed and
de of U have both harmonic measure seen form any point of C equal to 1/2. We
claim that on S the harmonic measure of de is strictly larger than that of ed . This
is true in the domain obtained by gluing to U0 along each Ij the cover of C that is
formed from infinite number of sheets glued along Ij . Notice that this is a space
where U can be embedded naturally. Here, Ij = U0 ∩ Uj . Since the harmonic
measure of de only increases when the domain is decreased, the claim holds for
the general domain U . Thus, the lemma follows. �

PROPOSITION 4.11. Consider a simple path γ from a to some a′ with |a′ −
z0| = r . Denote ψ(γ ) by γH and ψ(a′) by a′

H. Suppose that γ is contained in U−
0 .

Let H be H \ γH. Let g : H → H be the Loewner map associated to γH. Then for
any M > 0 there exists N > 0 such that if R/r ≥ N3, rc = N2r , rd = Nr , then

g′(cH)
(cH − aH)2

(g(cH) − g(a′
H))2 ≥ M.(94)

PROOF. Set l = aH −dH, which is the radius of the semicircle CH. Then aH −
cH > aH − dH = l.

By considering the extremal length of suitable curve families, we can show that
0 < g(a′

H) − g(dH) < g(dH) − g(cH) and that 0 < dH − cH < εl for ε > 0 which
can be arbitrarily small when N is chosen to be large. In the former inequality,
the curve family is the family connecting a′b to cd in U \ γ and in the latter it
is the family connecting bc to da in U , which both have small extremal length.
By translating, we can assume that aH = 0. Then dH = −l and cH = −l − lε̃ with
0 < ε̃ < ε.

We observe that by the properties of Loewner flows g(dH)−g(cH) < dH−cH =
lε̃. That is, we can consider g as a Loewner chain at the time corresponding to
the value of its half-plane capacity and use the fact that t �→ |gt (x) − gt (x

′)| is
decreasing for any real x, x′ that lie on the same component of R \ {W0}, where
W0 is the Loewner driving term at time 0.

The second observation coming from Loewner flows is that g satisfies for all
ε > 0

g′(cH) ≥ g̃′(cH) ≥ g̃′(−l − lε) = (1 + ε)2 − 1

(1 + ε)2 ≥ 2ε − 3ε2,

where g̃(z) = z + l2/z. The first inequality follows from the fact that g and g̃ can
be seen as two time instances of the same Loewner chain and t �→ g′

t (x) for real x

is decreasing. The half-plane capacity of g is less than that of g̃, which gives the
order of the corresponding time instances.

Combining these estimates gives

g′(cH)
(cH − aH)2

(g(cH) − g(a′
H))2 ≥ g′(cH)

l2

(2lε̃)2 ≥ (2ε − 3ε2) 1

4ε2 = 1

2ε
− 3

4
.
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And since ε > 0 becomes arbitrarily small when N is increased, the claim follows.
�

Combining (92) and (93) with Proposition 4.11 gives Condition G2 for the spin
Ising model as we will state in the next proposition. Before that we give the re-
quired definitions.

In the following, U is an admissible domain if all the following conditions hold:

• The domain U is assumed to be a union of full plaquettes of a square lattice
(with some mesh size).

• The domain U is assumed to be cut from the square lattice by paths c1 and c2 (on
the dual lattice), that is, U is a bounded connected component of C \ (c1 ∪ c2).
The paths c1 and c2 are assumed to be edge-simple and non-self-crossing, but
they are allowed to contain counterclockwise loops (hence they are not neces-
sarily vertex-simple), and they assumed to be mutually disjoint except that they
share common parts in both ends (we can assume that the common parts are at
least one edge long in both ends, because we interpret that the boundary con-
ditions change at the end points from −1 to +1 and we can always explore the
interface by one step).

• Let a and b be the common end points of c1 and c2. Then a and b are assumed
to be on the boundary of U and c1 and c2 assumed to trace the boundary in
clockwise and counterclockwise direction, respectively.

This set of conditions is consistent with growing the leftmost path γ in the domain
wall configuration in the spin Ising model—to recall the definition see the begin-
ning of Section 4.2.1. The conformal map φU is defined to be a conformal map
from U onto D such that φU(a) = −1 and φU(b) = 1.

The probability measure PU is the law of the leftmost path γ in the domain
wall configuration in the spin Ising model on the graph corresponding to U with
boundary conditions equal to +1 on each vertex on the right of c1 (including the
vertices that are inner corners of ∂U ) and to −1 on each vertex on the left of c2

excluding the vertices are inner corners of ∂U .
The martingale property works well with the definition of admissible domains

and PU and the exploration of γ . The following result follows readily from the
estimates of this subsection and the previous one.

PROPOSITION 4.12. The collection of the laws of the interface of spin Ising
model at criticality on square lattice (or on isoradial graphs)

�spin Ising = {
(U,φU ,PU) : U an admissible domain

}
(95)

satisfies Condition G2.
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4.3. Percolation. Here, we verify that the interface of site percolation on the
triangular lattice at criticality satisfies Condition G2. More generally, we could
work on any graph dual to a planar trivalent graph. The triangular lattice is denoted
by T and it consists of the set of vertices {x1e1 + x2e2 : xk ∈ Z} where e1 = 1 and
e2 = exp(iπ/3) and the set of edges such that vertices v1, v2 are connected by an
edge if and only if |v1 − v2| = 1. The dual lattice of the triangular lattice is the
hexagonal lattice T′ consisting of vertices {z± + x1e1 + x2e2 : xk ∈ Z} where z± =
(1/

√
3) exp(±iπ/6) and two vertices v1, v2 are neighbors if |v1 − v2| = 1/

√
3.

The percolation measure on the whole triangular lattice with a parameter p ∈
[0,1] is the probability measure μ

p
T on {open, closed}T such that independently

each vertex is open with probability p and closed with probability 1 − p. The
independence property of the percolation measure gives a consistent way to define
the measure on any subset of T by restricting the measure to that set. The well-
known critical value of p is pc = 1/2.

In the case of triangular lattice, define the set of admissible domains containing
any domain U with boundary ∂U = c1 ∪ c2 where c1 and c2 are:

• simple paths on the hexagonal lattice [write them as (ck(n))n=0,1,...,Nk
],

• mutually avoiding except that they have common beginning and end part:
c1(k) = c2(k), k = 0,1, . . . , l1, and c1(N1 − k) = c2(N2 − k), k = 0,1, . . . , l2,
where l1, l2 > 0,

• such that a = c1(0) = c2(0) and b = c1(N1) = c2(N2) are contained on the
boundary of the bounded component of C \ (c1 ∪ c2), and furthermore there
is at least one path from a to b staying in U ∩T′.

The last condition is needed to guarantee that a and b are boundary points of the
bounded domain and that the subgraph containing all the vertices reach from either
a or b is connected. Note that the graph is in fact simply connected.

On an admissible domain U with boundary arcs c1 and c2, denote by V the set
of vertices of T inside U , denote by V1 the set of vertices of T next to c1 and by V2
the set of vertices next to c2. Define a probability measure μ

p
U , p ∈ [0,1], on the

set {open, closed}V such that each vertex is independently chosen to be open with
the probability p and closed with the probability 1 − p and such that it satisfies
the boundary conditions: the vertices are open on V1 and closed on V2. Now there
are interfaces on T′ separating clusters of open vertices from clusters of closed
vertices. Define PU be the law of the unique interface connecting a to b under the
critical percolation measure μ

pc

U .
The proof of the fact that the collection (PU : U admissible) satisfies Condi-

tion G2 could not be easier to give since we have the Russo–Seymour–Welsh the-
ory (RSW). Let Bn be the set of points in the triangular lattice that are at graph-
distance n or less from 0 and let An = B3n \ Bn and let On be the event that there
is a open path inside An separating 0 from ∞. Then there exists q > 0 such that
for any n

μ
pc

T (On) ≥ q.(96)
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Denote by O ′
n the event that there is a closed path inside An separating 0 from ∞.

By symmetry, the same estimate holds for O ′
n.

Let now Ãn = B9n \ Bn, i.e. Ãn is the union of the disjoint sets An and A3n.
Now probabilities that An contains an open path and A3n contains a closed path
(both separating 0 from ∞) are independent and hence the corresponding joint
event has positive probability

μ
pc

T

(
On ∩ O ′

3n

)≥ q2.(97)

PROPOSITION 4.13. The collection of the laws of the interface of site perco-
lation at criticality on triangular lattice

�Percolation = {
(U,φU ,PU) : U an admissible domain

}
(98)

satisfies Condition G2.

REMARK 4.14. Exactly the same proof as for FK Ising works for percolation.
However, RSW provides a simpler way to prove the proposition.

PROOF OF PROPOSITION 4.13. As in the case of FK Ising, we do not have
to consider the stopping times at all. The reason for this is that if γ : [0,N] →
U ∪{a, b} is the interface parameterized such that γ (k), k = 0,1,2, . . . ,N , are the
vertices along the path, then U \ γ (0, k] is admissible for any k = 0,1,2, . . . ,N

and no information is added during (k, k+1). Hence, after stopping we stay within
the family (98). Here, we also need that the law of percolation conditioned to the
vertices explored up to time n is the percolation measure in the domain where
γ (k), k = 1,2, . . . , n, are erased.

For any U , we can apply a translation and consider annuli around the origin.
Consider the annular region B9Nn \ Bn for any n,N ∈ N. By inequality (97), the
probability that γ makes an unforced crossing is at most (1−q2)N ≤ 1/2, for large
enough N . �

4.4. Harmonic explorer. The result that the harmonic explorer (HE) satisfies
Condition G2 appears already in [29]. We will here just recall the definitions and
state the auxiliary result needed. For all the details, we refer to [29].

In this section and also in Sections 4.5 and 4.6, the models are directly related
to simple random walk. The next basic estimate is needed for bounds like in Con-
ditions G3 and C3.

LEMMA 4.15 (Weak Beurling estimate of simple random walk). Let L = Z2

or L = T and let (Xt)t=0,1,2,... be a simple random walk on L with the law Px

such that Px(X0 = x) = 1 and let τB be the hitting time of a set B . For an annulus
A = A(z0, r,R), denote by E(A) the event that a simple random walk starting at
x ∈ A ∩ L makes a nontrivial loop around z0 before exiting A, that is, there exists
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0 ≤ s < t ≤ τC\A s.t. X|[s,t] is not null-homotopic in A. Then there exists K > 0
and � > 0 such that

Px

(
E
(
A(z0, r,R)

))≥ 1 − K

(
r

R

)�

for any annulus A(z0, r,R) with 1 ≤ r ≤ R and for any x ∈ A(z0, r,R) ∩ L such
that

√
rR − 1 < |x − z0| <

√
rR + 1.

SKETCH OF PROOF. Either use the similar property of Brownian motion and
the convergence of simple random walk to Brownian motion or construct the event
E(A(z0, r,4r)) for |x − z0| ≈ 2r from elementary events which, for L = Z2, are
of the type that a random walk started from (n,n) ∈ Z2 will exit the rectangle
Rn = [0, �an�] × [0,2n] through the side {�an�} × [0,2n]. That elementary event
for given a > 1 has positive probability uniformly over all n. �

We use here the same definition as in the case of percolation for admissible
domains, for ck , for Vk , etc. In the same way as above, the random curve γ will be
defined on T′. We describe here how to take the first step in the harmonic explorer.
Let U be an admissible domain and choose a and b in some way. Suppose for
concreteness that c1 follows the boundary clockwise from a to b and therefore c1
lies to the “left” from a and c2 lies to the “right.” Denote by HU : U ∩ T → [0,1]
the discrete harmonic function on U ∩ T that has boundary values 1 on V1 and 0
on V2.

Now γ (0) = a has either one or two neighbor vertices in U . If it has only one,
then set γ (1) equal to that vertex. If it has two neighbors, say, wL and wR (defined
such that wL −a,wR −a, c1(1)−a are in the clockwise order) calculate the value
of p0 = HU(v0) at the center v0 of the hexagon that is lying next to all these
three vertices. Then flip a biased coin and set γ (1) = wR with probability p0 and
γ (1) = wL with probability 1 − p0. Note that the rule followed when there is only
one neighbor can be seen as a special case of the second rule.

Extend γ linearly between γ (0) and γ (1) and set now U1 = U \ γ (0,1] which
is an admissible domain. Repeat the same procedure for U1 to define γ (2) us-
ing a biased coin independent from the first one so that the curve turns right with
probability p1 = HU1(v1) and left with probability 1 − p1 where v1 is the cen-
ter of the hexagon next to γ (1) and its neighbors except for γ (0). Then define
U2 = U1 \ γ (1,2] = U \ γ (0,2] and continue the construction in the same man-
ner. This repeated procedure defines a random curve γ (k), k = 0,1,2, . . . ,N , such
that γ (0) = a, γ (N) = b, γ is simple and stays in U .

A special property of this model is that the values of the harmonic functions
Mn = HUn(v) for fixed v ∈ U ∩ T but for randomly varying Un defined as above
will be a martingale with respect to the σ -algebra generated by the coin flips or
equivalently by the curve or the domains (Un).
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It turns out that in this case, the harmonic “observables”(
HUn(v)

)
v∈U∩T,n=0,1,...,N ,

provide also a method to verify the Condition G2. This is done in Proposition 6.3
of the article [29]. We only sketch the proof here. Let U be an admissible domain
and A = A(z0, r,R) an annulus. Let V− be the set of vertices in V1 ∩ B(z0,3r)

that are disconnected from b by Au and let the corresponding part of Au be Au−.
Let M̃n = ∑

x∈V− H̃Un(x), where H̃U (x), x ∈ V1 is defined to be the harmonic
measure of V2 seen from x and can be expressed in terms of HU as the average
value HU among the neighbors of x. Now the key observation in the above proof is
that (M̃n) is a martingale with M̃0 = O((r/R)�) for some � > 0 (following from
Beurling estimate of simple random walk) and on the event of crossing one of Au−
it increases to O(1). A martingale stopping argument tells that the probability of
the crossing event is then O((r/R)�).

PROPOSITION 4.16 (Schramm–Sheffield). The family of harmonic explorers
satisfies Condition G2.

4.5. Chordal loop-erased random walk. The loop-erased random walk is one
of the random curves proved to be conformally invariant. In [22], the radial loop-
erased random walk between an interior point and a boundary point was consid-
ered. We will treat here the chordal loop-erased random walk between two bound-
ary points. Condition G2 is slightly harder to verify in this case. Namely, the nat-
ural extension of Condition G2 to the radial case can be verified in the same way,
except that Proposition 4.17 is not necessary, and it is done in [22]. For another
approach, yet similar, see [38].

Let (Xt)t=0,1,... be a simple random walk (SRW) on the lattice Z2 and Px its law
so that Px(X0 = x) = 1. Consider a bounded, simply connected domain U ⊂ C
whose boundary ∂U is a path in Z2. Call the corresponding graph G, that is, G

consists of vertices U ∩ Z2 and the edges which stay in U (except that the end
points may be in ∂U ). Let V be the set of vertices and ∂V := V ∩ ∂U . When
X0 = x ∈ ∂V condition SRW on X1 ∈ U . For any X0 = x ∈ V define T to be the
hitting time of the boundary, i.e., T = inf{t ≥ 1 : Xt ∈ ∂V }.

Denote by τA the hitting time of the set A by the simple random walk
(Xt)t=0,1,... or (Xt)t=0,1,...,T . Let ωU(x,A) = P U

x (XT ∈ A) = P U
x (τA ≤ T ) which

is the discrete harmonic measure of A in U as seen from x. The quantity ωU(x,A)

is discrete harmonic in x and satisfies the properties of a measure with respect to A.
For a ∈ V and b ∈ ∂V define Pa→b = P U

a→b to be the law of (Xt)t=0,1,2,...,T

with X0 = a conditioned on XT = b. If (Xt)t=0,1,2,...,T distributed according to
P U

a→b then the process (Yt )t=0,1,2,...,T ′ , which is obtained from (Xt) by erasing
all loops in chronological order, is called loop-erased random walk (LERW) from
a to b in U . Denote its law by PU,a,b. We will show that the collection {PU,a,b :
(U,a, b)} of chordal LERWs satisfies Condition C2, where U runs over all simply
connected domains as above and {a, b} ⊂ ∂U .
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PROPOSITION 4.17. There exists ε0 > 0 such that for any c > 0 there exists
L0 > 0 such that the following holds. Let U be a discrete domain (∂U is a path
in Z2) and let Q be a topological quadrilateral with “sides” S0, S1, S2, S3 and
which lies on the boundary in the sense that S1, S3 ⊂ ∂U . Let A ⊂ V \ Q be a set
of vertices such that S0 disconnects S2 from A. If m(Q) ≥ L0, then there exists
u ∈ Q and r > 0 such that:

(i) B := V ∩ B(u, r) ⊂ Q,
(ii) minx∈B ωU(x,A) ≥ c maxx∈S2 ωU(x,A) and

(iii) P
Q
x→y(X[0, T ] ∩ B �= ∅) ≥ ε0 for any x ∈ S0 and y ∈ S2.

PROOF. Cut Q into three quads (topological quadrilaterals) by transversal
paths p1 and p2 and call these quads Qk , k = 1,2,3. The sides of Qk are denoted
by Sk

j , j = 0,1,2,3, and we assume that S1
0 = S0, S1

2 = p1 = S2
0 , S2

2 = p2 = S3
0

and S3
2 = S2.

We assume that m(Q1) = m(Q2) = l and m(Q3) = L − 2l where L = m(Q).
Using the Beurling estimate, Lemma 4.15, it is possible to fix l so large that
ωQ1∪Q2(z, S

1
0 ∪ S2

2) ≤ 1/100 for any z on the discrete path closest to S1
2 = S2

0 .
Since the harmonic measure z �→ ωQ1∪Q2(z, S

1
1 ∪ S2

1) changes at most by a
constant factor between neighboring sites, we can find u along the discrete path
closest to S1

2 = S2
0 in such a way that ωQ1∪Q2(u, S1

1 ∪ S2
1),ωQ1∪Q2(u, S1

3 ∪ S2
3) ≥

1/6. Let r be equal to half of the in-radius of Q1 ∪Q2 at u. Then B := V ∩B(u, r)

satisfies (i) by definition and (iii) for some ε0 > 0 follows from Proposition 3.1
of [8].

Let H(x) = ωU(x,A). Let c′ > 0 be such that H(x) ≥ c′H(y) for any x, y ∈
B . The constant c′ can be chosen to be universal by Harnack’s lemma. Let M =
maxx∈S2

2
H(x) and let x∗ be the point where the maximum is attained. By the

maximum principle there is a path π from x∗ to A such that H ≥ M on π . Now
H(u) ≥ M/6, and hence minx∈B H(x) ≥ Mc′/6. Finally, by the Beurling estimate
maxx∈S2

2
H(x) ≥ exp(αm(Q3))maxx∈S2 H(x) for some universal constant α > 0,

and hence we can choose L0 so large that (ii) holds for any L ≥ L0. �

THEOREM 4.18. Condition C2 holds for LERW.

PROOF. Let L0 > 0 and ε0 > 0 be as in Proposition 4.17 for c = 2. Consider
a quad Q with L = m(Q) ≥ L0 > 0 as in Proposition 4.17 for A = {b}. We will
show that there is uniformly positive probability that (Xt)t=0,1,...,T conditioned on
XT = b does not cross Q. By iterating that estimate n ∈ N times (for large enough
n), we get that the probability of crossing is at most 1/2 for L ≥ nL0.

We can assume Pa(τS2 < T | XT = b) ≥ 1/2, otherwise there would not be
anything to prove. By the previous proposition,

Pa

(
τB < (τS2 ∧ T )

∣∣XT = b
)≥ ε0Pa(τS2 < T

∣∣XT = b) ≥ ε0

2
.
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Now since maxx∈S2 Px(XT = b) ≤ (1/2) · miny∈B Py(XT = b) by assumption,

Py(τS2 < T | XT = b) = Py(τS2 < T,XT = b)

Py(XT = b)

≤ maxx∈S2 Px(XT = b)

Py(XT = b)
≤ 1

2

for any y ∈ B . Combine these estimates to show that

Pa(τS2 < T | XT = b) ≤ 1 − Pa(τB < T < τS2 | XT = b) ≤ 1 − ε0

4

from which the claim follows. �

4.6. Condition G2 fails for uniform spanning tree. For a given connected
graph G, a subgraph t of G is a spanning tree, if t is a tree, that is, it is con-
nected and without any cycles, and t is spanning, that is, V (t) = V (G). A uniform
spanning tree (UST) of G is a spanning tree sampled uniformly at random from
the set of all spanning trees of G. More precisely, if T is a uniform spanning tree
and t is any spanning tree of G then

P(T = t) = 1

N(G)
,(99)

where N(G) is the number of spanning trees of G. The UST model can be an-
alyzed via simple random walks or electrical networks; see [16] and references
therein. The conformal invariance of UST on planar graphs was established in
[22] where Lawler, Schramm and Werner proved that the UST Peano curve (see
below) converges to SLE(8). Their work partly relies on the Aizenman–Burchard
theorem and the results of [3] where the relevant probability bound for multiple
crossings was established.

Concerning the current work, the UST Peano curve gives a counterexample.
The random curve is otherwise eligible to the present framework but it fails to
satisfy Condition G2. This framework designed to establish the convergence of
discrete random curves to SLE(κ)s is consequently only relevant to the case 0 ≤
κ < 8. Roughly speaking, 0 ≤ κ ≤ 8 is the “physically relevant” range for the
parameter—for instance, the reversibility property holds only in this range of κ .
Therefore, it would be interesting to extend the methods of this paper all the way
to the borderline case of the UST Peano curve.

The setting for the UST Peano curve and its scaling limit as SLE(8) is the fol-
lowing. Consider a finite subgraph Gδ ⊂ δZ2, δ > 0, which is simply connected,
that is, it is a union of entire faces of δZ2 such that the corresponding domain is
Jordan domain of C. A boundary edge of Gδ is an edge e in Gδ such that there
is a face in δZ2 which contains e but which does not belong entirely to G. Take
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a nonempty connected set EW of boundary edges not equal to the entire set of
boundary edges. Then EW will be a path which we call wired boundary. Call its
end points in the counterclockwise direction as ãδ and b̃δ .

Let T be a uniform spanning tree on Gδ conditioned on EW ⊂ T . One way to
view T is that it is an unconditioned UST of the contracted graph Gδ/EW . The
UST Peano curve is defined to be the simple cycle γ on δ(1/4 + Z/2)2 which is
clockwise oriented and follows T as close as possible, that is, for each k, there is
either a vertex of Gδ on the right-hand side of (γ (k), γ (k + 1)) or there is a edge
of T . We restrict this path to a part which goes from a point next to ãδ to a point
next to b̃δ . With an appropriate choice of the domain Uδ , γ is a simple curve in Uδ

connecting boundary points aδ and bδ and it is also a space-filling curve, that is, γ

visits all the vertices Uδ ∩ δ(1/4 +Z/2)2.
It is easy to see that γ does not satisfy Condition G2: since it is space filling, it

will make an unforced crossing of A(z0, r,R) with probability 1 if there are any
sites which are disconnected from aδ and bδ by a component of A(z0, r,R).

However, the probability of having more than 2 crossings in such a component
is small. Namely, consider the following setting. If Q ⊂ Uδ is a topological quadri-
lateral such that ∂0Q and ∂2Q are subsets of Uδ and ∂1Q and ∂3Q are subsets of
wired part of ∂Uδ , B is the connected component of Uδ \ Q that is disconnected
by Q from aδ and bδ in Uδ and B contains at least one lattice points, then the UST
Peano curve will surely make a crossing of Q to B , but it is very likely that by the
time that it has returned to the component next to aδ and bδ , it has visited all the
lattice points in B . Therefore, on that event, there is only 2 crossings of Q. The
event occurs when there is a path π on Gδ that connects the wired sites of ∂1Q to
the wired sites of ∂3Q in Q and all but one of the edges of π belong to T . The edge
not present in T is the gate where the UST Peano curve can enter and exit exactly
once to visit B . By a Beurling estimate of simple random walk, the probability that
the path π does not exist satisfies a bound of a similar form as in Condition C3.

APPENDIX

A.1. Schramm–Loewner evolution. We will be interested in describing ran-
dom curves in simply connected domains with boundary in the complex plane by
Loewner evolutions with random driving functions. Since the setup for Loewner
evolutions is conformally invariant, we can define them in some fixed domain.
A standard choice is the upper half-plane H := {z ∈ C : Im(z) > 0}. Another choice
could be the unit disc D := {z ∈ C : |z| < 1}.

Consider a simple curve γ : [0, T ] → C such that γ (0) ∈ R and γ (t) ∈ H for
any t > 0. Let Kt = γ [0, t] and Ht = H \ Kt . Note that Kt is compact and Ht is
simply connected.

There is a unique conformal mapping gt : Ht → H satisfying the normaliza-
tion gt (∞) = ∞ and limz→∞[gt (z) − z] = 0. This is called the hydrodynamical
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FIG. 16. The mapping gt maps the complement of γ [0, t] onto the upper half-plane. The tip γ (t)

is mapped to a point Wt on the real line.

normalization and then around the infinity

gt (z) = z + a1(t)

z
+ a2(t)

z2 + · · · .(100)

The coefficient a1(t) = capH(Kt) is called the half-plane capacity of Kt or shorter
the capacity. Quite obviously, a1(0) = 0, and it can be shown that t �→ a1(t) is
strictly increasing and continuous. The curve can be reparameterized (which also
changes the value of T ) such that a1(t) = 2t for each t .

Assuming the above normalization and parameterization, the family of map-
pings (gt )t∈[0,T ] satisfies the upper half-plane version of the Loewner differential
equation, that is,

∂gt

∂t
(z) = 2

gt (z) − Wt

(101)

for any t ∈ [0, T ], where the “driving function” t �→ Wt is continuous and real-
valued. It can be proven that gt extends continuously to the point γ (t) and Wt =
gt (γ (t)). For the proofs of these facts, see Chapter 4 of [20]. An illustration of the
construction is in Figure 16. The equation, or rather its version on the unit disc,
was introduced by Loewner in 1923 in his study of the Bieberbach conjecture [24].

Consider more general families of growing sets. Call a compact subset K of
H such that H \ K is simply connected, as a hull. The sets Kt given by a simple
curve, as above, are hulls. Also other families of hulls can be described by the
Loewner equation with a continuous driving function. The necessary and sufficient
condition is given in the following proposition. Also some facts about the capacity
are collected there.

PROPOSITION A.1. Let T > 0 and (Kt)t∈[0,T ] a family of hulls s.t. Ks ⊂ Kt ,
for any s < t , and let Ht = H \ Kt .

• If (Kt \ Ks) ∩H �= ∅ for all s < t , then t �→ capH(Kt) is strictly increasing.
• If t �→ Ht is continuous in Carathéodory kernel convergence, then t �→

capH(Kt) is continuous.
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• Assume that capH(Kt) = 2t (under the first two assumptions there is always
such a time reparameterization). Then there is a continuous driving function Wt

so that gt satisfies Loewner equation (101) if and only if for each δ > 0 there
exists ε > 0 so that for any 0 ≤ s < t ≤ T , |t − s| < δ, a connected set C ⊂ Hs

can be chosen such that diam(C) < ε and C separates Kt \ Ks from infinity.

Two first statements are relatively simple. The second claim is almost self-
evident: Carathéodory kernel convergence means that gs → gt as s → t in the
compact subsets of Ht and then we have to use the fact that capH(K) can be ex-
pressed as an integral 1

2π

∫ π
0 Re(ReiθgK(Reiθ ))dθ for R large enough. The third

claim is proved in [21].
By the third claim not all continuous Wt correspond to a simple curve. One

important class of (Kt)t∈[0,T ] are the ones generated by a curve in the following
sense: For a curve γ : [0, T ] → H, γ (0) ∈ R, that is not necessarily simple, define
Ht to be the unbounded component of H \ γ [0, t] and Kt = H \ Ht . For each t , Kt

is a hull and the collection of hulls (Kt)t∈[0,T ] is said to be generated by the curve
γ . But even this class is not general enough: a counterexample is a spiral that winds
infinitely many times around a circle in the upper half-plane and then unwinds; see,
for example, the discussion in the article by Lind, Marshall and Rohde [23].

A Schramm–Loewner evolution, SLEκ , κ > 0, is a random (Kt)t≥0 correspond-
ing to a random driving function Wt = √

κBt where (Bt )t≥0 is a standard one-
dimensional Brownian motion. SLE was introduced by Schramm [28] in 1999. An
important result about them is that they are curves in the following sense:

• 0 < κ ≤ 4: Kt is a simple curve,
• 4 < κ < 8: Kt is generated by a curve,
• κ ≥ 8: Kt is a space filling curve.

This is proven κ �= 8 in [27]. For κ = 8, it follows since SLE8 is a scaling limit of a
random planar curve in the sense explained in the current paper; see [22]. So based
on this result, the above definition can be reformulated: a Schramm–Loewner evo-
lution is a random curve in the upper half-plane whose Loewner evolution is driven
by a Brownian motion.

In fact, Schramm–Loewner evolutions are characterized by the conformal
Markov property [28]; see [35] for an extended discussion. For this reason, if the
scaling limit of a random planar curve is conformally invariant in an appropriate
sense, then it has to be SLEκ , for some κ > 0.

A.2. Equicontinuity of Loewner chains. In this section, we prove simple
statements about equicontinuity of general Loewner chains. For gt as in the pre-
vious section, denote its inverse by ft = g−1

t , which satisfies the corresponding
Loewner equation

∂tft (z) = −f ′
t (z)

2

z − Wt

(102)
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together with the initial condition f0(z) = z. We call any of the equivalent objects
(gt )t∈[0,T ], (ft )t∈[0,T ] and (Kt)t∈[0,T ] as a Loewner chain [with the driving term
(Wt)t∈[0,T ]].

Let VT,δ = [0, T ] × {z ∈ C : Im z ≥ δ}.

LEMMA A.2. For any T , δ > 0 the family{
F̃ : VT,δ →C : there is a Loewner chain (ft )t∈R+ s.t.

F̃ (t, z) = ft (z),∀(t, z) ∈ VT,δ

}
(103)

is equi-continuous and

∣∣∂t F̃ (t, z)
∣∣≤ 2

δ
e8t/δ2

,
∣∣∂zF̃ (t, z)

∣∣≤ e8t/δ2
(104)

for any F̃ in the set (103) and for any (t, z) ∈ VT,δ .

PROOF. Since VT,δ is convex, it is sufficient to show (104). The equi-
continuity follows from that bound by integrating along a line segment in VT,δ .

Let �w(z) = i(Imw)1+z
1−z

+ Rew and f :H→C be any conformal map. Then

z �→ f ◦ �w(z) − f ◦ �w(0)

�′
w(0)f ′(w)

belongs to the class S of univalent functions (see Chapter 2 of [13]) and, therefore,
by Bieberbach’s theorem

(Imw)

∣∣∣∣f
′′(w)

f ′(w)

∣∣∣∣≤ 3.

If we apply this bound to the Loewner equation of f ′
t , we find that

∣∣∂tf
′
t (z)

∣∣≤ 8

(Im z)2

∣∣f ′
t (z)

∣∣
and, therefore, ∣∣f ′

t (z)
∣∣≤ e8t/(Im z)2 ≤ e8T/δ2

.

Furthermore, plugging this estimate in the Loewner equation gives

∣∣∂tft (z)
∣∣≤ 2

Im z
e8T/δ2 ≤ 2

δ
e8T/δ2

. �

For T , δ > 0 and family of hulls (Kt)t∈[0,T ], let

SK(T , δ) = {
(t, z) ∈ [0, T ] ×H : dist(z,Kt) ≥ δ

}
.(105)



772 A. KEMPPAINEN AND S. SMIRNOV

LEMMA A.3. Let γn be a sequence of curves in H and let γ be a curve in H
all parameterized with the interval [0, T ], T > 0, and let gn,t and gt be the nor-
malized conformal maps related to the hulls Kn,t and Kt of γn[0, t] and γ [0, t], re-
spectively. If γn → γ uniformly as n → ∞, then gn,t → gt uniformly on SK(T , δ)

as n → ∞. In particular, capHγn[0, ·] → capHγ [0, ·] uniformly as n → ∞.

PROOF. The lemma follows from the Carathéodory convergence theorem
(Theorem 3.1 of [13] and Theorem 1.8 of [26]). Convergence is uniform in t since
the interval [0, T ] is compact. �

LEMMA A.4. Let Wn be a sequence of continuous functions on [0, T ] and
let W be a continuous functions on [0, T ] and let gn,t and gt be the solutions of
Loewner equation with the driving terms Wn,t and Wt , respectively, and let Kt

be the hull of gt . If Wn → W uniformly as n → ∞, then gn,t → gt uniformly on
SK(T , δ) as n → ∞ and gt and W satisfy the Loewner equation.

PROOF. This lemma follows from the basic properties of ordinary differential
equations. �

A.2.1. Main lemma. Consider a sequence γ̃n ∈ Xsimple(D) with γ̃n(0) = −1
and γ̃n(1) = +1 which converges to some curve γ̃ ∈ X. After choosing a param-
eterization and using the chosen conformal transformation from D to H, it is nat-
ural to consider for some T > 0 a sequence of one-to-one continuous functions
γn : [0, T ] →C with γn(0) ∈R and γ (0, T ] ⊂H such that γn converges uniformly
to a continuous function γ : [0, T ] →C which is not constant on any subinterval of
[0, T ]. In this section, we present practical conditions under which γ is a Loewner
chain, that is, γ can be reparametrized with the half-plane capacity.

Let

υn(t) = 1
2capH

(
γn[0, t]), υ(t) = 1

2capH
(
γ [0, t]).(106)

Then t �→ υn(t) and t �→ υ(t) are continuous and υn → υ uniformly as n → ∞.
In particular, limn υn(T ) = υ(T ) and by the assumptions υ(1) > 0. Furthermore,
t �→ υ(t) is nondecreasing. Let (Wn(t))t∈[0,υn(T )] be the driving term of γn which
exists since γn is simple.

When is it true that γ has a continuous driving term? It is a fact that if υ is
strictly increasing then γ has a driving term W((t))t∈[0,υ(1)] and that Wn → W

uniformly on [0, υ(1)). However, we will not prove this auxiliary result; instead,
we prove a weaker result which gives a practical conditions to be verified.

LEMMA A.5. Let T > 0 and for each n ∈ N, let γn : [0, T ] → C be injective
continuous function such that γn(0) ∈ R and γn(0, T ] ⊂ H. Suppose that:

1. γn → γ uniformly on [0, T ] and γ is not constant on any subinterval of
[0, T ].



RANDOM CURVES AND LOEWNER EVOLUTIONS 773

2. Wn → W uniformly on [0, υ(T )].
3. Fn → F uniformly on [0, T ] × [0,1], where

Fn(t, y) = g−1
γn[0,t]

(
Wn

(
υn(t)

)+ iy
)
.(107)

Then t �→ υ(t) is strictly increasing and gt := gγ ◦υ−1[0,t] satisfies the Loewner

equation with the driving term W . Furthermore, γn ◦ υ−1
n , which is the sequence

of curves in the capacity parameterization, converges uniformly to γ ◦υ−1 and the
sequence of mappings (t, z) �→ g

γn◦υ−1
n [0,t](z) converges to gt uniformly on

SK(T , δ) = {
(t, z) ∈ [0, T ] ×H : dist(z,Kt) ≥ δ

}
(108)

for any δ > 0. Here Kt is the hull of γ [0, t].

REMARK A.6. By applying a scaling and corresponding time change, it is
enough that there exists ε > 0 such that Fn → F uniformly on [0, T ] × [0, ε].

PROOF OF LEMMA A.5. By Lemma A.3, γn → γ implies that υn → υ uni-
formly as n → ∞. Let fn,t = g−1

γn[0,t]. Since

Fn(t, y) = fn,t

(
Wn ◦ υn(t) + iy

)
(109)

and since by Lemma A.2∣∣fn,t (z) − fn,t ′
(
z′)∣∣≤ C

(
δ, υ(T )

)(∣∣υn(t) − υn

(
t ′
)∣∣+ ∣∣z − z′∣∣),(110)

it follows directly from the assumptions that if for some s < t , υ(s) = υ(t), then
F(s, y) = F(u, y) = F(t, y) for all u ∈ [s, t] and y ≥ 0. Consequently, γ (u) =
F(u,0) is constant on the interval u ∈ [s, t] which contradicts with the assumptions
of the lemma. Hence, υ is strictly increasing. An application of Helly’s selection
theorem gives that υ−1

n converges uniformly to υ−1. Therefore, γn ◦υ−1
n converges

uniformly to γ ◦ υ−1, and hence for any δ > 0 (t, z) �→ g
γn◦υ−1

n [0,t] converges
to gt uniformly on the set (108). The convergence of Wn together with standard
results about ODE’s imply that g

γn◦υ−1
n [0,t], which are the solutions of the Loewner

equation with the driving terms Wn, converge uniformly to the solution of the
Loewner equation with the driving term W ; see Lemma A.4. Hence, gt is generated
by γ and driven by W . �

LEMMA A.7. Let γ : [0, T ] → C be continuous and not constant on any
subinterval of [0, T ]. Let γn : [0, T ] → C be a sequence of simple parameterized
curves such that γn(0) ∈ R and γn((0, T ]) ⊂ H. Suppose that γn → γ uniformly
as n → ∞. If:

• (Wn)n∈N is equi-continuous and
• there exist increasing continuous ψ : [0, δ) → R+ such that ψ(0) = 0 and

|Fn(t, y) − γn(t)| ≤ ψ(y) for all 0 < y < δ and for all n ∈ N
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then Wn converges to some continuous W , γ can be continuously reparameterized
with the half-plane capacity and γ ◦ υ−1 is driven by W .

PROOF. It is clearly enough to show that (Fn)n∈N is a equi-continuous family
of functions on [0, T ] × [0,1]. The claim then follows from the previous lemma
after choosing by the Arzelà–Ascoli theorem a subsequence nj such that Fnj

and
Wnj

converge.

Let gn,t = gγn[0,t] and fn,t = g−1
n,t . Let ε > 0 and choose δ > 0 such that∣∣Fn(t, y) − γn(t)

∣∣≤ ε

6
,(111)

∣∣γn

(
t ′
)− γn(t)

∣∣≤ ε

6
(112)

when 0 ≤ y ≤ δ and t, t ′ ∈ [0, T ] with |t − t ′| ≤ δ. Then by the triangle inequality∣∣Fn

(
t ′, y′)− Fn(t, y)

∣∣≤ ε

2
(113)

for all 0 ≤ y, y′ ≤ δ, for all t, t ′ ∈ [0, T ] with |t − t ′| ≤ δ and for all n ∈ N.
By (109) and Lemma A.2, the family of mappings (Fn|[0,T ]×[δ,1])n∈N is equi-

continuous. Hence, we can choose 0 < δ̃ ≤ δ such that (113) for all δ ≤ y, y′ ≤ 1
with |y − y′| ≤ δ̃, for all t, t ′ ∈ [0, T ] with |t − t ′| ≤ δ̃ and for all n ∈ N. Hence, by
the triangle inequality ∣∣Fn

(
t ′, y′)− Fn(t, y)

∣∣≤ ε(114)

for all 0 ≤ y, y′ ≤ 1 with |y − y′| ≤ δ̃, for all t, t ′ ∈ [0, T ] with |t − t ′| ≤ δ̃ and for
all n ∈ N. �

A.3. Some facts about conformal mappings. In this section, a collection of
simple lemmas about normalized conformal mappings is presented. Only elemen-
tary methods are used, and therefore it is advantageous to present the proofs here,
even though they appear elsewhere in the literature.

Denote the inverse mapping of gK by fK and by I ⊂R the image of ∂K under
gK , that is, I = {x ∈R : ImfK(x) > 0}. Now fK can be given by integral with
Poisson kernel of upper half-plane as

fK(z) = z + 1

π

∫
I

ImfK(x)

x − z
dx.(115)

This gives a nice proof of the following fact.

LEMMA A.8. Denote u+ = max I and u− = min I and x± = fK(u±). As-
sume H∩ K �= ∅. Then

fK(x) < x when x ≥ u+ and fK(x) > x when x ≤ u−(116)

and

gK(x) > x when x ≥ x+ and gK(x) < x when x ≤ x−.(117)
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PROOF. Note that ImfK(x) is nonnegative everywhere. It is positive in a set
of nonzero Lebesgue measure, otherwise equation (115) would imply that fK is an
identity which is a contradiction. Now equation (115) implies directly the equation
(116). Apply gK on both sides to get equation (117). �

The lemma can be used, for example, in the following way.

LEMMA A.9. Let K ⊂ K ′ be two hulls. Let x ∈R s.t. gK(K ′ \ K)∩ (x,∞) =
∅, and let z = fK(x). Then gK(z) ≤ gK ′(z).

PROOF. Apply Lemma A.8 to hull J = gK(K ′ \ K) and u = gJ (x). �

Let us introduce still one more concept. Consider now K = [−l, l] × [0, h]
where l, h > 0. The domain H \ K can be thought as a polygon with the vertices
w1 = −l, w2 = −l + ih, w3 = l + ih, w4 = l and w5 = ∞. The interior angles at
these vertices are α1 = π

2 , α2 = 3π
2 , α3 = 3π

2 , α4 = π
2 and α5 = 0, respectively. For

the last one, this has to be thought on the Riemann sphere.
Mappings from H to polygons are well-known. They are Schwarz–Christoffel

mappings. In this case, when fK(∞) = w5 = ∞ all such mappings can be written
in the form

fK(z) = A + C

∫ z
√

ζ − z2
√

ζ − z3√
ζ − z1

√
ζ − z4

dζ.(118)

Here, fK(zi) = wi , i = 1,2,3,4. So in a sense ReA, ImA,C and zi are parame-
ters in the problem. Two of them can be chosen freely and the rest are determined
from them. The branches of the square roots are chosen so that far on the positive
real axis the square root is positive and then analytic continuation is used.

In our case, fK is normalized at the infinity. This fixes C = 1 and ReA so that
it cancels the constant term in the expansion of the integral. But if we are only
interested in differences fK(z) − fK(z′) we do not have to care about A.

LEMMA A.10. Let K = [−l/2, l/2] × [0, h], h, l > 0, and let zi be as above.
Then

z3 = −z2 = 1

2
l
(
1 + o(1)

)
and

(119)

z4 − z3 = z2 − z1 = 2

π
h
(
1 + o(1)

)
as

h

l
→ 0.

PROOF. Note first that by symmetry z1 = −z4 and z2 = −z4.
Denote λ = z3 − z2 and θ = z4 − z3. We would like to estimate λ and θ in terms

of l and h.
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Calculate h = Im(w3 − w4) as an integral along the real axis

h =
∫ z4

z3

√
ζ − z2

ζ − z1

√
ζ − z3

z4 − ζ
dζ.

Since the first factor of the integrand is a decreasing function ζ , it can be bounded
with the values at the end points z3 and z4. After couple of variable changes, the
integral of the second factor is

∫ z4

z3

√
ζ − z3

z4 − ζ
dζ = π

2
(z4 − z3)

and, therefore,

π

2

√
1

1 + θ/λ
θ ≤ h ≤ π

2

√
1 + θ/λ

1 + 2θ/λ
θ.(120)

Calculate l = w3 − w2 as

l =
∫ z3

z2

√
(ζ − z2)(z3 − ζ )

(ζ − z1)(z4 − ζ )
dζ = 2

∫ z3

0

√√√√z2
3 − ζ 2

z2
4 − ζ 2

dζ.

The integrand is always less or equal then one. So l ≤ λ. For the lower bound, note
that the integrand is a decreasing function of ζ . Therefore,

∫ z3

0

√√√√z2
3 − ζ 2

z2
4 − ζ 2

dζ ≥ ζ0

√√√√z2
3 − ζ 2

0

z2
4 − ζ 2

0

.

Maximize this with respect to ζ0 ∈ [0, z3] to get

∫ z3

0

√√√√z2
3 − ζ 2

z2
4 − ζ 2

dζ ≥
(
z4 −

√
z2

4 − z2
3

)
.

To conclude this,

(
1 + 2

θ

λ
− 2

√
θ

λ

√
1 + θ

λ

)
λ ≤ l ≤ λ.(121)

Inequalities (120) and (121) can be combined to conclude that θ
λ

is small
when h

l
is small. And in this case θ ≈ 2

π
h and λ ≈ l. And all the claims follow.

�

LEMMA A.11. Let hull K be a subset of a rectangle [−l, l] × [0, h], l, h > 0.
If K ∩ ({l} × [0, h]) �= ∅ then uniformly for any z in this set gK(z) = l(1 + o(1))

as h
l
→ 0.
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PROOF. Assume that K ∩ H �= ∅. Otherwise, the statement is trivial since
z = l and gK is identity.

Let K ′ = [−l, l] × [0, h]. Then K ⊂ K ′. Take any z ∈ K ∩ ({l} × [0, h]). Let
x+ = l, u+ = gK(x+) and v+ = gK ′(x+).

By Lemma A.9 and Lemma A.10 l ≤ u+ ≤ v+ = l(1 + o(1)). And by an length
area principle, for example, Wolff’s lemma (Proposition 2.2 of [26]), 0 ≤ u+ −
gK(z) = o(1)l. �

LEMMA A.12. If i ∈ K then capH(K) ≥ 1
4 .

PROOF. First of all, note that this is sharp. It is attained by a vertical slit ex-
tending from 0 to i.

Now assume that there is K containing i s.t. capH(K) < 1
4 . It is possible to

choose K̃ containing K s.t. the capacities are arbitrarily close and the boundary
of K̃ is a smooth curve. This can be done by choosing a smooth, simple curve
γ that separates an interval containing gK(K) from ∞ in H. Then K̃ is the hull
that has fK(γ ) as the boundary. Therefore, there exists now K̃ s.t. it contains i,
capH(K̃) < 1

4 and the boundary is a curve.
Therefore, there exists a simple curve γ (t), t ∈ [0, T ], parameterized by the

capacity so that 0 < T < 1
4 and γ contains some point lying on the line i + R.

Now take any point z s.t. Im z > 4T , and let Zt = Xt + iYt = gt (z). Then by
Loewner equation,

dYt

dt
= − 2Yt

(Xt − Ut)2 + Y 2
t

≥ − 2

Yt

.

Therefore,

Yt ≥
√

(Im z)2 − 4t > 0.

Hence, z /∈ γ [0, T ]. This leads to a contradiction: γ does not intersect the line
i +R. �

LEMMA A.13. Let K be a hull. If K ∩ (R× {hi}) �= ∅ then capH(K) ≥ 1
4h2.

If K ⊂ [−l, l] × [0, h], then capH(K) ≤ capH([−l, l] × [0, h]) and capH([−l, l] ×
[0, h]) = 1

2π
hl(1 + o(1)) as h

l
→ 0.

PROOF. The lower bound follows from Lemma A.12 and scaling.
For the upper bound let us use the Schwarz–Christoffel mapping. Write

capH(K) = 1

8

(−z2
1 − z2

4 + z2
2 + z2

3
)

= 1

4
(z4 − z3)(z4 + z3)(122)

= 1

2π
hl
(
1 + o(1)

)
.

This gives the desired upper bound. �
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